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In this work we present an algebraic proof of the renormazibility of the super-Yang-Mills action
quantized in a generalized supersymmetric version of the maximal Abelian gauge. The main point stated
here is that the generalized gauge depends on a set of infinity gauge parameters in order to take into account
all possible composite operators emerging from the dimensionless character of the vector superfield. At the
end, after the removal of all ultraviolet divergences, it is possible to specify values to the gauge parameters
in order to return to the original supersymmetric maximal Abelian gauge, first presented in Phys. Rev. D 91,
125017 (2015).
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I. INTRODUCTION

In the understanding of the quark confinement mecha-
nism, some formulations of the Yang-Mills theory in specific
gauge conditions, like the Landau gauge, the maximal
Abelian gauge, the Curci-Ferrari gauge, etc., are explored.
In particular, the maximal Abelian gauge permits us to
approach the notion of Abelian projection, one of the main
ideas regarding quark confinement [1]. Here, the emergence
of themagneticmonopoles, providedby theAbelian degrees,
can be understood as a confinementmechanism.However, in
the supersymmetric scenario, the subject of confinement
leads us directly to the AdS=CFT correspondence where
there would be a duality between a ten-dimensional low-
temperature string theory with the strong couplings of
a N ¼ 4 theory of super-Yang-Mills in four dimensions [2].
In fact, supersymmetric theories at finite temperature can

reveal fundamental properties, similar to those of weak
interactions in a plasma of quarks and gluons. Thus, it may
be possible to study the transition from the deconfinement
phase in an analogous way to the nonsupersymmetric case,
i.e., to analyze phase transitions due to the emergence of
singularities in the Abelian sector of a super-Yang-Mills
theory.In this work, our focus is on the proof of the

renormazibility of the super-Yang-Mills theory in the
supersymmetric maximal Abelian gauge, as proposed in
[3]. However, since the vector superfield, Vðx; θ; θ̄Þ, is
dimensionless1 the construction of the most general coun-
terterm, which cancels all divergences of the theory,
becomes complicated because there are infinite insertions
depending on the vector superfield. Therefore, the version
of the maximal Abelian gauge presented in [3] is not
unique; it is actually the simplest one, and the correct
definition of this gauge in superspace seems to be ambigu-
ous. The solution for this problem is a generalization of the
gauge-fixing condition in order to include all ambiguities in
the definition of the gauge. Namely,

D̄2D2Vi ¼ 0 → D̄2D2ωiðVÞ ¼ 0; ð1Þ

D̄2D2

�
Va −

i
2
fabiViVb

�
¼ 0 → D̄2D2ωaðVÞ ¼ 0; ð2Þ

where the expressions in the lhs are the original conditions
of the maximal Abelian gauge in superspace introduced in
[3], and ωaðVÞ and ωiðVÞ are general power series in V
obeying some symmetry criteria that will be clear later in
Sec. II D. Also, the index conventions will be clarified in
Sec. II A and in the Appendix, but at the moment it is
sufficient to say that the index i is related to the Abelian
components of the internal symmetry group, the SUðnÞ
group, and the indices fa; bg to the non-Abelian ones. One
advantage of this method lies in the fact that it defines a
general class of nonlinear gauges depending on a set of
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gauge parameters that can be chosen in a suitable way after
the renormalization procedure, or, in other words, after the
removal of the ultraviolet divergences of the theory. Then,
the supersymmetric version of the maximal Abelian gauge
is viewed here as a particular case of this general gauge.
Actually, even the Landau gauge can be classified into this
general class [4].
The paper is organized as follows. Section II is sub-

divided into five subsections in which we give a brief
review of the supersymmetric extension of the maximal
Abelian gauge, as presented in [3], and how it can be
generalized. The classical starting point action is also
defined in this section and its rich symmetry content is
meticulously discussed. In Sec. III, we perform the proof
of renormalizability of the theory following the algebraic
renormalization setup outlined in Refs. [4–12].2 The renor-
malization factors (the “famous” Z factors) of fields,
sources, and parameters of the theory are obtained, making
clear that the renormalization of the vector superfield is
nonlinear and its components (the Abelian and non-Abelian
ones) are mixed in quantum corrections into a matricial
renormalization. In Sec. IV, we conclude this work with
some final discussions and perspectives for future works.
Finally, in the Appendix, we display, for the sake of the
reader, a review on the maximal Abelian gauge for ordinary
SUðnÞ Yang-Mills theory and some relevant notations and
conventions are properly defined.

II. THE SUPERSYMMETRIC
MAXIMAL ABELIAN GAUGE

A. The simplest formulation

In this section we perform a brief review on the super-
symmetric formulation of the maximal Abelian gauge, first
presented in [3].3 The main characteristic of this gauge is to
explicitly split the Abelian and non-Abelian sectors of the
gauge symmetry group. In the SUðnÞ group one can
decompose the vector superfield Vðx; θ; θ̄Þ in terms of
the group generators as

Vðx; θ; θ̄Þ ¼
Xn2−1
A¼1

VAðx; θ; θ̄ÞTA

¼
Xnðn−1Þ
a¼1

Vaðx; θ; θ̄ÞTa þ
Xn−1
i¼1

Viðx; θ; θ̄ÞTi; ð3Þ

where TA stands by the n2 − 1 group generators of SUðnÞ,
which can be split into the nðn − 1Þ off-diagonal generators,
Ta, and the n − 1 diagonal generators, Ti, which form an
Abelian subgroup of SUðnÞ also known as the Cartan
subgroup. Also, we have adopted here capital letters
fA; B;C;…g, running from 1 to n2 − 1, for the full
SUðnÞ group; the labels fa; b; c; d; e;…g, running from
1 to nðn − 1Þ, for the off-diagonal sector; and the indices
fi; j; k; l;…g, running from 1 to n − 1, for the Abelian
sector. Of course, wewill assume, from now on, the Einstein
summation convention for repeated indices.4

In order to make clear our notations and conventions, let
us display here the vector superfield in terms of its
components:

VA ¼ CAðxÞ þ θαχAαðxÞ þ θ̄ _αχ̄
A _αðxÞ

þ 1

2
θ2MAðxÞ þ 1

2
θ̄2M̄AðxÞ þ 2θασμα _αθ̄

_αAA
μ ðxÞ

þ 1

2
θ̄2θαλAαðxÞ þ

1

2
θ2θ̄ _αλ̄

A _αðxÞ þ 1

4
θ2θ̄2DAðxÞ; ð4Þ

where θα (α ¼ 1, 2) and θ̄ _α ( _α ¼ _1, _2) are the fermionic
coordinates of the superspace; and fC; χα; χ̄ _α;M; M̄; Aμ; λα;
λ̄ _α;Dg the superfield components in the adjoint represen-
tation of the SUðnÞ group.5
It is well known that in the quantization of a gauge field

theory (being supersymmetric or not) an additional con-
dition (or a constraint, or a gauge-fixing condition) for the
gauge field needs to be implemented. Following [3], such
additional condition can be chosen as

D̄2D2

�
Va −

i
2
fabiViVb

�
¼ 0; ð5Þ

D̄2D2Vi ¼ 0; ð6Þ
where Dα and D̄ _α are, respectively, the chiral and antichiral
covariant derivatives, given by

Dα ¼
∂
∂θα − iσμα _αθ̄

_α∂μ; ð7Þ

D̄ _α ¼ −
∂
∂θ̄ _α

− iθασμα _α∂μ; ð8Þ

and fabi represents one of the possible types of structure
constants appearing in the algebra associated with the
SUðnÞ group; see details in the Appendix. Considering
the constraints (5) and (6) written in terms of the compo-
nents of the superfield and, together with the so-called
Wess-Zumino gauge, i.e., taking the lower components

2References [5–7] are standard references on the procedure of
the algebraic renormalization, while Refs. [4,8–12] relate to the
renormalization in the presence of a dimensionless vector super-
field in the Landau and linear covariant gauges. The problem of
dealing with the renormalization of a theory with dimensionless
fields is also approached in Refs. [13,14] in the case of a
Stueckelberg-like field.

3See also the Appendix for a review of the maximal Abelian
gauge for the ordinary Yang-Mills theory in the SUðnÞ group.

4The algebra of the generators and some useful identities can
be found in the Appendix.

5We also have in Eq. (4) that θ2 ¼ θαθα, θ̄2 ¼ θ̄ _αθ̄
_α, and

σμ ¼ ð1; σ1; σ2; σ3Þ, with 1 the identity matrix of order 2 and
ðσ1; σ2; σ3Þ the usual Pauli matrices.
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fC; χ; χ̄;M; M̄g equal to zero, it is possible to obtain the
usual maximal Abelian gauge [3]:

∂μAaμ ¼ fabiAi
μAbμ; ð9Þ

∂μAiμ ¼ 0: ð10Þ

As we shall see later, the superfield Vðx; θ; θ̄Þ is dimen-
sionless. Therefore, the off-diagonal gauge-fixing condi-
tion (5) is the simplest way to define the supersymmetric
version of the maximal Abelian gauge, while the diagonal
condition (6) corresponds to a Landau-like gauge. Thus, we
will name the gauge defined by Eqs. (5) and (6) as simplest
supermaximal Abelian gauge (SSMAG). In Sec. II D,
we will discuss a generalized version of SSMAG that we
will call the generalized supermaximal Abelian gauge
(GSMAG).

B. The Faddeev-Popov quantization
and BSRT symmetry

Since we have defined the gauge conditions of the
SSMAG, Eqs. (5) and (6), we are able to carry out the
Faddeev-Popov quantization procedure [12,15–17]. First of
all, let us start with the super-Yang-Mills (SYM) action:

SSYM ¼ −
1

64g2
tr
Z

d4xd2θWαWα þ c:c:

¼ −
1

128g2

Z
d4xd2θWAαWA

α þ c:c:; ð11Þ

where g is the coupling constant and Wα the chiral-field
strength, given by

Wα ¼ WA
αTA ¼ D̄2ðe−VDαeVÞ: ð12Þ

It can be checked that the action (11) is invariant by the
following infinitesimal gauge transformations:

V → V 0 ¼ V þ δV;

δV ¼ i
2
LVðΛþ Λ̄Þ þ i

2

�
LV coth

�
1

2
LV

��
ðΛ − Λ̄Þ

¼ iðΛ − Λ̄Þ þ 1

2
½V;Λþ Λ̄�

þ i
12

½V; ½V;Λ − Λ̄�� þOðV3Þ; ð13Þ

where LV• ¼ ½V; •� and Λ ¼ ΛATA are chiral infinitesimal
superfields, while Λ̄ ¼ Λ̄ATA are antichiral superfields.
As a gauge theory, the correct quantization6 needs the

implementation of a gauge-fixing condition. The Faddeev-
Popov method corresponds to a way of introducing a
constraint in the functional integral for a gauge theory. In
thismethod the SYMaction needs to be supplemented, in the
Feynman path integrals, by a term including such a con-
straint. Then, according to the Faddeev-Popov method, the
SYM action is replaced by

SFP ¼ SSYM þ Sgf ; ð14Þ
where Sgf is the gauge-fixing action. In our case, the gauge-
fixing action for the SSMAG is, following [3], given by

Sgf ¼
1

8

Z
d4xd2θ

�
BaD̄2D2

�
Va −

i
2
fabiViVb

�

þ BiD̄2D2Vi

�
þ “ghost terms”þ c:c: ð15Þ

The action above needs several explanations. First, the fields
Ba andBi play the role of Lagrangemultipliers enforcing the
SSMAG conditions for the off-diagonal and diagonal sec-
tors, respectively. It is immediately checked that their
classical equations of motion coincide with the constraints
(5) and (6). Also, it is easy to notice that they are chiral
superfields. Then, in the complex conjugated part, standing
by “c.c.,” the antichiral superfields B̄a and B̄i must appear.
The term “ghost terms” represents here all terms involving
the well-known Faddeev-Popov ghost fields. In order to
avoid any confusion, before presenting this term explicitly,
let us display here the four sets of ghosts that we have to
deal with:

(i) The off-diagonal chiral ghosts fca; ca⋆g;
(ii) The off-diagonal antichiral ghosts fc̄a; c̄a⋆g;
(iii) The diagonal chiral ghosts fci; ci⋆g;
(iv) The diagonal antichiral ghosts fc̄a; c̄a⋆g.

In each set listed above, the subscribed symbol “⋆” indicates
the antighost and the bar indicates the antichiral character of
the field. For example, ca is the off-diagonal chiral ghost, ci⋆
is the diagonal chiral antighost, and c̄a⋆ is the off-diagonal
antichiral antighost. Another point that must be explained
here is that, although the gauge invariance has been lost in the
gauge-fixing procedure, the Faddeev-Popov action SFP is left
invariant by a set of transformations, the so-called Becchi-
Rouet-Stora-Tyutin (BRST) transformations, listed below:

(i) Transformations of the components of the vector
superfield Vðx; θ; θ̄Þ:

sVa ¼ iðca − c̄aÞ − 1

2
fabcVbðcc þ c̄cÞ

−
1

2
fabiVbðci þ c̄iÞ þ 1

2
fabcViðcb þ c̄bÞ

þOðV2Þ;

sVi ¼ iðci − c̄iÞ − 1

2
fabiVaðcb þ c̄bÞ þOðV2Þ;

ð16Þ

6Actually, the correct quantization of a gauge theory is an open
problem until now. The Faddeev-Popov method is considered to
be correct only at the perturbative level, but, at the nonperturba-
tive level, other effects, such as the Gribov ambiguity problem,
show up and have to be taken into account. In this work we will
restrict ourselves to the Faddeev-Popov quantization method.
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(ii) Transformations of the components of chiral super-
fields fc; c⋆; Bg:

sca ¼ fabicbci þ 1

2
fabccbcc; sci ¼ 1

2
fabicacb;

sca⋆ ¼ Ba; sci⋆ ¼ Bi;

sBa ¼ 0; sBi ¼ 0; ð17Þ

(iii) Transformations of the components of the antichiral
superfields fc̄; c̄⋆; B̄g:

sc̄a ¼ fabic̄bc̄i þ 1

2
fabcc̄bc̄c; sc̄i ¼ 1

2
fabic̄ac̄b;

sc̄a⋆ ¼ B̄a; sc̄i⋆ ¼ B̄i;

sB̄a ¼ 0; sB̄i ¼ 0: ð18Þ

As one can see, the BRST transformations of the vector
superfield are similar to the infinitesimal gauge transforma-
tions (13), just replacing the infinitesimal gauge parameters
fΛ; Λ̄g by the ghosts fc; c̄g. Therefore, the SYM action is
automatically invariant by the set of transformations (16).
Also, the BRST operator, s, is nilpotent, i.e., s2 ¼ 0, and,
thanks to this remarkable property, one can finally write the
gauge-fixing term as a full BRST variation:

Sgf ¼
1

8
s
Z

dV

�
ca⋆D2

�
Va −

i
2
fabiViVb

�
þ ci⋆D2Vi

þ c̄a⋆D̄2

�
Va þ i

2
fabiViVb

�
þ c̄i⋆D̄2Vi

�

¼ 1

8

Z
dV

�
BaD2

�
Va −

i
2
fabiViVb

�
þ BiD2Vi

þ B̄aD̄2

�
Va þ i

2
fabiViVb

�
þ B̄iD̄2Vi

�

−
1

8

Z
dV

�
ca⋆D2s

�
Va −

i
2
fabiViVb

�
þ ci⋆D2sVi

þ c̄a⋆D̄2s

�
Va þ i

2
fabiViVb

�
þ c̄i⋆D̄2sVi

�
; ð19Þ

where dV ≡ d4xd2θd2θ̄ is the superspace element volume.
The action above is evidently invariant due to the nilpotency
property and thus the Faddeev-Popov action (14) is BRST
invariant. Summarizing our current situation, we have at our
disposal the BRST invariant action (14), representing the
N ¼ 1 SYM theory for a SUðnÞ group quantized in the so-
called SSMAG. The next step would be the study of the
renormalizability of this model. In order to achieve this aim,
let us first study the symmetry content and theWard identities
of the model.

C. Local composite operator formalism
and the Ward identities

In this section we would like to study the symmetry
content of the action (14). We already known that action
(14) is BRST invariant and the BRST transformations are
nonlinear. In order to deal with such nonlinear symmetry,
and other possible nonlinear identities of the model, we
need to make use of the local composite operator formalism
[7]. For this purpose, let us consider the following action:

S ¼ SFP þ Sext: ð20Þ

The external action Sext is a term depending on external
sources coupled to some local composite operators. More
specifically, we have

Sext½Ω; L; L̄; R; P� ¼
Z

dV½ΩaðsVaÞ þ ΩiðsViÞ�

þ
Z

d4xd2θ½LaðscaÞ þ LiðsciÞ�

þ
Z

d4xd2θ̄½L̄aðsc̄aÞ þ L̄iðsc̄iÞ�

þ
Z

dVPaðfabiViVbÞ

−
Z

dVRasðfabiViVbÞ; ð21Þ

where the BRST invariance of the external term is guar-
anteed by the BRST transformations of the external sources
below:

sΩa ¼ 0; sΩi¼ 0; sLa ¼ 0; sL̄a ¼ 0;

sLi ¼ 0; sL̄i ¼ 0; sRa¼Pa; sPa¼ 0: ð22Þ

Notice that the sources fΩ; L; L̄g are coupled to the
nonlinear BRST transformations, while the sources Pa

and Ra are coupled to the composite operator fabiViVb and
its BRST transformation, respectively. Furthermore, the
sources fR;Pg form the so-called BRST doublet and
the last two terms of (21) can be written as an exact
BRST variation. In fact, the external term can be com-
pletely written as a BRST variation:

Sext½Ω; L; L̄; R; P� ¼ s

�Z
dVð−ΩaVa −ΩiViÞ

þ
Z

d4xd2θðLaca þ LiciÞ

þ
Z

d4xd2θ̄ðL̄ac̄a þ L̄ic̄iÞ

þ
Z

dVfabiRaViVb

�
: ð23Þ
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The external sources are introduced here as a mathematical
tool that allow us to define some important Green functions
of the model and to write in a well-defined manner the
nonlinear Ward identities of the model. As these sources
vanish, the action S, Eq. (20), coincides with SFP, Eq. (14).
Therefore, action (20) is suitable to study the symmetry
content in terms of Ward identities, including the nonlinear
ones. As a last remark before discussing the Ward iden-
tities, we would like to call attention to the fact that the
BRST operator, s, and the Faddeev-Popov ghosts are
Grassmann variables and carry a quantum number named
the “ghost number” (g#). In Table I we displayed the
quantum numbers of the fields and sources of the theory,
including the mass dimensions. Notice that the sources with
odd ghost number, as Ω and R, are anticommuting, while
the sources with even ghost number, as L, L̄, and P, are
commuting.7

Now we are able to present the set of Ward identities
enjoyed by the action (20). These identities represent the set
of all symmetries of the theory being fundamental for the
proof of its renormalizability.

1. The Slavnov-Taylor identity

The BRST symmetry can be written as a functional
identity as follows:

BðSÞ≔
Z

dV

�
δS
δΩa

δS
δVaþ

δS
δΩi

δS
δViþPa δS

δRa

�

þ
Z

d4xd2θ

�
δS
δLa

δS
δca

þ δS
δLi

δS
δci

þBa δS
δca⋆

þBi δS
δci⋆

�

þ
Z

d4xd2θ̄

�
δS
δL̄a

δS
δc̄a

þ δΣ
δL̄i

δS
δc̄i

þ B̄a δS
δc̄a⋆

þ B̄i δS
δc̄i⋆

�

¼ 0: ð24Þ

2. The diagonal gauge-fixing equations

The classical equations of motion of the diagonal
Lagrange multipliers Bi and B̄i, being linear in the fields,
can be recognized as valid equations of the so-called
quantum action principle (QAP) [7]. Namely,

δS
δBi ¼

1

8
D̄2D2Vi;

δS
δB̄i ¼

1

8
D2D̄2Vi: ð25Þ

3. The off-diagonal gauge-fixing equations

In contrast with the diagonal equations of motion of the
Lagrange multipliers fBi; B̄ig, the equations of motion of
the off-diagonal Lagrange multipliers fBa; B̄ag are non-
linear. It is a direct consequence of the nonlinearity of
the SSMAG. However, with the help of the insertion of the
local composite operator fabiViVb we can write the
equations of motion of the fields fBa; B̄ag as the following
functional identities:

δS
δBa þ

i
16

D̄2D2
δS
δPa ¼

1

8
D̄2D2Va; ð26Þ

δS
δB̄a −

i
16

D2D̄2
δS
δPa ¼

1

8
D2D̄2Va: ð27Þ

4. The diagonal antighost equations

From the diagonal antighost equations the following
identities can be obtained8:

δS
δci⋆

þ 1

8
D̄2D2

δS
δΩi ¼ 0;

δS
δc̄i⋆

þ 1

8
D2D̄2

δS
δΩi ¼ 0: ð28Þ

5. The off-diagonal antighost equations

δS
δca⋆

þ 1

8
D̄2D2

δS
δΩa þ

i
16

D̄2D2
δS
δRa ¼ 0; ð29Þ

δS
δc̄a⋆

þ 1

8
D2D̄2

δS
δΩa −

i
16

D2D̄2
δS
δRa ¼ 0: ð30Þ

Like the off-diagonal gauge-fixing equations, these iden-
tities are only possible in the presence of the composite

TABLE I. Mass dimension d, ghost number g#, and R-weights n of the fields, sources, covariant derivatives, etc.

V c c⋆ c̄ c̄⋆ B B̄ Ω L L̄ D D̄ θ θ̄ R P s

d 0 0 1 0 1 1 1 2 3 3 1=2 1=2 −1=2 −1=2 2 2 0
g# 0 1 −1 1 −1 0 0 −1 −2 −2 0 0 0 0 −1 0 1
n 0 0 2 0 −2 2 −2 0 2 −2 −1 1 1 −1 0 0 0

7In general, if the combination 2dþ ðg#Þ, with d being the
mass dimension, is an even number, the corresponding object
(a field, a source, a parameter, or an operator) is commuting.
Otherwise it is anticommuting.

8Some authors call these equations the ghost equations. In our
nomenclature, however, we have decided to name the equations
obtained from the functional derivatives of the antighost fields
(chiral or antichiral) as “antighost equations” and the identities
obtained from the functional derivatives of the ghost fields as
“ghost equations.”
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operator fabiViVb and its BRST variation. It is important to
remark here that in the nonsupersymmetric version of the
MAG (see the Appendix), the analogous identities cannot
be recovered by introducing any composite operators.9,10

Therefore, it seems to be a property of the superspace
formulation.

6. The R-invariance

RðSÞ ≔
X

X∈fV;Ω;R;Pg

Z
dVðδRXÞ

δS
δX

þ
X

Y∈fc;c⋆;B;Lg

Z
d4xd2θðδRYÞ

δS
δY

þ
X

Ȳ∈fc̄;c̄⋆;B̄;L̄g

Z
d4xd2θ̄ðδRȲÞ

δS
δȲ

¼ 0: ð31Þ

TheR-variations (δRZ), with Z being any superfield of the
theory, are given by

δRZ ¼ i

�
nZ þ θα

∂
∂θα − θ̄ _α ∂

∂θ̄ _α

�
Z; ð32Þ

with nZ being the so-called “R-weight” of the respective
superfield Z. The R-weights of all objects present in the
theory (fields, sources, covariant derivatives, etc.) are
displayed in Table I.

7. The diagonal rigid invariance

WiðSÞ ≔
X

X∈fV;Ω;R;Pg

Z
dVfabiXa δS

δXb

þ
X

Y∈fc;c⋆;B;Lg

Z
d4xd2θfabiYa δS

δYb

þ
X

Ȳ∈fc̄;c̄⋆;B̄;L̄g

Z
d4xd2θ̄fabiȲa δS

δȲb

¼ 0: ð33Þ

Notice that the diagonal rigid symmetry involves trans-
formations only in the off-diagonal components of fields and
sources. Also, this symmetry is a consequence of the split
of the diagonal and off-diagonal components of the
group, which is the main characteristic of the SSMAG,

corresponding to a residual Uð1Þn−1 invariance; e.g., see [19]
for a nonsupersymmetric case. In contrast, in the Landau
gauge, the rigid symmetry extends to thewhole group [4,12].

8. The diagonal ghost equation

Another important symmetry for the renormalization
procedure is the diagonal ghost equation, given by

GðSÞ ≔
Z

d4xd2θ

�
δS
δci

þ fabica⋆
δS
δBb

�

þ
Z

d4xd2θ̄

�
δS
δc̄i

þ fabic̄a⋆
δS
δB̄b

�

þ
Z

dVfabiRa δS
δPb

¼
Z

d4xd2θfabiLacb þ
Z

d4xd2θ̄fabiL̄ac̄b

−
Z

dVfabiΩaVb: ð34Þ

It is important to point out here that the diagonal ghost
equation can only be obtained by combining the chiral and
antichiral ghosts; i.e., there is no chiral-ghost equation nor
antichiral ghost equation independently. This result was
already known in the case of the full Landau gauge in [20].
Also, the existence of such an identity is a signature of the
Landau-type diagonal gauge-fixing condition, Eq. (6).

D. The generalized formulation

Noticing that the vector superfield V is dimensionless,
the SSMAG, given by Eqs. (5) and (6), could be written,
equally well, as

D̄2D2

�
Va −

i
2
fabiViVb þ λaABCVAVBVC þOðV4Þ

�
¼ 0;

ð35Þ
D̄2D2ðVi þ ηiABCVAVBVC þOðV4ÞÞ ¼ 0; ð36Þ

where

λaABC ∈ fλabcd; λabci; λabij; λaijkg; ð37Þ
ηiABC ∈ fηiabc; ηijab; ηijka; ηijklg ð38Þ

are invariant tensors constrained by the diagonal rigid
invariance (33). In fact, these tensors are particular linear
combinations of the rank-2 invariant tensors δab, δij and the
structure constants fabc and fabi. The coefficients of such
linear combinations are gauge parameters thatmight be taken
to zero after the renormalization procedure, recovering then
the original SSMAG. Also, it is necessary to remark that the
set of Ward identities previously presented, Eqs. (24)–(34),
does not prevent the redefinitions (35) and (36).

9Actually they can be recovered but they are completely
innocuous.

10A detailed discussion on the Ward identities in the ordinary
maximal Abelian gauge can be found in [18].
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Then, due to the above-mentioned ambiguity, it is
necessary to redefine the gauge-fixing conditions (5) and
(6) by the following generalized versions:

D̄2D2ωaðVÞ ¼ 0; ð39Þ
D̄2D2ωiðVÞ ¼ 0; ð40Þ

where

ωaðVÞ ¼ Va þ λfabiViVb þ λaABCVAVBVC

þ λaABCDVAVBVCVD þ � � � ; ð41Þ
ωiðVÞ¼ViþηiABCVAVBVCþηiABCDVAVBVCVDþ�� � :

ð42Þ
The new gauge-fixing conditions (39) and (40) are then
a generalized supersymmetric version of the maximal
Abelian gauge, taking into account the ambiguities arising
from the absence of dimensionality of the vector superfield,
and will be referred to as the GSMAG, as already men-
tioned in Sec. II A. According to the diagonal rigid
symmetry (33), the λ’s and η’s tensors must obey the
generalized Jacobi identities:

0 ¼ fabiλbcde þ fcbiλabde þ fdbiλacbe þ febiλacdb; ð43Þ

0 ¼ fabiλbcdj þ fcbiλabdj þ fdbiλacbj; ð44Þ
0 ¼ fabiλbcjk þ fcbiλabjk; ð45Þ

0 ¼ fabiλbijk; ð46Þ

0 ¼ fabiλbcdef þ fcbiλabdef þ fdbiλacbef

þ febiλacdbf þ ffbiλacdeb; ð47Þ

0¼ fabiλbcdejþfcbiλabdejþfdbiλacbejþfebiλacdbj; ð48Þ

0 ¼ fabiλbcdjk þ fcbiλabdjk þ fdbiλacbjk; ð49Þ

0 ¼ fabiλbcjkl þ fcbiλabjkl; ð50Þ

0 ¼ fabiλbjklm; ð51Þ

0 ¼ fabiηjbcd þ fcbiηjabd þ fdbiηjacb; ð52Þ

0 ¼ fabiηjkbc þ fcbiηjkab; ð53Þ
0 ¼ fabiηjklb; ð54Þ
0¼ fabiηjbcdeþfcbiηjabdeþfdbiηjacbeþfebiηjacdb; ð55Þ

0 ¼ fabiηjkbcd þ fcbiηjkabd þ fdbiηjkacb; ð56Þ
0 ¼ fabiηjklbc þ fcbiηjklab; ð57Þ

0 ¼ fabiηjklmb; ð58Þ

and so on.11Thus, the gauge-fixing action (19) is replaced by

SGSMAG ¼ 1

8
s
Z

dV½ca⋆D2ωaðVÞ þ ci⋆D2ωiðVÞ

þ c̄a⋆D̄2ω̄aðVÞ þ c̄i⋆D̄2ω̄iðVÞ�

¼ 1

8

Z
dVfBaD2ωaðVÞ þ BiD2ωiðVÞ

þ B̄aD̄2ω̄aðVÞ þ B̄iD̄2ω̄iðVÞ
− ca⋆D2½sωaðVÞ� − ci⋆D2½sωiðVÞ�
− c̄a⋆D̄2½sω̄aðVÞ� − c̄i⋆D̄2½sω̄iðVÞ�g; ð59Þ

where ω̄a;iðVÞ is the complex conjugate of ωa;iðVÞ.
Naturally, the external source term must be replaced by

Σext½Ω; L; L̄; R; P; R̄; P̄�

¼ s

�Z
dVð−ΩaVa −ΩiViÞ þ

Z
d4xd2θðLaca þ LiciÞ

þ
Z

d4xd2θ̄ðL̄ac̄a þ L̄ic̄iÞ þ
Z

dVðRaωaðVÞ

þ RiωiðVÞÞ þ
Z

dVðR̄aω̄aðVÞ þ R̄iω̄iðVÞÞ
�

¼
Z

dV½ΩaðsVaÞ þΩiðsViÞ�

þ
Z

d4xd2θ½LaðscaÞ þ LiðsciÞ�

þ
Z

d4xd2θ̄½L̄aðsc̄aÞ þ L̄iðsc̄iÞ� þ
Z

dVfPaωaðVÞ

− Ra½sωaðVÞ� þ PiωiðVÞ − Ri½sωiðVÞ� þ P̄aω̄aðVÞ
− R̄a½sω̄aðVÞ� þ P̄iω̄iðVÞ − R̄i½sω̄iðVÞ�g; ð60Þ

where use has been made of a new set of BRST doublets of
external sources

sRa;i ¼ Pa;i; sPa;i ¼ 0; sR̄a;i ¼ P̄a;i; sP̄a;i ¼ 0;

ð61Þ

with fR̄; P̄g being the complex conjugate of fR;Pg, respec-
tively. The quantum numbers and the fermionic/bosonic
nature of the sources (61) are those of the sources fR;Pg in
Table I, even for the complex conjugate. Finally, we are in a
position to replace the action (20) for a more general one:

Σ ¼ SSYM þ SGSMAG þ Σext½Ω; L; L̄; R; P; R̄; P̄�: ð62Þ

The expression (62) above will be our starting point action,
with which we will study the renormalizability. This action

11Remember here that fa; b; c; d; e; fg are off-diagonal indices,
while fi; j; k; l; mg are diagonal ones.
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encodes our previous discussion about the introductory
definition of the maximal Abelian gauge in superspace,
originally presented in [3], and the necessity of a generali-
zation in order to circumvent the ambiguity generated by the
dimensionlessness of the vector superfield. Also, the neces-
sary local composite operators were appropriately defined in
(62). As we shall see next, a full set ofWard identities can be
established for action (62). In fact, such identities are very
similar to the identities (24)–(34) with few modifications.

E. The Ward identities for the generalized action

We display here a full set of Ward identities enjoyed by
the action (62).

1. The (new) Slavnov-Taylor identity

The new Slavnov-Taylor identity now includes the
BRST doublet of sources fPi; Rig, fP̄a; R̄ag and fP̄i; R̄ig:

BðΣÞ≔
Z

dV

�
δΣ
δΩa

δΣ
δVa þ

δΣ
δΩi

δΣ
δVi þPa δΣ

δRa

þPi δΣ
δRi þ P̄a δΣ

δR̄a þ P̄i δΣ
δR̄i

�

þ
Z

d4xd2θ

�
δΣ
δLa

δΣ
δca

þ δΣ
δLi

δΣ
δci

þBa δΣ
δca⋆

þBi δΣ
δci⋆

�

þ
Z

d4xd2θ̄

�
δΣ
δL̄a

δΣ
δc̄a

þ δΣ
δL̄i

δΣ
δc̄i

þ B̄a δΣ
δc̄a⋆

þ B̄i δΣ
δc̄i⋆

�

¼ 0: ð63Þ

2. The (new) diagonal gauge-fixing equations

The new diagonal gauge-fixing equations now assume
the forms:

δΣ
δBi −

1

8
D̄2D2

δΣ
δPi ¼ 0; ð64Þ

δΣ
δB̄i −

1

8
D2D̄2

δΣ
δP̄i ¼ 0: ð65Þ

3. The (new) off-diagonal gauge-fixing equations

The off-diagonal gauge-fixing equations are now very
similar to the diagonal ones (we will turn to this point later):

δΣ
δBa −

1

8
D̄2D2

δΣ
δPa ¼ 0; ð66Þ

δΣ
δB̄a −

1

8
D2D̄2

δΣ
δP̄a ¼ 0: ð67Þ

4. The (new) diagonal antighost equations

The new diagonal antighost equations are modified by
the presence of the sources Ri and R̄i:

δΣ
δci⋆

−
1

8
D̄2D2

δΣ
δRi ¼ 0; ð68Þ

δΣ
δc̄i⋆

−
1

8
D2D̄2

δΣ
δR̄i ¼ 0: ð69Þ

5. The (new) off-diagonal antighost equations

The new off-diagonal antighost equations assume a
simpler form in this generalized formulation:

δΣ
δca⋆

−
1

8
D̄2D2

δΣ
δRa ¼ 0; ð70Þ

δΣ
δc̄a⋆

−
1

8
D2D̄2

δΣ
δR̄a ¼ 0: ð71Þ

6. The (new) R-invariance

The new R-invariance now includes the new sources
added but it is still very similar to the previous one:

RðΣÞ ≔
X

X∈fV;Ω;R;P;R̄;P̄g

Z
dVðδRXÞ

δΣ
δX

þ
X

Y∈fc;c⋆;B;Lg

Z
d4xd2θðδRYÞ

δΣ
δY

þ
X

Ȳ∈fc̄;c̄⋆;B̄;L̄g

Z
d4xd2θ̄ðδRȲÞ

δΣ
δȲ

¼ 0; ð72Þ

where the R-variations are given by Eq. (32).

7. The (new) diagonal rigid invariance

The new diagonal rigid symmetry is also generalized as
follows:

WiðΣÞ ≔
X

X∈fV;Ω;R;P;R̄;P̄g

Z
dVfabiXa δΣ

δXb

þ
X

Y∈fc;c⋆;B;Lg

Z
d4xd2θfabiYa δΣ

δYb

þ
X

Ȳ∈fc̄;c̄⋆;B̄;L̄g

Z
d4xd2θ̄fabiȲa δΣ

δȲb

¼ 0: ð73Þ

8. The (new) diagonal ghost equation

Finally, the new diagonal ghost equation is generalized
in the new formulation in order to accommodate the new
BRST sources. We can also notice that classical breaking
term remains the same:
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GðΣÞ ≔
Z

d4xd2θ

�
δΣ
δci

þ fabica⋆
δS
δBb

�

þ
Z

d4xd2θ̄

�
δΣ
δc̄i

þ fabic̄a⋆
δS
δB̄b

�

þ
Z

dVfabi
�
Ra δΣ

δPb þ R̄a δΣ
δP̄b

�

¼
Z

d4xd2θfabiLacb þ
Z

d4xd2θ̄fabiL̄ac̄b

−
Z

dVfabiΩaVb: ð74Þ

The generalized Jacobi identities, Eqs. (43)–(58), and
generalizations for arbitrary rank tensors are fundamental
in order to establish the ghost equation as written above.
Furthermore, a deeper look at the diagonal and off-

diagonal gauge-fixing equations, Eqs. (64)–(67), reveals
that they are very similar and could be written in a more
compact way as

δΣ
δBA −

1

8
D̄2D2

δΣ
δPA ¼ 0; ð75Þ

δΣ
δB̄A −

1

8
D2D̄2

δΣ
δP̄A ¼ 0; ð76Þ

where A≡ fa; ig, i.e., with no difference between the
diagonal and off-diagonal sectors. It is possible because
we did not give an explicit form for the field functionals (41)
and (42). In fact, the split of these two sectors of the theory is
provided here by the rigid symmetry (73), which is exclu-
sively diagonal. An analogous approach was made in [4] in
the context of the full Landau gauge. However, in that case,
the rigid symmetry extends to the whole SUðnÞ group.
As a final comment, we would like to emphasize that the

identities displayed above are, in principle, valid only at the
classical level. At the quantum level it is first necessary to
prove the absence of anomalies. This is in fact one of themain
steps of the algebraic proof of the renormalization. The study
of anomalies for such identities in superspace was exhaus-
tively discussed in the literature; see, e.g., [10,12,21], in
different gauges. In particular, as we are dealing with a pure
super-Yang-Mills theory, the absence of chiral matter fields
automatically guarantees the validity of the Slavnov-Taylor
identity (63) and the R-invariance (72) at a quantum level.
Then, we assume from now on that the Ward identities
presented here in this section are anomaly free.

III. RENORMALIZATION

Our next step will be to determine the most general
invariant counterterm which can be freely added to all order
in perturbation theory, allowing us to remove all divergences
of the theory. Such a counterterm is generically written as

ΣCT ¼
Z

dVΔð2;0;0Þðx; θ; θ̄Þ þ
Z

d4xd2θΔð3;0;2Þðx; θÞ

þ
Z

d4xd2θ̄Δð3;0;−2Þðx; θ̄Þ; ð77Þ

where Δðd;#g;nÞ are local polynomials in the fields and
sources. The upper labels indicate the mass dimension (d),
the ghost number (#g), and the R-weights (n), respectively,
in accordance with Table I. Also, the Hermiticity condition
imposes that the antichiral polynomial Δð3;0;−2Þ be the chiral
conjugate of the chiral polynomial Δð3;0;2Þ.
Then, in order to find an explicit expression for the

counterterm, ΣCT, we follow the setup of the algebraic
renormalization [7] and perturb the classical action Σ,
Eq. (62), by adding the counterterm described above,
demanding that the perturbed action, ðΣþ ϵΣCTÞ, with ϵ
being an expansion parameter, fulfill, to the first order in ϵ,
the same Ward identities obeyed by the classical action Σ,
Eqs. (63)–(74). This amounts to imposing the following
constraints on ΣCT:

BΣðΣCTÞ ¼ 0; ð78Þ

δΣCT

δBi −
1

8
D̄2D2

δΣCT

δPi ¼ 0; ð79Þ

δΣCT

δB̄i −
1

8
D2D̄2

δΣCT

δP̄i ¼ 0; ð80Þ

δΣCT

δBa −
1

8
D̄2D2

δΣCT

δPa ¼ 0; ð81Þ

δΣCT

δB̄a −
1

8
D2D̄2

δΣCT

δP̄a ¼ 0; ð82Þ

δΣCT

δci⋆
−
1

8
D̄2D2

δΣCT

δRi ¼ 0; ð83Þ

δΣCT

δc̄i⋆
−
1

8
D2D̄2

δΣCT

δR̄i ¼ 0; ð84Þ

δΣCT

δca⋆
−
1

8
D̄2D2

δΣCT

δRa ¼ 0; ð85Þ

δΣCT

δc̄a⋆
−
1

8
D2D̄2

δΣCT

δR̄a ¼ 0; ð86Þ

RðΣCTÞ ¼ 0; ð87Þ

WiðΣCTÞ ¼ 0; ð88Þ

GiðΣCTÞ ¼ 0; ð89Þ

where BΣ is the so-called nilpotent linearized Slavnov-
Taylor operator,
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BΣ ¼
Z

dV

�
δΣ
δΩa

δ

δVa þ
δΣ
δVa

δ

δΩa þ
δΣ
δΩi

δ

δVi þ
δΣ
δVi

δ

δΩi

�

þ
Z

dV

�
Pa δ

δRa þ Pi δ

δRi þ P̄a δ

δR̄a þ P̄i δ

δR̄i

�

þ
Z

d4xd2θ

�
δΣ
δLa

δ

δca
þ δΣ
δca

δ

δLa þ
δΣ
δLi

δ

δci

þ δΣ
δci

δ

δLi þ Ba δ

δca⋆
þ Bi δ

δci⋆

�

þ
Z

d4xd2θ̄

�
δΣ
δL̄a

δ

δc̄a
þ δΣ
δc̄a

δ

δL̄a þ
δΣ
δL̄i

δ

δc̄i
þ δΣ
δc̄i

δ

δL̄i

þ B̄a δ

δc̄a⋆
þ B̄i δ

δc̄i⋆

�
: ð90Þ

The presence of the nilpotent operator BΣ transforms the
problem of obtaining the counterterm in a cohomology
problem of the operator BΣ. In fact, ΣCT can be written as

ΣCT ¼ a0SSYM þ BΣΔð0;−1;0Þ; ð91Þ

with a0 an arbitrary real coefficient and with Δð0;−1;0Þ
given by

Δð0;−1;0Þ ¼
Z

dVΔð2;−1;0Þðx;θ; θ̄Þþ
Z

d4xd2θΔð3;−1;2Þðx;θÞ

þ
Z

d4xd2θ̄Δð3;−1;−2Þðx; θ̄Þ; ð92Þ

since SSYM cannot be written as an exact BΣ variation. The
remaining constraints, Eqs. (79)–(89), provide that Δð0;−1;0Þ
is written as

Δð0;−1;0Þ ¼
Z

dV

�
FiðVÞΩiþFaðVÞΩa

þGiðVÞ
�
Riþ1

8
D2ci⋆

�
þGaðVÞ

�
Raþ1

8
D2ca⋆

�

þḠiðVÞ
�
R̄iþ1

8
D̄2c̄i⋆

�
þḠaðVÞ

�
R̄aþ1

8
D̄2c̄a⋆

��

þ
Z

d4xd2θa1Lacaþ
Z

d4xd2θ̄ā1L̄ac̄a; ð93Þ

where fa1; ā1g is a pair of complex conjugated arbitrary
coefficients and thanks to the dimensionlessness of thevector
superfield, Fa;iðVÞ and Ga;iðVÞ are power series in V:

FaðVÞ¼α1Vaþα2fabiVbViþ
X∞
n¼3

αaA1A2…AnVA1VA2…VAn;

ð94Þ

FiðVÞ ¼ βVi þ
X∞
n¼3

βiA1A2…AnVA1VA2…VAn; ð95Þ

GaðVÞ¼ κ1Vaþ κ2fabiVbViþ
X∞
n¼3

κaA1A2…AnVA1VA2…VAn;

ð96Þ

GiðVÞ ¼ σVi þ
X∞
n¼3

σiA1A2…AnVA1VA2…VAn: ð97Þ

Naturally, Ḡa;iðVÞ are the complex conjugates ofGa;iðVÞ and
the rank-n tensors: αaA1A2…An , βiA1A2…An , κaA1A2…An , and
σiA1A2…An must obey generalized Jacobi identities similar to
(43)–(58).

Through the action of the linearized operator BΣ on Δð0;−1;0Þ in (93), it is possible to obtain explicit expressions for the
local polynomials Δðd;#g;nÞ in (77):

Δð2;0;0Þ ¼
�
δΣ
δΩj

∂FiðVÞ
∂Vj þ δΣ

δΩa

∂FiðVÞ
∂Va

�
Ωi þ FiðVÞ δΣ

δVi þ
�
δΣ
δΩi

∂FaðVÞ
∂Vi þ δΣ

δΩb

∂FaðVÞ
∂Vb

�
Ωa þ FaðVÞ δΣ

δVa

þ
�
δΣ
δΩj

∂GiðVÞ
∂Vj þ δΣ

δΩa

∂GiðVÞ
∂Va

��
Ri þ 1

8
D2ci⋆

�
þGiðVÞPi þ 1

8
BiD2GiðVÞ

þ
�
δΣ
δΩi

∂GaðVÞ
∂Vi þ δΣ

δΩb

∂GaðVÞ
∂Vb

��
Ra þ 1

8
D2ca⋆

�
þGaðVÞPa þ 1

8
BaD2GaðVÞ

þ
�
δΣ
δΩj

∂ḠiðVÞ
∂Vj þ δΣ

δΩa

∂ḠiðVÞ
∂Va

��
R̄i þ 1

8
D̄2c̄i⋆

�
þ ḠiðVÞP̄i þ 1

8
B̄iD̄2ḠiðVÞ

þ
�
δΣ
δΩi

∂ḠaðVÞ
∂Vi þ δΣ

δΩb

∂ḠaðVÞ
∂Vb

��
R̄a þ 1

8
D̄2c̄a⋆

�
þ ḠaðVÞP̄a þ 1

8
B̄aD̄2ḠaðVÞ; ð98Þ

Δð3;0;2Þ ¼ −
a0

128g2
ðWaαWa

α þWiαWi
αÞ þ a1

δΣ
δca

ca þ a1La δΣ
δLa ; ð99Þ
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Δð3;0;−2Þ ¼ −
a0

128g2
ðW̄a

_αW̄
a _α þ W̄i

_αW̄
i _αÞ þ ā1

δΣ
δc̄a

c̄a þ ā1L̄a δΣ
δL̄a : ð100Þ

Furthermore, it is useful to write the counterterm in a parametric form. Then, in order to establish such an expression, let us
first notice that the nontrivial part of the counterterm can be easily rewritten as

a0SSYM ¼ −
a0

128g2

Z
d4xd2θWAαWA

α þ c:c: ¼ −a0g2
∂SSYM
∂g2 ¼ −a0g2

∂Σ
∂g2 ; ð101Þ

while the remaining terms of (91), i.e., the so-called trivial part of the cohomology, are written in the same fashion.
Namely,

BΣΔð0;−1;0Þ ¼
Z

dV

�
FaðVÞ δΣ

δVaþκ1Ra δΣ
δRaþκ1Pa δΣ

δPaþ κ̄1R̄a δΣ
δR̄aþ κ̄1P̄a δΣ

δP̄a

�
−
Z

dV

�
Ωb∂FbðVÞ

∂Va þΩi∂FiðVÞ
∂Va

�
δΣ
δΩa

þ
Z

dV

�
FiðVÞ δΣ

δViþσRi δΣ
δRiþσPi δΣ

δPiþ σ̄R̄i δΣ
δR̄iþ σ̄P̄i δΣ

δP̄i

�
−
Z

dV

�
Ωa∂FaðVÞ

∂Vi þΩj∂FjðVÞ
∂Vi

�
δΣ
δΩi

þ
Z

d4xd2θ

�
a1La δΣ

δLa−a1ca
δΣ
δca

þκ1ca⋆
δΣ
δca⋆

þκ1Ba δΣ
δBaþσci⋆

δΣ
δci⋆

þσBi δΣ
δBi

�

þ
Z

d4xd2θ̄

�
ā1L̄a δΣ

δL̄a− ā1c̄a
δΣ
δc̄a

þ κ̄1c̄a⋆
δΣ
δc̄a⋆

þ κ̄1B̄a δΣ
δB̄aþ σ̄c̄i⋆

δΣ
δc̄i⋆

þ σ̄B̄i δΣ
δB̄i

�

þðκ2−κ1λÞ
∂Σ
∂λþ

X∞
n¼3

ðκaA1A2…An −κ1λ
aA1A2…AnÞ ∂Σ

∂λaA1A2…An

þðκ̄2− κ̄1λ̄Þ
∂Σ
∂λ̄þ

X∞
n¼3

ðκ̄aA1A2…An − κ̄1λ̄
aA1A2…AnÞ ∂Σ

∂λ̄aA1A2…An

þ
X∞
n¼3

ðσiA1A2…An −σηiA1A2…AnÞ ∂Σ
∂ηiA1A2…An

þ
X∞
n¼3

ðσ̄iA1A2…An − σ̄η̄iA1A2…AnÞ ∂Σ
∂η̄iA1A2…An

: ð102Þ

Combining (101) and (102), the counterterm can be viewed as

ΣCT ¼ OΣ; ð103Þ
where O is a linear operator acting on Σ being given by

O¼−a0g2
∂
∂g2þ

Z
dV

�
FaðVÞ δ

δVaþκ1Ra δ

δRaþκ1Pa δ

δPaþ κ̄1R̄a δ

δR̄aþ κ̄1P̄a δ

δP̄a

�
−
Z

dV

�
Ωb∂FbðVÞ

∂Va þΩi∂FiðVÞ
∂Va

�
δ

δΩa

þ
Z

dV

�
FiðVÞ δ

δViþσRi δ

δRiþσPi δ

δPiþ σ̄R̄i δ

δR̄iþ σ̄P̄i δ

δP̄i

�
−
Z

dV

�
Ωa∂FaðVÞ

∂Vi þΩj∂FjðVÞ
∂Vi

�
δ

δΩi

þ
Z

d4xd2θ

�
a1La δ

δLa−a1ca
δ

δca
þκ1ca⋆

δ

δca⋆
þκ1Ba δ

δBaþσci⋆
δ

δci⋆
þσBi δ

δBi

�

þ
Z

d4xd2θ̄

�
ā1L̄a δ

δL̄a− ā1c̄a
δ

δc̄a
þ κ̄1c̄a⋆

δ

δc̄a⋆
þ κ̄1B̄a δ

δB̄aþ σ̄c̄i⋆
δ

δc̄i⋆
þ σ̄B̄i δ

δB̄i

�

þðκ2−κ1λÞ
∂
∂λþ

X∞
n¼3

ðκaA1A2…An−κ1λ
aA1A2…AnÞ ∂

∂λaA1A2…An
þðκ̄2− κ̄1λ̄Þ

∂
∂λ̄þ

X∞
n¼3

ðκ̄aA1A2…An− κ̄1λ̄
aA1A2…AnÞ ∂

∂λ̄aA1A2…An

þ
X∞
n¼3

ðσiA1A2…An−σηiA1A2…AnÞ ∂
∂ηiA1A2…An

þ
X∞
n¼3

ðσ̄iA1A2…An− σ̄η̄iA1A2…AnÞ ∂
∂η̄iA1A2…An

: ð104Þ

Now, in order to find the renormalization of the fields, sources, and parameters of the theory, let us first define a variable Φ
representing all these quantities, i.e.,

Φ≡ V;B; B̄; c; c̄; c⋆; c̄⋆;Ω; L; L̄; R; R̄; P; P̄; g; λ; λ̄; λaA1A2…; λ̄aA1A2…; ηiA1A2…; η̄aA1A2…: ð105Þ
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Thus, the bare quantities Φ0 are related to the renormalized
ones by

Φ0 ¼ Φþ ϵζΦ þOðϵ2Þ; ð106Þ
where ζΦ is assumed to have a general form of a local
functional of the fields. This assumption is necessary in
view of the possibility of nonlinear and/or matricial
renormalizations.12 Then, the bare classical action Σ½Φ0�
is related to the renormalized action Σ½Φ� as

Σ½Φ0� ¼ Σ½Φþ ϵζΦ� ¼ Σ½Φ� þ ϵζΦ
dΣ
dΦ

þOðϵ2Þ; ð107Þ

where the derivative d=dΦ is a partial derivative when Φ
represents a parameter and an integrated functional deriva-
tive when Φ represents a field or a source. Now, the
expression above can be compared with

Σ½Φ0� ¼Σ½Φ�þ ϵΣCTþOðϵ2Þ¼Σ½Φ�þ ϵOΣþOðϵ2Þ;
ð108Þ

which comes from perturbation theory and from (103).
Therefore,

O≡ ζΦ
d
dΦ

: ð109Þ

Then, the counterterm can be reabsorbed in the starting
point action by the following renormalizations:

Φ0 ¼ Φþ ϵOΦþOðϵ2Þ: ð110Þ
Taking the last expression into account, the components of
the vector superfield renormalize, up to order ϵ, as

Va
0 ¼ Va þ ϵFaðVÞ; ð111Þ

Vi
0 ¼ Vi þ ϵFiðVÞ; ð112Þ

while the sources Ωa;i renormalize as

Ωa
0 ¼ Ωa − ϵ

�
Ωb ∂FbðVÞ

∂Va þ Ωi ∂FiðVÞ
∂Va

�
; ð113Þ

Ωi
0 ¼ Ωi − ϵ

�
Ωa ∂FaðVÞ

∂Vi þ Ωj ∂FjðVÞ
∂Vi

�
: ð114Þ

The remaining fields and sources renormalize as

ca0 ¼ Z ca; ð115Þ
La
0 ¼ Z−1 La; ð116Þ
c̄a0 ¼ Z̄ c̄a; ð117Þ

L̄a
0 ¼ Z̄−1 L̄a; ð118Þ

ðca⋆; Ba; Ra; PaÞ0 ¼ Z⋆ðca⋆; Ba; Ra; PaÞ; ð119Þ
ðc̄a⋆; B̄a; R̄a; P̄aÞ0 ¼ Z̄⋆ðc̄a⋆; B̄a; R̄a; P̄aÞ; ð120Þ
ðci⋆; Bi; Ri; PiÞ0 ¼ Z⋆ðci⋆; Bi; Ri; PiÞ; ð121Þ
ðc̄i⋆; B̄i; R̄i; P̄iÞ0 ¼ Z̄⋆ðc̄i⋆; B̄i; R̄i; P̄iÞ; ð122Þ
ðci; c̄i; Li; L̄iÞ0 ¼ ðci; c̄i; Li; L̄iÞ; ð123Þ

with

Z ¼ 1 − ϵa1; ð124Þ
Z−1 ¼ 1þ ϵa1; ð125Þ
Z̄ ¼ 1 − ϵā1; ð126Þ
Z̄−1 ¼ 1þ ϵā1; ð127Þ
Z⋆ ¼ 1þ ϵκ1; ð128Þ
Z̄⋆ ¼ 1þ ϵκ̄1; ð129Þ
Z⋆ ¼ 1þ ϵσ; ð130Þ
Z̄⋆ ¼ 1þ ϵσ̄: ð131Þ

Finally, the parameters renormalize as

g0 ¼ Zgg ¼ ð1 − ϵa0Þg; ð132Þ
λ0 ¼ λþ ϵðκ2 − κ1λÞ; ð133Þ

λaA1A2…
0 ¼ λaA1A2… þ ϵðκaA1A2… − κ1λ

aA1A2…Þ; ð134Þ
λ̄aA1A2…
0 ¼ λ̄aA1A2… þ ϵðκ̄aA1A2… − κ̄1λ̄

aA1A2…Þ; ð135Þ
ηaA1A2…
0 ¼ ηaA1A2… þ ϵðσaA1A2… − σηaA1A2…Þ; ð136Þ
η̄aA1A2…
0 ¼ η̄aA1A2… þ ϵðσ̄aA1A2… − σ̄η̄aA1A2…Þ: ð137Þ

These expressions end the proof of the renormalizability of
the theory, but some comments about the expressions above
are necessary. First, notice that the renormalizations of the
components of the vector superfield are nonlinear as
Fa;iðVÞ are power series in V, as stated in Eqs. (94) and
(95). It is also clear from Eqs. (94) and (95) that the
diagonal and off-diagonal components of V are mixed. In
other words, the renormalization between Va and Vi is
matricial. It can be put in a clear way by noticing that the
power series Fa;iðVÞ can always be written as

FaðVÞ ¼ α1Va þ FabðVÞVb þ FaiðVÞVi; ð138Þ
FiðVÞ ¼ βVi þ FiaðVÞVa þ FijðVÞVj; ð139Þ

with FaiðVÞ ≠ FiaðVÞ in general. Then we have the
following matricial renormalization:

12In its simplest form, ζΦ is proportional to its correspondingΦ
times a constant.
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�
Va
0

Vi
0

�
¼

�
Zab
V Zaj

V

Zib
V Zij

V

��
Vb

Vj

�
; ð140Þ

where

Zab
V ¼ δab þ ϵ½α1δab þ FabðVÞ�; ð141Þ

Zaj
V ¼ ϵFajðVÞ; ð142Þ

Zib
V ¼ ϵFibðVÞ; ð143Þ

Zij
V ¼ δij þ ϵ½βδij þ FijðVÞ�: ð144Þ

The expressions (113) and (114) for the renormalizations of
the sources Ωa;i also indicate matricial and nonlinear
renormalizations:

�Ωa
0

Ωi
0

�
¼

�
Zab
Ω Zaj

Ω

Zib
Ω Zij

Ω

��
Ωb

Ωj

�
; ð145Þ

where

Zab
Ω ¼ δab − ϵ

∂FbðVÞ
∂Va ; ð146Þ

Zaj
Ω ¼ −ϵ

∂FjðVÞ
∂Va ; ð147Þ

Zib
Ω ¼ −ϵ

∂FbðVÞ
∂Vi ; ð148Þ

Zij
Ω ¼ δij − ϵ

∂FjðVÞ
∂Vi : ð149Þ

After the removal of the divergences of the theory, the
original SSMAG can now be reobtained by choosing values
for the gauge parameters. In fact, the particular choices

λ ¼ −
i
2
; λ̄ ¼ þ i

2
;

λaA1A2… ¼ λ̄aA1A2… ¼ ηiA1A2… ¼ η̄iA1A2… ¼ 0; ð150Þ
lead us from the GSMAG to the SSMAG.
A final comment emerges from a comparison between

the supersymmetric and ordinary cases. In the study of the
renormalization of the Yang-Mills action quantized in the
maximal Abelian gauge, the absence of the off-diagonal
gauge-fixing and antighost equations as genuine Ward
identities gives rise to extra interaction terms among the
ghost fields. In fact, quartic interaction ghost terms naturally
emerge, as a diagrammatic analysis reveals, and the original
gauge can only be defined modulo an extra gauge parameter
[19]. In the earlier paper [3], when the SSMAG was first
presented,we also proposed possible quartic interactionghost
terms following the nonsupersymmetric approach. However,
on that occasion we did not realize that the off-diagonal
gauge-fixing and antighost equations, given by Eqs. (26),
(27), (29), and (30) for the SSMAG, could be established in

the supersymmetric scenario, nor that the general approach,
given by the GSMAG, should be implemented.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have concluded the algebraic proof of the
renormalizability of a N ¼ 1 super-Yang-Mills theory for
the SUðnÞ group in a supersymmetric version of the maximal
Abelian gauge. A generalized version of the original
proposal, Ref. [3], has been adopted. We call this extended
version the generalized supermaximal Abelian gauge). Such
a version depends on a set of infinity gauge parameters but,
at the end, the original version, called the simplest super-
maximal Abelian gauge), can be achieved from the gener-
alized one by a suitable adjusting of the gauge parameters,
which are, however, fundamental in the algebraic proof.
The proof presented here is very similar to the one

presented in [4] in the case of the Landau gauge. The main
difference is that the gauge symmetry group is explicitly
split into its diagonal and off-diagonal parts. This split is
made evident from the diagonal rigid symmetry (73) and
the consequent generalized Jacobi identities (43)–(58)
enjoyed by the invariant tensors λ and η (the corresponding
gauge parameters are “hidden” in these tensors).
Also, in [4] a gauge invariant mass term is introduced.

This invariant mass term is constructed by means of a
gauge invariant composite superfield, VðV;Ξ; Ξ̄Þ, given by

exp½VðV;Ξ; Ξ̄Þ� ¼ e−iΞ̄eVeiΞ; ð151Þ

where V ¼ VATA is the usual vector superfield and fΞ; Ξ̄g
the pair of chiral conjugated Stueckelberg-like superfields.
Being dimensionless, the invariant composite field V gives
rise to the following mass term:

Sm2 ¼ m2

Z
dVðVAVA þ tABCDVAVBVCVD

þ tABCDEVAVBVCVDVE þ � � �Þ; ð152Þ

where m2 is a mass squared parameter and tABCD… are
invariant tensors. It can be immediately observed that there
is a mass degeneracy among the ðn2 − 1Þ directions of the
group. Therefore, once we have at our disposal the
GSMAG, which naturally splits the diagonal and off-
diagonal sectors of the group, it is possible to partially
break the mass degeneracy and define two different mass
parameters, one for the (n − 1) diagonal components and
the other one for the nðn − 1Þ off-diagonal components.
This approach is already being developed in the context of
the ordinary Yang-Mills [22], opening a way for the study
of the so-called Abelian dominance conjecture.
Another problem that can be investigated in the GSMAG

is the Gribov problem [23,24]. In the Landau gauge this
problem was first investigated in superspace in Ref. [25]. In
the nonsupersymmetric scenario, the Gribov ambiguity
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problem was extensively investigated in the maximal
Abelian gauge in Refs. [26–30].
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APPENDIX: THE MAXIMAL ABELIAN GAUGE
FOR ORDINARY SUðnÞ YANG-MILLS THEORY

In this section, we make a brief review on the ordinary
maximal Abelian gauge. This gauge arises from the break-
ing of color symmetry, which generates a separation of the
structure of the group SUðnÞ. It is well known that the
gauge field is defined in the adjoint representation of
the SUðnÞ group, namely,

AμðxÞ ¼ AA
μ ðxÞTA; ðA1Þ

where the index A runs from 1 to ðn2 − 1Þ and TA stands for
a set of Hermitian traceless matrices forming the generators
of the group. These generators can be split into a diagonal
sector and an off-diagonal sector, TA ≡ fTa; Tig, where the
indices fa; b; c;…g ¼ 1;…; nðn − 1Þ are the so-called off-
diagonal indices, connected to the non-Abelian sector,
while the indices fi; j; k;…g ¼ 1;…; n − 1 are the diago-
nal ones, related to the Abelian subgroup of SUðnÞ. In this
way, the Lie algebra,

½TA; TB� ¼ ifABCTC; ðA2Þ
is rewritten in terms of the diagonal and off-diagonal
components, i.e.,

½Ta; Tb� ¼ ifabcTc þ ifabiTi; ðA3Þ
½Ta; Ti� ¼ −ifabiTc; ðA4Þ

½Ti; Tj� ¼ 0; ðA5Þ
where fabc and fabi are the structure constants of the group.
These constants obey the following Jacobi’s relations:

0 ¼ fabifbcj þ fabjfbic; ðA6Þ
0 ¼ fabcfcdi þ fadcfcib þ faicfcbd; ðA7Þ

0 ¼ fabcfcde þ fabifide þ fadcfced þ fabifieb

þ faecfcbd þ faeifibd; ðA8Þ

which are derived from

fABCfCDE þ fADCfCEB þ fAECfCBD ¼ 0: ðA9Þ
Now the gauge field can be split in terms of the two
components of the group,

AμðxÞ ¼ AA
μ ðxÞTA ¼ Aa

μðxÞTa þ Ai
μðxÞTi: ðA10Þ

Then, the Yang-Mills action can also be written in terms of
its Abelian and non-Abelian components,

SYM ¼ −
1

2g2
Tr

Z
d4xFμνFμν

¼ −
1

4g2

Z
d4xðFaμνFa

μν þ FiμνFi
μνÞ; ðA11Þ

where

TrðTATBÞ ¼ δAB

2
ðA12Þ

and

Fμν ¼ FATA ¼ Fa
μνTa þ Fi

μνTi; ðA13Þ
Fa
μν ¼ Dab

μ Ab
ν −Dab

ν Ab
μ þ fabcAa

μAb
ν ; ðA14Þ

Fi
μν ¼ ∂μAi

ν − ∂νAi
μ þ fabiAa

μAb
ν ; ðA15Þ

Dab
μ ¼ δab∂μ − fabiAi

μ: ðA16Þ
Moreover, this action is invariant by the following infini-
tesimal transformations,

Ai
μ → ðAωÞiμ ¼ Ai

μ − ð∂μω
i þ fabiAa

μω
bÞ; ðA17Þ

Aa
μ → ðAωÞaμ ¼Aa

μ− ðDab
μ ωbþfabcAb

μω
cþfabiAb

μω
iÞ;
ðA18Þ

where the infinitesimal gauge parameter, ω, can also be
split in terms of the two sectors of the group:

ωðxÞ ¼ ωiðxÞTi þ ωaðxÞTa: ðA19Þ
Since the Yang-Mills action can be divided from the point
of view of the group structure, let us now verify which are
the consequences arising from the quantization process of
this theory. Let us start by defining the generator functional
for the Green functions of the theory,

Z½J� ∝
Z

½dA� exp
�
iSYM þ i

Z
d4xJAμAA

μ

�
: ðA20Þ

However, since gauge symmetry is preserved, the func-
tional integration measure, ½dA�, overcounts equivalent
configurations in the field space and therefore an additional
condition, or constraint, must be imposed so that spurious
degrees of freedom are eliminated. This constraint is the
so-called “gauge-fixing condition” and, according to the
Faddeev-Popov quantization approach [16], it is introduced
in the functional integrals as follows:
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Z½J� ∝
Z

½dA�δðGÞ det
���� δG½A

ω�
δω

����
× exp

�
iSYM þ i

Z
d4xJAμAA

μ

�
: ðA21Þ

Here, the G functional plays the role of setting the necessary
conditions to correct the problem of a functional inte-
gration measure. The interesting point here is that this
functional can be chosen in different ways for the diagonal,
Gi, and off-diagonal,Ga, sectors; i.e., it is precisely here that
the color symmetry breaking takes place. In the case of the
maximal Abelian gauge, the off-diagonal condition can be
obtained through the extremization of the following auxi-
liary functional,13,14:

H½A� ¼ 1

2

Z
d4xAa

μAaμ: ðA22Þ

Applying the extreme condition,

δH½A� ¼ 0; ðA23Þ

we have then

Ga½A� ¼ Dab
μ Abμ ¼ 0: ðA24Þ

Since the symmetry subgroup Uð1ÞN−1 is present in the
theory, it is also necessary to choose a gauge condition for the
diagonal components. For simplicity, a Landau-like gauge
condition is taken,

Gi½A� ¼ ∂μAiμ ¼ 0: ðA25Þ

Thus, the set of equations (A24) and (A25) forms the so-
calledmaximalAbelian gauge. It is important tomention here
that the diagonal condition does not follow from an extreme
condition of any auxiliary functional and different choices
could be taken for this sector. This is the case, e.g., for the
modified maximal Abelian gauge [31].
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