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We study the backreaction of gravitationally amplified quantum fluctuations of scalar fields on a
classical de Sitter geometry. We formulate the problem in the framework of the Wilsonian renormalization
group, which allows us to treat the scalar field fluctuations in a nonperturbative manner and to follow the
renormalization flow of the spacetime curvature as long wavelength, superhorizon fluctuations are
progressively integrated out. For light fields in units of the spacetime curvature, these are described by an
effective zero-dimensional field theory and can essentially be computed analytically. A nontrivial flow of
the spacetime curvature is induced either by a nonminimal coupling to gravity or by self-interaction. The
latter leads to a decrease of the spacetime curvature through loop effects, which, for minimally coupled,
massless fields, grow unbounded in the infrared. However, such large loop contributions are eventually
screened by the dynamical generation of a nonperturbative, gravitationally induced mass and
the renormalization of the spacetime curvature saturates to a nonzero value. Finally, we show that, in
the case of spontaneously broken continuous symmetries, the Goldstone modes do not contribute to the
infrared flow of the spacetime curvature, despite being strongly amplified by the gravitational field.
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I. INTRODUCTION

Vacuum fluctuations in quantum field theory inevitably
contribute to the energy-momentum tensor—in the form of
a cosmological constant—and should, thus, be the source
of a nontrivial gravitational field. The fact that this widely
contradicts actual observations is the statement of the
cosmological constant problem [1–3], which actually
questions our fundamental understanding of the interplay
between gravity and quantum mechanics. Despite intensive
efforts and many ground breaking proposals and develop-
ments over more than half a century, it is fair to say that a
fully satisfactory explanation is still missing.
One line of investigation concerns the possibility that the

cosmological constant be dynamically screened by quan-
tum fluctuations (possibly including those of the gravita-
tional field itself) [4–12]. The scenario is that of
semiclassical gravity, with quantum fields self-consistently
coupled to a classical (background) gravitational field
through Einstein’s equations. In the absence of quantum
fluctuations, a positive cosmological constant Λ sources a
maximally symmetric de Sitter geometry, which, in

standard cosmological coordinates, corresponds to an
exponentially expanding spacetime, with Hubble rate
H ∝

ffiffiffiffi
Λ

p
. Now, the dynamics of quantum fields in de

Sitter spacetime has been thoroughly investigated, both
because the large degree of symmetry permits practical
calculations and because of its relevance to inflationary
cosmology. Fluctuations of light fields in units of H
undergo a dramatic amplification on superhorizon scales,
which can be interpreted as tremendous particle production
from the gravitational field, similar to Schwinger pair
creation from a strong electric field [7,13,14]. This typically
leads to serious infrared issues (infrared and/or secular
divergencies) in loop calculations and perturbation theory
breaks down on large spacetime scales [15,16]. Possible
exceptions involve symmetries that prevent such infrared
contributions, which may be the case of gravitational
fluctuations, although this is a subject of debate [11,17–23].
In this context, it has been suggested that such large loop
contributions may signal an instability of de Sitter spacetime
against quantum fluctuations [4,6–14,19,24–40]. The sce-
nario is that the backreaction of amplified loop contributions
leads to an effective decrease of the background field, that is,
of the effective cosmological constant.
To convincingly establish whether this is the case or not

is, however, not an easy task. First, the actual calculation of
(perturbative) graviton loop contributions is technically
involved [20,22,41,42]. Second, even for simple scalar
fields, the breakdown of perturbative methods mentioned
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above requires resummation techniques or genuine non-
perturbative approaches. Finally, a proper treatment of a
possible instability would require an actual calculation of
the dynamics of backreaction away from the maximally
symmetric de Sitter geometry, in the vein of [43–46], which
seriously complicates the calculation of loop contributions.
In a recent paper [47], we have proposed a novel

approach to the question of backreaction based on non-
perturbative renormalization group (NPRG) techniques in
de Sitter spacetime [35,48–52]. This allows us to frame the
question in a slightly different way, namely, by studying the
build up of quantum fluctuations and of their backreaction
as a function not of time but of the renormalization group
(RG) scale. In particular, we can consistently compute the
RG trajectories in the subspace of constant field configu-
rations and de Sitter geometries. In that case, we can follow
the RG flow of the effective spacetime curvature as the
quantum fluctuations of, say, a scalar field are progressively
integrated out. Moreover, we can conveniently focus on the
role of the superhorizon quantum fluctuations by initializ-
ing the RG flow at the horizon scale.
After presenting the general NPRG formulation of the

semiclassical backreaction problem, we apply it to the
maximally symmetric case of constant (average) field con-
figurations and de Sitter background geometry in Sec. II. Our
goal in this work is to study the backreaction of light scalar
fields. In the infrared regime, the dominant contribution to the
semiclassical Friedmann equation comes from the effective
potential. The infrared RG flow of the latter has been studied
in Refs. [48,49], where it has been shown to reduce to that of
an effective zero-dimensional theory that can be solved
essentially analytically. This allowsus to analyze the question
of backreaction in the present context in a transparent way.
We discuss the case of Gaussian fields in Sec. III, where

we show that a nonminimal coupling to gravity alone does
induce a nontrivial flow of the spacetime curvature. In
Sec. IV, we analyze OðNÞ-symmetric theories with quartic
self-interaction in the limit N → ∞, where the analytical
expressions are particularly simple and transparent, and
which qualitatively describe the case of finite N as well. We
separately discuss the symmetric and the broken symmetry
regimes of the RG flow. In particular, we show that, in the
latter case, Goldstone modes, which correspond to flat
directions of the effective potential, do not contribute to the
flow of the spacetime curvature. This originates from
the fact that the correlator of such modes is protected by
the underlying symmetry and does not receive any loop
correction. Finally, we discuss the general case (finite N) in
Sec. V, again separating the symmetric and broken sym-
metry regimes.We perform a perturbative analysis, which is
valid at the early stages of the flow but eventually breaks
down due to unbounded loop contributions. We show how
the dynamical generation of a (nonperturbative) mass
screens such large fluctuations in the far infrared and
stabilizes the flow of the spacetime curvature, which

eventually saturates at a nonzero value. We summarize
our results and present our conclusions in Sec. VI.

II. GENERAL FRAMEWORK

A. NPRG formulation of the semiclassical problem

We consider a generic quantum theory of a scalar field
(φ̂) coupled to gravity (ĝμν) described by a given micro-
scopic action S½φ̂; ĝ�, from which one constructs the
effective (quantum) action Γ½φ; g� as a functional of the
average fields φ ¼ hφ̂i and gμν ¼ hĝμνi. The latter is
the generating functional of one-particle-irreducible vertex
functions. It integrates the effects of the quantum fluctua-
tions of both the scalar and the gravitation fields, a
complete treatment of which would require a theory of
quantum gravity. In the present work, we make two
simplifying assumptions. First, we consider energy scales
well below the Planck mass MP so that the effective
gravitational coupling is small and one can retain only
the lowest order diagrams with gravitational vertices.
Second, we assume that loop diagrams involving fluctua-
tions of the gravitational field can be safely neglected, that is,
contrary to diagrams with scalar loops, they are not
amplified by infrared effects. Whether this assumption is
reliable or not must still be clarified [11,20–23].
Under the above assumptions, we shall neglect all

diagrams with graviton loops, which amounts to treating
the gravitational field as a classical (dynamical) geometry,
that is, to replacing ĝ → hĝi ¼ g, but we aim at taking full
account of the scalar loops onto the dynamics, including its
backreaction on the background geometry through the field
equation δΓ=δg ¼ 0. This is still a very complicated
problem in general. To further simplify matters, we restrict
ourselves to constant field configurations φðxÞ ¼ const, for
which the background gravitational field is described by the
maximally symmetric de Sitter geometry (for positive
curvature). In this case, it is well known that the fluctua-
tions of the scalar field undergo a dramatic gravitational
amplification on the superhorizon scale which yields a
nonperturbative infrared dynamics. Our aim is to inves-
tigate whether the latter leads to a decay of the spacetime
curvature as the scenario discussed above speculates.
Here, we treat the scalar field dynamics using NPRG

techniques, following Refs. [35,48,49], which we adapt to
the semiclassical problem at hand. This allows us to pro-
gressively integrate the infrared fluctuations of the scalar
field and to follow the resulting RG flow of the effective
curvature of the geometry. Let us first describe the general
semiclassical setting. The quantum scalar field theory in the
background metric gμν is described by the following func-
tional integral:

e−iWκ ½J;g� ¼
Z

Dφ̂eiS½φ̂;g�þ iΔSκ ½φ̂;g�−iJ·φ̂; ð1Þ

where J · φ̂ ¼ R
x JðxÞφ̂ðxÞ and where the quadratic modifi-

cation of the action
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ΔSκ½φ;g� ¼
1

2

Z
x;y

Rκðx;yÞφðxÞφðyÞ≡1

2
TrgRκ½g� ·φφ ð2Þ

plays the role of an infrared cutoff, which suppresses
fluctuations of a wavelength larger than 1=κ (in the
sense of the metric gμν) from the path integral. Here,R
x ¼

R
dDx

ffiffiffiffiffiffi−gp
is the invariant measure in D ¼ dþ 1

dimensions and the last equality defines the corresponding
functional traceTrg.Note that the scalar regulator functionRκ

typically depends on the metric. The regularized effective
action Γκ½φ; g� is defined through the modified Legendre
transformation [53]

Γκ½φ; g� þ ΔSκ½φ; g� þWκ½J; g� ¼ J · φ ð3Þ

and interpolates between the microscopic action, Γκ→∞ ¼ S,
for κ large compared to any other scale in the problem, and
the usual effective action Γκ→0 ¼ Γ. One easily shows that

∂κðΓκ½φ; g� þ ΔSκ½φ; g�Þ ¼ h∂κΔSκ½φ̂; g�i; ð4Þ

where the average is to be taken with respect to the measure
(1), from which one deduces the exact flow equation [53,54]
(a dot denotes κ∂κ)

_Γκ½φ; g� ¼
1

2
Trg _Rκ½g�Gκ½φ; g�; ð5Þ

where

Gκ½φ; g� ¼ iðΓð2Þ
κ ½φ; g� þ Rκ½g�Þ−1 ð6Þ

is the exact propagator of the regularized theory, with,
defining the covariant functional derivative as δc=δφðxÞ ¼
½−gðxÞ�−1=2δ=δφðxÞ,

Γð2Þ
κ ðx; yÞ ¼ δ2cΓκ½φ; g�

δφðxÞδφðyÞ : ð7Þ

Note that

δcΓκ½φ; g�
δφðxÞ ¼ JðxÞ −

Z
y
Rκðx; yÞφðyÞ: ð8Þ

So far the settings are just those of a (regularized) field
theory in the geometry described by the metric gμν. For our
present purposes, the latter is to be determined self-
consistently at each scale κ from the (exact) extremization
conditions

δcΓκ½φ; g�
δφðxÞ

����
φκ ;gκ

¼ 0;
δcΓκ½φ; g�
δgμνðxÞ

����
φκ ;gκ

¼ 0: ð9Þ

At the order of approximation considered here for the
gravitational fluctuations, this is nothing but the set of

(regularized) semiclassical Einstein equations, which
encode the backreaction of the scalar field quantum fluc-
tuations onto the average value of the metric field gμν. The
second equation in (9) writes, equivalently,

��
δcS½φ̂;g�
δgμν

�
κ

þ1

2

δc
δgμν

TrgRκ½g�Gκ½φ;gκ�
�
g¼gκ

¼ 0; ð10Þ

where the average h…iκ is evaluated at the extremum
ðφκ; gκÞ and where we stress that the functional derivative
in second (regulator) term does not act on Gκ.
To be more explicit, let us decompose the action in a pure

gravitational term and a matter term as

S½φ; g� ¼ Sg½g� þ Sm½φ; g� ð11Þ

and define, accordingly,

M2
PGμν ¼ 2

δcSg
δgμν

and Tμν ¼ −2
δcSm
δgμν

: ð12Þ

The regularized semiclassical Einstein equations become

M2
PGμν½gκ� ¼ hTμν½φ̂; gκ�iκ þ ΔTκ

μν½φκ; gκ�: ð13Þ

The explicit contribution from the regulator reads

ΔTκ
μνðxÞ ¼

Z
z;z0

tκμνðx; z; z0ÞGκðz; z0Þ; ð14Þ

where we defined

tκμνðx;z;z0Þ ¼
�
gμνðxÞδcðx;z;z0Þ−

δc
δgμνðxÞ

�
Rκðz;z0Þ; ð15Þ

with 2δcðx; z; z0Þ ¼ δcðx; zÞ þ δcðx; z0Þ and δcðz; z0Þ ¼
δðDÞðz − z0Þ= ffiffiffiffiffiffiffiffiffiffiffiffi

−gðzÞp
. As a check, one verifies that a simple

mass term, Rκðz;z0Þ¼−m2δcðz;z0Þ, yields the expected
ΔTκ

μνðxÞ ¼ −m2gμνðxÞGκðx; xÞ=2.
The general picture is as follows: The progressive

integration of the long wavelength scalar field fluctuations
through the RG equation (5), results in an effective
renormalization of the geometry, through the extremization
conditions (9). We now specify the above framework to the
maximally symmetric case of homogeneous sources, that
is, homogeneous field configurations φ. Assuming that the
regulator function can be chosen maximally symmetric as
well, one has hTμνiκ ∝ ΔTκ

μν ∝ gμν and the solution of
Eq. (9) is a maximally symmetric metric, that is, the de
Sitter geometry in the case of a positive curvature, which
we consider here.
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B. Application to de Sitter space in the infrared limit

The effective action Γκ½φ; g� is defined for arbitrary
field/metric configurations. In the following, we consider
the hypersurface of maximally symmetric configurations
with constant field φðxÞ ¼ φ and de Sitter metric
gμνðxÞ ¼ gHμνðxÞ, characterized by a single (Hubble) scale
H. More precisely, we shall consider the expanding
Poincaré patch of the de Sitter geometry. It is always
possible—and it proves convenient—to choose the coor-
dinate system where the H dependence of the metric
appears as a global rescaling:

gHμνðxÞ ¼ H−2g̃μνðxÞ; ð16Þ

where g̃ is a fiducial de Sitter metric with Hubble parameter
H̃ ¼ 1. This is, for instance, the case with conformal time
η ∈ R− and comoving spatial coordinates X, in terms of
which the line element reads ds2 ¼ ð−dη2 þ dX2Þ=ðHηÞ2.
Using Eq. (16), we get

H∂HΓκ½φ; gH� ¼ 2

Z
x
gμν
H ðxÞ δcΓκ½φ; g�

δgμνðxÞ
����
gH
; ð17Þ

so that, writing the effective action for constant
field as Γκ½φ; gH� ¼

R
x Vκðφ; HÞ, with Vκ the effective

potential, the second condition in Eq. (9) becomes
∂HðH−DVκÞjφκ ;Hκ

¼0. This reduces to the semiclassical
Friedmann equation, which defines the effective Hubble
parameter Hκ renormalized by the fluctuations of the
quantum scalar field.
We now consider the flow equation (5). As discussed in

detail in Refs. [48,49], the amplified infrared fluctuations
result in an effective dimensional reduction: For infrared
scales, the RG flow of the effective potential reduces to that
of an effective zero-dimensional theory, whose solution at
κ ¼ 0 is identical to the late-time equilibrium state of the
stochastic approach of Ref. [15]. Moreover, it is easy to see,
from the Friedmann equation, that the infrared flow of the
Hubble parameter is dominated by that of the effective
potential. Contributions from kinetic and gradient terms in
the energy-momentum tensor are dominated by ultraviolet
scales [55] and do not contribute to the infrared regime
κ ≲Hκ. They only affect the initial conditions of the flow,
at κ ¼ κ0 ∼Hκ0 . Finally, it has been shown that the exact
effective potential in the infrared limit can be obtained from
the lowest order approximation in a derivative expansion of
the regularized effective action, known as the local poten-
tial approximation (LPA) [49].
We consider an OðNÞ scalar theory and briefly recall the

main features of the LPA and the resulting flow equations.
Details can be found in Refs. [35,48,49]. We use the ansatz

Γκ½φ; gH� ¼ −
Z
x

�
1

2
gμν∂μφ

a∂νφ
a þ NUκðρ; HÞ

	
ð18Þ

where ρ ¼ φaφa=ð2NÞ and NUκ ¼ Vκ is the complete
effective potential where we have factored out a N for later
purposes. The presence of a kinetic term is dictated by the
requirement that Γκ matches the microscopic action in the
ultraviolet. However, the running of this term is neglected
in the LPA. We work with a regulator function of the form

Rab
κ ðx; x0Þ ¼ −δabδðt − t0Þrκðjx − x0jÞ; ð19Þ

in terms of the cosmological time t ¼ − lnð−ηÞ and
physical coordinates x ¼ Xet. Except for the special case
of a pure mass term, rκðjxjÞ ∝ δðdÞðxÞ—which is a possible
infrared regulator but is not enough to regularize the
ultraviolet divergences—the function (19) does not give
a fully de Sitter invariant action (2). However, the class of
regulators (19) is consistent with a large subgroup of de
Sitter isometries [50,56–58], which is, in fact, enough in the
subspace of constant field configurations.1 We choose the

function rκðjxjÞ ¼
R ddp

ð2πÞd e
ip·xr̂κðpÞ with

r̂κðpÞ ¼ H−Dðκ2 − p2H2Þθðκ2 − p2H2Þ; ð20Þ

which allows for performing the momentum integral in the
flow equation analytically and for getting a simple expres-
sion of the beta function of the potential. When combined

with the two-point vertex function Γð2Þ
κ , the regulator (20)

effectively replaces the spatial2 gradient term p2H2 by a
mass term κ2 for long wavelength modes p ≤ κ=H [all in
units of the fiducial scale H̃, see Eq. (16)].
The flow ofUκ is obtained by plugging the ansatz (18) in

the exact flow equation (5), evaluated at a constant field
configuration.3 It can be expressed as a sum over a
longitudinal and a transverse component

N _Uκ ¼ βðm2
l;κ; κÞ þ ðN − 1Þβðm2

t;κ; κÞ ð21Þ

where we have omitted the φ and H dependences for
simplicity and where the longitudinal and transverse
curvatures in field space are

m2
l;κ ¼ ∂ρUκ þ 2ρ∂2

ρUκ and m2
t;κ ¼ ∂ρUκ: ð22Þ

In the infrared regime κ ≪ Hκ and for field values where
m2

l=t;κ ≪ H2
κ , the beta function takes the simple form

1The de Sitter breaking effects due to the regulator would only
affect the flow of derivative terms, beyond the LPA [50].

2The regulator (20) acts on spatial fluctuations only. An
equivalent flow is obtained by coarse graining in the temporal
direction in the stochastic approach [52], as expected from de
Sitter isometries.

3It is worth emphasizing that the flow equation described here
assumes that the quantum field is in the de Sitter invariant
Chernikov-Tagirov-Bunch-Davies vacuum state [59,60].
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βðM2; κÞ ¼ HD

ΩDþ1

κ2

κ2 þM2
: ð23Þ

Note that, for regions in field space where the potential
curvature is not small M2 ≳H2

κ , the flow is strongly
suppressed: β ∼ κDþ1=M [49]. As pointed out in
Ref. [48], the beta function (23) is similar to that of a
zero-dimensional theory. This effective dimensional reduc-
tion results from the strong amplification of infrared scalar
fluctuations by the gravitational field.
We pause here to note an interesting property of this

dimensionally reduced beta function in the case where
the field-space curvature at the minimum of the potential
vanishes, i.e., M2jρκ ¼ 0, which corresponds to a mass-
less, minimally coupled mode of the scalar field. In
that case, defining uκðHÞ ¼ ΩDþ1H−DUκðρκ; HÞ, we have
_uκðHÞ ¼ 1. From the definition u0κðHκÞ ¼ 0, we conclude
that _Hκ ¼ − _u0κðHκÞ=u00κ ðHκÞ ¼ 0. We thus find that, despite
being strongly amplified in the infrared (their correlator
scales as 1=κ2), the modes associated to a flat direction of
the effective potential do not contribute to the renormal-
ization of the Hubble parameter. Note that this seems to be a
robust property of the dimensionally reduced flow (23). For
instance, the previous argument is insensitive to a possible
H-dependent redefinition of the square mass term κ2 in the
regulator function (20).
As emphasized in Ref. [49], we can take another

advantage of dimensional reduction in that the solution
of the flow equation (21) is nothing but an effective zero-
dimensional field theory whose functional integral repre-
sentation reduces to a simple integral. Consider the
following generating function:

eNVDWκðj;HÞ ¼
Z

dNφ̂e−NVDfUinðρ̂;HÞþκ2ρ̂−j·φ̂g ð24Þ

where VD ¼ ΩDþ1=HD, ρ̂ ¼ φ̂2=ð2NÞ and Uin is to be
specified below. It is an easy exercise to check that the
regularized effective potential Uκ, defined as the modified
Legendre transform

Uκðρ; HÞ þ κ2ρþWκðj; HÞ ¼ j · φ; ð25Þ

satisfies Eq. (21) and thus coincides with the effective
potential of our initial problem provided one adjusts Uin in
Eq. (24) to match the initial condition at κ ¼ κ0. In the
following, we choose

Uinðρ; HÞ ¼ aðHÞ þ μ2ðHÞρþ λ

2
ρ2 ð26Þ

with aðHÞ¼ α−βH2=2þ γH4=4 and μ2ðHÞ ¼ m2 þ ζH2.
The function aðHÞ stands for the gravitational action evalu-
ated at the de Sitter metric, with the constant and quadratic
contributions reflecting the standard Einstein-Hilbert term

with a possible cosmological constant, whereas the H4 term
describes possible quadratic terms in the curvature tensor,
e.g., induced by loop effects above the scale κ0. We shall
see that the latter do not play any role here in D ¼ 4.
The parameters α and β are related to the cosmological
constant Λ and the Planck mass MP as Nα ¼ ΛM2

P and
Nβ ¼ DðD − 1ÞM2

P. The effective square mass function
μ2ðHÞ includes a possible nonminimal coupling to the
Ricci scalar R ¼ DðD − 1ÞH2. In terms of the standard
normalization, m2 þ ξR, we have ζ ¼ DðD − 1Þξ. Again,
we have extracted convenient factors of N for later use.
At each scale, the physical values Hκ and ρκ ¼ φ2

κ=ð2NÞ
are obtained from the extremizing conditions

∂φa
Uκ ¼ 0 and ∂HðH−DUκÞ ¼ 0; ð27Þ

which, using the representation (24), are equivalent to the
implicit equations φa

κ ¼ hφ̂aiκ and

hH∂HðH−DUinÞiκ ¼ DH−Dκ2½hρ̂iκ − ρκ�; ð28Þ

where the expectation values are computed with the
measure in (24) evaluated at Nja ¼ κ2φa

κ and H ¼ Hκ.
Using the explicit expression for Uin, Eq. (28) rewrites as
the following (regulated) semiclassical Friedmann equa-
tion, in D ¼ 4,

H2
κ

4
¼ αþm2hρ̂iκ þ λ

2
hρ̂2iκ þ κ2½hρ̂iκ − ρκ�

β − 2ζhρ̂iκ
; ð29Þ

to be compared, e.g., with the classical result H2
cl ¼ 4α=β

for a symmetric state with ρκ ¼ 0. The last term in the
numerator on the right-hand side is the explicit contribution
from the regulator, discussed in Eq. (14). Notice, finally,
that this is an implicit equation forHκ since the latter enters
the expectation values on the right-hand side.
Equation (29) can be further simplified by observing

that, for a well-behaved function u, an integration by part
yields Z

dNφ̂e−uðφ̂Þφ̂a∂φ̂a
uðφ̂Þ ¼ N

Z
dNφ̂e−uðφ̂Þ: ð30Þ

Applying the latter to Eq. (24) and recalling that
ja ¼ κ2φa

κ=N, we obtain the identity

hρ̂∂ ρ̂Uiniκ þ κ2½hρ̂iκ − ρκ� ¼
HD

κ

2ΩDþ1

: ð31Þ

With the choice (26), we have ρ̂∂ ρ̂Uin ¼ μ2ρ̂þ λρ̂2, which
allows us to rewrite Eq. (29) as

4α − βH2
κ þ

H4
κ

Ω
þ 2ðm2 þ κ2Þ½hρ̂iκ − ρκ� þ 2m2ρκ ¼ 0:

ð32Þ

BACKREACTION OF SUPERHORIZON SCALAR FIELD … PHYS. REV. D 99, 025011 (2019)

025011-5



Here hρ̂iκ − ρκ ¼ Gaa
κ =ð2NÞ, with Gab

κ ¼ hφ̂aφ̂biκ − φa
κφ

b
κ

the two-point connected correlator of the theory (24).
It is given by, in terms of the effective potential, Gab

κ ¼
ðκ2δab þ ∂2

φaφbUκÞ−1. Decomposing onto longitudinal and

transverse components, we have

Gaa
κ ¼ HD

κ

ΩM̄2
l;κ

þ ðN − 1Þ HD
κ

ΩM̄2
t;κ
; ð33Þ

with M̄2
l=t;κ ¼ κ2 þm2

l=t;κðρκ; HκÞ the longitudinal/trans-
verse curvatures of the regularized potential at the physical
point; see Eq. (22). In conclusion, the equation for Hκ is
solely governed by the average field φa

κ and the quadratic
fluctuations Gaa

κ around it.
Before presenting some explicit results, let us recall the

range of validity of our approach. First, the semiclassical
treatment requires that H2

κ=M2
P ≪ 1, which implies

α=β2 ≪ 1. Second, the infrared and light field regime of
the RG flow require both κ2 ≪ H2

κ and m2
l=t;κðρ; HÞ ≪ H2

κ .
As already emphasized, the flow is strongly suppressed for
values of the field where this last condition is not fulfilled.

III. GAUSSIAN THEORY

We first consider the case of a Gaussian theory, i.e., with
λ ¼ 0, where the effective potential is one-loop exact.
Defining μ2κðHÞ≡ μ2ðHÞ þ κ2, we get

Uκ ¼ aþ μ2ρþ HD

2ΩDþ1

ln
ΩDþ1μ

2
κ

2πHD ; ð34Þ

where we omitted the implicit H dependences of the
functions a, μ2, and μ2κ for simplicity.4 The correction to
the classical potential Uin ¼ aþ μ2ρ arises from the
integration over Gaussian quantum fluctuations and is
controlled by the quantity V−1

D ¼ HD=ΩDþ1, as is clear
from Eq. (24).
The system (27) gives ρκ ¼ 0 and, in D ¼ 4,

4α − βH2
κ þ

H4
κ

Ω



1þm2 þ κ2

μ̄2κ

�
¼ 0; ð35Þ

with Ω≡Ω5¼ 8π2=3 and μ̄2κ ¼ μ2κðHκÞ ¼ m2 þ κ2 þ ζH2
κ .

We thus check that this direct calculation agrees with
Eq. (32). The last two terms on the left-hand side arise from
the logarithmic (loop) correction in Eq. (34). When ζ ¼ 0,
Eq. (35) does not depend explicitly on κ and there is no

flow, as expected. That is because the only effect of the
regulator in that case is to renormalize the H4 term in the
function aðHÞ, which plays no role in the semiclassical
Friedmann equation. In that case, we have

4αΩ − βΩH2
κ þ 2H4

κ ¼ 0 ð36Þ
and the regime of validity of our approach selects the
solution with H2=β ≪ 1, that is,

H2
κ ¼

βΩ
4

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

32α

β2Ω

s 1
A ≈H2

cl þ
2H4

cl

βΩ
: ð37Þ

Here, H2
cl ¼ 4α=β ¼ Λ=3 is the classical solution and the

second term on the right-hand side is the first quantum
correction at the (ultraviolet) scale κ0. Instead, a non-
minimal coupling ζ ≠ 0 induces a nontrivial flow already in
the Gaussian theory, as illustrated in Fig. 1. The sign of the
flow is controlled by that of ζ and we see that ζ < 0
increases the spacetime curvature.5

We also note that, for α ¼ 0, the solution Hκ ¼ 0,
corresponding to Minkowski space, is a fixed point of
the RG flow (35). Although appealing, this has to be taken
with a grain of salt because, strictly speaking, the above
flow equations are only valid for Hκ ≠ 0 since, in particu-
lar, they rely on approximations such as μ2 ≪ H2, etc. Still,
it is an important property, which guarantees, for instance,
that H2

κ cannot change sign along the flow. We shall see
below that this remains true for interacting theories.

IV. INTERACTING THEORY: N → ∞

In the case of interacting theories, λ ≠ 0, the equa-
tions (27) can easily be solved numerically. One can,
however, gain physical insight by considering the limit

FIG. 1. Flow of H2
κ in the Gaussian case (λ ¼ 0) for m2 ¼ 0.1

and different (positive and negative) values of the nonminimal
coupling ζ. The gravitational parameters are α ¼ 0.1 and β ¼ 1.

4As a side remark, we mention that the apparent mismatch in
dimension under the logarithm simply reflects the necessity to
properly take care of the dimension of the field variable φ̂ when
performing the Gaussian integral to define a dimensionless
partition function. Equation (34) must be understood with a
factor μD−2

0 under the logarithm, where μ0 is an arbitrary mass
scale.

5Note, though, that the Gaussian theory is only well defined if
m2 þ ζH2

κ > 0∀ κ.
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N → ∞, where the running effective potential can be
computed analytically from Eq. (24) using the saddle point
method [49]. We get, after some calculations,

Uκ þ κ2ρ ¼ aþM4
κ − μ4κ
2λ

þ HD

2ΩDþ1

ln
ΩDþ1M2

κ

2πeHD ; ð38Þ

where, again the implicit ρ and H dependences have been
omitted for simplicity. Here, μ2κ ≡ μ2κðHÞ has been defined
in Eq. (34) and

M2
κ ¼

μ2κ þ λρ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2κ þ λρ

2

�
2

þ λHD

2ΩDþ1

s
ð39Þ

is the transverse curvature of the regularized potential,
M2

κ ¼ ∂ρUκ þ κ2. One recovers the Gaussian result (34) in
the limit λ → 0. Also, as before, formally sending the loop
parameter HD=ΩDþ1 → 0, one recovers the classical
result Uκ ¼ Uin.
The second extremization condition in (27) yields, for

the running Hubble parameter,

4α − βH2
κ þ

2

λ
ðM̄2

κ − μ̄2κÞðM̄2
κ þm2 þ κ2Þ ¼ 4κ2ρκ ð40Þ

with M̄2
κ ¼ M2

κðρκ; HκÞ. Equivalently, one can deduce the
same equation by explicitly evaluating the various averages
entering Eq. (29) in the large-N limit. Finally, we can
simplify this equation by using the equation of motion for
ρκ, as we have done to arrive at Eq. (32). One has to
distinguish two cases for the solution of the field equation
∂φa

Uκ ¼ φa∂ρUκ=N ¼ 0: either φa
κ , and thus ρκ, vanish

(symmetric regime), or it is determined by ∂ρUκjρκ ¼ 0 in
the broken symmetry regime. It is easy to check that
Eq. (40) rewrites, in both cases, as

4α − βH2
κ þ

H4
κ

Ω



1þm2 þ κ2

M̄2
κ

�
þ 2m2ρκ ¼ 0 ð41Þ

which reproduces Eq. (32) in the limit N → ∞, as
expected. We shall discuss the symmetric and broken
symmetry regimes separately.

A. Symmetric regime

Here, ρκ ¼ 0 and the relevant equation becomes

4α − βH2
κ þ

H4
κ

Ω



1þm2 þ κ2

M̄2
κ

�
¼ 0 ð42Þ

with

M̄2
κ ¼

μ̄2κ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̄2κ
2

�
2

þ λH4
κ

2Ω

s
; ð43Þ

which makes the analysis of the flow of Hκ particularly
simple. One illustration of interest is the massless, mini-
mally coupled field, m2 ¼ ζ ¼ 0, whose dynamics is
genuinely nonperturbative even at weak coupling. The
flow of H2

κ for this case is shown in Fig. 2.
For large enough κ, we have essentially a Gaussian

theory with a large mass M2
κ ≈ κ2 and Eq. (42) reduces to

Eq. (36) with the solution (37). For intermediate scales
κ2 ∼

ffiffiffiffiffiffiffiffiffi
λ=Ω

p
H2

κ0 , the self-interaction term in Eq. (43) indu-
ces a negative renormalization of Hκ due to infrared
enhanced loop effects, as discussed below in Sec. V.
These are eventually screened by the dynamical generation
of a nonvanishing mass M̄2

κ¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ð2ΩÞp

H2
κ¼0 and, for

scales κ2 ≪ M̄2
κ¼0, the flow freezes. Equation (42) becomes

4αΩ − βΩH2
κ¼0 þH4

κ¼0 ¼ 0; ð44Þ

with the relevant solution

H2
κ¼0 ¼

βΩ
2

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16α

β2Ω

s 1
A ≈H2

cl þ
H4

cl

βΩ
: ð45Þ

Interestingly, the infrared value H2
κ¼0 is independent of the

coupling, which is clear from Eq. (42) and the fact that
M̄2

κ¼0 is nonzero. Comparing the two asymptotic values
(37) and (45), we conclude that the renormalization of H2

κ

due to infrared fluctuations is controlled by H2
cl=ðβΩÞ ≪ 1.

The analysis of the general case, m2 ≠ 0 or ζ ≠ 0, goes
along similar lines and the overall picture is the same as
above for ζ ≥ 0. For negative values, there is an interplay
between the effects of positive renormalization induced
by ζ < 0 and the negative one induced by λ > 0, as
illustrated in Fig. 3.

FIG. 2. Flow of H2
κ for the interacting massless, minimally

coupled theory (m2 ¼ ζ ¼ 0), with λ ¼ 0.1, for various values
of N. The gravitational parameters are α ¼ 0.1 and β ¼ 1.
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B. Broken symmetry regime

We now consider the case where the flow is initialized in
a state of broken symmetry at the scale κ0.

6 In this regime,
the value of ρκ > 0 is determined from ∂ρUκ ¼ 0. In the
N → ∞ limit, the flow of ρκ and Hκ is fully driven by the
massless Goldstone modes and is particularly simple.
Indeed, we have M̄2

κ ¼ κ2 and Eq. (41) reduces to

4α0Ω − β0ΩH2
κ þ 2H4

κ ¼ 0; ð46Þ

where α0 ¼ α − ðm2Þ2=ð2λÞ and β0 ¼ β þ 2ζm2=λ. The
coefficients of this equation being independent of κ, we
conclude that Hκ ¼ Hκ0 has no flow in this regime. This is
an explicit example of the discussion below Eq. (23):
Goldstone modes do not contribute to the flow of Hκ. It is
instructive to see explicitly how this happens in the present
case. The value of the potential at its minimum runs as

Uκðρκ; HÞ ¼ aðHÞ − ½μ2ðHÞ�2
2λ

þ HD

2ΩDþ1

ln
ΩDþ1κ

2

2πHD : ð47Þ

The first two terms on the right-hand side give the classical
value whereas the quantum correction is all contained in the
last term, which merely corresponds to the (one-loop)
contribution from Gaussian fluctuations of mass κ2; see
Eq. (34). So, despite being strongly amplified, the massless
Goldstone modes only yield a slight logarithmic running of
the potential at its minimum in the form of a term ∝ HD,
that is, in D ¼ 4, a renormalization of the parameter γ in
aðHÞ, which does not contribute to the equation for Hκ.
Equation (46) is just the same as Eq. (36) in the

symmetric regime with ðα; βÞ → ðα0; β0Þ. Here, the space

of solutions within the range of applicability of our
approach, 0 < H2

κ ≪ β is larger than before because α0
and β0 can take different values, either positive or negative.
We restrict to the solution continuously related to the one in
the symmetric regime in the classical theory, which only
exists for α0 > 0 and β0 > 0 and is given by Eq. (37) with
the appropriate replacements. In particular, the classical
solution is now H02

cl ¼ 4α0=β0. For generic choices of
parameters, the approximate solution in Eq. (37) is valid,
although it is possible to fine-tune the parameters so that the
quantum corrections are large, i.e., 32α0=ðβ02ΩÞ ∼ 1, while
still having 0 < H2

κ0 ≪ β (see below).
The flow of ρκ in the broken symmetry regime is also

easily deduced from M̄2
κ ¼ κ2. Using that Hκ ¼ Hκ0 in this

regime, we get [49]

ρκ ¼ −
m2 þ ζH2

κ0

λ
−

H4
κ0

2Ωκ2
: ð48Þ

We now see the precise condition on the parameters for the
flow to start in the broken symmetry regime, given by
ρκ0 > 0. As pointed out in [48,49], one important conse-
quences of the dimensionally reduced flow is that the
symmetry eventually gets restored at the finite scale κ�,
given by ρκ� ¼ 0, that is,

κ2� ¼
λH4

κ0

2Ωjm2 þ ζH2
κ0 j

: ð49Þ

The length scale 1=κ� can be viewed as the spatial size
of domains of broken symmetry. For larger length scale,
these domains add incoherently and the symmetry is
effectively restored, as shown in Fig. 4. The subsequent
flow, for κ ≤ κ�, is that of the symmetric regime discussed in
the previous section, Eqs. (42) and (43). These simplify even
further for a flow initialized sufficiently deep in the broken
symmetry regime. For λH4

κ0 ≪ jm2 þ ζH2
κ0 j2, the running

square mass reads

M̄2
κ ¼

λH4
κ

2Ωjμ̄2κ j
�
1 −

λeff;κ
2

þOðλ2eff;κÞ
�

ð50Þ

where we have defined λeff;κ ≡ λH4
κ=ðΩjμ̄2κ j2Þ, and Eq. (42)

becomes

4α0κ − β0κH2
κ þ

H4
κ

Ω



1 −

m2 þ κ2

μ̄2κ

�
¼ 0; ð51Þ

where α0κ¼α−ðm2þκ2Þ2=ð2λÞ and β0κ¼βþ2ζðm2þκ2Þ=λ.
This is similar to Eq. (35) for the Gaussian case with
ðα; βÞ → ðα0κ; β0κÞ and with a change of sign in the paren-
thesis. This rewrites in the simpler form

FIG. 3. Interplay between the positive renormalization of H2
κ

(as κ → 0) induced by a negative value of ζ and the negative
renormalization induced by λ > 0 for a flow in the symmetric
regime, ρκ ¼ 0. The parameters are N ¼ ∞, m2 ¼ 0.1, and
ζ ¼ −10−3. The gravitational parameters are α ¼ 0.1 and β ¼ 1.

6At the classical level, this requires m2 þ ζH2
κ0 < 0. We shall

see below that, with quantum corrections, this condition becomes
m2 þ ζH2

κ0 < −λH4
κ0=ð2Ωκ20Þ.
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4α0κ − β0κH2
κ þ

ζH6
κ

Ωμ̄2κ
¼ 0: ð52Þ

In particular, in cases where jζH2
κ j ≪ jm2j, we have

H2
κ ≈

4α0κ
β0κ

: ð53Þ

Note that the late time result in that case is given by the
classical solution H2

κ¼0 ¼ H02
cl .

For generic parameters which satisfy all the constraints
arising from initializing the flow in the broken symmetry
regime and from the range of validity of our approach, the
quantum correction to the classical term H02

cl is small and
the relative change in H2

κ is controlled by H02
cl=ðβ0ΩÞ ≪ 1.

As mentioned before, one can fine-tune the parameters so
that the quantum corrections in Eqs. (37) and (45) are large,

still respecting the range of validity of our approximations.
In that case, the relative change in H2

κ after symmetry
restoration can be significant but it never exceeds a factor
two7. This is illustrated in Fig. 5.

V. FINITE N

Similar results can be obtained for any finite value of N,
where the two equations (27) can be easily solved numeri-
cally. The results of the previous section are essentially
unchanged for flows initiated in the symmetric regime.
For instance, in the massless, minimally coupled case,
m2 ¼ ζ ¼ 0, one easily checks that Eqs. (36) and (44) for
the initial and final values of H2

κ remain the same for all N,
as illustrated in Fig. 2.
It is instructive to analyze the flow by means of

perturbation theory [47]. In particular, for m2 ¼ ζ ¼ 0,
where the tree-level correlator hρ̂i0;κ ¼ H4

κ=ð2Ωκ2Þ, one
would expect loop contributions to grow unbounded as κ is
decreased. For large enough κ, though, perturbation theory
makes sense and one can use, e.g., standard Feynman
diagrams of the zero-dimensional theory (24), as repre-
sented in Fig. 6. It is easy to convince oneself that the actual
expansion parameter is λΩhρ̂i20;κ=H4

κ ¼ λH4
κ=ð4Ωκ4Þ ¼

λeff;κ=4, which grows with decreasing κ as a direct result
of the amplification of the tree-level correlator. In the

FIG. 4. Flows of H2
κ (top) and of ρκ (bottom) for initial

conditions in the broken symmetry regime for N ¼ ∞. The
parameters are m2 ¼ −0.1, ζ ¼ 0, and λ ¼ 0.1. The gravitational
parameters are α ¼ 0.1 and β ¼ 1. In the broken symmetry
regime, where ρκ > 0, the flow is governed by the Goldstone
modes which, as explained in the text, do not yield any flow of
Hκ . The symmetry gets restored at a finite RG scale and the
remaining flow is that of the symmetric regime. For the
parameters used here, the flow of Hκ in the symmetric regime
is well described by the approximation (53), as shown by the
dashed curve.

FIG. 5. Flow of H2
κ for initial conditions in the broken

symmetry regime for N ¼ ∞. Here, the parameters are fine-
tuned such as to maximize the infrared renormalization effects
(see footnote 7): m2 ¼ −0.0447175, ζ ¼ 0.1113, and λ ¼ 0.01.
The gravitational parameters are α ¼ 0.1 and β ¼ 1.

7The existence of a solution continuously related to the
classical solution requires α0 > 0, β0 > 0, andΩβ02 > 32α0. Large
deviations from the classical solution require the discriminant to
be small 0 < 1–32α0=ðΩβ02Þ ≪ 1, in which case H2

κ0 ≈ β0Ω=4.
The validity of the semiclassical approximation then imposes
α0 ∼ β02 ≪ β2. Altogether this means m2=

ffiffiffi
λ

p ≳ −
ffiffiffiffiffi
2α

p
and

ζ=
ffiffiffi
λ

p ≲ β=ð2 ffiffiffiffiffi
2α

p Þ. For small enough coupling λ, we can always
ensure that the mass term jm2 þ ζH2

κ0 j ≪ H2
κ0 . Further adjusting

the parameters so that Eq. (53) is valid, we obtain H2
κ¼0 ≈H2

κ0=2.
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symmetric regime, the one-loop order contribution to the
self-energy M̄2

κ ¼ M̄2
t;κ ¼ M̄2

l;κ is given by the first diagram
of Fig. 6, which yields

M̄2
κ ¼ κ2 þ N þ 2

2N
λH4

κ

Ωκ2
þOðλ2eff;κÞ ð54Þ

or, equivalently, for the correlator,

hρ̂iκ ¼
H4

κ

2Ωκ2



1 −

N þ 2

2N
λH4

κ

Ωκ4
þOðλ2eff;κÞ

�
: ð55Þ

The equation for Hκ,

4α − βH2
κ þ

H4
κ

Ω



1þ κ2

M̄2
κ

�
¼ 0; ð56Þ

is solved by

H2
κ

H2
κ0

¼ 1 −
N þ 2

2N

H2
κ0

βΩ − 4H2
κ0

λH4
κ0

Ωκ4
þOðλ2eff;κÞ

≈ 1 −
N þ 2

2N

H2
κ0

βΩ
λH4

κ0

Ωκ4
þOðλ2eff;κÞ; ð57Þ

where we have used H2
κ0 ≪ β in the second line. We thus

see that the infrared one-loop contribution decreases the
effective spacetime curvature. This could be interpreted as a
sign of a possible instability of de Sitter space against loop
corrections since, as it stands, the perturbative result (57)
tends to rapidly driveHκ to zero as one integrates more and
more amplified infrared fluctuations. However, for values
of κ where the one-loop correction becomes significant, the
perturbative expansion parameter is not small anymore and
all loops contribute equally significantly, as illustrated in
Fig. 7. As we have seen in the previous section, non-
perturbative effects actually generate a dynamical mass
which screens the growth of infrared fluctuations and
freezes the flow of Hκ.
The nonperturbative running square mass M̄2

κ can be
expressed in terms of special functions using the integral
representation (24). For instance, in the symmetric regime,
defining

ZðA;BÞ ¼
Z

∞

0

dρ̂ρ̂N=2−1e−Aρ̂−
Bρ̂2

2 ; ð58Þ

one has

hρ̂iκ ¼ −∂A lnZðA; BÞ; ð59Þ

where the right-hand side must be evaluated at A ¼ NVDμ̄
2
κ

and B ¼ NVDλ. We get

hρ̂iκ
hρ̂i0;κ

¼ μ̄2κ
M̄2

κ
¼ N

2λeffκ

UðNþ4
4

; 3
2
; N
2λeffκ

Þ
UðN

4
; 1
2
; N
2λeffκ

Þ ð60Þ

where λeffκ ¼ λHD
κ =ðΩμ̄4κÞ has been introduced before and

where Uða; b; cÞ is the confluent hypergeometric function
of the second kind. This expressions simplifies both in the
limit N → ∞, discussed above, and in the case N ¼ 1,

FIG. 7. Flow of H2
κ (top) and of the running square mass m2

κ ¼
M̄2

κ − κ2 (bottom) for the N ¼ 1 theory with m2 ¼ ζ ¼ 0 and
λ ¼ 0.1. The gravitational parameters are α ¼ 0.1 and β ¼ 1.
Also shown are the one- and two-loop perturbative contributions,
which correctly describe the flow at sufficiently large κ. For
κ2 ∼

ffiffiffiffiffiffiffiffiffi
λ=Ω

p
H2

κ0 , perturbation theory breaks down since all orders
contribute equally. The flow of Hκ eventually freezes as a
nonperturbative mass is dynamically generated. The long-dashed
curves show M̄2

κ;Hκ0
− κ2 (bottom) and the approximate expres-

sion (62) (top).

FIG. 6. One- and two-loop diagrams contributing to the inverse
correlator (self-energy) ΩM̄2

κ=H4
κ (up to an overall sign) in the

zero-dimensional theory (24) in the symmetric regime. The lines
represent the Gaussian correlator hφ̂aφ̂bi0;κ ¼ 2δabhρ̂i0;κ and the
vertices (dots) are given by −λΩ=ð8NH4

κÞ.
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discussed in [47]. One recovers the known expression for
the generated mass of the massless, minimally coupled
theory (m2 ¼ ζ ¼ 0) [15,49]:

M̄2
κ¼0

H2
κ¼0

¼ ΓðN
4
Þ

ΓðNþ2
4
Þ

ffiffiffiffiffiffi
λN
8Ω

r
; ð61Þ

where the nonanalytic λ dependence signs the intrinsic
nonperturbative nature of the phenomenon.
As already mentioned, Eq. (56) is an implicit equation

for Hκ due to the nontrivial Hκ dependence in Eq. (60).
However, we can obtain an explicit approximate solution
by expanding Eq. (56) in inverse powers of β̃ ¼ βΩ=H2

κ0
around Hκ0 , taking advantage of the small renormalization
effects. We obtain, for m2 ¼ ζ ¼ 0,

H2
κ

H2
κ0

¼ 1 −
H2

κ0

βΩ



1 −

κ2

M̄2
κ;Hκ0

�
þOðβ̃−2Þ; ð62Þ

where the running mass on the right-hand side is given by
Eq. (60) evaluated atHκ → Hκ0 . Note that, for large enough
values of κ, where the perturbative treatment is valid,
Eq. (62) relates the loop expansion of H2

κ to that of M̄2
κ .

However, Eq. (62) remains valid in the nonperturbative
regime. This is illustrated in Fig. 7, together with the
breakdown of the perturbative expansion, for N ¼ 1.
Finally, for initial conditions in the broken symmetry

regime, the main qualitative change as compared to the case
N ¼ ∞ studied above is that the longitudinal mode gives a
nontrivial contribution to the flow of H2

κ , as shown in
Fig. 8. In this regime, the effect of the coupling λ only
appears at two-loop order and yields a positive renormal-
ization. Again, the symmetry gets restored at a finite RG
scale κ� below which the flow is that of the symmetric
regime, where the field self-interaction drives a negative

renormalization of Hκ. We also observe, as before, that a
negative nonminimal coupling ζ has an opposite effect as
that of λ and can change the sign of the renormalization of
Hκ both in the broken symmetry and in the symmetric
regime.

VI. CONCLUSIONS

To summarize, we have set up a NPRG formulation of
semiclassical gravity, which we have used to study the
backreaction of quantum scalar fields on a classical de
Sitter geometry. We progressively integrate the nonpertur-
bative superhorizon fluctuations of light fields and we study
the resulting effective renormalization of the spacetime
curvature∝ H2

κ .Weverify that the theory of a noninteracting,
minimally coupled field is a fixed point of the RG flow,
whereas either a nonminimal coupling ζ to the Ricci scalar or
a nonzero self-interaction λ trigger a nontrivial flow. The
former can lead to a positive or negative renormalization of
Hκ depending on the sign of the coupling, while the latter
typically tends to decrease Hκ in the infrared (in the
symmetric regime). One striking result of the present study
is that massless, minimally coupled fields (corresponding to
exactly flat directions in the effective potential), despite being
strongly amplified by gravitational effects, do not contribute
to the infrared flow of Hκ. This is, in particular, the case of
Goldstone modes in the broken symmetry regime. In that
case the flow is controlled by the longitudinal mode and is
thus suppressed for larger values of N. In all cases, sponta-
neously broken symmetries at the initial scale κ0 get restored
by gravitationally amplified fluctuations in the infrared and
the remaining flow is that of the symmetric regime.
For the paradigmatic case of massless, minimally

coupled fields, the large infrared quantum fluctuations
triggered by the gravitational field lead to growing loop
corrections which tend to rapidly driveHκ towards zero as κ
is decreased. However, when such loop contributions
become important, the perturbative expansion breaks down
and the flow is governed by nonperturbative effects. In
particular, a nonzero mass is dynamically generated, which
screens the large infrared fluctuations and leads to a
saturation of the flow of Hκ to a finite value.
Our main findings are that, for generic parameters, the

renormalization of Hκ due to the nonperturbatively ampli-
fied infrared fluctuations is controlled by the gravitational
coupling H2

cl=β ∝ H2
cl=M

2
P ≪ 1, where Hcl is the classical

Hubble parameter either in the symmetric or broken sym-
metry case (i.e., H0

cl in that case). Although it appears
possible to fine-tune the parameters so that the infrared
renormalization of Hκ is significant, we find no case where
the spacetime curvature is renormalized to zero. In all cases,
the dynamically generated square mass is M̄2

κ¼0 ≪ H2
κ¼0,

which ensures that the present flow equations remain valid
all the way to κ ¼ 0.
The present work can be extended in various directions.

It would be interesting to study the onset of gravitational

FIG. 8. Flow of H2
κ for various values of N, with

m2 ¼ −5 × 10−3, ζ ¼ 0, and λ ¼ 10−2. The role of the massive
longitudinal mode in the broken symmetry regime is clearly
visible. The cusp corresponds to the scale at which the symmetry
gets restored by the strong infrared fluctuations. The gravitational
parameters are α ¼ 0.1 and β ¼ 1.
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effects as the flow of Hκ is integrated from subhorizon
scales, where the physics is that of Minkowski spacetime,
to the regime of superhorizon scales studied here. This may
require approximations beyond the LPA as derivative terms
in the energy-momentum tensor as the latter do contribute
to the subhorizon part of the flow. Another possible
extension is to apply the present approach to less symmetric
spacetimes, for instance, including slow-roll corrections to
de Sitter spacetime. Also, it would be interesting to
investigate the possibility of applying the present NPRG
approach to similar backreaction problems, such as the
Schwinger effect in a constant electric field, or the black-
hole evaporation due to Unruh-Hawking radiation.

Finally, although we believe that our work brings an
interesting light on the question of the stability of de Sitter
spacetime against quantum fluctuations, it remains limited
in scope in that we restrict ourselves to the effect of scalar
field fluctuations in a truly de Sitter invariant state. This
clearly does not address a lot of important questions raised
in the literature, such as the question of stability of a global de
Sitter geometry (as opposed to the expanding Poincaré patch
studied here) [26,33], the role of non–de Sitter-symmetric
quantum states for the scalar field [29,32,34,36,38], or the
issue of graviton fluctuations [11,39–41]. It remains to be
studied whether these could be addressed within the NPRG
framework presented here.
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