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In this work we present an algebraic proof of the renormazibility of the super-Yang-Mills action
quantized in a generalized supersymmetric version of the maximal Abelian gauge. The main point stated
here is that the generalized gauge depends on a set of infinity gauge parameters in order to take into account
all possible composite operators emerging from the dimensionless character of the vector superfield. At the
end, after the removal of all ultraviolet divergences, it is possible to specify values to the gauge parameters
in order to return to the original supersymmetric maximal Abelian gauge, first presented in Phys. Rev. D 91,

125017 (2015).
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I. INTRODUCTION

In the understanding of the quark confinement mecha-
nism, some formulations of the Yang-Mills theory in specific
gauge conditions, like the Landau gauge, the maximal
Abelian gauge, the Curci-Ferrari gauge, etc., are explored.
In particular, the maximal Abelian gauge permits us to
approach the notion of Abelian projection, one of the main
ideas regarding quark confinement [1]. Here, the emergence
of the magnetic monopoles, provided by the Abelian degrees,
can be understood as a confinement mechanism. However, in
the supersymmetric scenario, the subject of confinement
leads us directly to the AdS/CFT correspondence where
there would be a duality between a ten-dimensional low-
temperature string theory with the strong couplings of
a N = 4 theory of super-Yang-Mills in four dimensions [2].

In fact, supersymmetric theories at finite temperature can
reveal fundamental properties, similar to those of weak
interactions in a plasma of quarks and gluons. Thus, it may
be possible to study the transition from the deconfinement
phase in an analogous way to the nonsupersymmetric case,
i.e., to analyze phase transitions due to the emergence of
singularities in the Abelian sector of a super-Yang-Mills
theory.In this work, our focus is on the proof of the
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renormazibility of the super-Yang-Mills theory in the
supersymmetric maximal Abelian gauge, as proposed in
[3]. However, since the vector superfield, V(x,8, 9), is
dimensionless' the construction of the most general coun-
terterm, which cancels all divergences of the theory,
becomes complicated because there are infinite insertions
depending on the vector superfield. Therefore, the version
of the maximal Abelian gauge presented in [3] is not
unique; it is actually the simplest one, and the correct
definition of this gauge in superspace seems to be ambigu-
ous. The solution for this problem is a generalization of the
gauge-fixing condition in order to include all ambiguities in
the definition of the gauge. Namely,

IZ_DZDZVi =0- @2D2wi(V) = O, (1)
DD (V“ -3 fabivab> =0 DD (V) =0, (2)

where the expressions in the lhs are the original conditions
of the maximal Abelian gauge in superspace introduced in
[3], and w*(V) and @'(V) are general power series in V
obeying some symmetry criteria that will be clear later in
Sec. IID. Also, the index conventions will be clarified in
Sec. IT A and in the Appendix, but at the moment it is
sufficient to say that the index i is related to the Abelian
components of the internal symmetry group, the SU(n)
group, and the indices {a, b} to the non-Abelian ones. One
advantage of this method lies in the fact that it defines a
general class of nonlinear gauges depending on a set of

'See Table 1 and the discussion in Sec. II D.

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.025015&domain=pdf&date_stamp=2019-01-31
https://doi.org/10.1103/PhysRevD.91.125017
https://doi.org/10.1103/PhysRevD.91.125017
https://doi.org/10.1103/PhysRevD.99.025015
https://doi.org/10.1103/PhysRevD.99.025015
https://doi.org/10.1103/PhysRevD.99.025015
https://doi.org/10.1103/PhysRevD.99.025015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CAPRI, TERIN, and TOLEDO

PHYS. REV. D 99, 025015 (2019)

gauge parameters that can be chosen in a suitable way after
the renormalization procedure, or, in other words, after the
removal of the ultraviolet divergences of the theory. Then,
the supersymmetric version of the maximal Abelian gauge
is viewed here as a particular case of this general gauge.
Actually, even the Landau gauge can be classified into this
general class [4].

The paper is organized as follows. Section II is sub-
divided into five subsections in which we give a brief
review of the supersymmetric extension of the maximal
Abelian gauge, as presented in [3], and how it can be
generalized. The classical starting point action is also
defined in this section and its rich symmetry content is
meticulously discussed. In Sec. III, we perform the proof
of renormalizability of the theory following the algebraic
renormalization setup outlined in Refs. [4—12].2 The renor-
malization factors (the “famous” Z factors) of fields,
sources, and parameters of the theory are obtained, making
clear that the renormalization of the vector superfield is
nonlinear and its components (the Abelian and non-Abelian
ones) are mixed in quantum corrections into a matricial
renormalization. In Sec. IV, we conclude this work with
some final discussions and perspectives for future works.
Finally, in the Appendix, we display, for the sake of the
reader, a review on the maximal Abelian gauge for ordinary
SU(n) Yang-Mills theory and some relevant notations and
conventions are properly defined.

II. THE SUPERSYMMETRIC
MAXIMAL ABELIAN GAUGE

A. The simplest formulation

In this section we perform a brief review on the super-
symmetric formulation of the maximal Abelian gauge, first
presented in [3].” The main characteristic of this gauge is to
explicitly split the Abelian and non-Abelian sectors of the
gauge symmetry group. In the SU(n) group one can
decompose the vector superfield V(x,8, 9) in terms of
the group generators as

V(x,0,0) =

-1
( n—1
Z “(x.0.0)T+ ) Vi(x.0.0)T". (3)
a=1 i=1
’References [5-7] are standard references on the procedure of
the algebraic renormalization, while Refs. [4,8—12] relate to the
renormalization in the presence of a dimensionless vector super-
field in the Landau and linear covariant gauges. The problem of
dealing with the renormalization of a theory with dimensionless
fields is also approached in Refs. [13,14] in the case of a
Stueckelberg-like field.
See also the Appendix for a review of the maximal Abelian
gauge for the ordinary Yang-Mills theory in the SU(n) group.

where T4 stands by the n*> — 1 group generators of SU(n),
which can be split into the n(n — 1) off-diagonal generators,
T¢, and the n — 1 diagonal generators, T*, which form an
Abelian subgroup of SU(n) also known as the Cartan
subgroup. Also, we have adopted here capital letters
{A,B,C,...}, running from 1 to n*—1, for the full
SU(n) group; the labels {a,b,c,d, e, ...}, running from
1 to n(n — 1), for the off-diagonal sector; and the indices
{i,j,k,1,...}, running from 1 to n— 1, for the Abelian
sector. Of course, we will assume, from now on, the Einstein
summation convention for repeated indices.*

In order to make clear our notations and conventions, let
us display here the vector superfield in terms of its
components:

VA = CA(x) + 0%A(x) + 0,77%(x)
1 1, - _
+3 > M (x) + 5 6*MA (x) + 20°64,6° A (x)

4 %é@% (x) + %Qzéd;lf‘é’(x) + }lazézgsy& ), ()
where 8% (a =1, 2) and 0, (& = i, 2) are the fermionic
coordinates of the superspace; and {C, y,, 74, M, M, Ay Ags
Ai» D} the superfield components in the adjoint represen-
tation of the SU(n) group.’

It is well known that in the quantization of a gauge field
theory (being supersymmetric or not) an additional con-
dition (or a constraint, or a gauge-fixing condition) for the
gauge field needs to be implemented. Following [3], such
additional condition can be chosen as

2_)22)2 (Va _ %fabivivb) — O, (5)

DDV =0, (6)

where D, and D, are, respectively, the chiral and antichiral
covariant derivatives, given by

8 lo4
D, = 507 —ich.6%0,, (7)
_ 0
Dy =———i0°¢"..0,, 8
a 0% aan ( )

and £ represents one of the possible types of structure
constants appearing in the algebra associated with the
SU(n) group; see details in the Appendix. Considering
the constraints (5) and (6) written in terms of the compo-
nents of the superfield and, together with the so-called
Wess-Zumino gauge, i.e., taking the lower components

“The algebra of the generators and some useful identities can
be found in the Appendlx

SWe also have in Eq. (4) that 6% = 6%0,, 6*> = 6,0%, and
o' = (1,0,0,,03), with 1 the identity matrix of order 2 and
(61,05,03) the usual Pauli matrices.
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{C.y.7. M, M} equal to zero, it is possible to obtain the
usual maximal Abelian gauge [3]:

aﬂAa;t — fabiALAb”, (9)
8,4 = 0. (10)

As we shall see later, the superfield V(x,6, ) is dimen-
sionless. Therefore, the off-diagonal gauge-fixing condi-
tion (5) is the simplest way to define the supersymmetric
version of the maximal Abelian gauge, while the diagonal
condition (6) corresponds to a Landau-like gauge. Thus, we
will name the gauge defined by Egs. (5) and (6) as simplest
supermaximal Abelian gauge (SSMAG). In Sec. IID,
we will discuss a generalized version of SSMAG that we
will call the generalized supermaximal Abelian gauge
(GSMAG).

B. The Faddeev-Popov quantization
and BSRT symmetry

Since we have defined the gauge conditions of the
SSMAG, Egs. (5) and (6), we are able to carry out the
Faddeev-Popov quantization procedure [12,15-17]. First of
all, let us start with the super-Yang-Mills (SYM) action:

1
SSYM — —@tr/ d4xd29WaWa + C.C.

1
=~ 17 / d*xd>OWAW4 +c.c.,  (11)

where ¢ is the coupling constant and W, the chiral-field
strength, given by

W, = WATA = D*(e7VD,e"). (12)

It can be checked that the action (11) is invariant by the
following infinitesimal gauge transformations:

VoV =V46V,

. ~ . 1 ~

= i(A~R)+5[V.A+A
+L[V, [V.A=A]] +O(V?), (13)

12

where Ly = [V, ] and A = A*T# are chiral infinitesimal
superfields, while A = AAT* are antichiral superfields.
As a gauge theory, the correct quantization’ needs the

6Actually, the correct quantization of a gauge theory is an open
problem until now. The Faddeev-Popov method is considered to
be correct only at the perturbative level, but, at the nonperturba-
tive level, other effects, such as the Gribov ambiguity problem,
show up and have to be taken into account. In this work we will
restrict ourselves to the Faddeev-Popov quantization method.

implementation of a gauge-fixing condition. The Faddeev-
Popov method corresponds to a way of introducing a
constraint in the functional integral for a gauge theory. In
this method the SYM action needs to be supplemented, in the
Feynman path integrals, by a term including such a con-
straint. Then, according to the Faddeev-Popov method, the
SYM action is replaced by

Srp = Ssym + St (14)

where S, is the gauge-fixing action. In our case, the gauge-
fixing action for the SSMAG is, following [3], given by

1 - AU
S =3 / d*xd0 {B“DzDZ <va S f v")
+ Bil_)zDzVi} + “ghost terms” + c.c. (15)

The action above needs several explanations. First, the fields
B“ and B’ play the role of Lagrange multipliers enforcing the
SSMAG conditions for the off-diagonal and diagonal sec-
tors, respectively. It is immediately checked that their
classical equations of motion coincide with the constraints
(5) and (6). Also, it is easy to notice that they are chiral
superfields. Then, in the complex conjugated part, standing
by “c.c.,” the antichiral superfields B4 and B’ must appear.
The term “ghost terms” represents here all terms involving
the well-known Faddeev-Popov ghost fields. In order to
avoid any confusion, before presenting this term explicitly,
let us display here the four sets of ghosts that we have to
deal with:
(i) The off-diagonal chiral ghosts {c%, c4};

(ii) The off-diagonal antichiral ghosts {c“, ¢ };

(iii) The diagonal chiral ghosts {c’, ¢%};

(iv) The diagonal antichiral ghosts {¢“, ¢¢}.
In each set listed above, the subscribed symbol “x” indicates
the antighost and the bar indicates the antichiral character of
the field. For example, c“ is the off-diagonal chiral ghost, c’,
is the diagonal chiral antighost, and ¢¢ is the off-diagonal
antichiral antighost. Another point that must be explained
here is that, although the gauge invariance has been lost in the
gauge-fixing procedure, the Faddeev-Popov action Sgp is left
invariant by a set of transformations, the so-called Becchi-
Rouet-Stora-Tyutin (BRST) transformations, listed below:

(i) Transformations of the components of the vector
superfield V(x, 0, 0):

1
sVae = i(Ca _ Z.a) _Efabcvb(cc + E‘C>
| ) . 1 )
_Efablvb(cz + Z.z) _'_Efabcvz(cb + E‘b)
+O(v?),
. ) . 1 .
sVi=i(c' —¢') - Efablva(cb +cb) + O(V?);
(16)
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(i) Transformations of the components of chiral super-
fields {c,c,,B}:

o ‘
scd = fabtcbcz + Efabccbcc’
sc? = B4,

sB* =0,

sck = Bi,
sB' = 0; (17)

(iii) Transformations of the components of the antichiral
superfields {¢,¢,, B}:

T
§04 = fabzz.bz.l 4 5fabc Z’bf’c,
scé = B9,

sBe =0,

sci, = B,

sB =0. (18)

As one can see, the BRST transformations of the vector
superfield are similar to the infinitesimal gauge transforma-
tions (13), just replacing the infinitesimal gauge parameters
{A, A} by the ghosts {c,¢}. Therefore, the SYM action is
automatically invariant by the set of transformations (16).
Also, the BRST operator, s, is nilpotent, i.e., s> = 0, and,
thanks to this remarkable property, one can finally write the
gauge-fixing term as a full BRST variation:

I o o
Sur =g / av [chZ (va S fV V”) + LDV

+eeD? (V“ +3 f“bivivb> + aiiﬂvi]

1 AU A .
— S/dv |:Ba'D2 <Va _ ;fablvzvh) + BIDZVl

+ Bafl_)2 (Va 4 éfabivivb) 4 Bib2vi:|

1 o o
-5 / v {CZ’DZS (va -3 f“”’V’Vb> + D2V

+ D (V“ + %f"’”vab> + Eif?st’} - (19

where dV = d*xd*0d*0 is the superspace element volume.
The action above is evidently invariant due to the nilpotency
property and thus the Faddeev-Popov action (14) is BRST
invariant. Summarizing our current situation, we have at our
disposal the BRST invariant action (14), representing the
N =1 SYM theory for a SU(n) group quantized in the so-
called SSMAG. The next step would be the study of the
renormalizability of this model. In order to achieve this aim,
let us first study the symmetry content and the Ward identities
of the model.

1 .
scl = Efablcacb,

o1 )
s¢l = Efabléaéb,

C. Local composite operator formalism
and the Ward identities

In this section we would like to study the symmetry
content of the action (14). We already known that action
(14) is BRST invariant and the BRST transformations are
nonlinear. In order to deal with such nonlinear symmetry,
and other possible nonlinear identities of the model, we
need to make use of the local composite operator formalism
[7]. For this purpose, let us consider the following action:

S = Spp + Sext- (20)

The external action S, is a term depending on external
sources coupled to some local composite operators. More
specifically, we have

SeulQ.L.L.R.P] = /dV[Q“(sV“) +Qi(sV')]
+ / d*xd*0[L (sc®) + Li(sc')]
+ / d*xd?O[L(sc) + Li(sc")]
+ / dVP(feivive)
—/dVRas(f”b"Vbe), (21)

where the BRST invariance of the external term is guar-
anteed by the BRST transformations of the external sources
below:
sQ4 =0,
sLi=0,

sQI =0,
sLi=0,

sL%=0,
SR = P4,

sLe=0,
sPT=0.  (22)

Notice that the sources {Q,L,L} are coupled to the
nonlinear BRST transformations, while the sources P?¢
and R“ are coupled to the composite operator f4*'ViV? and
its BRST transformation, respectively. Furthermore, the
sources {R,P} form the so-called BRST doublet and
the last two terms of (21) can be written as an exact
BRST variation. In fact, the external term can be com-
pletely written as a BRST variation:

Suul@ L. LR P = s [/ AV(-QoVe — QiV)
+ /d4xd28(L“c“ + Lich)
+ / d*xd*0(Lc* + L'e")

+ / dVv fePiRe va”] ) (23)
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TABLE I. Mass dimension d, ghost number g#, and R-weights n of the fields, sources, covariant derivatives, etc.

1% c c, c C, B B Q L L D D 0 0 R P s
d 0 0 1 0 1 1 1 2 3 3 12 12 =12 -1/2 2 2 0
Jeiid 0 1 -1 1 -1 0 0 -1 -2 -2 0 0 0 0 -1 0 1
n 0 0 2 0 -2 2 -2 0 2 -2 -1 1 1 -1 0 0 0

i i oS 1 - ) oS 1 .

The external sources are 1ntr0duqed here as a mathemagcal _ Ly, 05 _ Loy (25)
tool that allow us to define some important Green functions SBI 8§ SBI 8

of the model and to write in a well-defined manner the
nonlinear Ward identities of the model. As these sources
vanish, the action S, Eq. (20), coincides with Sgp, Eq. (14).
Therefore, action (20) is suitable to study the symmetry
content in terms of Ward identities, including the nonlinear
ones. As a last remark before discussing the Ward iden-
tities, we would like to call attention to the fact that the
BRST operator, s, and the Faddeev-Popov ghosts are
Grassmann variables and carry a quantum number named
the “ghost number” (g#). In Table I we displayed the
quantum numbers of the fields and sources of the theory,
including the mass dimensions. Notice that the sources with
odd ghost number, as € and R, are anticommuting, while
the sources with even ghost number, as L, L, and P, are
commuting.’

Now we are able to present the set of Ward identities
enjoyed by the action (20). These identities represent the set
of all symmetries of the theory being fundamental for the
proof of its renormalizability.

1. The Slavnov-Taylor identity

The BRST symmetry can be written as a functional
identity as follows:

5S 68 8S 68 58
= 92 | pa
B(S) / dv(éQ“éV“+5Q’5V’+ 6R“>
5S 6S 6S68S . 8S .6
d*xd*6 |+ B4 B —
* / * <5L“6(:“+5L’5c’+ 5ca 5c;>
(6855 6288 - 8S .68
d*xd*0| — — — 4+ B B —
* / * <5L“56“+5L’5E’ sea 551)
—0. (24)

2. The diagonal gauge-fixing equations

The classical equations of motion of the diagonal
Lagrange multipliers B’ and B’, being linear in the fields,
can be recognized as valid equations of the so-called
quantum action principle (QAP) [7]. Namely,

"In general, if the combination 2d + (g#), with d being the
mass dimension, is an even number, the corresponding object
(a field, a source, a parameter, or an operator) is commuting.
Otherwise it is anticommuting.

3. The off-diagonal gauge-fixing equations

In contrast with the diagonal equations of motion of the
Lagrange multipliers {B’, B'}, the equations of motion of
the off-diagonal Lagrange multipliers {B“, B} are non-
linear. It is a direct consequence of the nonlinearity of
the SSMAG. However, with the help of the insertion of the
local composite operator f*'ViV? we can write the
equations of motion of the fields { B¢, B} as the following
functional identities:

8 i -, 85 1.

L 22 prpeya 26

5B 16~ © oP" 8 ’ (26)
8 i -85 1.

- Lpp 2 prprya (27)

SB* 16 oP* 8

4. The diagonal antighost equations

From the diagonal antighost equations the following
identities can be obtained®:

oS

e 35 _ _
o0

58 58
Sci 8 sQF 5¢L

1 -
+g DD 0. (28)

5. The off-diagonal antighost equations

oS 1 oS i = oS
—+-DD*— + DD — =0, 29
ocy 8 oQ* 16 OR? (29)
oS 1 _,-, 05 i -, 0S

~-D*D? - —DD? =0. 30
ocy i 8 oQ* 16 OR? (30)

Like the off-diagonal gauge-fixing equations, these iden-
tities are only possible in the presence of the composite

¥Some authors call these equations the ghost equations. In our
nomenclature, however, we have decided to name the equations
obtained from the functional derivatives of the antighost fields
(chiral or antichiral) as “antighost equations” and the identities
obtained from the functional derivatives of the ghost fields as
“ghost equations.”
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operator f“*'ViV? and its BRST variation. It is important to
remark here that in the nonsupersymmetric version of the
MAG (see the Appendix), the analogous identities cannot
be recovered by introducing any composite operators.”'”
Therefore, it seems to be a property of the superspace
formulation.

6. The R-invariance

oS
R(S) = [aven gy
Xe{V.Q.R.P}

+ 0y / d*xd*0(5rY) —
Ye{c,c, ,B,.L}

oS
oY
oS

d*xd*0(5,Y

+ / X (R)(SY

Ye{ee BL

= 0. (31)

The R-variations (6 Z), with Z being any superfield of the
theory, are given by

OpZ = i(nz +60° 0 _ 6% i) Z, (32)

a 9(1 8 90:

with n, being the so-called “R-weight” of the respective
superfield Z. The R-weights of all objects present in the
theory (fields, sources, covariant derivatives, etc.) are
displayed in Table 1.

7. The diagonal rigid invariance

oS

iS::
WH(S) X7

Xe{V.Q.R.P}

/ dvfalnxu

N

4\ 42 rabiya
+ Y / dhxdof iy

Ye{c,c,,B,L}

4 .. 120 rabiya )

—l— d*xd=0f*"'Y* —
e{e.c, Bi Y
=0. (33)
Notice that the diagonal rigid symmetry involves trans-
formations only in the off-diagonal components of fields and
sources. Also, this symmetry is a consequence of the split
of the diagonal and off-diagonal components of the
group, which is the main characteristic of the SSMAG,

9Actually they can be recovered but they are completely
innocuous.

'9A detailed discussion on the Ward identities in the ordinary
maximal Abelian gauge can be found in [18].

corresponding to a residual U(1)"~! invariance; e.g., see [19]
for a nonsupersymmetric case. In contrast, in the Landau
gauge, the rigid symmetry extends to the whole group [4,12].

8. The diagonal ghost equation

Another important symmetry for the renormalization
procedure is the diagonal ghost equation, given by

g( ) /d4 d29< fabz ajéi)

N
d4 d29 abi = o
v/ ( o 6Bb)
oS

av abiRa e
+ / FOR i

:/d4xd29fabiLaCb+/d4xd2éfabiia5b

- / dV febiQav?. (34)
It is important to point out here that the diagonal ghost
equation can only be obtained by combining the chiral and
antichiral ghosts; i.e., there is no chiral-ghost equation nor
antichiral ghost equation independently. This result was
already known in the case of the full Landau gauge in [20].
Also, the existence of such an identity is a signature of the
Landau-type diagonal gauge-fixing condition, Eq. (6).

D. The generalized formulation

Noticing that the vector superfield V' is dimensionless,
the SSMAG, given by Egs. (5) and (6), could be written,
equally well, as

D22 <Va _ éfabivivb 4 JaABCYAYBYC 0(V4)> =0,

(35)
DXD2(Vi 4+ i ABCyAVEYC 1 O(V*) =0,  (36)
where
JaABC ¢ {labcd,labci,labij’/{aijk}’ (37)
I,[iABC e {niahc’”ijab’nijka’nijkl} (38)

are invariant tensors constrained by the diagonal rigid
invariance (33). In fact, these tensors are particular linear
combinations of the rank-2 invariant tensors §4°, 5 and the
structure constants f¢*¢ and f%!. The coefficients of such
linear combinations are gauge parameters that might be taken
to zero after the renormalization procedure, recovering then
the original SSMAG. Also, it is necessary to remark that the
set of Ward identities previously presented, Eqgs. (24)—(34),
does not prevent the redefinitions (35) and (36).
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RENORMALIZATION OF A GENERALIZED ...

PHYS. REV. D 99, 025015 (2019)

Then, due to the above-mentioned ambiguity, it is
necessary to redefine the gauge-fixing conditions (5) and
(6) by the following generalized versions:

D*D*w?(V) = 0, (39)
D% (V) = 0, (40)
where
W0 (V) = V@ + Afabiyiyh 4 JaABCyAYBYC
4 JeABCDYAYBYCYD o (41)
@' (V) = Vi +giABCYAYBYC 4 yiABCDAYBYCYD 4 ..
(42)

The new gauge-fixing conditions (39) and (40) are then
a generalized supersymmetric version of the maximal
Abelian gauge, taking into account the ambiguities arising
from the absence of dimensionality of the vector superfield,
and will be referred to as the GSMAG, as already men-
tioned in Sec. I A. According to the diagonal rigid
symmetry (33), the A’s and #’s tensors must obey the
generalized Jacobi identities:

0= fabiﬁbcde —|—f0bi/1abde +fdbi/1ache —I—fEbi/laCdb, (43)

0 = fabipbedj | febijabdj 4 pdbijachj (44)
0 = fabipbejk 4 pebijabjk (45)
0 = fabipbijk, (46)
(0 = fabijbedef | fpebijabdef y pdbijachef

| febigacdbf y pfbijacdeb, (47)

0 :fabilbcdej +fcbilabdej +fdbiiacbej +f€bilacdbj (48)

0 = fabipbedjk 4 pebijabdjk 4 fdbijachjk (49)
0 = fabipbeikl 4 febijabjkl, (50)
0 = fabipbikim, (51)
0 = fabipibed y fpebiyjabd | gdbiyjach, (52)

0= fuhi”jkhc +fcbi77jkah’ ( )
0= fabi;,ljklb’ (54)
(55)

0 = fabipibede o gebipjabde 4 gdbipjache 4 gebipjacdh (55
0 = fabipikbed | febipjkabd y pdbipjkach (56)
0 = fabipiklbe | gebipjkiab (57)
0 = fabipikimb, (58)

and so on.''Thus, the gauge-fixing action (19) is replaced by

SasmaG = %S / dV[eiD*w (V) + ¢\ Do’ (V)
+c4D*0 (V) + e D*@' (V)]
_ % / AV{B“D2w" (V) + B D' (V)
+ BD*@(V) + B'D*@&' (V)
— 4D [s0? (V)] = i D?[sa' (V)]
— 4D s (V)] — el D*[s@' (V)]}, (59)

where @%/(V) is the complex conjugate of w® (V).
Naturally, the external source term must be replaced by

TelQ. L, LR, P, R, P]
= s[ / dv(-QVe — QIVH) + / d*xd?0(Lc® + Lich)
+ / d*xd*0(Lee + L'e") + / dV (R @ (V)
+ Ria'(V)) + /dV(R“cD“(V) +R"a)i(v))}
_ / AV[Qa(sV) + Qi (sV7)]
+ / d*xd?0[L%(sc®) + Li(sc'))

+/d4xd29[ia(s6’”)—|—l_,"(séi)} —l—/dV{P“w“(V)

— Rsw®(V)] + P'@'(V) — Ri[sw' (V)] + P@*(V)

— RU[s@*(V)] + Piai(V) — Ri[sa' (V)]}. (60)

where use has been made of a new set of BRST doublets of
external sources
SR = P4i, 5P =0,

SR& = Pa,z’ sPo — 0,

(61)

with {R, P} being the complex conjugate of {R, P}, respec-
tively. The quantum numbers and the fermionic/bosonic
nature of the sources (61) are those of the sources {R, P} in
Table I, even for the complex conjugate. Finally, we are in a
position to replace the action (20) for a more general one:

¥ = Ssym + Scsmac + Zext[Q. L. L, R, P, R, P]. (62)

The expression (62) above will be our starting point action,
with which we will study the renormalizability. This action

'"'Remember here that {a,b,c,d, e, f} are off-diagonal indices,
while {i, j, k, [, m} are diagonal ones.
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encodes our previous discussion about the introductory
definition of the maximal Abelian gauge in superspace,
originally presented in [3], and the necessity of a generali-
zation in order to circumvent the ambiguity generated by the
dimensionlessness of the vector superfield. Also, the neces-
sary local composite operators were appropriately defined in
(62). As we shall see next, a full set of Ward identities can be
established for action (62). In fact, such identities are very
similar to the identities (24)—(34) with few modifications.

E. The Ward identities for the generalized action

We display here a full set of Ward identities enjoyed by
the action (62).

1. The (new) Slavnov-Taylor identity

The new Slavnov-Taylor identity now includes the
BRST doublet of sources {P', R'}, {P* R} and {P',R'}:

0%
Scl

6%
dcl

8

1~ oz
D*D>— =0, 68
R (68)
_, 0X
2D2 = — O 69
8 OR' (69)

5. The (new) off-diagonal antighost equations

The new off-diagonal antighost equations assume a
simpler form in this generalized formulation:

)
océ

>
ocy

- 1'[)2'1)2

8

8

IDZ_Z

o%
— =0, 70
St (70
o%

— = 0. 71
OR“ 1)

6. The (new) R-invariance

The new R-invariance now includes the new sources
added but it is still very similar to the previous one:

ST 86X 6T 5T 6%

B(Z):= / dv(éﬁWJ“aQiavi P ska
e )
o e e )
f e (EEEE
=0. (©3

2. The (new) diagonal gauge-fixing equations

The new diagonal gauge-fixing equations now assume
the forms:

8 1, 6%
= __pprit ), 64
5B 8 SP' (64)
8 1. -, 0%

~__ppRIs . (65)
oB' 8 oP'

3. The (new) off-diagonal gauge-fixing equations

The off-diagonal gauge-fixing equations are now very
similar to the diagonal ones (we will turn to this point later):

82 1., , 6%

—-DP2= =, (66)
5B 8 S5PA
5 1., 6%

— _ P2 =, (67)
5B 8 5Pa

4. The (new) diagonal antighost equations

The new diagonal antighost equations are modified by
the presence of the sources R' and R':

R(Z) =

>

o
/ dV(6pX) —
_ X
Xe{V.Q.R.P.R.P}

+ Y / d*xd*0(5rY )‘;

Ye{c,c, ,B,.L}
ox

+ / d*xd*0(5RY) —= 7

Ye{c ¢,.B,L}

=0, (72)

where the R-variations are given by Eq. (32).

7. The (new) diagonal rigid invariance

The new diagonal rigid symmetry is also generalized as
follows:

Wi(Z) =

Z /dvfabzxa
Xe{V.Q.R.P.R.P}
6
d4 d29 ablYLl—
by [y
e{c.c,.B,L}
o
+ /d4xd29f”b’Y”
ve{ec BL
=0. (73)
8. The (new) diagonal ghost equation

Finally, the new diagonal ghost equation is generalized
in the new formulation in order to accommodate the new
BRST sources. We can also notice that classical breaking
term remains the same:
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g(z) /d4 d29< fahl uéélfb>

- oS
4 abi -, o
+ / d xaﬂ9<6 + f 6B”>

ox ox
dv abi Re—— Ra
o favrm(re e re )

:/d4xd29fabiLaCb+/d4xd2éfabi[:af’b
- / dV feriQay?, (74)

The generalized Jacobi identities, Eqs. (43)-(58), and
generalizations for arbitrary rank tensors are fundamental
in order to establish the ghost equation as written above.

Furthermore, a deeper look at the diagonal and off-
diagonal gauge-fixing equations, Egs. (64)—(67), reveals
that they are very similar and could be written in a more
compact way as

8 1, , 6%
=PRI =, 75
SBA 8 SPA (75)

ox 1 o0X
——-DD*— =0, 76
oB* 8 opA (76)

where A = {a,i}, ie., with no difference between the
diagonal and off-diagonal sectors. It is possible because
we did not give an explicit form for the field functionals (41)
and (42). In fact, the split of these two sectors of the theory is
provided here by the rigid symmetry (73), which is exclu-
sively diagonal. An analogous approach was made in [4] in
the context of the full Landau gauge. However, in that case,
the rigid symmetry extends to the whole SU(n) group.

As a final comment, we would like to emphasize that the
identities displayed above are, in principle, valid only at the
classical level. At the quantum level it is first necessary to
prove the absence of anomalies. This is in fact one of the main
steps of the algebraic proof of the renormalization. The study
of anomalies for such identities in superspace was exhaus-
tively discussed in the literature; see, e.g., [10,12,21], in
different gauges. In particular, as we are dealing with a pure
super-Yang-Mills theory, the absence of chiral matter fields
automatically guarantees the validity of the Slavnov-Taylor
identity (63) and the R-invariance (72) at a quantum level.
Then, we assume from now on that the Ward identities
presented here in this section are anomaly free.

III. RENORMALIZATION

Our next step will be to determine the most general
invariant counterterm which can be freely added to all order
in perturbation theory, allowing us to remove all divergences
of the theory. Such a counterterm is generically written as

Sor = / dVAZO0) (x,0,0) + / d*xd?0AC0D (x, )
+ [ dxa0a0(w0) (77)

where A(@#9) are local polynomials in the fields and

sources. The upper labels indicate the mass dimension (d),
the ghost number (#g), and the R-weights (n), respectively,
in accordance with Table I. Also, the Hermiticity condition
imposes that the antichiral polynomial A®%~2) be the chiral
conjugate of the chiral polynomial AG0-2),

Then, in order to find an explicit expression for the
counterterm, Xy, we follow the setup of the algebraic
renormalization [7] and perturb the classical action Z,
Eq. (62), by adding the counterterm described above,
demanding that the perturbed action, (X + e¢Xct), with ¢
being an expansion parameter, fulfill, to the first order in e,
the same Ward identities obeyed by the classical action X,
Egs. (63)—(74). This amounts to imposing the following
constraints on Xcg:

Bs(Zcr) =0, (78)
s 80 D apr =0 (79)
§%cr 1,0 86%cr

cr_ T _ o, 80

sB 8 5P (80)

—-DD? =0, 81
5B 8 X (81)
Oxcr 1 poppdZer _ (82)
6B* 8 5p¢ ’
8%cr 1~ 0%cr

T __peprf=Ct 83

sci 8 SR (83)
6ZCT_1D2_262CT -0 (84)
sl 8 SR~

— D=, 85
scd 8 SR (85)
er _lmpdier_ (86)
sc¢ 8 SR*

R(Zcr) =0, (87)

Wi(Zcr) =0, (88)

G'(Zcr) = 0. (89)

where By is the so-called nilpotent linearized Slavnov-
Taylor operator,
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60X 6
oV 6Q¢

5L 5
5Q1 6V

5 — [qv( = 8 N N 5T &
= 5Q4 5V SVisQi

s .85 8§ .6
Pa_ Pl_‘ PaT Pl _
i / dv( R SR U SR T 5R’>

5 5 6% 5 6T 5
d*xd?0 n 2
SLYSc" " 8¢t 6L ' SLI 5c
+52 0 1pl i p?
Sc' oL 5ct dct
/(6525 65 5 LS8 6T S
dxd (o 9 4 0=0 029
* / * <5L“56“+5(‘:“6L“+6L’56’+5Z"6L’
I N
B B2, 90
T e T 55;) (50)

The presence of the nilpotent operator By transforms the
problem of obtaining the counterterm in a cohomology
problem of the operator Bs. In fact, £t can be written as

T = agSsym + Bs A1), (91)

with a, an arbitrary real coefficient and with A(©-~1.0)

given by

ACL0) = / dVAC—1(x,0,0) + / d*xd?0AC—12)(x,0)

. / P xd2HAB1D) (x,9), (92)

since Sgyy cannot be written as an exact By variation. The
remaining constraints, Eqs. (79)—(89), provide that A(®-~1-0)
is written as

Through the action of the linearized operator By on A
local polynomials A@#9%) in (77):

A200) (EM 0% OF'(V)

52 IG(V) | 5% 9Gi(V

oQ/ 8Vf 59“ 8V“

8% 0G4 (V 62 8G" )(
+

5Q! aV’ 652"

<5E oG (V 52 oG (V

_|_

0/ 8V’ 59“ 8\/“

(0,~1,0)

4 i)
50 Vi a0t ave 3V

A((’-“’O)_/dV [Ff(v)9i+Fa(V)Q

. 1 1
+G(V) (R’+8D2c* +G4(V <R“+—D2c‘i>

8

|
o)

+/d4xd29a,L"c“+/d4Xd296_11Za5a, (93)

. 1
+Gi(V) (R’+8D2

where {a,a,} is a pair of complex conjugated arbitrary
coefficients and thanks to the dimensionlessness of the vector
superfield, F%/(V) and G%/(V) are power series in V:

Fa(v) =a yve +(12fabivbvi+ZaaAlAz"'A"VAIVAz...VA",
n=>3

(94)

Fi(V) = gVi4 ) plitetyhiyh | yin, (95)

Ga(v) :K.lva +K2fabivbvi+ZKaA1A2”'A” VAIVAZ...VA”,
(96)

GI(V)=0oVi+ ) ghhehyhiviz vy, (97)
n=3

Naturally, G (V') are the complex conjugates of G/ (V) and
the rank-n tensors: @@4idz--An  gidiAr. Ay - adidr Ay - gpd
o124 must obey generalized Jacobi identities similar to
(43)—(58).

in (93), it is possible to obtain explicit expressions for the

6T OF(V) | 8T OF'(V)\ 0 1 gy O
s oVl T sQb avP 5V

U B
g ch*> +G' (V)P + ¢ BD’G'(V)

1
ch*> +G4(V)P* + gB“D2Ga(v)

DZ z>+Gi( )Pz+8BD2G1( )

ox 3G“ 62 oG (V - 1= - - 1. .~
: R* +-D%¢¢ G*(V)P* + - B*D>*G*(V), 98
S 1)
A(3‘0'2) — a waaya Wiewi Le— | 99
12892 ( a + a) SL* ( )
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ao ox _, - 02

1282(WW CEWLWE) +ay L (100)

ABO-2) —

Furthermore, it is useful to write the counterterm in a parametric form. Then, in order to establish such an expression, let us
first notice that the nontrivial part of the counterterm can be easily rewritten as

ag

S d*xd?OWAWA + c.c. = —ayg? = 5
apdSsyM = 128 / X + apg 27 aog o7

while the remaining terms of (91), i.e., the so-called trivial part of the cohomology, are written in the same fashion.

Namely,

ox ox o - o% - o% OF? (V) OF! (V) ox
B A<0~—1,0>:/dv Fa(v R PO R R Ry P —/dV Q Q
h ( ) +K +K 5Pu+Kl 5Ra+K1 SP4 agva + ove 5Q¢a

% 6R°

O A L L L L Ty P P LA
+/d4xd26<a]L“;f; “555 §€+K]B“;;+o ;E aBi§;>
+/d4xd29<511£a%—515a56§,+’?152%+’_€13a:;+55 (;561*4"5'1_3[;;)

+ (k=K1 4) i (kA2 - A, _KlﬂaAlAz...A,,>%

+ (Ry— Ry g§+”§; RaAAL Ay _ R ZaAlAz...A,,>%

Combining (101) and (102), the counterterm can be viewed as
Sop = OF, (103)

where O is a linear operator acting on X being given by
0 1) ) 0 =0 =0 OF" (V) OF'(V)\ 6

O=-ayf ==+ [ dV| F* (V)= +K R pa KR —+k P |- [ adV|Q Q
DTS2 T / ( V)gvat ok spat i P s pa t kR Spa bk 5P"> / < ave 7 Tove ) sqe

5 5 5 .5 OF (V) _OFI(V)\ &
6P 4 GRI— 4P | = [ dV( QT i :
+ / < (V)(sw Risri o 5pi TR st 6P’> / ( v v )

0 o )
d4 @20/( a, L a 0 L B i % B
T\ 6L“ "5 sea TB gpatocig it 53’)
0 19 ) 0 =. 0
P ic; B¢ oB'—
( 5L“ L LR L TRy s 6B’>
N VR aAiAy...A 9 e O N ratids A, o Fad A 9
+(K2—K1/1)a+Z;<K 198280 — ey 04142 ”)W"F(Kz—l(lﬂ)?‘i‘z;(/( 120 An —jey A48 ”)8/—1“141‘42.“14”
0 *© 5]
+Z 1Ar. Ay _ i Ay 8 S A2 - +Z GiAAL Ay _ GidiAs. ")8 T (104)
=3 n n=3 n

n

Now, in order to find the renormalization of the fields, sources, and parameters of the theory, let us first define a variable ®
representing all these quantities, i.e.,
iAAs...

®=V,B B,c,¢,c,,¢,,QL,L,R,R P,P,g A A 2" A Jahifa.. A (105)
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Thus, the bare quantities @ are related to the renormalized
ones by

@) = D + el + O(€?), (106)

where (¢ is assumed to have a general form of a local
functional of the fields. This assumption is necessary in
view of the possibility of nonlinear and/or matricial
renormalizations.'> Then, the bare classical action X[
is related to the renormalized action XZ[®] as

I[@y] = Z[® + elp] = Z[D] + €§¢% +0(€e?), (107)

where the derivative d/d® is a partial derivative when @
represents a parameter and an integrated functional deriva-
tive when @ represents a field or a source. Now, the
expression above can be compared with

Z[dy] =

2[®] + eZcr + O(€?) = Z[@] + eOZ + O(e?),

(108)

which comes from perturbation theory and from (103).
Therefore,

d

OEK:,:D@ (109)

Then, the counterterm can be reabsorbed in the starting
point action by the following renormalizations:
@y = D + eOD + O(e?). (110)

Taking the last expression into account, the components of
the vector superfield renormalize, up to order ¢, as

Va =V 4 eF(V), (111)
Vi =Vi4+eFi(V), (112)
while the sources Q%' renormalize as
OF"(V) OF(V)
Ql=Q4—e| QP Q' , 113
0 €< ave T gy (113)
. . OF*(V) LOF/(V)
Q) =Q" —¢| Q . Q/ — . 114
0 €( avi T T (114)
The remaining fields and sources renormalize as
¢y =7Zc", (115)
Ly =2Z7"Lq, (116)
ch=Ze", (117)

PIn its simplest form, {¢ is proportional to its corresponding ®
times a constant.

Le=7Z7"1L¢, (118)
(¢¢,B*,R*, Py =Z,(c% B, R*, P*), (119)
(¢4,B“,R*, P*)y = Z,(¢¢,B* R, P%),  (120)
(ci,B', R\, P)), = Z,(c',B,R, P), (121)
(¢L,B, R, P"), = Z,(¢\,B",R',P)), (122
(¢i, &, LI, L), = (c', & Li, L), (123)
with

Z=1-eay, (124)
Z'=1+ea, (125)
Z=1-ea, (126)
Z'=1+ea, (127)
Z, =1+ ¢k, (128)
Z, =1+ ek, (129)
Z,=1+e¢o, (130)
Z,=1+es (131)

Finally, the parameters renormalize as
90 = Zy9 = (1 = €ay)g, (132)
Ao = A+ e(ky — ki d), (133)
/’{SAIAZ-H = QoA g(kOAA - — e JeAAa) (134)
ZSAlAz..- — /_laAIAZA.. ( aAA,... _ klzaA]Az...), (135)
ﬂgAlAz.-- = e e(ghiAe — gpadid) o (136)
;]SAIAZ- = A (5 — Gadidy (137)

These expressions end the proof of the renormalizability of
the theory, but some comments about the expressions above
are necessary. First, notice that the renormalizations of the
components of the vector superfield are nonlinear as
F%i(V) are power series in V, as stated in Egs. (94) and
(95). It is also clear from Egs. (94) and (95) that the
diagonal and off-diagonal components of V are mixed. In
other words, the renormalization between V¢ and V' is
matricial. It can be put in a clear way by noticing that the
power series F%(V) can always be written as

F(V) = a,V*
Fi(V)

with F9(V) # F“(V) in general. Then we have the
following matricial renormalization:

+ Feb(V)VP + Fai(V)Vi,  (138)

= pVi+ F9(V)Ve + Fi(V)Vi,  (139)
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Ve e ZyN\ (VP
(-5 0) o

Vi zt zy)\V

where

Z% = 5% + e[a 5 + F(V)), (141)
7% = eFai(V), (142)
Zl‘? _ €Fib(V)y (143)
7 — 50 4 e[l + Fil(V). (144)

The expressions (113) and (114) for the renormalizations of
the sources Q%! also indicate matricial and nonlinear
renormalizations:

()G @) v
Q) zlb zi)\Q )
where
OF"(V)
78 =57 —¢ Sy (146)
aj aFJ(V)
o =—c Gy (147)
. OF" (V)
Zb = —¢ T (148)
i a OFI(V)
Zézé-’—eW. (149)

After the removal of the divergences of the theory, the
original SSMAG can now be reobtained by choosing values
for the gauge parameters. In fact, the particular choices
i - i
A=—-=, A=4+=,
2 * 2

— pifida..

lead us from the GSMAG to the SSMAG.

A final comment emerges from a comparison between
the supersymmetric and ordinary cases. In the study of the
renormalization of the Yang-Mills action quantized in the
maximal Abelian gauge, the absence of the off-diagonal
gauge-fixing and antighost equations as genuine Ward
identities gives rise to extra interaction terms among the
ghost fields. In fact, quartic interaction ghost terms naturally
emerge, as a diagrammatic analysis reveals, and the original
gauge can only be defined modulo an extra gauge parameter
[19]. In the earlier paper [3], when the SSMAG was first
presented, we also proposed possible quartic interaction ghost
terms following the nonsupersymmetric approach. However,
on that occasion we did not realize that the off-diagonal
gauge-fixing and antighost equations, given by Egs. (26),
(27), (29), and (30) for the SSMAG, could be established in

JaAAY.. _ JaAiAy.. FidiAz — (),

(150)

the supersymmetric scenario, nor that the general approach,
given by the GSMAG, should be implemented.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have concluded the algebraic proof of the
renormalizability of a N = 1 super-Yang-Mills theory for
the SU(n) group in a supersymmetric version of the maximal
Abelian gauge. A generalized version of the original
proposal, Ref. [3], has been adopted. We call this extended
version the generalized supermaximal Abelian gauge). Such
a version depends on a set of infinity gauge parameters but,
at the end, the original version, called the simplest super-
maximal Abelian gauge), can be achieved from the gener-
alized one by a suitable adjusting of the gauge parameters,
which are, however, fundamental in the algebraic proof.

The proof presented here is very similar to the one
presented in [4] in the case of the Landau gauge. The main
difference is that the gauge symmetry group is explicitly
split into its diagonal and off-diagonal parts. This split is
made evident from the diagonal rigid symmetry (73) and
the consequent generalized Jacobi identities (43)—(58)
enjoyed by the invariant tensors A and # (the corresponding
gauge parameters are ‘“hidden” in these tensors).

Also, in [4] a gauge invariant mass term is introduced.
This invariant mass term is constructed by means of a
gauge invariant composite superfield, V(V, Z, Z), given by

exp[V(V.E,E)] = e EeV =, (151)
where V = VATA is the usual vector superfield and {Z, =
the pair of chiral conjugated Stueckelberg-like superfields.
Being dimensionless, the invariant composite field V gives
rise to the following mass term:

S,2 =m? / dV(VAVA  ABCDYAYBYCYD

4 ABCDEYAYBYCYDYE 4., (152)

where m? is a mass squared parameter and AB¢P- are
invariant tensors. It can be immediately observed that there
is a mass degeneracy among the (n> — 1) directions of the
group. Therefore, once we have at our disposal the
GSMAG, which naturally splits the diagonal and off-
diagonal sectors of the group, it is possible to partially
break the mass degeneracy and define two different mass
parameters, one for the (n — 1) diagonal components and
the other one for the n(n — 1) off-diagonal components.
This approach is already being developed in the context of
the ordinary Yang-Mills [22], opening a way for the study
of the so-called Abelian dominance conjecture.

Another problem that can be investigated in the GSMAG
is the Gribov problem [23,24]. In the Landau gauge this
problem was first investigated in superspace in Ref. [25]. In
the nonsupersymmetric scenario, the Gribov ambiguity
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problem was extensively investigated in the maximal
Abelian gauge in Refs. [26-30].
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APPENDIX: THE MAXIMAL ABELIAN GAUGE
FOR ORDINARY SU(r) YANG-MILLS THEORY

In this section, we make a brief review on the ordinary
maximal Abelian gauge. This gauge arises from the break-
ing of color symmetry, which generates a separation of the
structure of the group SU(n). It is well known that the
gauge field is defined in the adjoint representation of
the SU(n) group, namely,

Au(x)

where the index A runs from 1 to (n?> — 1) and T* stands for
a set of Hermitian traceless matrices forming the generators
of the group. These generators can be split into a diagonal
sector and an off-diagonal sector, T4 = {T¢, T'}, where the
indices {a, b, c, ...} = 1,...,n(n — 1) are the so-called off-
diagonal indices connected to the non-Abelian sector,
while the indices {7, j, k,...} = 1,...,n — 1 are the diago-
nal ones, related to the Abelian subgroup of SU(n). In this
way, the Lie algebra,

= AM(x)TA (A1)

[TA, TB] — ifABCTC, (Az)
is rewritten in terms of the diagonal and off-diagonal

components, i.e.,

[Ta7 Tb] — l'fabcTc + ifabiTi, (A3)
[Ta’ Ti] — —l'fabiTC, (A4)
[T, 77 = 0, (AS)

where ¢ and £’ are the structure constants of the group.
These constants obey the following Jacobi’s relations:

0 = fabigbej 4 fabj phic (A6)
0 = fabe pedi 4 fade peib | gaic pebd, (A7)

0 = fabe pede y fabi pide | fade peed 4 fabi fieb
| faec pebd  faci gibd (A8)

which are derived from
[fABC fCDE | gADC (CEB 4 (AEC (CBD — () (A9)

Now the gauge field can be split in terms of the two
components of the group,

A, (x) = Ad(x)TA

Then, the Yang-Mills action can also be written in terms of
its Abelian and non-Abelian components,

= AS(X)Te + AL(x)T'.  (A10)

Sym = — Tr / d*xF"F w
1
= d*x(F™Fq, + F*™Fi,),  (All)
C4g
where
5AB
and
F,, =FAT* = F4,T*+ F., T, (A13)
a __ qyab Ab ab Ab abc Aa
Fy, = D;?A) — Di°Ay + f A#Ay, (A14)
F,, = G”A,", — 8DAL + f“biAZA,’j, (A15)
D,‘jb = 5‘”’8” —f“biAj,. (A16)

Moreover, this action is invariant by the following infini-
tesimal transformations,
A, — (A”), = A,

- (0,0 +f“hiA,‘ja)”), (A17)

Al = (A?)s = Al — (Db w® + [ ALt + [P Ab o),

(A18)

where the infinitesimal gauge parameter, @, can also be
split in terms of the two sectors of the group:

o(x) = &' (x)T" + 0 (x)T* (A19)
Since the Yang-Mills action can be divided from the point
of view of the group structure, let us now verify which are
the consequences arising from the quantization process of
this theory. Let us start by defining the generator functional
for the Green functions of the theory,

Z[J] « / [dA] exp <iSYM +i / d4xJAﬂA;}>. (A20)

However, since gauge symmetry is preserved, the func-
tional integration measure, [dA], overcounts equivalent
configurations in the field space and therefore an additional
condition, or constraint, must be imposed so that spurious
degrees of freedom are eliminated. This constraint is the
so-called “gauge-fixing condition” and, according to the
Faddeev-Popov quantization approach [16], it is introduced
in the functional integrals as follows:
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S5G[A”]
ow

X exp <1SYM —+ i/d4x]A”A;‘> .

e / [dAJ5(G) det

(A21)

Here, the G functional plays the role of setting the necessary
conditions to correct the problem of a functional inte-
gration measure. The interesting point here is that this
functional can be chosen in different ways for the diagonal,
G', and off-diagonal, G¢, sectors; i.e., it is precisely here that
the color symmetry breaking takes place. In the case of the
maximal Abelian gauge, the off-diagonal condition can be
obtained through the extremization of the following auxi-
liary functional,"*'*:

13 . .. .. .. .
To impose the minimum condition it is necessary to take into
account also §*H[A] > 0. This implies that the Faddeev-Popov

operator, 5cﬁ[£w], must be positive definite. This extra condition
also implies that the domain of the functional integral is restricted
to a region called Gribov’s region and its implementation is well

defined only in Euclidean space [23,24].
"The Landau gauge can also be defined as an extreme

condition of an auxiliary functional. In this case, the suitable
functional is [ d*xAfAM.

H[A] = % / dxAsAm, (A22)
Applying the extreme condition,
SHI[A] =0, (A23)
we have then
G“|A] = DI AP = 0. (A24)

Since the symmetry subgroup U(1)¥~! is present in the
theory, it is also necessary to choose a gauge condition for the
diagonal components. For simplicity, a Landau-like gauge
condition is taken,

G'lA] = 9,A" = 0. (A25)
Thus, the set of equations (A24) and (A25) forms the so-
called maximal Abelian gauge. Itis important to mention here
that the diagonal condition does not follow from an extreme
condition of any auxiliary functional and different choices
could be taken for this sector. This is the case, e.g., for the
modified maximal Abelian gauge [31].
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