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In the last few years, we have seen an increase interest on gravitational waves due to recent and striking
experimental results confirming Einstein’s general relativity once more. From the field theory point of view,
gravity describes the propagation of self-interacting massless spin-2 particles. They can be identified with
metric perturbations about a given background metric. Since the metric is a symmetric tensor, the massless
spin-2 particles present in the Einstein-Hilbert (massless Fierz-Pauli) theory are naturally described by a
symmetric rank-2 tensor. However, this is not the only possible consistent massless spin-2 theory at
linearized level. In particular, if we add a mass term, a new one parameter (a1) family of models Lða1Þ
shows up. They consistently describe massive spin-2 particles about Einstein spaces in terms of a
nonsymmetric rank-2 tensor. Here we investigate the massless version of Lða1Þ in a curved background. In
the case a1 ¼ −1=12, we show that the massless spin-2 particles consistently propagate, at linearized level,
in maximally symmetric spaces. A similar result is obtained otherwise ða1 ≠ −1=12Þ where we have a
nonsymmetric scalar-tensor massless model. The case of partially massless nonsymmetric models is also
investigated.

DOI: 10.1103/PhysRevD.99.025013

I. INTRODUCTION

The recent increase in the studies on massive spin-2
particles [1,2] is partially due to the fact they can represent
massive gravitons which may offer an alternative explan-
ation for the accelerated expansion of the universe since
they lead to a weaker gravitational interaction at large
distances [3,4]. Notice, however, that there are very low
experimental upper bounds on the graviton mass, for
instance from the LIGO experiment of detection of gravi-
tational waves one has 10−22 eV, see [5,6].
Another motivation is the quite recent overcome of

historical theoretical obstacles in the description of massive
gravitons, like the vDVZ mass discontinuity [7,8] and the
existence of ghosts in the nonlinear theory [9]. They have
been solved by the addition of fine-tuned nonlinear self-
interaction terms for the graviton [10,11]. In 2015, it was
obtained from the dRGT models of [10] a linear covariant
theory consistent with the description of massive gravitons

propagating on arbitrary backgrounds [12,13]. Thus, recov-
ering previous perturbative results of [14,15].
All those studies of massive spin-2 particles have

considered the Fierz-Pauli (FP) theory [16] as their starting
point. The FP description is based on a symmetric and
traceful rank-2 tensor hμν ¼ hνμ which propagates 5 degrees
of freedom (d.o.f) in D ¼ 4. It can be seen as the metric

fluctuation about a background metric gð0Þμν .
In [17], another family of models Lða1Þ, where a1 is an

arbitrary real constant, has been suggested which describes
massive spin-2 particles via a nonsymmetric rank-2 tensor
eμν ≠ eνμ in flat spaces. We have [18] coupled a back-
ground gravitational field to Lða1Þ by including also
nonminimal terms and have looked for curved space
generalizations of the tensor, vector and scalar constraints
which are necessary in order to get rid of nonphysical d.o.f.
We require that the coefficients of the nonmininal terms
be analytic functions of m2. Such restriction leads us to
constraint the gravitational background to Einstein spaces.
Regarding the massless case, some authors consider the

linearized Einstein-Hilbert theory (massless Fierz-Pauli) as
the only possible description of massless spin-2 particles
via a rank-2 tensor, see the earlier work [19], except
eventually for the Weyl and transverse diffeomorphism
(WTDiff) invariant theory; see e.g., [20]. If the massless
Fierz-Pauli theory is embedded in a curved background,
the required vector symmetry implies that the background
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must be of Einstein type, i.e., Rμν ¼ Rgμν=D, which is the
vacuum solution for Einstein equations with cosmological
constant; see [21]. Neither the addition of nonminimal
higher derivative terms nor allowing nonanalytic terms
in the cosmological constant change this result. The case of
the WTDIFF theory also requires Eintein spaces [22].
In the present work, we look for the massless version of

Lða1Þ coupled to a background, providing another pos-
sible description for massless spin-2 particles besides the
massless FP model. We can compare our conclusions
with those of [21].
Still, when we deal with curved spaces, there is a

different situation which deserves a special attention.
On maximally symmetric spaces, there is a specific value
for the curvature constant R in terms of m2 which allows
us to have a scalar gauge symmetry, even with m ≠ 0.
Consequently, we have a theory describing a massive spin-
2 particle with 4 d.o.f., instead of 5 ¼ 2sþ 1 for D ¼ 4.
This kind of theory has been intensively studied in massive
gravity and it is called partially massless theories [23].
Thus, in the present work, we seek the partially massless
theories corresponding to the Lgða1Þ models.

II. SPIN-2 PARTICLES IN CURVED SPACES

A. Fierz-Pauli action

The linear action for massive spin-2 particles propagat-
ing on a curved background gμν is usually described by
the linearized Einstein-Hilbert action plus the Fierz-Pauli
mass term and an extra term proportional to the scalar
curvature1:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∇αhμν∇αhμν þ∇αhμν∇νhμα

−∇μh∇νhμν þ
1

2
∇μh∇μhþ −

1

2
m2ðhμνhμν − h2Þ

þ R
4

�
hμνhμν −

1

2
h2
��

; ð1Þ

where hμν is a symmetric tensor (hμν ¼ hνμ). The covariant
derivatives are calculated with respect to a background

metric gð0Þμν . In the flat space, gð0Þμν ¼ ημν, the theory
(1) becomes the usual Fierz-Pauli theory whose massless
version is the linearized Einstein-Hilbert model ð ffiffiffiffiffiffi−gp

RÞhh
where gμν ¼ ημν þ hμν.
In order to have consistency, it is necessary to obtain all

the curved space Fierz-Pauli constraints,

∇μhμν ¼ 0 ð2Þ

h ¼ 0; ð3Þ

which is achieved only in Einstein background spaces; see,
e.g., [1] and references therein,

Rμν ¼
R
4
gμν: ð4Þ

When we seek for the scalar constraint (3), the expression
below comes up when we combine second derivatives
∇μ∇νEμν and the trace gμνEμν of the equations of motion
Eμν ¼ 0:

�
3m2 −

R
2

�
h ¼ 0: ð5Þ

Thus, depending on the value of m2, we have models
with different particle contents. Let us see the main results:

(i) As far as m2 ≠ R=6 and m ≠ 0, besides the four
constraints (2) we obtain from (5) the desired scalar
constraint h ¼ 0. In this case, we are left with 5
propagating d.o.f. as expected for a massive spin-2
model.

(ii) If m2 ¼ R=6, we loose the scalar constraint2 (3).
Instead, the action has a scalar gauge symmetry

δhμν ¼ ∇μ∇νϕþm2

2
ϕgμν: ð6Þ

A scalar gauge symmetry removes 2 d.o.f. in
contrast to a scalar constraint which removes only
one. As a result, the model propagates 4 d.o.f.
instead of 5 which is known as a “partially massless”
theory [23] and it will be discussed in the sub-
section III.

(iii) If m ¼ 0, there is neither vector nor scalar constraint
but conversely the action acquires the vector gauge
symmetry

δhμν ¼ ∇μξν þ∇νξμ ð7Þ

which is the linearized diffeomorphism symmetry of
general relativity. We are left with 2 d.o.f., describ-
ing in fact a massless spin-2 particle. Furthermore, at
m ¼ 0 the action (1) coincides with the linearized
version of

SΛ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ð8Þ

around a curved background gμν ¼ gð0Þμν þ hμν of the
Einstein type with R ¼ 4Λ which seems to indicate
that any massless spin-2 particle must be identified
with the graviton [21] as we have mentioned before.

1Throughout this work, we use ημν ¼ ð−;þ;þ;þÞ.
2The case m2 ¼ R=6 corresponds to the so-caled Higuchi

bound [24].
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B. L(a1) models and their massless versions

In [25], a family of second-order Lagrangians Lða1Þ
has been presented in the flat space and in arbitrary
dimensions D ≥ 3, but here we focus in D ¼ 4. It
describes massive spin-2 particles via a nonsymmetric
rank-2 tensor eμν ≠ eνμ. In [18], the Lða1Þ models have

been coupled to a curved background. In order to
find massive theories on curved spaces, we minimally
couple the corresponding flat space action and then
add curvature terms in such a way to obtain the
necessary constraints and achieve the correct number
of d.o.f.,

Lgða1Þ ¼ −
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα þ a1∇αeαβ∇μeμβ þ

1

2
∇αeαβ∇μeβμ þ

1

4
∇αeβα∇μeβμ þ

�
a1 þ

1

4

�
∇μe∇μe

−
�
a1 þ

1

4

�
∇μe∇αeαμ þ −

�
a1 þ

1

4

�
∇μe∇αeμα þ f1Reαβeαβ þ f2Re2 þ f3Rαβμνeαμeβν þ f4Rαβeαμeβμ

þ f5Rαβeαβeþ f6Rαβμνeαβeμν þ f7Rαβeαμeμβ þ f8Reαβeβα þ f9Rαβeμαeμβ −
m2

2
ðeμνeνμ − e2Þ ð9Þ

The constant a1 is a real number and e ¼ gμνeμν.
The coefficients fj, j ¼ 1…9, are partially fixed [18]
by requiring that the curved space FP constraints are
satisfied:

∇μeμν ¼ 0 ¼ e½μ;ν� ¼ 0 ¼ gμνeμν ð10Þ

In the flat space, we recover the theory Lða1Þ of [17]
which describes massive spin-2 particles and whose mass-
less part is invariant under

δeμν ¼ ∂νξμ þ ∂αΛ½αμν�; ð11Þ

with Λ½αμν� a fully antisymmetric tensor. It is interesting to
split the discussion into three cases. At a1 ¼ 1=4 we
recover the FP model, since the antisymmetric components
ðeμν − eνμÞ=2 decouple due to the enlargement of the
massless symmetries (11) by antisymmetric shifts
δeμν ¼ Λμν ¼ −Λνμ. At a1 ¼ −1=12 the massless sym-
metries (11) are augmented by Weyl transformations
δeμν ¼ ημνϕ. Finally, at a1 ≠ 1=4 and a1 ≠ −1=12, the
particle content of Lm¼0ða1Þ consists of massless spin-2

particles plus massless spin-0 particles. The massless
spin-0 particle is physical if a1 >

1
4
or a1 < − 1

12
and

disappears at a1 ≠ 1=4 or a1 ≠ −1=12 whereas the
spin-2 particle is always physical.
Regarding massless theories on curved spaces, we now

require invariance under gauge symmetries. As in the flat
case we have three cases: a1 ¼ 1=4, a1 ¼ −1=12 and
a1 ≠ 1=4, −1=12. Since we recover the known FP theory
at a1 ¼ 1=4, we start with a1 ¼ −1=12 where we slightly
change the notation from fj to dj. Due to the Weyl
symmetry in the massless sector there is no need anymore
of the FP fine tuning of the mass term and the model is
called a non-Fierz-Pauli one with any arbitrary constant c in
the mass term; see (12).

1. LnFP(c) model (a1 = − 1=12)

The generalization of the massive theory LnFPðcÞ to
curved spaces was first suggested in [18] and the main
results are summarized in the Eqs. (12)–(15) below. The
most general Lagrangian coupled to an Einstein back-
ground and quadratic in derivatives is given by

Lg
nFPðcÞ ¼

ffiffiffiffiffiffi
−g

p �
−
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα −

1

12
∇αeαβ∇λeλβ þ

1

2
∇αeαβ∇λeβλ þ

1

4
∇αeβα∇λeβλ þ

1

6
∇μ∇μe

−
1

3
∇αeαβ∇βe −

m2

2
ðeαβeβα þ ce2Þ þ d1Reαβeαβ þ d2Re2 þ d3Rαβμνeαμeβν þ d4Rαβeαμeβμ þ d5Rαβeαβe

þ d6Rαβμνeαβeμν þ d7Rαβeαμeμβ þ d8Reαβeβα þ d9Rαβeμαeμβ
�

ð12Þ

where dj’s are free parameters a priori. It is necessary that
the model presents the correct number of d.o.f. If we
require that dj are all analytic functions of m2, in order to

satisfy the FP constraints (10) it is necessary [21] to restrict
the background to Einstein spaces (4) and fix three
parameters,
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d1 þ
d4
4
þ d9

4
¼ 0; d3 ¼ 1; d6 ¼ −

1

2
ð13Þ

The equations of motion become3

Eρσ ¼ ð□ − m̃2Þeρσ þ 2Rρασβeαβ ¼ 0 ð14Þ

where

m̃2 ≡m2 −
�
2d8 þ

d7
2

�
R: ð15Þ

Let us now consider the massless version of (12). The
gauge symmetries of the flat case are given in (11) plus
Weyl transformations. Now we expect

δeμν ¼ gμνϕþ∇νξμ þ∇αΛ½αμν�: ð16Þ

By calculating the variation of the action Sg;m¼0
nFP under (16),

we obtain (under the integral):

δLg;m¼0
nFP ¼ ffiffiffiffiffiffi

−g
p �

ϕ½ð2d1 þ 8d2 þ d5 þ 2d8ÞReþ 2ðd3 þ d4 þ 2d5 þ d7 þ d9ÞRρσeρσ� þ∇νξμ

��
1

6
þ d7

�
Rμ

αeνα

þ
�
1

2
þ d7

�
Rν

αeαμ þ 2ð−1þ d3ÞRμβνρeβρ þ ð1þ 2d6ÞRαβμνeαβ þ
�
−
1

2
þ 2d4

�
Rμ

βeβν þ
�
1

2
þ 2d9

�
Rν

βeμβ

þ
�
1

3
þ d5

�
Rνμeþ 2d1Reμν þ 2d8Reνμ

�
þ∇μξμ½2d2Reþ d5Rαβeαβ� þ ξμ

�
−
1

3
eλν∇λRμν − eλν∇νRμλ

þ eαλ∇μRλα þ 1

6
e∇μR

�
þ ½2Rðd1 − d8Þeμν þ ð2d4 − d7ÞRμ

βeβν þ ð2d9 − d7ÞRν
βeμβ�∇αΛ½αμν�

�
: ð17Þ

We have not been able to get δSg;m¼0
nFP ¼ 0 by choosing the

coefficients dj’s. This can be noticed if we look specifically
at the coefficients ð1

6
þ d7Þ and ð1

2
þ d7Þ which can not be

canceled simultaneously. That is why we are going to

restrict the background to the Einstein spaces similarly to
what happened in the massive case [18].
Therefore, let us reconsider the Lg;m¼0

nFP model coupled to
Einstein spaces (4). Now we have five free parameters,

Lg;m¼0 ¼ −
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα −

1

12
∇αeαβ∇λeλβ þ

1

2
∇αeαβ∇λeβλ þ

1

4
∇αeβα∇λeβλ þ

1

6
∇μ∇μe −

1

3
∇αeαβ∇βe

þ d̃1Reαβeαβ þ d̃2Re2 þ d3Rαβμνeαμeβν þ d6Rαβμνeαβeμν þ d̃8Reαβeβα; ð18Þ
where we have defined

d̃1 ≐ d1 þ
d4
4
þ d9

4
ð19Þ

d̃2 ≐ d2 þ
d5
4

ð20Þ

d̃8 ≐ d8 þ
d7
4
: ð21Þ

Under the integral, we have

δLg;m¼0
nFP ¼ ffiffiffiffiffiffi

−g
p �

ϕ

�
2d̃1 þ 8d̃2 þ

d3
2
þ 2d̃8

�
Reþ

�
1

12
þ 2d̃2

�
Re∇μξμ þ

�
ð−1þ 2d3 þ 2d6ÞRμβναeβα

− ð1þ 2d6ÞRανβμeαβ þ
�
1

6
þ 2d̃8

�
Reνμ þ 2d̃1Reμν

�
∇νξμ þ ½ðd3 þ 2d6ÞRμβνλeβλ þ ð2d̃1 − 2d̃8ÞReμν�∇αΛ½αμν�

�

ð22Þ

3Notice that the equations of motion are not exactly the Klein-Gordon ones since they present an additional term with the Riemann
curvature. By considering that the transverse condition must be satisfied, i.e., ∇μhμν ¼ 0, the presence of such term is required.
Otherwise, there would be an inconsistency in the calculation of the commutator ½∇μ;□ −m2�hμν, which is non-null.
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Therefore, in order to have Weyl invariance, we need

2d̃1 þ 8d̃2 þ
d3
2
þ 2d̃8 ¼ 0: ð23Þ

On the other hand, invariance under the vector trans-

formation δeð2Þμν ¼ ∇νξμ needs

−1þ 2d3 þ 2d6 ¼ 0 ð24Þ

1þ 2d6 ¼ 0 ð25Þ

1

6
þ 2d̃8 ¼ 0 ð26Þ

d̃1 ¼ 0 ð27Þ

1

12
þ 2d̃2 ¼ 0 ð28Þ

Finally, in order to get invariance under δeð3Þμν ¼ ∇αΛ½αμν�,
we demand

d3 þ 2d6 ¼ 0 ð29Þ

d̃1 − d̃8 ¼ 0: ð30Þ

We see from Eqs. (26), (27), and (30) that there is no
solution which makes the Lagrangian invariant under the

transformations δeð2Þμν ¼ ∇νξμ and δeð3Þμν ¼ ∇αΛ½αμν� simul-
taneously. Therefore, it is not possible to obtain in this case
a consistent model for massless spin-2 particles propagat-
ing even on Einstein spaces. From this point of view,
regarding the massless case, the model with a symmetric
field hμν ¼ hνμ given in (1) is more flexible than Lg

nFPðcÞ.
Still, we can identify two cases with partial symmetries:

(i) Scalar and vector symmetries
It is possible to find a unique solution for the

reduced system of Eqs. (23)–(28):

d̃1 ¼ 0; d̃2 ¼ −
1

24
; d3 ¼ 1;

d6 ¼ −
1

2
; d̃8 ¼ −

1

12
ð31Þ

In this case, we have a model invariant under the
following gauge transformation:

δeμν ¼ gμνϕþ∇νξμ: ð32Þ

(ii) Scalar and tensor symmetries
Analogously, from (23), (29), and (30), we have

a model invariant under the gauge transformation
below,

δeμν ¼ gμνϕþ∇αΛ½αμν�; ð33Þ

where we need

d̃1 ¼ d̃8; d3 ¼ −2d6; d̃2 ¼
d6
8
−
d̃8
2
: ð34Þ

Now, we consider the model Lg;m¼0
nFP coupled to max-

imally symmetric (MS) spaces which are spaces whose
Riemmann tensor is given by

Rαβρσ ¼
R
12

ðgαρgβσ − gασgβρÞ: ð35Þ

The variation of the Lagrangian (22) can be rewritten as

δLMS;m¼0
nFP ¼ ffiffiffiffiffiffi

−g
p

R

�
ϕ

�
2d̃1 þ 8d̃2 þ

d3
2
þ 2d̃8

�
e

þ
�
−

1

12
þ d3

6
þ 2d̃2

�
e∇μξμ

þ
�
1

4
−
d3
6
−
d6
6
þ 2d̃8

�
eνμ∇νξμ

þ
�
1

12
þ d6

6
þ 2d̃1

�
eμν∇νξμ

þ
�
d3
12

þ d6
6
þ 2d̃1 − 2d̃8

�
eμν∇αΛ½αμν�

�
:

ð36Þ

In order to get δLMS;m¼0
nFP ¼ 0, each coefficient of the

expression above must be null, which means that we need
to solve the system below:

2d̃1 þ 8d̃2 þ
d3
2
þ 2d̃8 ¼ 0 ð37Þ

−
1

12
þ 2d̃2 þ

d3
6
¼ 0 ð38Þ

1

4
−
d3
6
−
d6
6
þ 2d̃8 ¼ 0 ð39Þ

1

12
þ 2d̃1 þ

d6
6
¼ 0 ð40Þ

2d̃1 þ
d3
12

þ d6
6
− 2d̃8 ¼ 0 ð41Þ

and the solution found is

d̃1 ¼ −
1

12
þ d̃8; d̃2 ¼ −

1

24
− 2d̃8;

d3 ¼ 1þ 24d̃8; d6 ¼
1

2
− 12d̃8; ð42Þ
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where d̃8 is still arbitrary because only four of the
five Eqs. (37)–(41) are independent. The existence
of such a solution means that Lg;m¼0

nFP in maximally
symmetric spaces has symmetry under the complete set
of transformations (16).
When we substitute (35) and the solution (42) in (12) at

m ¼ 0, the original Lagrangian becomes

LMS;m¼0
nFP ¼ −

1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα

−
1

12
∇αeαβ∇λeλβ þ

1

2
∇αeαβ∇λeβλ

þ 1

4
∇αeβα∇λeβλ þ

1

6
∇μ∇μe −

1

3
∇αeαβ∇βe

−
1

24
Reαβeαβ þ

1

24
Re2 −

1

8
Reαβeβα; ð43Þ

where d̃8 ends up being eliminated from the coefficients.
Therefore, we have a unique model consistent with the

description of massless spin-2 particles propagating in
maximally symmetric spaces. In addition, the Lagrangian
(43) describes the massless limit of the massive model
Lg
nFPðcÞ given in (12) with d̃2 ¼ −1=24 and d̃8 ¼ −1=12.

It allows us to conclude that such a subcase of the massive
model Lg

nFPðcÞ has a consistent massless limit, at least in
maximally symmetric spaces.

2. L(a1) with a1 ≠ (1=4;− 1=12)

Similarly to the previous subsection, we need the
massless version of the local symmetries on curved spaces
given in (11) in order to obtain a consistent massless
version of Lgða1Þ:

δeμν ¼ ∇νξμ þ∇αΛ½αμν�: ð44Þ

Let us start from the most general Lagrangian (9) with
m ¼ 0, where fj are arbitrary constants for now. The
variation leads (under the integral) to

δLg;m¼0ða1Þ ¼
ffiffiffiffiffiffi
−g

p �
∇νξμ

�
ð−2a1þ f7ÞRμ

αeναþ
�
1

2
þf7

�
Rα

νeαμþð−1þ 2f3þ 2f6ÞRμβνρeβρþð1þ 2f6ÞRναβμeαβ

þ
�
−
1

2
þ 2f4

�
Rμ

βeβνþ
�
1

2
þ 2f9

�
Rν

βeμβ þ
�
1

2
þ 2a1þ f5

�
Rνμeþ 2f1Reμνþ 2f8Reνμ

�

þ∇μξμ½2f2Reþf5Rαβeαβ� þ ξμ

�
−2a1eλν∇αRαμλν −

1

2
eαλ∇νRμανλ −

1

2
eαλ∇νRμλνα

þ
�
2a1þ

1

2

�
ðe∇νRμν− eαβ∇βRμαÞ

�
þ½2Rðf1−f8Þeμνþð2f4−f7ÞRμ

βeβνþð2f9 −f7ÞRν
βeμβ�∇αΛ½αμν�

�
:

ð45Þ

Once again, we have not been able to find a solution for the fj in such a way that δLg;m¼0ða1Þ ¼ 0 on arbitrary
backgrounds. Therefore, again we consider Rμν ¼ 1

4
Rgμν and rewrite the variation above:

δLg;m¼0ða1Þ ¼
ffiffiffiffiffiffi
−g

p �
∇νξμ

�
ð−1þ 2f3 þ 2f6ÞRμβνρeβρ þ ð1þ 2f6ÞRναβμeαβ þ 2f̃1Reμν þ

�
1

8
−
a1
2
þ 2f̃8

�
Reνμ

�

þ∇μξμ

�
1

8
þ a1

2
þ 2f̃2

�
Reþ ½ðf3 þ 2f6ÞRμβνλeβλ þ 2ðf̃1 − f̃8ÞReμν�∇αΛ½αμν�

�
; ð46Þ

where we have defined

f̃1 ¼ f1 þ
f4
4
þ f9

4
ð47Þ

f̃2 ¼ f2 þ
f5
4

ð48Þ

f̃8 ¼ f8 þ
f7
4
: ð49Þ

In order to obtain δLg;m¼0ða1Þ ¼ 0, we need to find a solution of the equations below:

H. G. M. FORTES and D. DALMAZI PHYS. REV. D 99, 025013 (2019)

025013-6



−1þ 2f3 þ 2f6 ¼ 0 ð50Þ

1þ 2f6 ¼ 0 ð51Þ

f̃1 ¼ 0 ð52Þ
1

8
−
a1
2
þ 2f̃8 ¼ 0 ð53Þ

1

8
þ a1

2
þ 2f̃2 ¼ 0 ð54Þ

f3 þ 2f6 ¼ 0 ð55Þ

f̃1 − f̃8 ¼ 0: ð56Þ

However, the Eqs. (52), (53), and (56) lead us to the Fierz-
Pauli massless model: a1 ¼ 1=4. Thus, it is not possible to
obtain a massless model for Lgða1Þ (a1 ≠ 1=4) on Einstein
spaces symmetric under (44).
On the other hand, we have models with vector and

tensor symmetries separately:
(i) Vector symmetry

From the Eqs. (50)–(54), we have the following
solution:

f̃1 ¼ 0; f6 ¼ −
1

2
; f3 ¼ 1;

f̃8 ¼
1

4

�
a1 −

1

4

�
; f̃2 ¼ −

1

4

�
a1 þ

1

4

�
ð57Þ

In this specific case, the Lagrangian is invariant
under the transformation δð1Þeμν ¼ ∇νξμ.

(ii) Tensor symmetry
Similarly, if we choose the parameters in such

way that the Eqs. (55) and (56) are satisfied, i.e.,

f3 ¼ −2f6; f̃1 ¼ f̃8; ð58Þ
the Lagrangian becomes invariant under δeμν ¼
∇αΛ½αμν�.

Now, considering maximally symmetric spaces, the
variation of the Lagrangian Lg;m¼0ða1Þ can be written
(under integral) as

δLMS;m¼0ða1Þ ¼
ffiffiffiffiffiffi
−g

p
R

��
−

1

24
þ a1

2
þ f3

6
þ 2f̃2

�
e∇μξμ

þ
�
5

24
−
a1
2
−
f3
6
−
f6
6
þ 2f̃8

�
eνμ∇νξμ

þ
�
1

12
þ f6

6
þ 2f̃1

�
eμν∇νξμ

þ
�
f3
12

þ f6
6
þ 2f̃1 − 2f̃8

�
eμν∇αΛ½αμν�

�
:

ð59Þ

In order to obtain δLMS;m¼0ða1Þ ¼ 0, we need to solve the
equations below:

−
1

24
þ a1

2
þ f3

6
þ 2f̃2 ¼ 0 ð60Þ

5

24
−
a1
2
−
f3
6
−
f6
6
þ 2f̃8 ¼ 0 ð61Þ

1

12
þ f6

6
þ 2f̃1 ¼ 0 ð62Þ

f3
12

þ f6
6
þ 2f̃1 − 2f̃8 ¼ 0 ð63Þ

for which we have found the solution

f̃1 ¼ −
1

16
þ a1

4
þ f̃8; f̃2 ¼ −

1

16
−
a1
4
− 2f̃8;

f3 ¼ 1þ 24f̃8; f6 ¼
1

4
− 3a1 − 12 ˜f8; ð64Þ

where f̃8 is still arbitrary. The existence of such a solution
means that the Lagrangian Lg;m¼0ða1Þ in maximally sym-
metric spaces is symmetric under the full transformation
given in (44).
By replacing the solution (64) back in Lg;m¼0ða1Þ

together with the fact that the space is maximally sym-
metric, we reach the theory below:

LMS;m¼0ða1Þ ¼ −
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα

−
1

12
∇αeαβ∇λeλβ þ

1

2
∇αeαβ∇λeβλ

þ 1

4
∇αeβα∇λeβλ þ

1

6
∇μ∇μe −

1

3
∇αeαβ∇βe

−
1

24
Reαβeαβ þ

�
1

48
−
a1
4

�
Re2

þ
�
−

5

48
þ a1

4

�
Reαβeβα; ð65Þ

where the parameter f̃8 has been naturally eliminated from
the coefficients again. Therefore, we have a model con-
sistent with the description of massless spin-2 particles plus
massless spin-0 particles propagating in maximally sym-
metric spaces. Additionally we notice that (65) is also
consistent with the massless limit of the massive Lgða1Þ
model obtained in [18] for maximally symmetric spaces
with f̃2 ¼ −ða1 þ 1=4Þ=4.

III. PARTIALLY MASSLESS THEORIES

In flat spaces, the particles are classified in massive or
massless. On the other hand, on curved spaces (more
speciffically, in maximally symmetric spaces) there is
another possible case where spin-2 particles can propagate
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a number of d.o.f. different from both massless and massive
cases. The so-called partially massless theories which
describe this kind of particle [22,24,26] present a pecu-
liarity: although the mass is non-null, the theory has a scalar
gauge invariance which is responsible for removing one of
the d.o.f. from the massive graviton. Let us see how this
happens in the Fierz-Pauli theory.
In subsection II A, we have seen that in order to obtain the

scalar constraint h ¼ 0 in the Fierz-Pauli model, we need to
demand the coefficient in (5) to be non-null. However, we
have not analyzed otherwise. Thus, let us consider that the
coefficient of h in (5) is zero which leads us to

R ¼ 6m2: ð66Þ

There is no scalar constraint h ¼ 0 anymore. Conversely, the
theory acquires a scalar gauge symmetry:

δhμν ¼ ∇μ∇νϕþm2

2
gμνϕ; ð67Þ

where ϕ is the gauge parameter.
On the other hand, the symmetry allows us to fix the

gauge h ¼ 0. At this point, we have the same number of
d.o.f. of a massive spin-2 particle, which corresponds to 5
in D ¼ 4. However, even after choosing a specific gauge,
there is still a residual gauge invariance. More specifically,
the theory remains invariant under a subset of transforma-
tions (67). If we perform the transformation (67) again, the
equations of motion and the Fierz-Pauli constraints will
remain unchanged. In order to verify it, let us first demand
that the trace h remains null:

h0 ¼ hþ gμνδhμν ¼ 0þ ð□þ 2m2Þϕ: ð68Þ

The new trace h0 will be zero if the parameter α satisfies the
following equation:

□ϕ ¼ −2m2ϕ: ð69Þ

If we use (66) and (69), it is possible to verify that the
transverse condition ∇μhμν ¼ 0 will remain true and the
equations of motion will not be modified.
Therefore, the residual gauge invariance given by (67)

and (69) removes one more d.o.f. from the theory. As a
result, we have 4 propagating d.o.f. instead of 5 which is
called a partially massless theory.
The partially massless theories have been studied at the

linear level [26–29] and there has been a great effort to
extend the studies to the nonlinear level, despite the
obstacles which have been raised [30,31]. They are of
interest for the gravitational area since the equality (66)
implies a direct relation between the graviton mass and the
cosmological constant (λ ∝ R). As we know, the graviton
mass, if it is non-null, would be very tiny, leading to an
alternative to the cosmological constant problem.
Let us see the partially massless theories associated to the

Lg
nFPðcÞ and Lgða1Þ models:
(i) Lg

nFPðcÞ
In [18], we have discussed in detail those massive

models on curved spaces. The Lagrangian LnFPðcÞ
in maximally symmetric spaces is the following:

Lg
nFPðcÞ ¼

ffiffiffiffiffiffi
−g

p �
−
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα −

1

12
∇αeαβ∇λeλβ þ

1

2
∇αeαβ∇λeβλ þ

1

4
∇αeβα∇λeβλ þ

1

6
∇μ∇μe

−
1

3
∇αeαβ∇βe −

m2

2
ðeαβeβα þ ce2Þ − 1

24
Reαβeαβ þ

�
d̃2 þ

1

12

�
Re2 þ

�
d̃8 −

1

24

�
Reαβeβα

�
; ð70Þ

where c, d̃2; and d̃8 remain arbitrary. The manipulation of
the equations of motion obtained from Lg

nFPðcÞ leads us to
the necessary constraints in order to obtain the correct
number of d.o.f. for a full massive theory, namely,

e½μν� ¼ 0 ð71Þ

∇μeμν ¼ 0 ð72Þ

e ¼ 0: ð73Þ

On the other hand, we have noticed that for a specific
value of R, the theory acquires a scalar gauge symmetry.
More specifically, when

ð24d̃2 þ 1ÞR ¼ 12m2c ð74Þ

and

ð24cÞd̃8 ¼ 24d̃2 − 2cþ 1; ð75Þ

the scalar symmetry

δeμν ¼ ∇μ∇νϕþ R
1þ 4c

gμνϕ ð76Þ

comes up. In this case, the constraints (71) and (72)
remain true. However, the coefficient of e in the scalar
constraint is identically null, excluding the possibility
e ¼ 0.

H. G. M. FORTES and D. DALMAZI PHYS. REV. D 99, 025013 (2019)

025013-8



Nevertheless, as happened in the Fierz-Pauli case, we
can use the symmetry (76) in order to fix the gauge e ¼ 0
leading us back to 5 d.o.f., which would be the correct
counting for a massive spin-2 particle. But there is still a
residual gauge invariance. This can be seen if, after
choosing the gauge e ¼ 0, we perform the transformation
)76 ) in the field eμν again. As a result, we obtain that all the

equations and constraints remain unchanged if

□ϕ ¼ −
4R

1þ 4c
ϕ; ð77Þ

where R is given in (74). This choice removes one more
d.o.f. and, consequently, we have the so-called partially
massless theory for LnFPðcÞ with 4 d.o.f. for a partially
massless spin-2 particle.
(ii) Lgða1Þ

Analogously, there is also a value of R which
gives rise to a scalar symmetry for the massive
model Lgða1Þ. More specifically, if

�
6f̃8 þ

1

2

�
R ¼ 3m2; ð78Þ

the massive theory becomes invariant under the
transformation

δeμν ¼ ∇μ∇νϕþ R
12

gμνϕ: ð79Þ

Once again, we can fix the gauge e ¼ 0. Even after
fixing the gauge, we still have a residual gauge
invariance. Thus, we can remove one more d.o.f.
from the theory by choosing ϕ in such a way that

□ϕ ¼ −
R
3
ϕ; ð80Þ

where R is given in (78).
Notice that 24d̃2 þ 1 ¼ 0 and 6f̃8 þ 1=2 ¼ 0

requires a fully massless theory (m ¼ 0); see (75)
and (78).

IV. CONCLUSION

Lending continuity to the previous work [18] where we
have studied the coupling of the new massive modelsLða1Þ
to curved backgrounds, in the present work we have
presented the analysis of the massless versions of those
models also on curved spaces.
In order to obtain the massless version of the Lða1Þ

model coupled to a curved background, we have required
the curved space versions of the corresponding flat space
gauge symmetries. As a result, we have obtained a unique
model consistent with the description of a massless spin-2
particle propagating in maximally symmetric spaces. It
corresponds to the massless limit of a unique massive
model from [18]. Unfortunately, it was not possible to
obtain the massless theories in more general background
spaces with the procedure used in our study, in contrast to
the massless FP case which allows the propagation of
massless spin-2 particles on Einstein spaces [21]. The key
point is that instead of a ten-component field (hμν ¼ hνμ)
we have now 16-component one (eμν ≠ eνμ) which requires
a larger symmetry, see (16), than the linearized reparamet-
rizations (7) in order that we end up with only two helicity
modes (�2) in the case of LnFPðcÞ and an extra scalar mode
in the Lða1Þ case. It turns out that the tensor and vector
symmetries in (16) can hardly coexist on the curved space.
Additionally, partially massless theories have been found

for the models Lgða1Þ consistently. We have been able to
find models with nonvanishing mass with scalar gauge
symmetries. This fact leads us to have theories which
describe, for some value of R, massive spin-2 particles with
4 d.o.f. instead of the 5 (2sþ 1) expected ones. Here we
have gone beyond the initial studies of [18] and checked
that the arising scalar symmetry allows us to fix a gauge
with residual symmetries consistent with 4 d.o.f.
Finally, we are currently investigating the addition

of cosmological-like terms, ΔL ¼ ffiffiffiffiffiffi−gp ½Λ1eμνeμν þ
Λ2eμνeνμ þ Λ3e2�, to (9) and (12) at m ¼ 0, altogether
with singular terms on Λj (linear in curvatures) in the
gauge transformations in order to achieve more general
backgrounds.
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