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Exact conformal field theories (CFTs) are obtained by using the approach of Poisson-Lie (PL) T-duality
in the presence of spectators. We explicitly construct some non-Abelian T-dual o-models (here as the PL T-
duality on a semi-Abelian double) on 2 + 2-dimensional target manifolds M ~ O x G and M ~ O x G,
where G and G as two-dimensional real non-Abelian and Abelian Lie groups act freely on M and #,
respectively, while O is the orbit of G in M. The findings of our study show that the original models are
equivalent to Wess-Zumino-Witten (WZW) models based on the Heisenberg (H;) and GL(2,R) Lie
groups. In this way, some new T-dual backgrounds for these WZW models are obtained. For one of the
duals of the H, WZW model, we show that the model is self-dual. In the case of the GL(2, R) WZW model
it is observed that the duality transformation changes the asymptotic behavior of solutions from AdS; x R
to flat space. Then, the structure and asymptotic nature of the dual spacetime of this model including the
horizon and singularity are determined. We furthermore get the noncritical Bianchi type III string
cosmological model with a nonvanishing field strength from T-dualizable s-models and show that this
model describes an exact CFT (equivalent to the GL(2,R) WZW model). After that, the conformal

invariance of T-dual models up to two-loop order (first order in «') is discussed.
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I. INTRODUCTION

The duality symmetries play an important role in string
theory. On the one hand, they are specific to string theory
and their study has led to important insights in under-
standing the spacetime geometry from the string point of
view. A very important symmetry of string theory or more
generally, two-dimensional sigma models, is the T-duality
[1]. A study of the T-duality in string theory has led to the
discovery of PL T-duality. Klim¢ik and Severa in their
seminal work [2] proposed a generalization of T-duality, or
the so-called PL T-duality, which allows the duality to be
performed on a target space without isometries. In Klim¢ik
and Severa’s formalism, PL T-dual sigma models are
defined by PL group manifolds which constitute a
Drinfeld double [3]. The classification of low-dimensional
Drinfeld doubles [4,5] has become a convenient laboratory
for investigation of the PL T-duality.

On the other hand, the duality symmetries in Wess-
Zumino-Witten (WZW) models have received considerable
attention because of the preservation of the conformal
symmetry under the Abelian duality [6]. This duality has
been investigated in the WZW models [7]. Furthermore, for
the case of non-Abelian duality [8], it has been shown that
the conformal symmetry is preserved when the trace of the
adjoint representation of the isometry group is zero [9].

“eghbali978 @ gmail.com

2470-0010/2019,/99(2)/026001(16)

026001-1

The WZW model is a well-known construction for
obtaining a CFT which describes string propagation on a
Lie group. For instance, the natural metric on the Lie group
SL(2,R) is precisely the three-dimensional anti-de Sitter
metric. Hence, the WZW model based on Lie group
SL(2,R) can be considered as an exact CFT describing
string propagation on anti-de Sitter space [10]. Up to now,
only few examples of PL symmetric o-models have been
treated at the quantum level [11,12]. Furthermore, PL
symmetry in the WZW models based on the Lie supergroups
have recently been studied in Refs. [13,14]. We also refer the
reader to the literatures given in Ref. [15]. In Ref. [11] it has
been shown that the duality relates the SL(2,R) WZW
model to a constrained o-model defined by the SL(2, R)
group space. We have shown that [16] the PL T-duality
relates the H, WZW model to a o-model defined on the dual
Lie group A, @ 2A;. We have also stressed that the dual
model is conformally invariant up to two-loop order.
Furthermore, we have recently shown that [17] the PL T-
duality relates the SL(2,R) WZW model to a o-model
defined on 2 4 1-dimensional manifold M ~ O x G in
which G is two-dimensional real non-Abelian Lie group
A,, and O as a one-dimensional space is the orbit of G in M.
Accordingly, we have obtained a dual model for the
SL(2,R) WZW model yielding a new three-dimensional
charged black string which is stationary and asymptoti-
cally flat.

The main purpose of this paper is to construct some new
non-Abelian T-dual backgrounds for the H, and GL(2, R)

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.026001&domain=pdf&date_stamp=2019-01-02
https://doi.org/10.1103/PhysRevD.99.026001
https://doi.org/10.1103/PhysRevD.99.026001
https://doi.org/10.1103/PhysRevD.99.026001
https://doi.org/10.1103/PhysRevD.99.026001

ALI EGHBALI

PHYS. REV. D 99, 026001 (2019)

WZW models via PL T-duality approach in the presence
of spectators. The original models as exact CFTs (the H,
and GL(2,R) WZW models) are constructed on 2 + 2-
dimensional target manifold M ~ O x G with G = A, and
dual models on manifold M~ O xG with G = 2A,,
whereas, in [16] T-dual o-models were only constructed
on Lie groups in the absence of spectators. In the present
work, two dual models for the H, WZW are obtained for
one of which we show that the dual model is indeed
identical to the same H, WZW model. Moreover, we get
one dual model for the GL(2,R) WZW for which the
structure and asymptotic nature of the spacetime including
the horizon and singularity are determined. We also obtain
the noncritical Bianchi type III string cosmological model
with a nonvanishing field strength from a T-dualizable o-
model on 3 + 1-dimensional target manifold M ~ O x G,
in which G represents three-dimensional decomposable Lie
group A, @ A, and then we show that this model describes
an exact CFT. Finally, we discuss the conformal invariance
conditions of the T-dual models up to the first order in o’ to
introduce new solutions for two-loop B-function equations
of the o-model with a nonvanishing field strength A and the
dilaton field in both cases of the absence and presence of a
cosmological constant A.

This paper is organized as follows. In Sec. II, we present
a basic review of the PL T-dual s-models construction in the
presence of spectator fields. In Sec. III, we get the H,
and GL(2,R) WZW models from T-dualizable 5-models
constructed on 2 + 2-dimensional target manifolds M ~
O x G and M ~ O x G. In addition, the dual backgrounds
for these WZW models together with the structure and
asymptotic nature of the dual spacetime of the GL(2, R)
WZW including the horizon and singularity are studied.
Finally, the non-Abelian T-dualization of the noncritical
Bianchi type III string cosmology solution is discussed at
the end of Sec. III. In Sec. IV, we investigate the conformal
invariance conditions for T-dual models up to two-loop
order. Some concluding remarks are given in Sec. V.

II. CONSTRUCTION OF PL T-DUAL ¢-MODELS
WITH SPECTATORS

We begin this section by reviewing the construction of
PL T-dual 6-models in the presence of spectator fields. First
of all, for the description of PL T-duality we need to
introduce the Drinfeld double group D [3], which by
definition has a pair of maximally isotropic subgroups G
and G corresponding to the subalgebras G and G, respec-
tively. The generators of G and G are denoted, respectively,
T,and 7% a = 1, ...,dim G. One says that the Lie algebras
G and G are compatible if the brackets

[Ta’ Tb] = fcabTw [Ta’ Tb} = }athcv
[Ta» Tb] :}hcaTc +fbcach (1)

define a Lie algebra structure on the direct sum vector space
D =G @ G. In this case, we say that the Lie algebra D is
the Drinfeld double of G or, equivalently, of G. Thus, the
group D is called the Drinfeld double of G (or G). We also

note that the Drinfeld double D is equipped with an
invariant inner product (.,.) with the following properties

<Tav Tb> = 5ab,
(Ty, Tp) = (T4 T") = 0. (2)

In what follows we shall investigate PL T-duality trans-
formations in the presence of spectators [2,18] of a non-
linear o-model with the following action for a bosonic
string, propagating in a d-dimensional spacetime, with the
metric G,,, the antisymmetric tensor field B,, and the

dilaton field ¢

1 1
5= ﬁ/ drde/=h [z (h Gy + € By )03 Oy
1
—+ 1(1/¢R(h):| 5 (3)

where hg is the world sheet metric with R™ the corre-
sponding world sheet curvature scalar and 7 = det 5. The
indices a, # run over (7, ¢), and € is an antisymmetric
tensor on the world sheet . The dimensionful coupling
constant ' turns out to be the inverse string tension. The
functions x*: £ - R, (u = 1,...,dim M) are obtained by
the composition x* = X#ox of a map x: £ —- M and
components of a coordinate map X on a chart of M.
Here, and in the following, we use the standard light-cone
variables on the world sheet, 6= = 7 + o.

Let us now consider a d-dimensional manifold M
and some coordinates x* = (x/,y%) on it, where x'(i =
I,...,dim G) are the coordinates of Lie group G acting
freely from right on M. y*(a =1, ...,d — dim G) are the
coordinates labeling the orbit O of G in the target space M.
We note that the coordinates y* do not participate in the PL
T-duality transformations and are therefore called specta-
tors [18]. Take a linear (idempotent) map C from the
space T;M a5 TyM @ D into itself. It has two eigens-
paces R (y*) with eigenvalues +1. They are perpendicular
to each other according to the bilinear form on
TSM & T M & D. These eigenspaces may be considered
as the graph of a nondegenerate linear map E*(y):
T_VM P G- T;‘,M (a5 G, such that by translating this graph
to the point g € G we have

g 'RL(y")g = Span{X, £ E55(9.y)X®},  (4)

where X, = (T,,0,) and X4 = (T, dy®) are the basis of
the spaces M & G and T;M (2] Q respectively. In order
to determine the d x d matrix E5,(g,y*) we write the
spaces R, (y%) as follows:
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g 'R.(y")g = Span{g™'X,g + Eiz(e.y")g7'XBg}.  (5)

in which the matrix E5,(e, y*) is defined as

Fi;”(e,y")> ©)
Frxﬁ(ya)

Egab(e’ ya>

Eiple.y") = (
(2)
F(sz (e,y“)

Here, submatrices Ei , (e, y%), Fa/} '(e,y*) and F£,” (e, y*)

are functions of the variables y* and e, where e is the unit
element of G. F,4(y) is also a function of y* only. Here,
and in the following, the minus sign stands for transpose,
namely, Ej , = Ej .- F;rﬂm = Fﬁf) and F(j:) =F;.

It is convenient to define matrices a(g), b(g) and the
Poisson bracket I1(g) in the following way

g 'T.9=a,(9)Ts.
g7\ Tg = b (g)T) + (a71),%(9) T, (7)

% (g) = b*(g)(a™)(9)- (8)

Thus, using (4) and (5) together with (7) one gets

Eip(9.y") = (A(g) £ E*(e,y))B(9))5'¢
x Ecple. y*)(A™)5"(9), )
where'
ao = ("0 ) o= ("0 ) o)
We also define
[FAB(g’ *) = Ay ()Eﬂctp(g’ya)ABD(g)- (11)

Considering matrix F35(g, y*) in the form

E5, (9.5 d’f}”(g’y")) 12)
(Di(z (g’y ) q)a/i(ya)

and then using (6), (9), (10) and (11) one can obtain the
backgrounds appearing in the action of original o-model.
They are given in matrix notation by

Fip(g.y*) = (

E*(g.y") = (Eg " (e.y") £1(g)) ™", (13)
JEF) ™ (e y)F=" (e.y"),  (14)

F* (e, y")(Eg) ™ (e, y)E* (g, %), (15)

=" (g, y*) = E*(g,)"

o+ (g.y%) =

'"Here 1d means the identity matrix.

®(g.y") = F(y*) = F*" (e, y)II(g)E* (g. y*)
x (E§) ™ (e.y) FH" (e, y%). (16)

Let us now introduce the elements V. of subspaces
R.(y?) as

0
V, = 8iy"a 3 p Py o, (17)

where p,(f) € TyM and | € D. Inserting the decomposition

I =gh(geG,heG) [11]into (17) we get
Vy=RiX, + i‘):tA (BB (g)Xp + Ap*(9)X®),  (18)

where R and R, , are the elements of the respective spaces
M @ G and M & G, and are given by

RY = (R4, 0.y") = ((0+g97")%. 04y"),  (19)

R:I:A = ((aiilil_])a, F Pg:F))' (20)
Thus, by using the equations of motion
(Vi, (Xa F Efp(9.y)X")) =0, (21)
we obtain

RiA = +REF5:(9. y*)(A™"), (9). (22)

Equation (22) can be written in terms of components. They
then take the following forms

(0:hh™), = (@), (9)[RE By (9. 5)

+ 0,y (9.y), (23)
(O-hh™), = ~(a™), (9)[ES, (9. y)R?
+ @ (9.y)9_"), (24)
and

2) a a
P = (08, (9. )R + (9. y)IY),  (25)

P = ~[REOL (9.%) + 0,3 Bpal9.3)]. (26)
The above results indicate that the Eq. (21) are nothing but
the equations of motion concerning the -model described
by the following action
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1
S = 5/da‘*do"[F:{B(g, y*)RARE,

1
=5 / do*do™[Ey, (9. y*)RIR?
) y )
+ @y (9, y)RLOY + @, (9, y")0,y*RE
+ (g, y*) 01y 0y (27)
As we shall see below, one can construct another o-model

(denoted as usual with tilded symbols) which is said to be
dual to (27) in the sense of the PL T-duality if the Lie
algebras G and G form a pair of maximally isotropic
subalgebras of the Lie algebra D. In order to get the dual
o-model one proceeds in an analogous way so that
eigenspaces R (y*) are considered as

Ry (y%) = Span{¥ £ E*"(2,y") Y5},  (28)

where ET*(y*): TM®G—>TM®G, Yp= (T, d")
and ¥4 = (T“,(?a). With a slight abuse of the notation,
comparing (5) and (28) we get the matrix form of E* (&, y*)
as [2]
E*(e,y*) = £(A+ E*(e,y)B)™
x (B+ E*(e,y*)A), (29)
in which

L) e

Now, using (28) and inserting the decomposition [ = gh
into the Eq. (21), one can get the equations of motion for y*
and X' corresponding to the following action

P 1 = AB L,
S:z/daJ“do’[F+ (9. y")R.,R_,

I o
—§/d6+d0'_[[E+b(g,y JR. R_,

H+D =\ B =Gy ap
+ @t 5(G.y)R, O_y + & (7,y7)0.,y R_,
+ @p(7. )01y O], (31)

The coupling matrices of the dual o-model are also
determined in a similar fashion [2,18]. Using (29) one
relates them to those of the original one by

E=(3.y%) = (Ej (e.y*) £T1(3))~", (32)
& (3.y%) = £EH(G.y)F " (e.y).  (33)

&+ (5, y*) =F F£7 (e, y")E* (7. y%). (34)

®(3,y%) = F(»*) = F*" (e, y%)
x E* (g, y) F*" (e, y%). (35)

The actions (27) and (31) correspond to PL T-dual o-
models [2]. Notice that if the group G(G) besides
having free action on M (1\71 ), acts transitively on it, then
the corresponding manifold M(M) will be the same as the
group G(G). In this case only the first term appears in the
actions (27) and (31).

In the PL T-duality case, dilaton shifts in both models
have been obtained by quantum considerations based on a
regularization of a functional determinant in a path integral
formulation of PL T-duality by incorporating spectator
fields [19] (see, also, [20])

¢ = ¢o(y") + log(det E¥) — log(det E7).  (36)

d = do(y*) + log(det E), (37)

where ¢, (y*) is just a function of y®.

III. T-DUALIZABLE ¢-MODELS ON
2 +2-DIMENSIONAL MANIFOLDS
AS EXACT CFTS

In this section, we explicitly construct two pairs of PL
T-dual o-models on 2 + 2-dimensional target manifolds
M~O0xG and M~ O xG, where G and G as two-
dimensional real non-Abelian and Abelian Lie groups act
freely on M and M, respectively, while O is the orbit of G in
M with the spectators y* = {y;, y,}. The Lie algebras of
the Lie groups G and G are denoted by A, and 2A4,,
respectively. According to Sec. II, having Drinfeld doubles
we can construct PL T-dual s-models on them. The four-
dimensional Lie algebra of the Drinfeld double (.A,,2.A4,)
is given by the following nonzero commutation relations:
[T1,Ts] =T,

[Tl, Tz} = —TZ, {Tz, TZ} = Tl,

(38)

where {T'|,T,} and {T', T?} are the basis of A, and 2.4,,
respectively. Notice that the double (A,,2.4;) has non-
vanishing trace in the adjoint representations. In such a
situation, there is usually a conformal anomaly at one-loop
associated with non-Abelian T-duality [20]. In what fol-
lows, we will also discuss the conformal anomaly appeared
in the string effective Lagrangians corresponding to the
T-dual models.

In order to calculate the components of right invariant
one-forms R{ on the Lie group A, we parametrize an
element of A, as

g=e"Tienln (39)
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where x' = {x;,x,} are the coordinates of the Lie group
Aj. R%’s are then derived in the following form

Rli = aixl, Rzi = exlaixz. (40)

Since the dual Lie group, 2A,, is Abelian, by using (7), (8)
and (38) it follows that the Poisson bracket T1(g) on A,
vanishes. Furthermore, for obtaining the Poisson bracket on
the dual group 24, we first parametrize the Lie group 24,
with coordinates X' = {¥,X,} so that its elements are
defined as in (39) by replacing untilded quantities with
tilded ones. Then, using (7) and (8) for tilded quantities
together with (38) the Poisson bracket on 2A, is derived as
follows:

o=, ) (1)

%5 0

In addition to the right invariant one-forms, to construct

the o-models (27) and (31) on manifolds M and M we

need to determine the couplings E;, (g, y*), <I>:{/;”(g, ),

QD;;) (9.¥%), and ®,4(g. y*). By convenient choices of the
background matrices Ej , (e, y*), F Z/ﬁ'l) (e.y%), F1.” (e, y%)
and F,;(y*), we will show that the original models are
equivalent to the H, and GL(2,R) WZW models. In this

way, the new dual backgrounds for these WZW models are
obtained.

A. The Hy WZW model from T-dualizable s-models
and its dual pairs

In this subsection, we obtain two different duals of the
H, WZW model. In both cases, the original o-models
(which are equivalent to the H, WZW model) are con-
structed on the manifold M ~ O x G with G = A, acting
freely on it, however, the spectator-dependent background
matrices are chosen to be different for each model.

Case (I1): In this case, we take the background
matrices as

o (0 e oo (0 -1
0ab — eV 0 ’ aff — 1 0 ’

0 0 0 —en
+( +2
Faﬂ _<€y1 0)’ Fab _<0 0 > (42)

As explained above, the Poisson bracket I1%(g) is zero. By
using relations (13)—(16) one can get the required couplings
which where mentioned above. Finally, using (40) and then
(27), the original o-model is found to be of the form

1
S = 5/ dotdo™ [0, y,0_y, — 0, y,0_y;

4 et (8+x18_x2 -+ 8+x28_x1)
+ (D x0_y; — 0,y10_x,)]. (43)

By identifying action (43) with the 6-model of the form (3)
one can read off the background matrix. Thus, the metric
and antisymmetric tensor field corresponding to the action
(43) can be written as

ds* = =2dy,dy, + 2e""1dx,dx,, (44)
B = ex'er]d.Xz A\ dy] (45)

Before proceeding to construct the dual o-model, let us
discuss the conformal invariance of the model (43). The
classical canonical equivalence to the o-models related by
PL T-duality was done by Sfetsos in [18] (see, also, [21]).
The canonical transformations are essentially classical and
the quantum equivalence of the two o-models has not yet
been revealed. Equivalence can hold in some special cases
but it fails in most cases. In this respect, checking the
equivalence by studying conformal invariance (the vanish-
ing of the Beta-functions) is important. But, since after a
classical canonical transformation, the equivalence always
holds up to first order in Planck’s constant in the semi-
classical expansion (corresponding to one-loop order in o-
model language), only the two-loop order is the first real
test of quantum equivalence of the two different s-models
related by PL T-duality. For these reasons it is important to
check the conformal invariance conditions of our models.

In the o-model context, the conformal invariance is
provided by the vanishing of the B-functions equations
[22], which are equivalent to the equations of motion of
effective action in the string frame [23]. In four dimensions,
the low energy string effective action is

Setr = /d4xv —Ge™ Loy, (46)

where G = detG

Hw

and L. is given by
1
Lz =R+ (Vo) - gH2 + 2A. (47)

In this expression, R is the scalar curvature of the metric

G, and H,, ), defined by H,,, = 1/2(9,B,, + 0,B,, +

0,B,,) is the torsion (the field strength) of the field B,,. A
is a cosmological constant® which is vanished for critical

In string theory, the cosmological constant term A is related to
the dimension of spacetime, d, and the inverse string tension by
A = (d —26)/3a, whereas, here in this paper it is, in some cases,
treated as a free parameter.

026001-5



ALI EGHBALI

PHYS. REV. D 99, 026001 (2019)

strings. Our analysis applies also to noncritical strings, i.e.,
when A is different from zero.

Consistency of the string theory requires that the action
(3) be defined a conformally invariant quantum field theory.
The conditions for conformal invariance can be interpreted
as field equations for G,,, B,,, and ¢ of the string effective
action [24,25]. The vanishing of the one-loop B-functions
equations gives us the conformal invariance conditions of
the o-model (3) up to one-loop order (zeroth order in the
inverse string tension o) [26]. These equations are given by

BG: Ry —(H?),, +V,V,0+0() =0, (48a)
BS: -V*H,,+H,'V¢+0O() =0, (48b)

1 1 1
B?: A+ 5vzqs -5 (Vo) + §H2 +0(d)=0. (48¢)

We have used the conventional notations (H?), =

H,,,H",, H* = H,,H" and (V$)? = 9,09"¢. In the

equation (48a), R, is the Ricci tensor of the metric G,,.

The metric (44) describes a four-dimensional spacetime
of signature (2,2).” One quickly finds that the only nonzero
component of R, is R, = —1/2 and then R = 0. Thus,
the metric is flat in the sense that its scalar curvature
vanishes.* For the antisymmetric tensor field (45) one
verifies that the only nonzero component of H is

rixyy, = (€971)/2. 1t then follows that H* = 0 and the
only nonzero component of (H?),, is (H?), = —1/2.
Inserting the above results in the vanishing of the one-loop
B-functions equations (48a)—(48c), the conformal invari-
ance conditions up to one-loop order are satisfied with
A = 0 and the dilaton field

¢ =o0¢+o1y, (49)

where 6 and o, are integration constants. In addition to the
conformal invariance of the model (43) up to one-loop
order, we are interested in investigating the conformal
invariance of the model for higher orders in «'. Instead of

3(2,2)-signature often appears in Kleinian geometry as the
neutral (— — 4+)-signature. Metrics with (2,2)-signature might
seem a purely mathematical problem, but there are several
physical reasons that motivate this. First of all, two-time physics
(cf. [27] for a review) has interesting applications in various areas,
like cosmology [28] or M-theory [29]. Moreover, these metrics
are intimately related to twistor space [30], which is an important
tool in perturbative computations of scattering amplitudes in
gauge theories [31].

“The metric (44) can be considered as the plane-parallel (pp-)
wave in the so-called Rosen coordinates [32]. To this end, one
can first use the coordinate transformation e*' =0+ ¢, x, =
-0+ @, y, = u, y, = —v to obtain ds*> = 2dudv + 2e"(—d6*+
d@?), then, after the change of the metric signature by a Wick
rotation as @ = it, the resulting metric turns into the pp-wave one
in the Rosen coordinates.

this, we show that the model (43) is equivalent to an exact
CFT, namely a WZW model based on a Lie group. The
WZW models represent exact solutions to the string
equations of motion to all orders in . One can show that
under the coordinate transformation

e =a,, X2 = a4, yir=n, y2=m, (50)

action (43) turns into

S= %/ dotdo™[-0,nd0_m — 0, md_n

+e"(0,a,0_a_+0,a_0_a,)
+a,e"(0,a_0_n—90,nd_a_)], (51)

which is nothing but the action of WZW model based on
the Lie group H45 [16] (cf. Appendix). Therefore, the
action (43) as an exact CFT describes string propagation on
a four-dimensional manifold with (2,2)-signature. We
showed that the PL T-duality relates the H; WZW model
to a o-model defined on 2 + 2-dimensional manifold M ~
O x G only when G is the Lie group A,.

To continue, we obtain a new dual background for the H,
WZW model. This background is obtained from a ¢-model
which is constructed on 2 + 2-dimensional manifold M ~
O x G with two-dimensional Abelian Lie group G = 24,
acting freely on it. In order to construct the dual model in
the form (31) we need to determine the dual couplings.
Making use of (41) and inserting (42) into Egs. (32)—(35)
they are then read off to be

1

0 s 0 -1
Eab: et bl (i)a - )
(+ 0 ) g <—1 0>

e’ —X,

@(l)”:(“gh 0)’ (D‘jmh:(el(;h 0)' 52

Putting these pieces together into (31) and using the fact
that the components of the right invariant one-forms on
2A; are I?ia = 0.X,, the action of dual 6-model is obtained
to be

|
S = 5/ da*da'{—&ryla_yz - 8+y28_y1
1
+ K [(@yl - %2)8+5€18_5€2 + (eyl + 522)84_%28_%1
+eh (e —X,)0,%,0_y; + e’ (e + iz)awla—fﬁ}},

(53)

The WZW model based on the H, Lie group (a different real
form of the hy Lie algebra of H,) was, for the first time,
introduced by Nappi and Witten [33].
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where A = 2" — %,2. Comparing the above action with
the o-model action of the form (3), the corresponding line
element and antisymmetric field B take the following forms

Y1
d3% = —2dy,dy, + 2% (di,d%, + e"diydy,).  (54)

B— —xf (d%), A di, +end% Ady,).  (55)

The line element (54) is ill defined at the regions %, = e”!
and ¥, = —e”t. We can test whether there are true singu-
larities by calculating the scalar curvature, which is, R = 0.
Furthermore, one gets that the only nonzero components of
the Ricci tensor and Riemann tensor field are, respectively,

o e L ienen 12
S G T FIEE AL
(56)
and
) e
R syipy = (e + X,) (e —552)3’
) e (e + 6e %, + 5‘%)
R)?l)’lffz)’l == (57)

4(e + Tp) (e = %)

Then, the other invariant characteristics of spacetime, such
as 7~2,w7~€"" and the Kretschmann scalar are found to be
zero. Therefore, the singular points are not the essential
singularities, that is, they can be removed by an appro-
priate change of coordinates. In order to investigate the
conformal invariance conditions of the dual model (53) we
look at the vanishing of the one-loop B-functions
Egs. (48a)—(48c). To this end, we find that the only non-
zero component of H corresponding to B-field (55) is
H; y,y, = €1/2(e’ —%,)% consequently A% = 0. Hence,
Egs. (48a) and (48b) are satisfied by the new dilaton field

~ Yo — pV1
¢—bo+b1y1—log<x2 ° ) (58)

5C2+€y1

where b, and b, are integration constants. The dilatonic
contribution, Eq. (48¢), is also satisfied if the cosmological
constant of the dual theory is left invariant, that is, A=0.
Thus, it seems that under the non-Abelian T-duality the
cosmological constant has been restored from the dual
model to the original one.

At the end of this subsection let us discuss the invari-
ance of the string effective Lagrangians corresponding
to the o-models (43) and (53). For these models, the
two Lagrangians L. and zeff yield the same expression.
They are both equal to zero. The equivalence of
Lagrangians holds in spite of the nonvanishing traces of

the structure constants corresponding to the double
(A,,2A,). Moreover, in the case of this example one
can show that the integration weights /—Ge™® and

V=Ge™? are not equal. The reason behind this can be
interpreted in two ways: firstly, the dilaton obtained in (58)
does not follow the formula (37). Second, due to the
particularity of our model, there is a possibility of absorb-
ing the anomalous terms into dilaton shift which is the same
as a diffeomorphism transformation. An analysis similar to
this has been carried out in Ref. [34] in a strict field theory
sense, regardless of the relationship between o-models and
string theory effective actions. Notice that the Egs. (36) and
(37) are the only transformations which lead to a propor-
tionality between the integration weights v/—Ge™? and
V=Ge? [20].

Case (2): The self-duality of the H, WZW model

The self-duality of the WZW model under PL T-duality,
as well as the SU(N) WZW model, has already been
discussed in [35]. It turns out that the dual to the WZW
model is again the same WZW model. Here we shall show
that the H, WZW model is self-dual. Let us now choose the
spectator-dependent background matrices as

0 -y ) 0 -1
EaLab = < 0 )’ FlJlr/j = 1 0 ’
Y1

0 1
(02}
F;fj:(_l 0), Fos =0. (59)

Then, using the fact that I1(g) = 0 and utilizing formu-
las (13)—(16) together with (40) and (27), the original o-
model is, in this case, obtained to be of the form

S = %/d6+d6_ [—y1€¥1 (01 x10_xy — 04 x,0_x1)

+€1(01y10_x; + 0,x,0_y)
= 0,x10_y; — 0,.,0_xy]. (60)

As it is seen, the action (60) is indeed identical to the action
of Hy WZW model (cf. Appendix).

Analogously to Case (1), the dual model is constructed
on the manifold M ~ O x G. The Poisson bracket on G is
given by formula (41), and thus by inserting (59) into
Egs. (32)—(35) the dual couplings are computed to be

g <0 1) 6 | (0-1)
Ty +n\-1 0/ Py +H\1 0 )

oo _ | (1 o> o _ ] (1 o>
Py +xm\0 1) “ yi+5\0 1)

(61)
Finally, inserting these into formula (31) the dual s-model
is obtained to be in the following form
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- 1 1
S== | dotdoc-——1[0_.%,0_ 0. y10_%
2/ c'do (y1+562)[ L X10_y1 +0.y10_%

+ 8+5626_y2 + 3+y23_562 + (9+5616_5c2
- 8+x28_i1 - 8+y13_y2 + (9+y28_y1]. (62)

The line element and antisymmetric tensor field corre-
sponding to action (62) can be cast in the forms

d3* = dx dy, + dx,dy,), 63
( | ,.2)( 141 2 yZ) ( )
B= ! (dx~ A dx dy; Nd ) (6 )
e — - . 4
( | Nz) 1 2 Y1 Y2

By using (63) and (64), the conformal invariance conditions
of the model (62) are satisfied with zero cosmological
constant and dilaton field that supports the dual background
is found to be

¢ = co+ clog(y, + %), (65)

where ¢ and c; are the constants of integration. On the one
hand, it is interesting to note that if we write (65) as

et = 00/ (y1 + %), then metric (63) may be expressed as®
Gw/ = e_¢’~7uw (66)

in which 7,, = 2dx,dy, + 2dX,dy,. The formula (66)
indicates a conformal transformation’ between the dual
metric G,w and flat metric #,,, and e™® is a smooth,
nonvanishing function of the spacetime which is called a
conformal factor. We note that the conformal transforma-
tions do change geometry and they are entirely different
from coordinate transformations. This is crucial since
conformal transformations may lead to a different physics
[36]. If we use the coordinate transformation

X | =m, —n

X, =ay, Yy =a_+m,

(67)

yir=e —ay,

then the dual background can be cast to [16]

d3* = —2dndm + 2e"da, da_,
B=-a,_e"dn Ada_.

b =co+cn, (68)

®Here we have set 00 = 1.

The conformal transformations shrink or stretch the distances
between the two points described by the same coordinate system
x* on the manifold M, but they preserve the angles between
vectors which lead to a conservation of the (global) causal
structure of the manifold [36].

where ¢, and ¢; are arbitrary constants. Here we have
ignored the total derivative terms that appeared in the
B-field part. Indeed, the solution (68) is identical to
the background of the original o-model action (60).
Thus, we showed that the Hy, WZW model does remain
invariant under the non-Abelian T-duality transformation,
that is, the model is self-dual.

B. The GL(2,R) WZW model from T-dualizable
o-models and its dual pair

We shall show that the original o-model (27) on the
2 4 2-dimensional manifold M ~ O x G can be equalled to
the GL(2,R) WZW model. Similar to previous examples,
the isometry group G that is being dualized is A,. The only
difference is in choosing the spectator-dependent back-
ground matrices. In this regard, the non-Abelian T-dual
geometry of the GL(2, R) WZW model is determined.

1. The original 6-model as the GL(2,R) WZW model

Here, we choose
0 le™ 1 0
2
Egab:<1 —2y, >a Fa[)’:(o b>’
2 e 0

0 0 0 e
+1 42
Fuﬂ - <_e—2yl 0>’ Fab - (0 0 )’ (69)

where b is a nonzero real constant. Inserting relations (69)
into (13)—(16) and then using (40) together with (27), the
original o-model is worked out to be

S = %/ dotdo~ [8+y13_y1 + ba+y28—y2
1
+ 5 e (D, x,0_x; + 0, x,0_x7)
+ e, 310 x5 — Dy x00y1) | (70)

Now, if one uses the following coordinate transformation

et =6_, X, =0, yi = 03, =20, (71)

then, action (70) becomes
1
S=3 / do* do- [b6+98_«9 + 0,006,
1
+ E 6_203 (8+6_8_0+ + 8+9+3_9_)
+6_e70 (04050_0, —0,0,0_05)|. (72)

Using the integration by parts over the fourth term of
action, it is concluded that the action (72) is nothing but the
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action of WZW model based on the Lie group GL(2,R)
(cf. Appendix). Hence, the original o-model (70) can be
described as an exact CFT.

The line element and the antisymmetric tensor field
corresponding to action (70) are, respectively, given by

ds®> = dy,> + bdy,”> + e 1dx,dx,, (73)
B = —e"12dx, A dy;. (74)

To better understand action (70) we diagonalize the
corresponding metric. Let

e’ =

(t=lp),  x,=—Il(t+lp),

ey] =, Yo =2, (75)

NS~ o~ =

where [ is constant with the dimension of length. Then, the
metric (73) and the field strength corresponding to the B-
field (74) shall, respectively, become

2
1
ds? = —%dzZ + P +—dr 4 bd22, (76)

H:—§dt/\d(p/\dr. (77)

The metric (76) describes a four-dimensional Lorentz-
signature spacetime if b is considered positive and when
b is negative, the metric has (2,2)-signature. One immedi-
ately finds that the scalar curvature of the metric is R = —6,
and the nonzero components of R, are R,, = —2g,,
where n = (t,¢, r). Since R, = 0, this spacetime cannot
be described as an AdS, space. On the other hand, the
metric is a direct product of R associated with the
coordinate z and the three-dimensional metric of
(t,¢,r), which is nothing but the AdS; space. Hence,
the metric (76) corresponds to AdS; x R. Furthermore,
using (76) and (77) it is concluded that the only nonzero
components of (H?), are (H?), = (2r*)/I%,(H?),, =
|

Hv

2 A

—2r* and (H?),, = —2/r>. Finally, one verifies the
Eqgs. (48a) and (48b) with the following dilaton field

¢ = 4:0 + é’lzv (78)

where {, and {; are integration constants. Also, computing
H? = —6 the dilatonic contribution in Eq. (48¢) is satisfied
provided that {;? = b(2A — 4). Notice that the metric (76)
has no horizon and no curvature singularity. Indeed, this
solution is everywhere regular including r = 0. Consider
now two killing vectors /0t and 9/0¢ corresponding to
the time translational and the rotational isometries of the
metric (76), respectively. The killing field 0/0t becomes
null at » = 0 and it is time-like for the whole range r > 0,
while the killing field 0/0g is everywhere spacelike except
for r = 0. In addition, there is another killing field such as
(1/b)0/0z so that it is timelike for b < 0, and remains
spacelike for b > 0.

2. The dual 6-model
Similar to the construction of dual s-models for H,
WZW, the dual manifold is, here, assumed to be M ~ O x
G in which G = 24,. So, the Poisson structure on 24, does
follow the relation (41). In order to obtain the dual s-model
for GL(2,R) WZW, we use the action (31). The dual

coupling matrices can be obtained by inserting (41) and
(69) into (32)—(35). They are then read

0 aew 10
gob — S T ,
(_~ ! 0 ) ’ (o b)

Fy+e 1

e 0 e D1 0
q3+“>; _ ( Fytle ) &)i(z)” _ <5cz—%ez,w )
0 0 0 0

(79)

Finally, the dual o-model to the GL(2, R) WZW model is
found to be

| 1 1 1
S = —/ d6+d0'_{8+y18_y1 + b8+y28_y2 + - |:<§ 6_2}!1 - j&z) a+X18_X2 + (5 €_2y1 + .522) 8_,_.%28_.%1

— e_2y] (; E_Zyl — XQ) (9+)~618_y1 - €_2y] (; 6—2}'1 + )?2> 8+y18_;€1:| }, (80)

where A = e~ — %2, The line element and antisymmet-
ric field corresponding to this action may be expressed as

-2y1

dizzdy12+bdy22+eA

(dxld)?z—e_zyld)?ldyl), (81)

B = —%(d,%l AN d)?z - e_zyldil AN dyl) (82)

[
The scalar curvature of the metric is

2(11e™ 4 28%,e™21 + 1253)

R=-
(e721 = 2%,)

(83)

As it can be seen from formulas (81) and (83), the region
X, = 1e™1 is a true curvature singularity (in what follows
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we will discuss the structure and asymptotic nature of the
dual spacetime including the horizon and singularity). We
deduce that the only nonzero component of the field
strength corresponding to the B-field (82) is chlfczyl =
—(2¢721) /(e = 2%,)?; consequently H> = —6(e™21+
2%,)%/(e 1 —2%,)?. Thus, Eqgs. (48a) and (48b) are
satisfied by the new dilaton field

2%, + e-2y1)

o) Y

b =19+ Ay +log<
where 4, and A, are arbitrary constants. Also, the dilatonic
contribution in (48c) is vanished if the cosmological
constant of the dual theory does satisfy in 4,2 = b(2A —4).

As in the first example of subsection A, we now discuss
the presence of anomalous terms breaking the proportion-
ality between the original and dual string effective actions.
The string effective Lagrangians corresponding to the
o-models (70) and (80) are found to be

Lo = 4A -8, (85)

64%262)}[

Lo =4A -8 - —2
eff (1 —2%pe™1)?

(86)
The last term of Eq. (86) is not invariant under PL T-duality
transformation and therefore the two Lagrangians L. and

L are not equal. This anomaly is due to the nonvanishing
traces of the structure constants of the double (A,,2A4,);
furthermore, the dilaton field obtained in (84) does not
follow the transformation (37).

The dilaton field (84) is well behaved for the ranges X, <

—1e™1 and ¥, > {e721. We also note that a dilaton field

can easily be found for the range —e™1 < X, <ie ™
by shifting 1o by an imaginary constant (1, — Ay + ix).

For the range X, < —1¢™" we consider ¥, + e 21 =
—eX. Then, we introduce the following coordinate trans-
formation

=

1 W B ¥ e
1:Y+§(W+e )s X, = —e 1+T’

Y1 = : (W-X), »="V. (87)

N

Under this transformation, the dual background now looks
as follows

1
ds* = bdV? + = (dW? + dX? dxdy, (88
s +4( + )+eW+1 (88)
- 2¢% + 1

B=——"_ " dX AdY, 89
2(e" +1) (89)

~ eW
=+ 4V +1 ) 90
d =2+ A +°g<ew+1> (90)

Here we have ignored the terms concerning B-field which
are contributed to the Lagrangian as the total derivatives.
Notice that there is no singularity for the metric (88). In
fact, this was expected since the solutions (81), (82), and
(84) are, in this case, defined only for the range
Xy + %e‘zy 1 < 0. As explained above, the true singularity
of the metric (81) occurs at ¥, = 3™, a region which is
located out of the range X, + %e‘z«v < 0. The background
(88)—(90) can be simplified by performing a coordinate
transformation. Let us now consider the transformation
e” =1/(r—1) so that it requires that 1 < r < co. In
addition, we introduce the following linear transformation

X:—2<t+%), Y = (z—%), V=2
(91)

By applying the above transformation to the solutions (88),
(89), and (90), one obtains the forms of the dual spacetime
metric, antisymmetric field strength, and dilaton field in
new coordinate base {t,x,r,z} as

2 2
ds? = —<1 ——>dt2 + (1 ——)dx2
r 3r

2 1\ -2 dr?
—_dtd. 1——) ——=+4bdz?, (92
+\/§ x+< r) 4r2+ 2, (92)

- 1
Hrtx :ﬁ’

¢ =2+ Mz—logr. (94)

(93)

We note that this solution is valid only for the range X, +
%e‘zy ' <0orl < r < oco. In order to have a solution with
the range 0 < r < 1 we have to look at the second case,
where X, — %e‘zy 1 > 0. In this case it is assumed that X, —
1e™ = X — ¢ for which X + 2y, > 0. Analogously,
we introduce the transformation

XIZY—

N =

-w
(eV—w), izzex(l—%)

n=5W=X),  »n=V, (95)

| =

in which W = X + 2y, > 0, i.e., ¢ > 1. We then define
the transformation eV = 1/(1 — r) so that it requires that
0 < r < 1. Using these results and also utilizing the linear
transformation (91) one concludes that the solution given
by Eqgs. (81), (82), and (84) is nothing but the solution
given by (92)—(94). Thus, the obtained solutions to both the
valid ranges X, —l—%e‘zyl <0 and X, —%e‘zﬂ > 0 can be
expressed as a solution in the form of Egs. (92)-(94) only
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with 0 < r < co. Analogously, for the range —1e ™1 <
X, < $e™® one can consider ¥, +3e™?" = ¥ to obtain
the same results presented in (92)—(94).

One can simply check that the solution (92)—(94) does
satisfy the Egs. (48a)—(48c). Considering this solution for
the whole spacetime, 0 < r < oo, one sees that the metric
components (92) are ill behaved at r =0 and r =1.
Looking at the scalar curvature, which is R =
2(4r —7)/r?, we find that r = 0 is a curvature singularity.
Notice that the singularity at » = 0 corresponds to the same
true singularity at the region X, = %e‘z«v ! which mentioned
above. We furthermore see that r =1 is also an event
horizon. The cross term appeared in the metric is constant
and thus for large r one can show that the metric is
asymptotically flat. For large r the metric (92) approaches
the following asymptotic solution

2
d3* = —dr* + dx* + 2 drd + d—r2 + bdz*.  (96)

V3 4r
Performing a convenient coordinate transformation, the
metric (96) can be simply diagonalized. We also note that
the sign of b changes the signature of metric. If we
introduce the new coordinates (7,%,7,2) by the trans-

formation

N 3, 1 2
r=e?, t:\/?_t, xzfc—i, z—i, (97)
then, (96) will become

—di? +d3* + di* + d2* for b =n?
d§2:{ i e T (98)
—di* + d3* + di* —d?*  for b= —i?

As it is seen for b > 0 the metric has (1,3)-signature, while
the signature is (2,2) when b is negative. Thus, we have
shown that the non-Abelian T-duality transformation (here
as the PL T-duality on a semi-Abelian double) changes the
asymptotic behavior of solutions from AdS; xR to
flat space.

C. The non-Abelian T-duality of noncritical
Bianchi type III string cosmological model
(the GL(2,R) WZW model)

In this subsection, we show that the noncritical Bianchi
type III string cosmology solution with a nonvanishing
field strength and an appropriate dilaton field can be
described by the GL(2, R) WZW model. In fact, we shall
obtain the GL(2,R) WZW model from a T-dualizable o-
model constructed on a 3+ 1-dimensional manifold
M = O x G, in which G is three-dimensional decompos-
able Lie group A, @ A, acting freely on M. In this case, the
non-Abelian T-duality of the model is studied here. The
dual Lie group G is considered to be three-dimensional
Abelian Lie group 3A;. We note that the Lie algebra
A, ® A, is isomorphic to the Lie algebra of Bianchi
type III. Hence, six-dimensional Lie algebra of the Drinfeld

double (A, ® A,,3A4,) is defined by the following com-
mutation relations:

[Tlﬂ TZ] = TZ’
[TQ, TZ] - Tl,

[T3,.] =0, [T,. 7% = -T2,
[73,]=0. (99)

Taking a convenient element of the Lie group A, @ A; such
as g = eM¥Tignl2enTs we immediately find that R), =
aixl/xl, Ri = xlaixb Ri = 8ix3. In order to Study the
non-Abelian T-duality of noncritical Bianchi type III
string cosmological model, we consider the orbit O as a
one-dimensional space with time coordinate y* = {r}.
Now, one can choose the spectator-dependent background
matrices as

0 —%e 0 0
(1) _

Ef,, = _%ge_z, 0 ol Fjﬂ = | a2e7 |,
0 0 b 0

o (o —de 0), Foy=—a?, (100)
for some constants a, b, and then use (27) to obtain the
following background

ds* = —addr* — aje™'dx,dx, + bdx;?,  (101)

B = a}x;e™'dx, A dt. (102)
Comparing (101) and the general form of the string
cosmology metric

3
ds? = —go(1)dr* + Y R,“R,gup(1)dx* dx*,  (103)
a,b=1

one concludes that (101) is nothing but the Bianchi type III
string cosmology metric. This metric has (2,2)-signature if
b is considered positive. One can easily check that the
metric (101) and the field strength corresponding to the
B-field (102) (H,,,,, = aje™*/2) along with the dilaton
field ¢ = vy + v1x5 (for some constants v, v;) make up a
solution for the vanishing of the one-loop B-functions
equations (48a)—(48c). It is also interesting to note that the
corresponding action to (101) and (102) is equivalent to the
GL(2,R) WZW model. This means that the obtained
background can be described as an exact CFT.

The dual model is constructed on 3 + 1-dimensional
manifold M ~ O x G with G = 3A,. Finally, using (99)
and (100) together with Egs. (32)—(35) the dual background
is obtained to be

1
d3? = —addr® + de:;z

a26—21
O (d%d¥, + a}e~¥d%, dt), (104)

56'2 _ % e—4t
"
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— 2 (d% A dR + d2e”VdR, A di).

¥2 _ % ,—4t
X5 —ze

(105)

The dilaton field that supports the dual background is
obtained in the following form

ag + 2%,e*

h=39,+ 9% —1lo
$ =390+ 9% g<a5—2)~c2e2’

). o)

where 9, J; are some constants.

{0

R/u/ - (Hz);w + vﬂvv¢ + %a/ |:R

- (V3H,,,)(V*H? ) +2H , , H ,;H" H,* + 2H,,,,H,,°(H*)” | + O(a”?) =0,

ppo
leA;w - (vld)/)H/w/l + a/[lepﬂ[ﬂRu] lpo —

2 1
2N+ V29 — (V¢')* + 5H2 4 ZRW

3
- R;w(Hz)#y + E (HZ)

where ¢ = ¢ + o’qH?> for some coefficient g [26],
(H*)* = H*°H ,,* and R, is the Riemann tensor field.
We note that round brackets denote the symmetric part on
the indicated indices whereas square brackets denote the
antisymmetric part. Below using the above equations we
check the conformal invariance conditions of the T-dual
models up to two-loop order (first order in ). In fact, we
introduce new solutions for two-loop B-function equations
of the o-model with a nonvanishing field strength H and the
dilaton field in both cases of the absence and presence of a
cosmological constant A.

(i) As shown in subsection A of Sec. III, the back-
ground of the original o-model (43) is given by the
formulas (44) and (45) so that this model is
equivalent to the H, WZW model. Therefore, it
should be conformally invariant. In the case of this
model, the only nonvanishing component of the

Riemann tensor is R, .,,, = —(e"™1)/4. More-
over, the only nonvanishing component of (H?)* is
(H?)"»> = —1/2 and all components of V,H,,,
vanish. Hence using these results, the field equa-
tions (107a)—(107c) are satisfied for the metric (44)
and the tensor field (45) together with the dilaton

IV. CONFORMAL INVARIANCE OF THE T-DUAL
MODELS UP TO TWO-LOOP ORDER
(FIRST ORDER IN «')

So far, we have been concerned with the conformal
invariance of the T-dual models up to one-loop order
(zeroth order in o). As mentioned in Sec. III, the
conditions for conformal invariance of the s-model with
action (3) can be interpreted as field equations for G,
B,, and ¢ of the string effective action [24,25]. These
equations to the first order in o take the following

form [26]

1
/J(;}L/R/u'[m}L + 2Rﬂ/)(w(H2)pﬂ + 272/)0_/1(”[_[1/)25[_[/)05 + g (vﬂHpml)(qupd)

(107a)
(VaH ) (H?)” = 2(VAHP? ) H,),5H,),°) + O(a?) = 0, (107b)
RHpok ! V.H VAP 1H”” HPo'R
G\ _5( A /wp)( ) _E A uvpe
5
(H?)™ 4 gHﬂ,,pH/‘MH””(;H/’M + O(a?) =0, (107¢)

field (49) and zero cosmological constant as this was
expected.

(i) In order to investigate the conformal invariance
conditions of the dual model to the H, WZW
(the o-model (53) up to the first order in o,
we first find that the only nonvanishing components
of (A%),, and (H*)* are (H?), , = —(e" +X,)?/
2(e" — %) and (H?)> = (H?), |
Also, the only nonvanishing components of V,H up
may be expressed as

respectively.

o e
Vi, Hy x,y, = (e +%,) (e — %)%
¥ 02V
L Xpe
v)uHi’])—Cz)’l == . (108)

(e + %) (e = %)

Using these results together with the given data for
this model in subsection A of Sec. III, one verifies
the field Eqgs. (107a) and (107b) for the metric (54)
and the tensor field (55) along with the dilaton field
(58). The Eq. (107c¢) is also satisfied with A=0.
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(iii) Under the coordinate transformation (75), the back-
ground of the original s-model (70) was represented
by (76) and (77). It was shown that resulting back-
ground as an exact CFT satisfies the vanishing of the
one-loop B-functions equations (48a)—(48c) with the
dilaton field (78). Using the expressions (76) and (77)
for the background fields one may verify that the only
nonvanishing components of Riemann tensor are

Ripip =1 /1* Ry =1/ and R, =-1;

consequently, the Kretschmann scalar is computed

to be K = 12. Moreover, we get that the only
nonvanishing components of (H?)* are (H*)" =

(212)/r?, (H*)?? = =2/r* and (H*)"" = —2r%, and

all components of V;H,,, vanish. Putting these

pieces together, one verifies equations (107a) and

(107b) with the dilaton field (78). It is then interesting

to note that in this case the field equation (107¢) is

satisfied if the following relation is held between the

constants {;2, A, b and o’

1 &2
/——— —_—
a = 4(2+2b A).

(iv) As mentioned in the preceding section, the dual
model of the GL(2,R) WZW [Egs. (92)—(94)] does
satisfy the vanishing of the one-loop B-functions
equations. Unfortunately, this background does not
satisfy the equations for the two-loop B-functions.
One can show that for this background all
Egs. (107a)—-(107c) are satisfied except for the
components of BY, (i = t,x,r), BE and B®.

i’

(109)

V. SUMMARY AND CONCLUDING REMARKS

Using the PL T-duality approach in the presence of
spectators we have constructed some non-Abelian T-dual-
izable o-models on 2 + 2-dimensional target manifolds
M~O0xG and M~ O xG, where G and G are two-
dimensional real non-Abelian and Abelian Lie groups,
respectively. We have shown that the original o- models are
equivalent to the H, and GL(2,R) WZW models. In this
way, we could obtain some new T-dual backgrounds for
these WZW models. The most interesting feature of our
results is the invariance of the H; WZW model under the
non-Abelian T-duality. We have shown that the GL(2, R)
WZW model as a T-dualizable o- model is equivalent to
AdS; x R space and has no horizon and no curvature
singularity, while the dual spacetime of the GL(2,R)
WZW model is stationary and asymptotically flat and
has a single horizon and a curvature singularity.
Moreover, it was shown that for the line element (76),
the Killing vectors 9/9¢ and (1/b)0/0z with b < 0 are
timelike. Analogously, one can show that the dual line
element (92) possesses three independent Killing vectors

V30/0t, 3/2(v/30/0t — 0/0x) and (1/b)d/0z. The first
two Killing vectors become timelike for the ranges r > 2
and r > 4/3, respectively. The last Killing vector stays
everywhere timelike for b < 0. Hence, the duality has
involved the timelike directions. In summary, in the case of
the effect of the non-Abelian T-duality (here as the PL
T-duality on a semi-Abelian double) on the GL(2,R)
WZW model three points have been highlighted.

(1) The non-Abelian T-duality transformation has
changed the asymptotic behavior of solutions from
AdS; x R to flat space.

(2) This transformation has related a solution with no
horizon and no curvature singularity to a solution
with a single horizon and a curvature singularity.

(3) The duality has involved the timelike directions.

We have also obtained the noncritical Bianchi type I1I
string cosmological model with a nonvanishing field
strength from a T-dualizable s-model and have shown that
this model describes an exact CFT. Most importantly, we
have discussed the conformal invariance of the T-dual o-
models such that the duals of the H; WZW model are
conformally invariant up to the first order in o, while the
conformal invariance condition for the dual spacetime of
the GL(2,R) WZW model has only been satisfied up to
zeroth order in «'.

As we have shown, all our models satisfy the vanishing
of the one-loop Beta-functions equations. Therefore, each
pair of them consists of two canonically equivalent models.
Among these models, only (43) and (60) and their dual
pairs (53) and (62), respectively, satisfy the equations for
two-loop B-functions.

The findings of our study showed that 2 4+ 2-dimensional
manifold M~ O x G with two-dimensional real non-
Abelian Lie group G = A, is wealthy. In addition to PL
symmetric backgrounds constructed out in this paper one
can obtain other string and gravitational backgrounds from
mutually T-dualizable o- models on manifold M ~ O x G

with G = A, when the dual manifold is M ~ O x G with

G =2A,. In this regard, the following further develop-
ments come to mind.
(i) Plane-parallel (pp-)wave: Homogenous plane wave
is generally defined by the metric of the following
form [32]
ds? = 2dudv — A, (u) XX du* + dX*,  (110)
where dX? is the standard metric on Euclidean space
E¢ and X € E“. A special case of isotropic homog-
enous plane wave metric can be chosen by
A, (u) = A(u)d,,. Furthermore, for special choice
of A(u) = k/u?, the metric becomes [37]

k
ds* = 2dudv — 2 (x? + y?)du? + dx* + dy?,

(111)
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(i)

where k is an arbitrary real constant. The metric
(111) does satisfy the conformal invariance con-
ditions equations up to the first order in «/,
Egs. (107a)-(107c), with zero field strength. The
cosmological constant A in this case vanishes and
dilaton field is obtained to be [37]

¢ =ro+riu+2klogu, (112)

where y, and y, are the constants of integration.
Since the field strength H is zero, one can easily
consider explicit expressions for the field B in such a
way that the terms concerning B-field in action of o-
model contribute to the Lagrangian as the total
derivatives, which can be ignored. To obtain the
non-Abelian T-dual geometry of pp-wave back-
ground in the PL T-duality approach with spectators,
we first construct the original o-model correspond-
ing to the pp-wave metric (111). In this case, a
convenient choice of the spectator-dependent ma-
trices may be expressed as

—k(y1* + ¥2%) 1> <1 0)
E+ - ) Fa - ’
0ab < 1 O /} O 1

Fi'=0. Fi =o. (113)

Inserting (113) into Egs. (13)—(16) and noting that
1% (g) is zero, the action of original o-model (27)
yields

1
S = 5/ do"do™[0,y,0_y, + 0,y,0_y,

+ (0, x;0_xy + 0, x,0_x1)

— k(y1? + 32%) 0, x,0_x1]. (114)

Carrying out the coordinates transformation x; —
Inu, x, - v, y; = x, y, = y one arrives at the pp-
wave metric (111) from action (114). Thus, inserting
(41) and (113) into Egs. (32)—(35) and then using
(31) one can obtain a non-Abelian T-dual ¢-model
to (114).

Godel and Godel-type metrics: Among the known
exact solutions of Einstein field equations gravity,
the Godel and Godel-type metrics [38] play a special
role. It was shown within the usual general relativity
that these solutions describe rotating universes, and
allow for the existence of closed timelike curves.
These metrics are compatible with incoherent matter
distribution at rest and can be described by the line
element looking like

(iii)
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ds* = P|—dt* + (f— 1)r’de?

dr? 5
—2rdtdg + —+dz7 |, (115)
r

for some constants /, 5. The metric is a direct product
of R associated with the coordinate z and the three-
dimensional metric of (¢, ¢, r). The original Godel
metric [38] is recovered when we take f = 1/2. In
Ref. [39] it has been shown that the Godel metric can
be considered as exact solutions in string theory for
the full O(a’) action including both dilaton field ¢
and field strength H. Following Ref. [39] we assume
that the dilaton field depends only on the z coor-
dinate, so ¢(z) = ¢y + fz for some constants ¢, f.
With this assumption and taking the zero field
strength, H = 0, the field equations (107a) and
(107b) are satisfied for the metric (115) in such a
way that the inverse string tension o' has to satisfy
relation o = 4’ only with =1 or = 3/4
Finally, the field equation (107c) is satisfied if the
following relation is held between the constants f, A
and [:

P {—%+2Az2 if =1
—242A2 ifp=3

In addition, one can check that the metric (115) for
p = 1/2 (the original Godel metric) along with the
respective B-field and dilaton field

12
B = Erdqo A dt,

¢ = o+ f2,

satisfy the field equations (107a)—(107c) provided
that o = —?/2 and f?> =1/2+2Al*. Now, by
using the above results and by choosing the appro-
priate spectator-depended background matrices we
can construct a o-model including the Godel (Godel-
type) metric in the form (115) and the given B-fields.
In this way, one can study the non-Abelian T-duality
of the Godel (Godel-type) metric. We intend to
address this problem in the future.

Ads, metric: AdS, metric with radius / and constant
negative scalar curvature A = —12/1? is one of the
maximal symmetric four-dimensional spacetimes. A
simple form of this metric in coordinates (z,x",
X7, p) is given by

12
ds* = = (dz* — dx*dx~ +dp?).  (116)
<

Solving the field equations (107a)-(107c) for
metric (116) one should be so lucky to obtain an
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appropriate field strength along with a dilaton field.
Then he/she can study the non-Abelian T-duality of
the AdS, metric.

ACKNOWLEDGMENTS

The author gratefully thanks to the Referees for the
constructive comments and recommendations which def-
initely help to improve the readability and quality of
the paper.

APPENDIX: THE WZW MODELS BASED ON
THE H, AND GL(2,R) LIE GROUPS

In this Appendix, we construct the WZW models
based on the H, and GL(2,R) Lie groups. To define a
WZW model, in general, given a Lie algebra with gen-
erators 7, and structure constants f¢,,, one needs a
nondegenerate ad-invariant symmetric bilinear form Q,;, =
(T,,T,) on Lie algebra G so that it satisfies the following
relation [33]

fdadec + fdacgdb =0. (Al)
The WZW model based on a Lie group G is defined on a
Riemannian surface X as a world sheet by the following
action [33]

1
1(g) =3 L dotdo=Q,, L4 LY
1
+ D /9 doer™ L?LZLEQadf s (A2)

where B is a three-manifold bounded by world sheet X, and
the components of the left invariant one-forms Lg’s are
defined via ¢7'd,9 = LT, in which g: ¥ — G is an
element of Lie group G.

1. The Hy WZW model

Before proceeding to construct the model, let us
first introduce the oscillator Lie algebra h, of the Lie
group H,. The Lie algebra h, is generated by the gene-
rators {N,A_,A_,M} with the following nonzero Lie
brackets
[NJAL]=A,,[N,A_] = -A_, [A_,A =M. (A3)
Using (A1) and (A3) one can simply get a nondegenerate
ad-invariant bilinear form Q,, on hy as

0 0 0 -1
Q, - 0 01 O (Ad)
0 1 0 O
-1 0 0 O

In order to calculate the L4’s on the Lie group H, we
parametrize an element of H, as

g= emM ea_A_ enN ea+A+’ (AS)

Finally, the WZW action on the H, Lie group is worked out
to be of the form [16]

I(g) = %/ dotdo™ [0, n0_m — 90, md_n

+e"(0 a,0_a_+ 0 a_0_ay)

+a,e"(0,a_0_n— 0, nd_a_)). (A6)

2. The GL(2,R) WZW model
The ¢/(2,R) Lie algebra is spanned by the generators
{J3,J4,J_,1} which obey the following commutation
rules
U3, J ] =274,
[J-‘r’ J—] = ‘]3’

T3, 0] = =27 _,

[,.]=0. (A7)
where I is the central generator. We notice that gl/(2,R) =
sI(2,R) @ u(1). Using (A7), a nondegenerate solution to
(A1) is obtained to be of the form

2 0 0 O

a, =2 " (A8)
0O a 0 O
0O 0 0 b

for some nonzero constants a, b. In order to construct
the WZW model based on the GL(2,R) Lie group we
parameterize the GL(2, R) with coordinates {65,0.,0_, 0}
so that its elements can be written as

g= eFLrJJr 69313 eFLJ, 691. (Ag)
Using (A9), we then obtain
Liz = 9_6_2938i9+ + 8i93,
L‘:]Er - 6_293ai(9+,
Llr = —02¢72:0,0, —20_0.05 + 0.0_,
Ll =0d.0. (A10)
Finally, the GL(2,R) WZW action looks like
1 L
I(g) = 5 do"do™[b0,600_6
+2a(0,030_05 + ¢72%0,0_0_0.)]. (All)
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