
 

Exact conformal field theories from mutually T-dualizable σ-models

Ali Eghbali*

Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University,
53714-161, Tabriz, Iran

(Received 25 July 2018; published 2 January 2019)

Exact conformal field theories (CFTs) are obtained by using the approach of Poisson-Lie (PL) T-duality
in the presence of spectators. We explicitly construct some non-Abelian T-dual σ-models (here as the PLT-
duality on a semi-Abelian double) on 2þ 2-dimensional target manifolds M ≈O ×G and M̃ ≈O × G̃,
where G and G̃ as two-dimensional real non-Abelian and Abelian Lie groups act freely on M and M̃,
respectively, while O is the orbit of G in M. The findings of our study show that the original models are
equivalent to Wess-Zumino-Witten (WZW) models based on the Heisenberg (H4) and GLð2;RÞ Lie
groups. In this way, some new T-dual backgrounds for these WZW models are obtained. For one of the
duals of theH4 WZWmodel, we show that the model is self-dual. In the case of theGLð2;RÞWZWmodel
it is observed that the duality transformation changes the asymptotic behavior of solutions from AdS3 × R
to flat space. Then, the structure and asymptotic nature of the dual spacetime of this model including the
horizon and singularity are determined. We furthermore get the noncritical Bianchi type III string
cosmological model with a nonvanishing field strength from T-dualizable σ-models and show that this
model describes an exact CFT (equivalent to the GLð2;RÞ WZW model). After that, the conformal
invariance of T-dual models up to two-loop order (first order in α0) is discussed.
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I. INTRODUCTION

The duality symmetries play an important role in string
theory. On the one hand, they are specific to string theory
and their study has led to important insights in under-
standing the spacetime geometry from the string point of
view. A very important symmetry of string theory or more
generally, two-dimensional sigma models, is the T-duality
[1]. A study of the T-duality in string theory has led to the
discovery of PL T-duality. Klimčik and Ševera in their
seminal work [2] proposed a generalization of T-duality, or
the so-called PL T-duality, which allows the duality to be
performed on a target space without isometries. In Klimčik
and Ševera’s formalism, PL T-dual sigma models are
defined by PL group manifolds which constitute a
Drinfeld double [3]. The classification of low-dimensional
Drinfeld doubles [4,5] has become a convenient laboratory
for investigation of the PL T-duality.
On the other hand, the duality symmetries in Wess-

Zumino-Witten (WZW) models have received considerable
attention because of the preservation of the conformal
symmetry under the Abelian duality [6]. This duality has
been investigated in the WZWmodels [7]. Furthermore, for
the case of non-Abelian duality [8], it has been shown that
the conformal symmetry is preserved when the trace of the
adjoint representation of the isometry group is zero [9].

The WZW model is a well-known construction for
obtaining a CFT which describes string propagation on a
Lie group. For instance, the natural metric on the Lie group
SLð2;RÞ is precisely the three-dimensional anti-de Sitter
metric. Hence, the WZW model based on Lie group
SLð2;RÞ can be considered as an exact CFT describing
string propagation on anti-de Sitter space [10]. Up to now,
only few examples of PL symmetric σ-models have been
treated at the quantum level [11,12]. Furthermore, PL
symmetry in theWZWmodels based on the Lie supergroups
have recently been studied in Refs. [13,14].We also refer the
reader to the literatures given in Ref. [15]. In Ref. [11] it has
been shown that the duality relates the SLð2;RÞ WZW
model to a constrained σ-model defined by the SLð2;RÞ
group space. We have shown that [16] the PL T-duality
relates theH4 WZWmodel to a σ-model defined on the dual
Lie group A2 ⊕ 2A1. We have also stressed that the dual
model is conformally invariant up to two-loop order.
Furthermore, we have recently shown that [17] the PL T-
duality relates the SLð2;RÞ WZW model to a σ-model
defined on 2þ 1-dimensional manifold M ≈O ×G in
which G is two-dimensional real non-Abelian Lie group
A2, andO as a one-dimensional space is the orbit ofG inM.
Accordingly, we have obtained a dual model for the
SLð2;RÞ WZW model yielding a new three-dimensional
charged black string which is stationary and asymptoti-
cally flat.
The main purpose of this paper is to construct some new

non-Abelian T-dual backgrounds for the H4 and GLð2;RÞ*eghbali978@gmail.com
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WZW models via PL T-duality approach in the presence
of spectators. The original models as exact CFTs (the H4

and GLð2;RÞ WZW models) are constructed on 2þ 2-
dimensional target manifold M ≈O ×G with G ¼ A2 and
dual models on manifold M̃ ≈O × G̃ with G̃ ¼ 2A1,
whereas, in [16] T-dual σ-models were only constructed
on Lie groups in the absence of spectators. In the present
work, two dual models for the H4 WZW are obtained for
one of which we show that the dual model is indeed
identical to the same H4 WZW model. Moreover, we get
one dual model for the GLð2;RÞ WZW for which the
structure and asymptotic nature of the spacetime including
the horizon and singularity are determined. We also obtain
the noncritical Bianchi type III string cosmological model
with a nonvanishing field strength from a T-dualizable σ-
model on 3þ 1-dimensional target manifold M ≈O ×G,
in whichG represents three-dimensional decomposable Lie
group A2 ⊕ A1, and then we show that this model describes
an exact CFT. Finally, we discuss the conformal invariance
conditions of the T-dual models up to the first order in α0 to
introduce new solutions for two-loop B-function equations
of the σ-model with a nonvanishing field strengthH and the
dilaton field in both cases of the absence and presence of a
cosmological constant Λ.
This paper is organized as follows. In Sec. II, we present

a basic review of the PLT-dual σ-models construction in the
presence of spectator fields. In Sec. III, we get the H4

and GLð2;RÞ WZW models from T-dualizable σ-models
constructed on 2þ 2-dimensional target manifolds M ≈
O ×G and M̃ ≈O × G̃. In addition, the dual backgrounds
for these WZW models together with the structure and
asymptotic nature of the dual spacetime of the GLð2;RÞ
WZW including the horizon and singularity are studied.
Finally, the non-Abelian T-dualization of the noncritical
Bianchi type III string cosmology solution is discussed at
the end of Sec. III. In Sec. IV, we investigate the conformal
invariance conditions for T-dual models up to two-loop
order. Some concluding remarks are given in Sec. V.

II. CONSTRUCTION OF PL T-DUAL σ-MODELS
WITH SPECTATORS

We begin this section by reviewing the construction of
PLT-dual σ-models in the presence of spectator fields. First
of all, for the description of PL T-duality we need to
introduce the Drinfeld double group D [3], which by
definition has a pair of maximally isotropic subgroups G
and G̃ corresponding to the subalgebras G and G̃, respec-
tively. The generators of G and G̃ are denoted, respectively,
Ta and T̃a, a ¼ 1;…; dimG. One says that the Lie algebras
G and G̃ are compatible if the brackets

½Ta; Tb� ¼ fcabTc; ½T̃a; T̃b� ¼ f̃abcT̃c;

½Ta; T̃b� ¼ f̃bcaTc þ fbcaT̃c; ð1Þ

define a Lie algebra structure on the direct sum vector space
D ¼ G ⊕ G̃. In this case, we say that the Lie algebra D is
the Drinfeld double of G or, equivalently, of G̃. Thus, the
group D is called the Drinfeld double of G (or G̃). We also
note that the Drinfeld double D is equipped with an
invariant inner product h:; :i with the following properties

hTa; T̃bi ¼ δa
b;

hTa; Tbi ¼ hT̃a; T̃bi ¼ 0: ð2Þ
In what follows we shall investigate PL T-duality trans-
formations in the presence of spectators [2,18] of a non-
linear σ-model with the following action for a bosonic
string, propagating in a d-dimensional spacetime, with the
metric Gμν, the antisymmetric tensor field Bμν and the
dilaton field ϕ

S ¼ 1

2πα0

Z
Σ
dτdσ

ffiffiffiffiffiffi
−h

p �
1

2
ðhαβGμν þ ϵαβBμνÞ∂αxμ∂βxν

þ 1

4
α0ϕRðhÞ

�
; ð3Þ

where hαβ is the world sheet metric with RðhÞ the corre-
sponding world sheet curvature scalar and h ¼ det hαβ. The
indices α, β run over (τ, σ), and ϵαβ is an antisymmetric
tensor on the world sheet Σ. The dimensionful coupling
constant α0 turns out to be the inverse string tension. The
functions xμ: Σ → R, (μ ¼ 1;…; dimM) are obtained by
the composition xμ ¼ Xμ∘x of a map x: Σ → M and
components of a coordinate map X on a chart of M.
Here, and in the following, we use the standard light-cone
variables on the world sheet, σ� ¼ τ � σ.
Let us now consider a d-dimensional manifold M

and some coordinates xμ ¼ ðxi; yαÞ on it, where xiði ¼
1;…; dim GÞ are the coordinates of Lie group G acting
freely from right on M. yαðα ¼ 1;…; d − dim GÞ are the
coordinates labeling the orbit O of G in the target spaceM.
We note that the coordinates yα do not participate in the PL
T-duality transformations and are therefore called specta-
tors [18]. Take a linear (idempotent) map K from the
space T�

yM ⊕ TyM ⊕ D into itself. It has two eigens-
paces R�ðyαÞ with eigenvalues�1. They are perpendicular
to each other according to the bilinear form on
T�
yM ⊕ TyM ⊕ D. These eigenspaces may be considered

as the graph of a nondegenerate linear map E�ðyÞ:
TyM ⊕ G → T�

yM ⊕ G̃, such that by translating this graph
to the point g ∈ G we have

g−1R�ðyαÞg ¼ SpanfXA � E�
ABðg; yαÞX̃Bg; ð4Þ

where XA ¼ ðTa; ∂αÞ and X̃A ¼ ðT̃a; dyαÞ are the basis of
the spaces TyM ⊕ G and T�

yM ⊕ G̃, respectively. In order
to determine the d × d matrix E�

ABðg; yαÞ we write the
spaces R�ðyαÞ as follows:
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g−1R�ðyαÞg ¼ Spanfg−1XAg� E�
ABðe; yαÞg−1X̃Bgg; ð5Þ

in which the matrix E�
ABðe; yαÞ is defined as

E�
ABðe; yαÞ ¼

�E�
0 abðe; yαÞ F�ð1Þ

aβ ðe; yαÞ
F�ð2Þ
αb ðe; yαÞ FαβðyαÞ

�
: ð6Þ

Here, submatrices E�
0 abðe; yαÞ, F�ð1Þ

aβ ðe; yαÞ and F�ð2Þ
αb ðe; yαÞ

are functions of the variables yα and e, where e is the unit
element of G. FαβðyαÞ is also a function of yα only. Here,
and in the following, the minus sign stands for transpose,

namely, Eþ
0 ab ¼ E−

0 ba, F
þð1Þ
aβ ¼ F−ð2Þ

βa and Fþð2Þ
αb ¼ F−ð1Þ

bα .
It is convenient to define matrices aðgÞ, bðgÞ and the

Poisson bracket ΠðgÞ in the following way

g−1Tag ¼ aabðgÞTb;

g−1T̃ag ¼ babðgÞTb þ ða−1ÞbaðgÞT̃b; ð7Þ

ΠabðgÞ ¼ bacðgÞða−1ÞcbðgÞ: ð8Þ

Thus, using (4) and (5) together with (7) one gets

E�
ABðg; yαÞ ¼ ðAðgÞ � E�ðe; yαÞBðgÞÞ−1A C

× E�
CDðe; yαÞðA−1ÞBDðgÞ; ð9Þ

where1

AðgÞ ¼
�
aðgÞ 0

0 Id

�
; BðgÞ ¼

�
bðgÞ 0

0 0

�
: ð10Þ

We also define

F�
ABðg; yαÞ ¼ AA

CðgÞE�
CDðg; yαÞAB

DðgÞ: ð11Þ

Considering matrix F�
ABðg; yαÞ in the form

F�
ABðg; yαÞ ¼

� E�
abðg; yαÞ Φ�ð1Þ

aβ ðg; yαÞ
Φ�ð2Þ

αb ðg; yαÞ ΦαβðyαÞ

�
; ð12Þ

and then using (6), (9), (10) and (11) one can obtain the
backgrounds appearing in the action of original σ-model.
They are given in matrix notation by

E�ðg; yαÞ ¼ ðE�−1

0 ðe; yαÞ � ΠðgÞÞ−1; ð13Þ

Φ�ð1Þ ðg; yαÞ ¼ E�ðg; yαÞðE�
0 Þ−1ðe; yαÞF�ð1Þ ðe; yαÞ; ð14Þ

Φ�ð2Þ ðg; yαÞ ¼ F�ð2Þ ðe; yαÞðE�
0 Þ−1ðe; yαÞE�ðg; yαÞ; ð15Þ

Φðg; yαÞ ¼ FðyαÞ − Fþð2Þ ðe; yαÞΠðgÞEþðg; yαÞ
× ðEþ

0 Þ−1ðe; yαÞFþð1Þ ðe; yαÞ: ð16Þ

Let us now introduce the elements V� of subspaces
R�ðyαÞ as

V� ≔ ∂�yα
∂
∂yα ∓ pð∓Þ

α dyα þ ∂�ll−1; ð17Þ

where pð∓Þ
α ∈ T�

yM and l ∈ D. Inserting the decomposition
l ¼ gh̃ðg ∈ G; h̃ ∈ G̃Þ [11] into (17) we get

V� ≔ RA
�XA þ R̃�A

ðBBAðgÞXB þ AB
AðgÞX̃BÞ; ð18Þ

where RA
� and R̃�A

are the elements of the respective spaces
TyM ⊕ G and T�

yM ⊕ G̃, and are given by

RA
� ¼ ðRa

�; ∂�yαÞ ¼ ðð∂�gg−1Þa; ∂�yαÞ; ð19Þ

R̃�A
¼ ðð∂�h̃h̃−1Þa;∓ pð∓Þ

α Þ: ð20Þ

Thus, by using the equations of motion

hV�; ðXA ∓ E∓
ABðg; yαÞX̃BÞi ¼ 0; ð21Þ

we obtain

R̃�A
¼ �RB

�F
�
BCðg; yαÞðA−1ÞACðgÞ: ð22Þ

Equation (22) can be written in terms of components. They
then take the following forms

ð∂þh̃h̃−1Þa ¼ ða−1ÞacðgÞ½RbþE
þ
bcðg; yαÞ

þ ∂þyαΦþð2Þ
αc ðg; yαÞ�; ð23Þ

ð∂−h̃h̃
−1Þa ¼ −ða−1ÞacðgÞ½Eþ

cbðg; yαÞRb
−

þΦþð1Þ
cβ ðg; yαÞ∂−yβ�; ð24Þ

and

pðþÞ
α ¼ −½Φþð2Þ

αb ðg; yαÞRb
− þΦαβðg; yαÞ∂−yβ�; ð25Þ

pð−Þ
α ¼ −½RaþΦþð1Þ

aα ðg; yαÞ þ ∂þyβΦβαðg; yαÞ�: ð26Þ

The above results indicate that the Eq. (21) are nothing but
the equations of motion concerning the σ-model described
by the following action1Here Id means the identity matrix.
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S ¼ 1

2

Z
dσþdσ−Fþ

ABðg; yαÞRAþRB
−;

¼ 1

2

Z
dσþdσ−½Eþ

abðg; yαÞRaþRb
−

þΦþð1Þ
aβ ðg; yαÞRaþ∂−yβ þΦþð2Þ

αb ðg; yαÞ∂þyαRb
−

þΦαβðg; yαÞ∂þyα∂−yβ�: ð27Þ

As we shall see below, one can construct another σ-model
(denoted as usual with tilded symbols) which is said to be
dual to (27) in the sense of the PL T-duality if the Lie
algebras G and G̃ form a pair of maximally isotropic
subalgebras of the Lie algebra D. In order to get the dual
σ-model one proceeds in an analogous way so that
eigenspaces R�ðyαÞ are considered as

R�ðyαÞ ¼ SpanfỸA � Ẽ�ABðẽ; yαÞYBg; ð28Þ

where ẼþðyαÞ: TyM ⊕ G̃ → T�
yM ⊕ G, YB ¼ ðTa; dyαÞ

and ỸA ¼ ðT̃a; ∂αÞ. With a slight abuse of the notation,
comparing (5) and (28) we get the matrix form of Ẽ�ðẽ; yαÞ
as [2]

Ẽ�ðẽ; yαÞ ¼ �ðA� E�ðe; yαÞBÞ−1
× ðB � E�ðe; yαÞAÞ; ð29Þ

in which

A ¼
�
0 0

0 Id

�
; B ¼

�
Id 0

0 0

�
: ð30Þ

Now, using (28) and inserting the decomposition l ¼ g̃h
into the Eq. (21), one can get the equations of motion for yα

and x̃i corresponding to the following action

S̃ ¼ 1

2

Z
dσþdσ−F̃þABðg̃; yαÞR̃þA

R̃−B

¼ 1

2

Z
dσþdσ−½Ẽþabðg̃; yαÞR̃þa

R̃−b

þ Φ̃þð1Þa
βðg̃; yαÞR̃þa

∂−yβ þ Φ̃þð2Þb
α ðg̃; yαÞ∂þyαR̃−b

þ Φ̃αβðg̃; yαÞ∂þyα∂−yβ�: ð31Þ

The coupling matrices of the dual σ-model are also
determined in a similar fashion [2,18]. Using (29) one
relates them to those of the original one by

Ẽ�ðg̃; yαÞ ¼ ðE�
0 ðe; yαÞ � Π̃ðg̃ÞÞ−1; ð32Þ

Φ̃�ð1Þ ðg̃; yαÞ ¼ �Ẽ�ðg̃; yαÞF�ð1Þ ðe; yαÞ; ð33Þ

Φ̃�ð2Þ ðg̃; yαÞ ¼∓ F�ð2Þ ðe; yαÞẼ�ðg̃; yαÞ; ð34Þ

Φ̃ðg̃; yαÞ ¼ FðyαÞ − Fþð2Þ ðe; yαÞ
× Ẽþðg̃; yαÞFþð1Þ ðe; yαÞ: ð35Þ

The actions (27) and (31) correspond to PL T-dual σ-
models [2]. Notice that if the group GðG̃Þ besides
having free action on MðM̃Þ, acts transitively on it, then
the corresponding manifold MðM̃Þ will be the same as the
group GðG̃Þ. In this case only the first term appears in the
actions (27) and (31).
In the PL T-duality case, dilaton shifts in both models

have been obtained by quantum considerations based on a
regularization of a functional determinant in a path integral
formulation of PL T-duality by incorporating spectator
fields [19] (see, also, [20])

ϕ ¼ ϕ0ðyαÞ þ logðdetEþÞ − logðdetEþ
0 Þ; ð36Þ

ϕ̃ ¼ ϕ0ðyαÞ þ logðdet ẼþÞ; ð37Þ

where ϕ0ðyαÞ is just a function of yα.

III. T-DUALIZABLE σ-MODELS ON
2+ 2-DIMENSIONAL MANIFOLDS

AS EXACT CFTS

In this section, we explicitly construct two pairs of PL
T-dual σ-models on 2þ 2-dimensional target manifolds
M ≈O ×G and M̃ ≈O × G̃, where G and G̃ as two-
dimensional real non-Abelian and Abelian Lie groups act
freely onM and M̃, respectively, whileO is the orbit ofG in
M with the spectators yα ¼ fy1; y2g. The Lie algebras of
the Lie groups G and G̃ are denoted by A2 and 2A1,
respectively. According to Sec. II, having Drinfeld doubles
we can construct PL T-dual σ-models on them. The four-
dimensional Lie algebra of the Drinfeld double ðA2; 2A1Þ
is given by the following nonzero commutation relations:

½T1; T2� ¼ T2; ½T1; T̃2� ¼ −T̃2; ½T2; T̃2� ¼ T̃1;

ð38Þ

where fT1; T2g and fT̃1; T̃2g are the basis of A2 and 2A1,
respectively. Notice that the double ðA2; 2A1Þ has non-
vanishing trace in the adjoint representations. In such a
situation, there is usually a conformal anomaly at one-loop
associated with non-Abelian T-duality [20]. In what fol-
lows, we will also discuss the conformal anomaly appeared
in the string effective Lagrangians corresponding to the
T-dual models.
In order to calculate the components of right invariant

one-forms Ra
� on the Lie group A2 we parametrize an

element of A2 as

g ¼ ex1T1ex2T2 ; ð39Þ
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where xi ¼ fx1; x2g are the coordinates of the Lie group
A2. Ra

�’s are then derived in the following form

R1
� ¼ ∂�x1; R2

� ¼ ex1∂�x2: ð40Þ

Since the dual Lie group, 2A1, is Abelian, by using (7), (8)
and (38) it follows that the Poisson bracket ΠabðgÞ on A2

vanishes. Furthermore, for obtaining the Poisson bracket on
the dual group 2A1 we first parametrize the Lie group 2A1

with coordinates x̃i ¼ fx̃1; x̃2g so that its elements are
defined as in (39) by replacing untilded quantities with
tilded ones. Then, using (7) and (8) for tilded quantities
together with (38) the Poisson bracket on 2A1 is derived as
follows:

Π̃abðg̃Þ ¼
�

0 −x̃2
x̃2 0

�
: ð41Þ

In addition to the right invariant one-forms, to construct
the σ-models (27) and (31) on manifolds M and M̃ we

need to determine the couplings Eþ
abðg; yαÞ, Φþð1Þ

aβ ðg; yαÞ,
Φþð2Þ

αb ðg; yαÞ, and Φαβðg; yαÞ. By convenient choices of the

background matrices Eþ
0 abðe; yαÞ, Fþð1Þ

aβ ðe; yαÞ, Fþð2Þ
αb ðe; yαÞ

and FαβðyαÞ, we will show that the original models are
equivalent to the H4 and GLð2;RÞ WZW models. In this
way, the new dual backgrounds for these WZW models are
obtained.

A. The H4 WZW model from T-dualizable σ-models
and its dual pairs

In this subsection, we obtain two different duals of the
H4 WZW model. In both cases, the original σ-models
(which are equivalent to the H4 WZW model) are con-
structed on the manifold M ≈O ×G with G ¼ A2 acting
freely on it, however, the spectator-dependent background
matrices are chosen to be different for each model.
Case (1): In this case, we take the background

matrices as

Eþ
0 ab ¼

�
0 ey1

ey1 0

�
; Fαβ ¼

�
0 −1
−1 0

�
;

Fþð1Þ
aβ ¼

�
0 0

ey1 0

�
; Fþð2Þ

αb ¼
�
0 −ey1

0 0

�
: ð42Þ

As explained above, the Poisson bracket ΠabðgÞ is zero. By
using relations (13)–(16) one can get the required couplings
which where mentioned above. Finally, using (40) and then
(27), the original σ-model is found to be of the form

S ¼ 1

2

Z
dσþdσ−½−∂þy1∂−y2 − ∂þy2∂−y1

þ ex1þy1ð∂þx1∂−x2 þ ∂þx2∂−x1Þ
þ ex1þy1ð∂þx2∂−y1 − ∂þy1∂−x2Þ�: ð43Þ

By identifying action (43) with the σ-model of the form (3)
one can read off the background matrix. Thus, the metric
and antisymmetric tensor field corresponding to the action
(43) can be written as

ds2 ¼ −2dy1dy2 þ 2ex1þy1dx1dx2; ð44Þ

B ¼ ex1þy1dx2 ∧ dy1: ð45Þ

Before proceeding to construct the dual σ-model, let us
discuss the conformal invariance of the model (43). The
classical canonical equivalence to the σ-models related by
PL T-duality was done by Sfetsos in [18] (see, also, [21]).
The canonical transformations are essentially classical and
the quantum equivalence of the two σ-models has not yet
been revealed. Equivalence can hold in some special cases
but it fails in most cases. In this respect, checking the
equivalence by studying conformal invariance (the vanish-
ing of the Beta-functions) is important. But, since after a
classical canonical transformation, the equivalence always
holds up to first order in Planck’s constant in the semi-
classical expansion (corresponding to one-loop order in σ-
model language), only the two-loop order is the first real
test of quantum equivalence of the two different σ-models
related by PL T-duality. For these reasons it is important to
check the conformal invariance conditions of our models.
In the σ-model context, the conformal invariance is

provided by the vanishing of the B-functions equations
[22], which are equivalent to the equations of motion of
effective action in the string frame [23]. In four dimensions,
the low energy string effective action is

Seff ¼
Z

d4x
ffiffiffiffiffiffiffi
−G

p
e−ϕLeff ; ð46Þ

where G ¼ detGμν, and Leff is given by

Leff ¼ Rþ ð∇ϕÞ2 − 1

3
H2 þ 2Λ: ð47Þ

In this expression, R is the scalar curvature of the metric
Gμν, and Hμνρ, defined by Hμνρ ¼ 1=2ð∂μBνρ þ ∂νBρμ þ
∂ρBμνÞ is the torsion (the field strength) of the field Bμν. Λ
is a cosmological constant2 which is vanished for critical

2In string theory, the cosmological constant term Λ is related to
the dimension of spacetime, d, and the inverse string tension by
Λ ¼ ðd − 26Þ=3α0, whereas, here in this paper it is, in some cases,
treated as a free parameter.
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strings. Our analysis applies also to noncritical strings, i.e.,
when Λ is different from zero.
Consistency of the string theory requires that the action

(3) be defined a conformally invariant quantum field theory.
The conditions for conformal invariance can be interpreted
as field equations for Gμν, Bμν, and ϕ of the string effective
action [24,25]. The vanishing of the one-loop B-functions
equations gives us the conformal invariance conditions of
the σ-model (3) up to one-loop order (zeroth order in the
inverse string tension α0) [26]. These equations are given by

BG
μν∶ Rμν − ðH2Þμν þ∇μ∇νϕþOðα0Þ ¼ 0; ð48aÞ

BB
μν∶ −∇λHλμν þHμν

λ∇λϕþOðα0Þ ¼ 0; ð48bÞ

Bϕ∶ Λþ 1

2
∇2ϕ −

1

2
ð∇ϕÞ2 þ 1

3
H2 þOðα0Þ ¼ 0: ð48cÞ

We have used the conventional notations ðH2Þμν ¼
HμρσHρσ

ν, H2 ¼ HμνσHμνσ and ð∇ϕÞ2 ¼ ∂μϕ∂μϕ. In the
equation (48a), Rμν is the Ricci tensor of the metric Gμν.
The metric (44) describes a four-dimensional spacetime

of signature (2,2).3 One quickly finds that the only nonzero
component ofRμν isRy1y1 ¼ −1=2 and thenR ¼ 0. Thus,
the metric is flat in the sense that its scalar curvature
vanishes.4 For the antisymmetric tensor field (45) one
verifies that the only nonzero component of H is
Hx1x2y1 ¼ ðex1þy1Þ=2. It then follows that H2 ¼ 0 and the
only nonzero component of ðH2Þμν is ðH2Þy1y1 ¼ −1=2.
Inserting the above results in the vanishing of the one-loop
B-functions equations (48a)–(48c), the conformal invari-
ance conditions up to one-loop order are satisfied with
Λ ¼ 0 and the dilaton field

ϕ ¼ σ0 þ σ1y1; ð49Þ

where σ0 and σ1 are integration constants. In addition to the
conformal invariance of the model (43) up to one-loop
order, we are interested in investigating the conformal
invariance of the model for higher orders in α0. Instead of

this, we show that the model (43) is equivalent to an exact
CFT, namely a WZW model based on a Lie group. The
WZW models represent exact solutions to the string
equations of motion to all orders in α0. One can show that
under the coordinate transformation

ex1 ¼ aþ; x2 ¼ a−; y1 ¼ n; y2 ¼ m; ð50Þ
action (43) turns into

S ¼ 1

2

Z
dσþdσ−½−∂þn∂−m − ∂þm∂−n

þ enð∂þaþ∂−a− þ ∂þa−∂−aþÞ
þ aþenð∂þa−∂−n − ∂þn∂−a−Þ�; ð51Þ

which is nothing but the action of WZW model based on
the Lie group H4

5 [16] (cf. Appendix). Therefore, the
action (43) as an exact CFT describes string propagation on
a four-dimensional manifold with (2,2)-signature. We
showed that the PL T-duality relates the H4 WZW model
to a σ-model defined on 2þ 2-dimensional manifold M ≈
O ×G only when G is the Lie group A2.
To continue, we obtain a new dual background for theH4

WZWmodel. This background is obtained from a σ-model
which is constructed on 2þ 2-dimensional manifold M̃ ≈
O × G̃ with two-dimensional Abelian Lie group G̃ ¼ 2A1

acting freely on it. In order to construct the dual model in
the form (31) we need to determine the dual couplings.
Making use of (41) and inserting (42) into Eqs. (32)–(35)
they are then read off to be

Ẽab ¼
� 0 1

ey1þx̃2
1

ey1−x̃2
0

�
; Φ̃αβ ¼

�
0 −1
−1 0

�
;

Φ̃þð1Þa
β ¼

� ey1
ey1þx̃2

0

0 0

�
; Φ̃þð2Þb

α ¼
� ey1

ey1−x̃2
0

0 0

�
: ð52Þ

Putting these pieces together into (31) and using the fact
that the components of the right invariant one-forms on
2A1 are R̃�a

¼ ∂�x̃a, the action of dual σ-model is obtained
to be

S̃ ¼ 1

2

Z
dσþdσ−

�
−∂þy1∂−y2 − ∂þy2∂−y1

þ 1

Δ
½ðey1 − x̃2Þ∂þx̃1∂−x̃2 þ ðey1 þ x̃2Þ∂þx̃2∂−x̃1

þ ey1ðey1 − x̃2Þ∂þx̃1∂−y1 þ ey1ðey1 þ x̃2Þ∂þy1∂−x̃1�
�
;

ð53Þ

3(2,2)-signature often appears in Kleinian geometry as the
neutral (− −þþ)-signature. Metrics with (2,2)-signature might
seem a purely mathematical problem, but there are several
physical reasons that motivate this. First of all, two-time physics
(cf. [27] for a review) has interesting applications in various areas,
like cosmology [28] or M-theory [29]. Moreover, these metrics
are intimately related to twistor space [30], which is an important
tool in perturbative computations of scattering amplitudes in
gauge theories [31].

4The metric (44) can be considered as the plane-parallel (pp-)
wave in the so-called Rosen coordinates [32]. To this end, one
can first use the coordinate transformation ex1 ¼ θ þ φ, x2 ¼
−θ þ φ, y1 ¼ u, y2 ¼ −v to obtain ds2 ¼ 2dudvþ 2euð−dθ2þ
dφ2Þ, then, after the change of the metric signature by a Wick
rotation as θ ¼ it, the resulting metric turns into the pp-wave one
in the Rosen coordinates.

5The WZW model based on the H4 Lie group (a different real
form of the h4 Lie algebra of H4) was, for the first time,
introduced by Nappi and Witten [33].
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where Δ ¼ e2y1 − x̃22. Comparing the above action with
the σ-model action of the form (3), the corresponding line
element and antisymmetric field B̃ take the following forms

ds̃2 ¼ −2dy1dy2 þ 2
ey1

Δ
ðdx̃1dx̃2 þ ey1dx̃1dy1Þ; ð54Þ

B̃ ¼ −
x̃2
Δ
ðdx̃1 ∧ dx̃2 þ ey1dx̃1 ∧ dy1Þ: ð55Þ

The line element (54) is ill defined at the regions x̃2 ¼ ey1
and x̃2 ¼ −ey1 . We can test whether there are true singu-
larities by calculating the scalar curvature, which is, R̃ ¼ 0.
Furthermore, one gets that the only nonzero components of
the Ricci tensor and Riemann tensor field are, respectively,

R̃x̃2y1 ¼
ey1

ðey1 − x̃2Þ2
; R̃y1y1 ¼ −

e2y1 þ 6x̃2ey1 þ x̃22

2ðey1 − x̃2Þ2
;

ð56Þ

and

R̃x̃1x̃2x̃2y1 ¼
e2y1

ðey1 þ x̃2Þðey1 − x̃2Þ3
;

R̃x̃1y1x̃2y1 ¼ −
ey1ðe2y1 þ 6ey1 x̃2 þ x̃22Þ
4ðey1 þ x̃2Þðey1 − x̃2Þ3

: ð57Þ

Then, the other invariant characteristics of spacetime, such
as R̃μνR̃

μν and the Kretschmann scalar are found to be
zero. Therefore, the singular points are not the essential
singularities, that is, they can be removed by an appro-
priate change of coordinates. In order to investigate the
conformal invariance conditions of the dual model (53) we
look at the vanishing of the one-loop B-functions
Eqs. (48a)–(48c). To this end, we find that the only non-
zero component of H̃ corresponding to B̃-field (55) is
H̃x̃1x̃2y1 ¼ ey1=2ðey1 − x̃2Þ2; consequently H̃2 ¼ 0. Hence,
Eqs. (48a) and (48b) are satisfied by the new dilaton field

ϕ̃ ¼ b0 þ b1y1 − log

�
x̃2 − ey1

x̃2 þ ey1

�
; ð58Þ

where b0 and b1 are integration constants. The dilatonic
contribution, Eq. (48c), is also satisfied if the cosmological
constant of the dual theory is left invariant, that is, Λ̃ ¼ 0.
Thus, it seems that under the non-Abelian T-duality the
cosmological constant has been restored from the dual
model to the original one.
At the end of this subsection let us discuss the invari-

ance of the string effective Lagrangians corresponding
to the σ-models (43) and (53). For these models, the
two Lagrangians Leff and L̃eff yield the same expression.
They are both equal to zero. The equivalence of
Lagrangians holds in spite of the nonvanishing traces of

the structure constants corresponding to the double
ðA2; 2A1Þ. Moreover, in the case of this example one
can show that the integration weights

ffiffiffiffiffiffiffi
−G

p
e−ϕ andffiffiffiffiffiffiffi

−G̃
p

e−ϕ̃ are not equal. The reason behind this can be
interpreted in two ways: firstly, the dilaton obtained in (58)
does not follow the formula (37). Second, due to the
particularity of our model, there is a possibility of absorb-
ing the anomalous terms into dilaton shift which is the same
as a diffeomorphism transformation. An analysis similar to
this has been carried out in Ref. [34] in a strict field theory
sense, regardless of the relationship between σ-models and
string theory effective actions. Notice that the Eqs. (36) and
(37) are the only transformations which lead to a propor-
tionality between the integration weights

ffiffiffiffiffiffiffi
−G

p
e−ϕ andffiffiffiffiffiffiffi

−G̃
p

e−ϕ̃ [20].
Case (2): The self-duality of the H4 WZW model
The self-duality of the WZW model under PL T-duality,

as well as the SUðNÞ WZW model, has already been
discussed in [35]. It turns out that the dual to the WZW
model is again the same WZW model. Here we shall show
that theH4 WZWmodel is self-dual. Let us now choose the
spectator-dependent background matrices as

Eþ
0 ab ¼

�
0 −y1
y1 0

�
; Fþð1Þ

aβ ¼
�
0 −1
1 0

�
;

Fþð2Þ
αb ¼

�
0 1

−1 0

�
; Fαβ ¼ 0: ð59Þ

Then, using the fact that ΠðgÞ ¼ 0 and utilizing formu-
las (13)–(16) together with (40) and (27), the original σ-
model is, in this case, obtained to be of the form

S ¼ 1

2

Z
dσþdσ−½−y1ex1ð∂þx1∂−x2 − ∂þx2∂−x1Þ

þ ex1ð∂þy1∂−x2 þ ∂þx2∂−y1Þ
− ∂þx1∂−y2 − ∂þy2∂−x1�: ð60Þ

As it is seen, the action (60) is indeed identical to the action
of H4 WZW model (cf. Appendix).
Analogously to Case (1), the dual model is constructed

on the manifold M̃ ≈O × G̃. The Poisson bracket on G̃ is
given by formula (41), and thus by inserting (59) into
Eqs. (32)–(35) the dual couplings are computed to be

Ẽab ¼ 1

y1 þ x̃2

�
0 1

−1 0

�
; Φ̃αβ ¼

1

y1 þ x̃2

�
0 −1
1 0

�
;

Φ̃þð1Þa
β ¼

1

y1 þ x̃2

�
1 0

0 1

�
; Φ̃þð2Þb

α ¼ 1

y1 þ x̃2

�
1 0

0 1

�
:

ð61Þ

Finally, inserting these into formula (31) the dual σ-model
is obtained to be in the following form
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S̃ ¼ 1

2

Z
dσþdσ−

1

ðy1 þ x̃2Þ
½∂þx̃1∂−y1 þ ∂þy1∂−x̃1

þ ∂þx̃2∂−y2 þ ∂þy2∂−x̃2 þ ∂þx̃1∂−x̃2

− ∂þx̃2∂−x̃1 − ∂þy1∂−y2 þ ∂þy2∂−y1�: ð62Þ

The line element and antisymmetric tensor field corre-
sponding to action (62) can be cast in the forms

ds̃2 ¼ 2

ðy1 þ x̃2Þ
ðdx̃1dy1 þ dx̃2dy2Þ; ð63Þ

B̃ ¼ 1

ðy1 þ x̃2Þ
ðdx̃1 ∧ dx̃2 − dy1 ∧ dy2Þ: ð64Þ

By using (63) and (64), the conformal invariance conditions
of the model (62) are satisfied with zero cosmological
constant and dilaton field that supports the dual background
is found to be

ϕ̃ ¼ c0 þ c1 logðy1 þ x̃2Þ; ð65Þ

where c0 and c1 are the constants of integration. On the one
hand, it is interesting to note that if we write (65) as
e−ϕ̃ ¼ ϱ0=ðy1 þ x̃2Þ, then metric (63) may be expressed as6

G̃μν ¼ e−ϕ̃η̃μν; ð66Þ

in which η̃μν ¼ 2dx̃1dy1 þ 2dx̃2dy2. The formula (66)
indicates a conformal transformation7 between the dual
metric G̃μν and flat metric η̃μν, and e−ϕ̃ is a smooth,
nonvanishing function of the spacetime which is called a
conformal factor. We note that the conformal transforma-
tions do change geometry and they are entirely different
from coordinate transformations. This is crucial since
conformal transformations may lead to a different physics
[36]. If we use the coordinate transformation

x̃1 ¼m; x̃2 ¼ aþ; y1 ¼ e−n − aþ; y2 ¼ a− þm;

ð67Þ

then the dual background can be cast to [16]

ds̃2 ¼ −2dn dmþ 2endaþda−;

B̃ ¼ −aþendn ∧ da−:

ϕ̃ ¼ ς0 þ ς1n; ð68Þ

where ς0 and ς1 are arbitrary constants. Here we have
ignored the total derivative terms that appeared in the
B̃-field part. Indeed, the solution (68) is identical to
the background of the original σ-model action (60).
Thus, we showed that the H4 WZW model does remain
invariant under the non-Abelian T-duality transformation,
that is, the model is self-dual.

B. The GLð2;RÞ WZW model from T-dualizable
σ-models and its dual pair

We shall show that the original σ-model (27) on the
2þ 2-dimensional manifoldM ≈O ×G can be equalled to
the GLð2;RÞ WZW model. Similar to previous examples,
the isometry group G that is being dualized is A2. The only
difference is in choosing the spectator-dependent back-
ground matrices. In this regard, the non-Abelian T-dual
geometry of the GLð2;RÞ WZW model is determined.

1. The original σ-model as the GLð2;RÞ WZW model

Here, we choose

Eþ
0 ab ¼

�
0 1

2
e−2y1

1
2
e−2y1 0

�
; Fαβ ¼

�
1 0

0 b

�
;

Fþð1Þ
aβ ¼

�
0 0

−e−2y1 0

�
; Fþð2Þ

αb ¼
�
0 e−2y1

0 0

�
; ð69Þ

where b is a nonzero real constant. Inserting relations (69)
into (13)–(16) and then using (40) together with (27), the
original σ-model is worked out to be

S ¼ 1

2

Z
dσþdσ−

�
∂þy1∂−y1 þ b∂þy2∂−y2

þ 1

2
ex1−2y1ð∂þx1∂−x2 þ ∂þx2∂−x1Þ

þ ex1−2y1ð∂þy1∂−x2 − ∂þx2∂−y1Þ
�
: ð70Þ

Now, if one uses the following coordinate transformation

ex1 ¼ θ−; x2 ¼ θþ; y1 ¼ θ3; y2 ¼ θ; ð71Þ

then, action (70) becomes

S ¼ 1

2

Z
dσþdσ−

�
b∂þθ∂−θ þ ∂þθ3∂−θ3

þ 1

2
e−2θ3ð∂þθ−∂−θþ þ ∂þθþ∂−θ−Þ

þ θ−e−2θ3ð∂þθ3∂−θþ − ∂þθþ∂−θ3Þ
�
: ð72Þ

Using the integration by parts over the fourth term of
action, it is concluded that the action (72) is nothing but the

6Here we have set ϱ0 ¼ 1.
7The conformal transformations shrink or stretch the distances

between the two points described by the same coordinate system
xμ on the manifold M, but they preserve the angles between
vectors which lead to a conservation of the (global) causal
structure of the manifold [36].
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action of WZW model based on the Lie group GLð2;RÞ
(cf. Appendix). Hence, the original σ-model (70) can be
described as an exact CFT.
The line element and the antisymmetric tensor field

corresponding to action (70) are, respectively, given by

ds2 ¼ dy12 þ bdy22 þ ex1−2y1dx1dx2; ð73Þ

B ¼ −ex1−2y1dx2 ∧ dy1: ð74Þ

To better understand action (70) we diagonalize the
corresponding metric. Let

ex1 ¼ 1

l
ðt − lφÞ; x2 ¼ −lðtþ lφÞ;

ey1 ¼ l
r
; y2 ¼ z; ð75Þ

where l is constant with the dimension of length. Then, the
metric (73) and the field strength corresponding to the B-
field (74) shall, respectively, become

ds2 ¼ −
r2

l2
dt2 þ r2dφ2 þ 1

r2
dr2 þ bdz2; ð76Þ

H ¼ −
r
l
dt ∧ dφ ∧ dr: ð77Þ

The metric (76) describes a four-dimensional Lorentz-
signature spacetime if b is considered positive and when
b is negative, the metric has (2,2)-signature. One immedi-
ately finds that the scalar curvature of the metric isR ¼ −6,
and the nonzero components of Rμν are Rnn ¼ −2gnn
where n ¼ ðt;φ; rÞ. Since Rzz ¼ 0, this spacetime cannot
be described as an AdS4 space. On the other hand, the
metric is a direct product of R associated with the
coordinate z and the three-dimensional metric of
ðt;φ; rÞ, which is nothing but the AdS3 space. Hence,
the metric (76) corresponds to AdS3 ×R. Furthermore,
using (76) and (77) it is concluded that the only nonzero
components of ðH2Þμν are ðH2Þtt ¼ ð2r2Þ=l2; ðH2Þφφ ¼

−2r2 and ðH2Þrr ¼ −2=r2. Finally, one verifies the
Eqs. (48a) and (48b) with the following dilaton field

ϕ ¼ ζ0 þ ζ1z; ð78Þ

where ζ0 and ζ1 are integration constants. Also, computing
H2 ¼ −6 the dilatonic contribution in Eq. (48c) is satisfied
provided that ζ12 ¼ bð2Λ − 4Þ. Notice that the metric (76)
has no horizon and no curvature singularity. Indeed, this
solution is everywhere regular including r ¼ 0. Consider
now two killing vectors ∂=∂t and ∂=∂φ corresponding to
the time translational and the rotational isometries of the
metric (76), respectively. The killing field ∂=∂t becomes
null at r ¼ 0 and it is time-like for the whole range r > 0,
while the killing field ∂=∂φ is everywhere spacelike except
for r ¼ 0. In addition, there is another killing field such as
ð1=bÞ∂=∂z so that it is timelike for b < 0, and remains
spacelike for b > 0.

2. The dual σ-model

Similar to the construction of dual σ-models for H4

WZW, the dual manifold is, here, assumed to be M̃ ≈O ×
G̃ in which G̃ ¼ 2A1. So, the Poisson structure on 2A1 does
follow the relation (41). In order to obtain the dual σ-model
for GLð2;RÞ WZW, we use the action (31). The dual
coupling matrices can be obtained by inserting (41) and
(69) into (32)–(35). They are then read

Ẽab ¼
� 0 1

x̃2þ1
2
e−2y1

1
−x̃2þ1

2
e−2y1

0

�
; Φ̃αβ ¼

�
1 0

0 b

�
;

Φ̃þð1Þa
β ¼

�− e−2y1
x̃2þ1

2
e−2y1

0

0 0

�
; Φ̃þð2Þb

α ¼
� e−2y1

x̃2−1
2
e−2y1

0

0 0

�
:

ð79Þ

Finally, the dual σ-model to the GLð2;RÞ WZW model is
found to be

S̃ ¼ 1

2

Z
dσþdσ−

�
∂þy1∂−y1 þ b∂þy2∂−y2 þ

1

Δ̄

��
1

2
e−2y1 − x̃2

�
∂þx̃1∂−x̃2 þ

�
1

2
e−2y1 þ x̃2

�
∂þx̃2∂−x̃1

− e−2y1
�
1

2
e−2y1 − x̃2

�
∂þx̃1∂−y1 − e−2y1

�
1

2
e−2y1 þ x̃2

�
∂þy1∂−x̃1

��
; ð80Þ

where Δ̄ ¼ 1
4
e−4y1 − x̃22. The line element and antisymmet-

ric field corresponding to this action may be expressed as

ds̃2¼dy12þbdy22þ
e−2y1

Δ̄
ðdx̃1dx̃2−e−2y1dx̃1dy1Þ; ð81Þ

B̃ ¼ −
x̃2
Δ̄
ðdx̃1 ∧ dx̃2 − e−2y1dx̃1 ∧ dy1Þ: ð82Þ

The scalar curvature of the metric is

R̃ ¼ −
2ð11e−4y1 þ 28x̃2e−2y1 þ 12x̃22Þ

ðe−2y1 − 2x̃2Þ2
: ð83Þ

As it can be seen from formulas (81) and (83), the region
x̃2 ¼ 1

2
e−2y1 is a true curvature singularity (in what follows
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we will discuss the structure and asymptotic nature of the
dual spacetime including the horizon and singularity). We
deduce that the only nonzero component of the field
strength corresponding to the B̃-field (82) is H̃x̃1x̃2y1 ¼
−ð2e−2y1Þ=ðe−2y1 − 2x̃2Þ2; consequently H̃2 ¼ −6ðe−2y1þ
2x̃2Þ2=ðe−2y1 − 2x̃2Þ2. Thus, Eqs. (48a) and (48b) are
satisfied by the new dilaton field

ϕ̃ ¼ λ0 þ λ1y2 þ log

�
2x̃2 þ e−2y1

2x̃2 − e−2y1

�
; ð84Þ

where λ0 and λ1 are arbitrary constants. Also, the dilatonic
contribution in (48c) is vanished if the cosmological
constant of the dual theory does satisfy in λ12 ¼ bð2Λ̃ − 4Þ.
As in the first example of subsection A, we now discuss

the presence of anomalous terms breaking the proportion-
ality between the original and dual string effective actions.
The string effective Lagrangians corresponding to the
σ-models (70) and (80) are found to be

Leff ¼ 4Λ − 8; ð85Þ

L̃eff ¼ 4Λ̃ − 8 −
64x̃2e2y1

ð1 − 2x̃2e2y1Þ2
: ð86Þ

The last term of Eq. (86) is not invariant under PLT-duality
transformation and therefore the two Lagrangians Leff and
L̃eff are not equal. This anomaly is due to the nonvanishing
traces of the structure constants of the double ðA2; 2A1Þ;
furthermore, the dilaton field obtained in (84) does not
follow the transformation (37).
The dilaton field (84) is well behaved for the ranges x̃2 <

− 1
2
e−2y1 and x̃2 > 1

2
e−2y1 . We also note that a dilaton field

can easily be found for the range − 1
2
e−2y1 < x̃2 < 1

2
e−2y1

by shifting λ0 by an imaginary constant (λ0 → λ0 þ iπ).
For the range x̃2 < − 1

2
e−2y1 we consider x̃2 þ 1

2
e−2y1 ¼

−eX. Then, we introduce the following coordinate trans-
formation

x̃1 ¼ Y þ 1

2
ðW þ eWÞ; x̃2 ¼ −eX

�
1þ e−W

2

�
;

y1 ¼
1

2
ðW − XÞ; y2 ¼ V: ð87Þ

Under this transformation, the dual background now looks
as follows

ds̃2 ¼ bdV2 þ 1

4
ðdW2 þ dX2Þ þ 1

eW þ 1
dXdY; ð88Þ

B̃ ¼ −
2eW þ 1

2ðeW þ 1Þ dX ∧ dY; ð89Þ

ϕ̃ ¼ λ0 þ λ1V þ log

�
eW

eW þ 1

�
: ð90Þ

Here we have ignored the terms concerning B̃-field which
are contributed to the Lagrangian as the total derivatives.
Notice that there is no singularity for the metric (88). In
fact, this was expected since the solutions (81), (82), and
(84) are, in this case, defined only for the range
x̃2 þ 1

2
e−2y1 < 0. As explained above, the true singularity

of the metric (81) occurs at x̃2 ¼ 1
2
e−2y1 , a region which is

located out of the range x̃2 þ 1
2
e−2y < 0. The background

(88)–(90) can be simplified by performing a coordinate
transformation. Let us now consider the transformation
eW ¼ 1=ðr − 1Þ so that it requires that 1 < r < ∞. In
addition, we introduce the following linear transformation

X ¼ −2
�
tþ xffiffiffi

3
p

�
; Y ¼

�
t −

xffiffiffi
3

p
�
; V ¼ z:

ð91Þ

By applying the above transformation to the solutions (88),
(89), and (90), one obtains the forms of the dual spacetime
metric, antisymmetric field strength, and dilaton field in
new coordinate base ft; x; r; zg as

ds̃2 ¼ −
�
1 −

2

r

�
dt2 þ

�
1 −

2

3r

�
dx2

þ 2ffiffiffi
3

p dtdxþ
�
1 −

1

r

�
−2 dr2

4r2
þ bdz2; ð92Þ

H̃rtx ¼
1ffiffiffi
3

p
r2
; ð93Þ

ϕ̃ ¼ λ0 þ λ1z − log r: ð94Þ

We note that this solution is valid only for the range x̃2 þ
1
2
e−2y1 < 0 or 1 < r < ∞. In order to have a solution with

the range 0 < r < 1 we have to look at the second case,
where x̃2 − 1

2
e−2y1 > 0. In this case it is assumed that x̃2 −

1
2
e−2y1 ¼ eX − e−2y1 for which X þ 2y1 > 0. Analogously,

we introduce the transformation

x̃1 ¼ Y −
1

2
ðeW −WÞ; x̃2 ¼ eX

�
1 −

e−W

2

�
;

y1 ¼
1

2
ðW − XÞ; y2 ¼ V; ð95Þ

in which W ¼ X þ 2y1 > 0, i.e., eW > 1. We then define
the transformation eW ¼ 1=ð1 − rÞ so that it requires that
0 < r < 1. Using these results and also utilizing the linear
transformation (91) one concludes that the solution given
by Eqs. (81), (82), and (84) is nothing but the solution
given by (92)–(94). Thus, the obtained solutions to both the
valid ranges x̃2 þ 1

2
e−2y1 < 0 and x̃2 − 1

2
e−2y1 > 0 can be

expressed as a solution in the form of Eqs. (92)–(94) only
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with 0 < r < ∞. Analogously, for the range − 1
2
e−2y1 <

x̃2 < 1
2
e−2y1 one can consider x̃2 þ 1

2
e−2y1 ¼ eX to obtain

the same results presented in (92)–(94).
One can simply check that the solution (92)–(94) does

satisfy the Eqs. (48a)–(48c). Considering this solution for
the whole spacetime, 0 < r < ∞, one sees that the metric
components (92) are ill behaved at r ¼ 0 and r ¼ 1.
Looking at the scalar curvature, which is R̃ ¼
2ð4r − 7Þ=r2, we find that r ¼ 0 is a curvature singularity.
Notice that the singularity at r ¼ 0 corresponds to the same
true singularity at the region x̃2 ¼ 1

2
e−2y1 which mentioned

above. We furthermore see that r ¼ 1 is also an event
horizon. The cross term appeared in the metric is constant
and thus for large r one can show that the metric is
asymptotically flat. For large r the metric (92) approaches
the following asymptotic solution

ds̃2 ¼ −dt2 þ dx2 þ 2ffiffiffi
3

p dtdxþ dr2

4r2
þ bdz2: ð96Þ

Performing a convenient coordinate transformation, the
metric (96) can be simply diagonalized. We also note that
the sign of b changes the signature of metric. If we
introduce the new coordinates ðt̂; x̂; r̂; ẑÞ by the trans-
formation

r ¼ e2r̂; t ¼
ffiffiffi
3

p

2
t̂; x ¼ x̂ −

t̂
2
; z ¼ ẑ

η
; ð97Þ

then, (96) will become

ds̃2 ¼
�
−dt̂2 þ dx̂2 þ dr̂2 þ dẑ2 for b ¼ η2

−dt̂2 þ dx̂2 þ dr̂2 − dẑ2 for b ¼ −η2
: ð98Þ

As it is seen for b > 0 the metric has (1,3)-signature, while
the signature is (2,2) when b is negative. Thus, we have
shown that the non-Abelian T-duality transformation (here
as the PL T-duality on a semi-Abelian double) changes the
asymptotic behavior of solutions from AdS3 ×R to
flat space.

C. The non-Abelian T-duality of noncritical
Bianchi type III string cosmological model

(the GLð2;RÞ WZW model)

In this subsection, we show that the noncritical Bianchi
type III string cosmology solution with a nonvanishing
field strength and an appropriate dilaton field can be
described by the GLð2;RÞ WZW model. In fact, we shall
obtain the GLð2;RÞ WZW model from a T-dualizable σ-
model constructed on a 3þ 1-dimensional manifold
M ≈O ×G, in which G is three-dimensional decompos-
able Lie group A2 ⊕ A1 acting freely onM. In this case, the
non-Abelian T-duality of the model is studied here. The
dual Lie group G̃ is considered to be three-dimensional
Abelian Lie group 3A1. We note that the Lie algebra
A2 ⊕ A1 is isomorphic to the Lie algebra of Bianchi
type III. Hence, six-dimensional Lie algebra of the Drinfeld

double ðA2 ⊕ A1; 3A1Þ is defined by the following com-
mutation relations:

½T1; T2� ¼ T2; ½T3; :� ¼ 0; ½T1; T̃2� ¼ −T̃2;

½T2; T̃2� ¼ T̃1; ½T̃3; :� ¼ 0: ð99Þ
Taking a convenient element of the Lie group A2 ⊕ A1 such
as g ¼ eðln x1ÞT1ex2T2ex3T3 we immediately find that R1

� ¼
∂�x1=x1, R2

� ¼ x1∂�x2, R3
� ¼ ∂�x3. In order to study the

non-Abelian T-duality of noncritical Bianchi type III
string cosmological model, we consider the orbit O as a
one-dimensional space with time coordinate yα ¼ ftg.
Now, one can choose the spectator-dependent background
matrices as

Eþ
0 ab¼

0
BB@

0 −a2
0

2
e−2t 0

−a2
0

2
e−2t 0 0

0 0 b

1
CCA; Fþð1Þ

aβ ¼

0
B@

0

a20e
−2t

0

1
CA;

Fþð2Þ
αb ¼

	
0 −a20 e−2t 0



; Fαβ ¼−a20; ð100Þ

for some constants a0, b, and then use (27) to obtain the
following background

ds2 ¼ −a20dt2 − a20e
−2tdx1dx2 þ bdx32; ð101Þ

B ¼ a20x1e
−2tdx2 ∧ dt: ð102Þ

Comparing (101) and the general form of the string
cosmology metric

ds2 ¼ −g200ðtÞdt2 þ
X3
a;b¼1

Rμ
aRν

bgabðtÞdxμ dxν; ð103Þ

one concludes that (101) is nothing but the Bianchi type III
string cosmology metric. This metric has (2,2)-signature if
b is considered positive. One can easily check that the
metric (101) and the field strength corresponding to the
B-field (102) (Hx1x2t ¼ a20e

−2t=2) along with the dilaton
field ϕ ¼ υ0 þ υ1x3 (for some constants υ0, υ1) make up a
solution for the vanishing of the one-loop B-functions
equations (48a)–(48c). It is also interesting to note that the
corresponding action to (101) and (102) is equivalent to the
GLð2;RÞ WZW model. This means that the obtained
background can be described as an exact CFT.
The dual model is constructed on 3þ 1-dimensional

manifold M̃ ≈O × G̃ with G̃ ¼ 3A1. Finally, using (99)
and (100) together with Eqs. (32)–(35) the dual background
is obtained to be

ds̃2 ¼ −a20dt2 þ
1

b
dx32

þ a20e
−2t

x̃22 −
a4
0

4
e−4t

ðdx̃1dx̃2 þ a20e
−2tdx̃1 dtÞ; ð104Þ
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B̃ ¼ x̃2

x̃22 −
a4
0

4
e−4t

ðdx̃1 ∧ dx̃2 þ a20e
−2tdx̃1 ∧ dtÞ: ð105Þ

The dilaton field that supports the dual background is
obtained in the following form

ϕ̃ ¼ ϑ0 þ ϑ1x̃3 − log

�
a20 þ 2x̃2e2t

a20 − 2x̃2e2t

�
; ð106Þ

where ϑ0, ϑ1 are some constants.

IV. CONFORMAL INVARIANCE OF THE T-DUAL
MODELS UP TO TWO-LOOP ORDER

(FIRST ORDER IN α0)

So far, we have been concerned with the conformal
invariance of the T-dual models up to one-loop order
(zeroth order in α0). As mentioned in Sec. III, the
conditions for conformal invariance of the σ-model with
action (3) can be interpreted as field equations for Gμν,
Bμν and ϕ of the string effective action [24,25]. These
equations to the first order in α0 take the following
form [26]

Rμν − ðH2Þμν þ∇μ∇νϕþ 1

2
α0
�
RμρσλRν

ρσλ þ 2RμρσνðH2Þρσ þ 2RρσλðμHνÞλδHρσ
δ þ

1

3
ð∇μHρσλÞð∇νHρσλÞ

− ð∇λHρσμÞð∇λHρσ
νÞ þ 2HμρσHνλδHηδσHη

λρ þ 2HμρσHνλ
σðH2Þλρ

�
þOðα02Þ ¼ 0; ð107aÞ

∇λHλμν − ð∇λϕ0ÞHμνλ þ α0½∇λHρσ ½μRν� λρσ − ð∇λHρμνÞðH2Þλρ − 2ð∇λHρσ ½μÞHν�ρδHλσ
δ� þOðα02Þ ¼ 0; ð107bÞ

2Λþ∇2ϕ0 − ð∇ϕ0Þ2 þ 2

3
H2 − α0

�
1

4
RμρσλRμρσλ −

1

3
ð∇λHμνρÞð∇λHμνρÞ − 1

2
Hμν

λHρσλRμνρσ

−RμνðH2Þμν þ 3

2
ðH2ÞμνðH2Þμν þ 5

6
HμνρHμ

σλHνσ
δHρλδ

�
þOðα02Þ ¼ 0; ð107cÞ

where ϕ0 ¼ ϕþ α0qH2 for some coefficient q [26],
ðH2Þμν ¼ HμρσHρσ

ν and Rμρσλ is the Riemann tensor field.
We note that round brackets denote the symmetric part on
the indicated indices whereas square brackets denote the
antisymmetric part. Below using the above equations we
check the conformal invariance conditions of the T-dual
models up to two-loop order (first order in α0). In fact, we
introduce new solutions for two-loop B-function equations
of the σ-model with a nonvanishing field strengthH and the
dilaton field in both cases of the absence and presence of a
cosmological constant Λ.

(i) As shown in subsection A of Sec. III, the back-
ground of the original σ-model (43) is given by the
formulas (44) and (45) so that this model is
equivalent to the H4 WZW model. Therefore, it
should be conformally invariant. In the case of this
model, the only nonvanishing component of the
Riemann tensor is Rx1y1x2y1 ¼ −ðex1þy1Þ=4. More-
over, the only nonvanishing component of ðH2Þμν is
ðH2Þy2y2 ¼ −1=2 and all components of ∇λHμνσ

vanish. Hence using these results, the field equa-
tions (107a)–(107c) are satisfied for the metric (44)
and the tensor field (45) together with the dilaton

field (49) and zero cosmological constant as this was
expected.

(ii) In order to investigate the conformal invariance
conditions of the dual model to the H4 WZW
(the σ-model (53) up to the first order in α0,
we first find that the only nonvanishing components
of ðH̃2Þμν and ðH̃2Þμν are ðH̃2Þy1y1 ¼ −ðey1 þ x̃2Þ2=
2ðey1 − x̃2Þ2 and ðH̃2Þy2y2 ¼ ðH̃2Þy1y1 , respectively.
Also, the only nonvanishing components of ∇̃λH̃μμρ

may be expressed as

∇̃x̃2H̃x̃1x̃2y1 ¼
e2y1

ðey1 þ x̃2Þðey1 − x̃2Þ3
;

∇̃y1H̃x̃1x̃2y1 ¼ −
x̃2e2y1

ðey1 þ x̃2Þðey1 − x̃2Þ3
: ð108Þ

Using these results together with the given data for
this model in subsection A of Sec. III, one verifies
the field Eqs. (107a) and (107b) for the metric (54)
and the tensor field (55) along with the dilaton field
(58). The Eq. (107c) is also satisfied with Λ̃ ¼ 0.
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(iii) Under the coordinate transformation (75), the back-
ground of the original σ-model (70) was represented
by (76) and (77). It was shown that resulting back-
ground as an exact CFT satisfies the vanishing of the
one-loop B-functions equations (48a)–(48c) with the
dilaton field (78). Using the expressions (76) and (77)
for the background fields onemay verify that the only
nonvanishing components of Riemann tensor are
Rtφtφ ¼ r4=l2, Rtrtr ¼ 1=l2 and Rφrφr ¼ −1;
consequently, the Kretschmann scalar is computed
to be K ¼ 12. Moreover, we get that the only
nonvanishing components of ðH2Þμν are ðH2Þtt ¼
ð2l2Þ=r2, ðH2Þφφ ¼ −2=r2 and ðH2Þrr ¼ −2r2, and
all components of ∇λHμνσ vanish. Putting these
pieces together, one verifies equations (107a) and
(107b)with the dilaton field (78). It is then interesting
to note that in this case the field equation (107c) is
satisfied if the following relation is held between the
constants ζ12, Λ, b and α0:

α0 ¼ −
1

4

�
2þ ζ1

2

2b
− Λ

�
: ð109Þ

(iv) As mentioned in the preceding section, the dual
model of the GLð2;RÞ WZW [Eqs. (92)–(94)] does
satisfy the vanishing of the one-loop B-functions
equations. Unfortunately, this background does not
satisfy the equations for the two-loop B-functions.
One can show that for this background all
Eqs. (107a)–(107c) are satisfied except for the
components of BG

ii ; ði ¼ t; x; rÞ, BB
tx and BΦ.

V. SUMMARY AND CONCLUDING REMARKS

Using the PL T-duality approach in the presence of
spectators we have constructed some non-Abelian T-dual-
izable σ-models on 2þ 2-dimensional target manifolds
M ≈O ×G and M̃ ≈O × G̃, where G and G̃ are two-
dimensional real non-Abelian and Abelian Lie groups,
respectively. We have shown that the original σ- models are
equivalent to the H4 and GLð2;RÞ WZW models. In this
way, we could obtain some new T-dual backgrounds for
these WZW models. The most interesting feature of our
results is the invariance of the H4 WZW model under the
non-Abelian T-duality. We have shown that the GLð2;RÞ
WZW model as a T-dualizable σ- model is equivalent to
AdS3 ×R space and has no horizon and no curvature
singularity, while the dual spacetime of the GLð2;RÞ
WZW model is stationary and asymptotically flat and
has a single horizon and a curvature singularity.
Moreover, it was shown that for the line element (76),
the Killing vectors ∂=∂t and ð1=bÞ∂=∂z with b < 0 are
timelike. Analogously, one can show that the dual line
element (92) possesses three independent Killing vectors

ffiffiffi
3

p ∂=∂t, 3=2ð ffiffiffi
3

p ∂=∂t − ∂=∂xÞ and ð1=bÞ∂=∂z. The first
two Killing vectors become timelike for the ranges r > 2
and r > 4=3, respectively. The last Killing vector stays
everywhere timelike for b < 0. Hence, the duality has
involved the timelike directions. In summary, in the case of
the effect of the non-Abelian T-duality (here as the PL
T-duality on a semi-Abelian double) on the GLð2;RÞ
WZW model three points have been highlighted.
(1) The non-Abelian T-duality transformation has

changed the asymptotic behavior of solutions from
AdS3 ×R to flat space.

(2) This transformation has related a solution with no
horizon and no curvature singularity to a solution
with a single horizon and a curvature singularity.

(3) The duality has involved the timelike directions.
We have also obtained the noncritical Bianchi type III

string cosmological model with a nonvanishing field
strength from a T-dualizable σ-model and have shown that
this model describes an exact CFT. Most importantly, we
have discussed the conformal invariance of the T-dual σ-
models such that the duals of the H4 WZW model are
conformally invariant up to the first order in α0, while the
conformal invariance condition for the dual spacetime of
the GLð2;RÞ WZW model has only been satisfied up to
zeroth order in α0.
As we have shown, all our models satisfy the vanishing

of the one-loop Beta-functions equations. Therefore, each
pair of them consists of two canonically equivalent models.
Among these models, only (43) and (60) and their dual
pairs (53) and (62), respectively, satisfy the equations for
two-loop B-functions.
The findings of our study showed that 2þ 2-dimensional

manifold M ≈O ×G with two-dimensional real non-
Abelian Lie group G ¼ A2 is wealthy. In addition to PL
symmetric backgrounds constructed out in this paper one
can obtain other string and gravitational backgrounds from
mutually T-dualizable σ- models on manifold M ≈O ×G
with G ¼ A2 when the dual manifold is M̃ ≈O × G̃ with
G̃ ¼ 2A1. In this regard, the following further develop-
ments come to mind.

(i) Plane-parallel (pp-)wave: Homogenous plane wave
is generally defined by the metric of the following
form [32]

ds2 ¼ 2dudv − AμνðuÞXμXνdu2 þ dX2; ð110Þ
where dX2 is the standard metric on Euclidean space
Ed and X ∈ Ed. A special case of isotropic homog-
enous plane wave metric can be chosen by
AμνðuÞ ¼ λðuÞδμν. Furthermore, for special choice
of λðuÞ ¼ k=u2, the metric becomes [37]

ds2 ¼ 2dudv −
k
u2

ðx2 þ y2Þdu2 þ dx2 þ dy2;

ð111Þ

EXACT CONFORMAL FIELD THEORIES FROM MUTUALLY … PHYS. REV. D 99, 026001 (2019)

026001-13



where k is an arbitrary real constant. The metric
(111) does satisfy the conformal invariance con-
ditions equations up to the first order in α0,
Eqs. (107a)–(107c), with zero field strength. The
cosmological constant Λ in this case vanishes and
dilaton field is obtained to be [37]

ϕ ¼ γ0 þ γ1uþ 2k log u; ð112Þ

where γ0 and γ1 are the constants of integration.
Since the field strength H is zero, one can easily
consider explicit expressions for the field B in such a
way that the terms concerning B-field in action of σ-
model contribute to the Lagrangian as the total
derivatives, which can be ignored. To obtain the
non-Abelian T-dual geometry of pp-wave back-
ground in the PLT-duality approach with spectators,
we first construct the original σ-model correspond-
ing to the pp-wave metric (111). In this case, a
convenient choice of the spectator-dependent ma-
trices may be expressed as

Eþ
0 ab ¼

�
−kðy12 þ y22Þ 1

1 0

�
; Fαβ ¼

�
1 0

0 1

�
;

Fþð1Þ
aβ ¼ 0; Fþð2Þ

αb ¼ 0: ð113Þ

Inserting (113) into Eqs. (13)–(16) and noting that
ΠabðgÞ is zero, the action of original σ-model (27)
yields

S ¼ 1

2

Z
dσþdσ−½∂þy1∂−y1 þ ∂þy2∂−y2

þ ex1ð∂þx1∂−x2 þ ∂þx2∂−x1Þ
− kðy12 þ y22Þ∂þx1∂−x1�: ð114Þ

Carrying out the coordinates transformation x1 →
ln u, x2 → v, y1 → x, y2 → y one arrives at the pp-
wave metric (111) from action (114). Thus, inserting
(41) and (113) into Eqs. (32)–(35) and then using
(31) one can obtain a non-Abelian T-dual σ-model
to (114).

(ii) Gödel and Gödel-type metrics: Among the known
exact solutions of Einstein field equations gravity,
the Gödel and Gödel-type metrics [38] play a special
role. It was shown within the usual general relativity
that these solutions describe rotating universes, and
allow for the existence of closed timelike curves.
These metrics are compatible with incoherent matter
distribution at rest and can be described by the line
element looking like

ds2 ¼ l2
�
−dt2 þ ðβ − 1Þr2dφ2

− 2rdtdφþ dr2

r2
þ dz2

�
; ð115Þ

for some constants l, β. The metric is a direct product
of R associated with the coordinate z and the three-
dimensional metric of ðt;φ; rÞ. The original Gödel
metric [38] is recovered when we take β ¼ 1=2. In
Ref. [39] it has been shown that the Gödel metric can
be considered as exact solutions in string theory for
the full Oðα0Þ action including both dilaton field ϕ
and field strengthH. Following Ref. [39] we assume
that the dilaton field depends only on the z coor-
dinate, so ϕðzÞ ¼ ϕ0 þ fz for some constants ϕ0, f.
With this assumption and taking the zero field
strength, H ¼ 0, the field equations (107a) and
(107b) are satisfied for the metric (115) in such a
way that the inverse string tension α0 has to satisfy
relation α0 ¼ 4l2β only with β ¼ 1 or β ¼ 3=4.
Finally, the field equation (107c) is satisfied if the
following relation is held between the constants f, Λ
and l:

f2 ¼
�− 3

4
þ 2Λl2 if β ¼ 1

− 2
3
þ 2Λl2 if β ¼ 3

4

:

In addition, one can check that the metric (115) for
β ¼ 1=2 (the original Gödel metric) along with the
respective B-field and dilaton field

B ¼ l2

2
rdφ ∧ dt;

ϕ ¼ ϕ0 þ fz;

satisfy the field equations (107a)–(107c) provided
that α0 ¼ −l2=2 and f2 ¼ 1=2þ 2Λl2. Now, by
using the above results and by choosing the appro-
priate spectator-depended background matrices we
can construct a σ-model including the Gödel (Gödel-
type) metric in the form (115) and the given B-fields.
In this way, one can study the non-Abelian T-duality
of the Gödel (Gödel-type) metric. We intend to
address this problem in the future.

(iii) Ads4 metric: AdS4 metric with radius l and constant
negative scalar curvature Λ ¼ −12=l2 is one of the
maximal symmetric four-dimensional spacetimes. A
simple form of this metric in coordinates ðz; xþ;
x−; ρÞ is given by

ds2 ¼ l2

z2
ðdz2 − dxþdx− þ dρ2Þ: ð116Þ

Solving the field equations (107a)–(107c) for
metric (116) one should be so lucky to obtain an
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appropriate field strength along with a dilaton field.
Then he/she can study the non-Abelian T-duality of
the AdS4 metric.
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APPENDIX: THE WZW MODELS BASED ON
THE H4 AND GLð2;RÞ LIE GROUPS

In this Appendix, we construct the WZW models
based on the H4 and GLð2;RÞ Lie groups. To define a
WZW model, in general, given a Lie algebra with gen-
erators Ta and structure constants fcab, one needs a
nondegenerate ad-invariant symmetric bilinear form Ωab ¼
hTa; Tbi on Lie algebra G so that it satisfies the following
relation [33]

fdabΩdc þ fdacΩdb ¼ 0: ðA1Þ

The WZW model based on a Lie group G is defined on a
Riemannian surface Σ as a world sheet by the following
action [33]

IðgÞ ¼ 1

2

Z
Σ
dσþdσ−ΩabLaþLb

−

þ 1

12

Z
B
d3σεγαβLa

γLb
αLc

βΩadfdbc; ðA2Þ

where B is a three-manifold bounded by world sheet Σ, and
the components of the left invariant one-forms La

α’s are
defined via g−1∂αg ¼ La

αTa in which g: Σ → G is an
element of Lie group G.

1. The H4 WZW model

Before proceeding to construct the model, let us
first introduce the oscillator Lie algebra h4 of the Lie
group H4. The Lie algebra h4 is generated by the gene-
rators fN;Aþ; A−;Mg with the following nonzero Lie
brackets

½N;Aþ� ¼ Aþ; ½N;A−� ¼ −A−; ½A−; Aþ� ¼ M: ðA3Þ

Using (A1) and (A3) one can simply get a nondegenerate
ad-invariant bilinear form Ωab on h4 as

Ωab ¼

0
BBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCA: ðA4Þ

In order to calculate the La
α’s on the Lie group H4 we

parametrize an element of H4 as

g ¼ emM ea−A− enN eaþAþ ; ðA5Þ

Finally, the WZWaction on theH4 Lie group is worked out
to be of the form [16]

IðgÞ ¼ 1

2

Z
dσþdσ−½−∂þn∂−m − ∂þm∂−n

þ enð∂þaþ∂−a− þ ∂þa−∂−aþÞ
þ aþenð∂þa−∂−n − ∂þn∂−a−Þ�: ðA6Þ

2. The GLð2;RÞ WZW model

The glð2;RÞ Lie algebra is spanned by the generators
fJ3; Jþ; J−; Ig which obey the following commutation
rules

½J3; Jþ� ¼ 2Jþ; ½J3; J−� ¼ −2J−;

½Jþ; J−� ¼ J3; ½I; :� ¼ 0: ðA7Þ

where I is the central generator. We notice that glð2;RÞ ¼
slð2;RÞ ⊕ uð1Þ. Using (A7), a nondegenerate solution to
(A1) is obtained to be of the form

Ωab ¼

0
BBB@

2a 0 0 0

0 0 a 0

0 a 0 0

0 0 0 b

1
CCCA; ðA8Þ

for some nonzero constants a, b. In order to construct
the WZW model based on the GLð2;RÞ Lie group we
parameterize the GLð2;RÞwith coordinates fθ3; θþ; θ−; θg
so that its elements can be written as

g ¼ eθþJþeθ3J3eθ−J−eθI: ðA9Þ
Using (A9), we then obtain

LJ3
� ¼ θ−e−2θ3∂�θþ þ ∂�θ3;

LJþ
� ¼ e−2θ3∂�θþ;

LJ−
� ¼ −θ2−e−2θ3∂�θþ − 2θ−∂�θ3 þ ∂�θ−;

LI
� ¼ ∂�θ: ðA10Þ

Finally, the GLð2;RÞ WZW action looks like

IðgÞ ¼ 1

2

Z
dσþdσ−½b∂þθ∂−θ

þ 2að∂þθ3∂−θ3 þ e−2θ3∂þθ−∂−θþÞ�: ðA11Þ
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