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Accelerating mirrors provide a simple conceptual laboratory for studying particle production and the
relation between trajectory and particle, energy, and entropy fluxes. We focus on the relation between
energy and entropy, studying some special cases with finite total energy but infinite integrated entropy
(though the entropy flux may be finite at any particular moment). We present a new asymptotically static
moving mirror trajectory with solvable beta Bogolyubov coefficients, total energy, and fully relativistic
particle count. The integrated entropy diverges despite finite global radiative particle and energy emission.
By comparing closely related trajectories, we point out some general principles (e.g., the asymptotic time
dependence of energy flux and entropy flux for different convergence and divergence behaviors) but also
how subtle distinctions can affect the physics and its relation to black hole end states. Another class of
models includes exponentially accelerated mirrors in proper time; one of its unexpected behaviors is finite
energy emission but divergent entropy. We compare mirrors exponentially accelerated in other coordinates
as well, showing their close relation and an interesting duality property.

DOI: 10.1103/PhysRevD.99.025009

I. INTRODUCTION

Particle production from vacua in spacetime, e.g., [1–3],
is a fascinating aspect of quantum field theory, connec-
ting dynamics, energy flux, and information. One of the
simplest systems for investigating these concepts is the
accelerating mirror in 1þ 1-dimensional spacetime with
scalar particle production [4–6]. Since few analytic sol-
utions are known, new ones can give useful insights into the
relations between these quantities.
Of particular interest is entropy and its connection to

information [7–11]. Accelerating mirrors can generate ana-
log black hole solutions, e.g., [12–15], allowing exploration
of the formation, emission, and perseverance or decay of
black holes, and the associated information content of the
particles produced. We focus here on the special situations
where not only energy flux, at a given moment, but the total
energy emitted is finite, yet the integrated entropy is infinite
(and even the entropy flux may diverge).
This has a twofold purpose. First, few solutions with

finite total energy, and fewer still with analytically calcu-
lable energy and total finite particle production, are known
[16–18], so new solutions can help reveal the similarities
and differences between their innate properties. Second,
examining the relation between the energy and particle flux
[19], and their integrated quantities, and the entropy flux
and integrated entropy, at the level of major disparity such
as one being finite and the other infinite, offers a “stress
test” to simple assumptions about their connection. Indeed,

interesting recent work has revealed that “information”1

need not be associated with any energy transport [20].
Ideally, these steps can eventually provide some further
clarity on the fundamental relation between particle pro-
duction and information.
In Sec. II, we present a new analytically solvable,

asymptotically static mirror with interesting physical prop-
erties, and study its particle, energy, and entropy produc-
tion. We contrast this with finite radiation, asymptotically
null and drifting mirrors based on exponential accelera-
tion in Sec. III. Section IV summarizes the diversity of
behaviors in entropy despite the similarity of characteristics
in energy flux or total energy. We discuss some future
prospects and conclude in Sec. V. We use units c ¼ ℏ ¼ 1.

II. FINITE RADIATION, ASYMPTOTICALLY
STATIC SOLUTION

Asymptotically static mirrors are of particular interest
because they should have finite total energy production.2

However, this class is somewhat difficult to explore
because the literature has only three solved3 asymptotic

1In the form of correlations with thermal emissions.
2We restrict interest to trajectories that are not oscillating with

infinitely increasing frequency of oscillation.
3Here, “solved” means only those trajectories where the beta

Bogolyubov coefficients are analytically known, allowing cal-
culation of particle flux and total number of particles.
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static mirrors: the Walker-Davies (1982) [16], Arctx (2013)
[17], and the self-dual solution (2017) [18].
Here, we present a new solution that is also asymptoti-

cally static and with finite radiation, but simpler, more
tractable, and more general in some respects than the first
two previously known solutions. It also has significantly
different, time-asymmetric dynamics than the aforemen-
tioned recent third solution.
Note there is, as yet, no known exactly one-to-one

analytically demonstrated correspondence4 to black hole
particle production for asymptotically static trajectories
which solve the soft particle production problem (e.g., [22])
and represent complete evaporation5 with no left-over
remnant [23], so it is worthwhile exploring such cases
further.

A. New trajectory: betaK

Asymptotically static mirrors have useful physical prop-
erties so it is worthwhile attempting new solutions [18].
Notably, they have total finite particle emission, avoiding
the soft particle [22] production problem. We have found a
new solution we call betaK, due to its exactly solvable beta
Bogolyubov coefficients that take the form of a modified
Bessel function. In addition, it has some other advantages
over the previous studied motions. The betaK trajectory is
given by

zðtÞ ¼ −
v
κ
sinh−1ðκtÞ ¼ −

v
κ
ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2t2 þ 1
p

þ κt
�

ð1Þ

_z ¼ −vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2t2 þ 1

p ; ð2Þ

where z is the spatial coordinate, t the time coordinate, κ a
scaling parameter that in the black hole case would be
related to the surface gravity6 κ ≡ ð4MÞ−1, and v is the
maximum velocity of the mirror, occurring at t ¼ 0. One
can readily see that at asymptotically large times, past and
future, the mirror becomes asymptotically static, _z → 0.
Moreover the velocity is time symmetric (and the trajectory
is time asymmetric).
The advantages include the ability to numerically solve

for NðvÞ particle count, in contrast to Arctx’s non-functional
particle count [17]. In addition, zðtÞ is manifestly invertible,
in contrast to the Walker-Davies mirror trajectory [16], tðzÞ,

which is not transcendentally invertible for zðtÞ. Moreover,
this trajectory is found to be much more numerically
tractable for all its interesting quantities than either
Walker-Davies or Arctx.

1. Trajectory

The spacetime diagrams for the trajectory Eq. (1) are
illustrated in Fig. 1 with a standard spacetime diagram
and Fig. 2 with a conformal or Penrose diagram. The
symmetries and asymptotically static character are reason-
ably evident in both (e.g., the mirror approaches time-like
future infinity, iþ, along the vertical axis).
This immediately classifies the dynamics of this solution

with those “future and past asymptotically static trajectories”
(see Refs. [16–18]). This motion is distinct from the typically
infinite energy producing, late-time thermal trajectories
of the “asymptotically null” solutions (see the black mirror
[12–15] or the thermal mirror [24–26]). Moreover, it exhibits
regularizing behavior distinct even from the asymptotically
inertial, soft particle producing trajectories of asymptotically
drifting solutions (see e.g., Refs. [27–30]).

2. Energy flux

The energy flux of particles produced7 is related to the
trajectory by [6] (see also Ref. [17]),

FðtÞ ¼ −
1

12π

⃛zð1 − _z2Þ þ 3_z̈z2

ð1 − _zÞ4ð1þ _zÞ2 : ð3Þ

t

x

FIG. 1. The trajectory for betaK is asymmetric in time, and
asymptotically static with finite energy and finite particle count.
Here the maximum speed v ¼ 1=2 and κ ¼ 1.

4The correspondence exists for an asymptotically null trajec-
tory [12–15]. Explicit derivations of the collapsing shell stress
tensor in different vacuums can be found in [21].

5Complete evaporation is evident from the form of the late-
time field modes which evolve into their early-time form,
indicating no redshifting influence or soft-particle producing
remnant.

6The parameter κ is not the acceleration of the moving mirror,
as it is for the uniformly accelerated observer in the thermal
Unruh effect [3]. The thermal moving mirror [24] has proper
acceleration αðτÞ ¼ τ−1, independent of κ-scale [25]. 7Notice Eq. 4.1 in [6] is not normalized by a factor of 4π.
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Computation of the flux emitted to the right of the mirror
(by convention) from the stress tensor observed by meas-
urement at future-null infinity, Iþ

R , is straightforward,

FðtÞ ¼ κ2

12π

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2t2 þ 1

p
ð2κ2t2 þ v2 − 1Þ

ðv −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2t2 þ 1

p
Þ2ðvþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2t2 þ 1

p
Þ4 : ð4Þ

The apparent divergence at κ2t2 ¼ v2 − 1 is avoided by the
restriction 0 < v < 1 and real time. The flux has a central
valley8 of negative energy flux (NEF). As a well-known
[31] feature of the moving mirror model, the appearance
of NEF here is of no particular surprise.9 The flux does
have positive energy emission approaching the t → �∞
asymptotes, with total positive energy as seen in the next
subsection.

3. Total energy

Due to the asymptotically static character, the total
energy is finite. The total energy emitted from the right
side of the accelerating mirror is analytically calculable,

ER ¼ κ

96π

γ2

v2
½γð6 − 8v2Þsin−1vþ πγv4 þ 4v3 − 6v�; ð5Þ

where γ ≡ ð1 − v2Þ−1=2 is the Lorentz factor (again, v is
the maximum speed of the mirror). Accounting for both
sides, the total energy ET ¼ ER þ EL takes the remarkably
simple expression

ET ¼ κγ3v2

48
; ð6Þ

demonstrating immediately three physical results: (1) zero
maximum speed gives zero energy (no particle production),
(2) the total energy is positive, and (3) an arbitrarily fast
mirror, v → 1, gives divergence of energy production due
to the Lorentz factor.

4. Particle flux

Quite unusually, the beta Bogolyubov coefficients
describing particle emission can be solved for, with the
fairly simple result,

βRðω;ω0Þ ¼ −
2v

ffiffiffiffiffiffiffiffi
ωω0p

πωp
e−

π
2
vωnKivωn

ðωpÞ; ð7Þ

where KnðzÞ is a modified Bessel function of the second
kind, ωp ≡ ωþ ω0 and ωn ≡ ω − ω0, where ω0 and ω are
the in- and outgoing mode frequencies, respectively, and
κ ¼ 1 for convenience. See Appendix C for detail in the
derivation.
The particle spectrum per mode per mode (modulus

squared) is

jβRj2 ¼
4v2ωω0

π2ω2
p

e−πvωn jKivωn
ðωpÞj2; ð8Þ

and accounting for both sides, jβT j2 ¼ jβRj2 þ jβLj2, gives

jβT j2 ¼
8v2ωω0

π2ω2
p

coshðπvωnÞjKivωn
ðωpÞj2: ð9Þ

As a crosscheck, the total energy can be retrieved using the
particles through globally summing quanta,

ET ¼
Z

∞

0

Z
∞

0

ω · jβT j2dωdω0; ð10Þ

which gives, reinstating the scale κ,

ET ¼ κγ3v2

48
; ð11Þ

demonstrating consistency of the solution with Eq. (6).

5. Particle spectrum

The spectrum, Nω, or particle count per mode, detected
at Iþ

R is found by inserting Eq. (8) into

FIG. 2. The trajectory for betaK, as in Fig. 1, but plotted in a
conformal diagram.

8The central valley of NEF is in contrast to many asymptotic
drifting mirrors which have off-set late-time “death gasps” of
NEF; see e.g., Ref. [10].

9Of course, NEF is not a universal occurrence in the moving
mirror model, even for finite energy emission mirrors, as will be
explicitly demonstrated by Eq. (24) which has finite energy
emission but no negative energy flux at all.
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Nω ¼
Z

∞

0

jβRj2dω0: ð12Þ

Figure 3 illustrates the results for different maximummirror
speeds.

6. Total particles

The particle count NðvÞ from the mirror with maximum
speed v comes from summing over the spectrum,

NðvÞ ¼
Z

∞

0

Z
∞

0

jβT j2dωdω0: ð13Þ

This total particle count is finite. While it is unusual for
moving mirror solutions to have finite particle count, our
solution is not only finite, but numerically tractable for
any choice of maximum speed, 0 ≤ v < 1. In this case,
there are no soft particles; i.e., all the massless scalar
particles are “hard.” The total number of particles from
accelerating mirrors is commonly infinite, due to soft
particles, even when the total energy is finite (even for
asymptotically inertial-drifting mirrors). Figure 4 shows
the behavior of NðvÞ, Eq. (13). The number is small,
NðvÞ < 1 (recall particle number is dimensionless and
so the result is independent of the dimensional scale-
parameter κ), and increases monotonically with the chosen
maximum speed v.

7. Entropy flux

It is noteworthy that emission of von Neumann entan-
glement entropy does not change sign for this solution,
Eq. (1). The entropy flux (see e.g., Refs. [8,10,27,32] and
references therein),

SðtÞ ¼ −
1

6
tanh−1 _zðtÞ; ð14Þ

radiated to the right (left) is always positive (negative), with

SðtÞR;L ¼ � 1

6
tanh−1

�
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2t2 þ 1
p

�
: ð15Þ

Figure 5 illustrates this entropy flux. Note that in the
far past and future, where κjtj ≫ 1, the entropy flux
SðtÞ ∼ 1=jtj. This property will be important for the next
subsection, and the general comparison of energy charac-
teristics to entropy characteristics.

FIG. 5. The time-asymmetric mirror betaK from Eq. (1), being
asymptotically static with finite energy and finite particle count,
might be expected to have finite integrated entropy, however this
is not the case. The entropy flux is plotted as the solid line
(dashed line) and is always positive (negative) as emitted from the
right (left) side of the mirror. Here the flux SðtÞ from Eq. (15) is
shown for the choice of maximum speed v ¼ 0.99999 and κ ¼ 1.
See the text for discussion of the integrated entropy integral and
its divergence.

FIG. 4. The time-asymmetric mirror betaK, being asymptoti-
cally static, has finite particle count. The total particle emission
count is plotted for trajectories with relativistic maximum
speeds v.

FIG. 3. The spectrum, Nω, or particle count per mode detected
at the right Cauchy surface, of the asymptotically static time-
asymmetric mirror betaK, is plotted vs frequency in units of κ.
The different lines correspond to different maximum speed
trajectories: v ¼ 0.5, 0.6, 0.7, 0.8, 0.9 from bottom to top, for
thick solid, thin solid, dotted, dot-dashed, and dashed, respec-
tively. This asymptotically static solution has no infrared diver-
gence (soft particles) suffered by mirrors that are asymptotically
drifting.
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8. Integrated entropy

Despite the finite energy, and finite particle emission,
and the preservation of unitarity, the integrated amount of
entropy diverges. This is given by (integrating over u at
right future null infinity, Iþ

R ),

SI ¼
Z

∞

−∞
SðtÞð1 − _zÞdt; ð16Þ

and since _z → 0 at large times, we see the divergence arises
from SðtÞ itself.
We can understand the divergence mathematically by

noting that, in the previous subsection, we saw that the
entropy flux only dies as 1=t for large jtj and, hence, the
integrated entropy has a logarithmic divergence. More
generally, for an asymptotically static mirror (where
_z → 0), if _z ∼ t−n at late times with n > 0, then the proper
acceleration α≡ γ3 ̈z ∼ t−n−1 and the rapidity η ¼ tanh−1 _z
and entropy flux SðtÞ have late-time contributions going
as t−n. Note that unitarity is preserved for n > 0. Then the
integrated entropy SI ∼ t−nþ1 and, hence, diverges if n < 1
(for n ¼ 1, SI diverges logarithmically—this is precisely
the betaK behavior). We can also calculate that the energy
flux will die off as t−n−2 and so the total energy gets a late-
time contribution going as t−n−1. Thus betaK (which has
n ¼ 1) represents the “boundary” case between the mirror
giving both finite energy and finite integrated entropy and
the one producing finite energy but infinite integrated
entropy.
The physical interpretation of this is less clear. The

mirror has a finite particle count and energy. It may be that
it has an infinite number of particle states with infinitesimal
mean occupation, so N is finite but since SI counts the
number of states it is divergent.

B. Comparison to related finite energy mirrors

We identified above the asymptotic behavior of _z ∼ t−1

as a key ingredient for finite energy but infinite integrated
entropy. Let us explore this further by comparing the betaK
case to two other examples with the same approach to the
asymptotic static limit.
One is the self-dual solution of [18]. This has

_z ¼ 2vκt
κ2t2 þ 1

; ð17Þ

which indeed has the same behaviors of _z ∼ t−1, α ∼ t−2,
F ∼ t−3, and SðtÞ ∼ t−1. However, because _z and hence η
and SðtÞ are odd in time, the logarithmic divergence in the
integral for the total entropy cancels and the total integrated
entropy was found in [18] to be finite. So overall time
asymmetry vs symmetry of the particular a priori chosen
dynamics play an important role, of course, since a generic
chosen function is neither even nor odd. The dynamic,

Eq. (1), with solvable betas Eq. (7), being time-asymmetric,
compliments the time-symmetric dynamic solved in [18].
For direct comparison to betaK we therefore we need to

study an even function _z that still asymptotes as _z ∼ jtj−1.
The simplest instance of this after betaK is a model we call
Even t−1,

_z ¼ v

ffiffiffiffiffi
27

4

r
κ2t2

ðκ2t2 þ 1Þ3=2 ð18Þ

z ¼ v
κ

ffiffiffiffiffi
27

4

r �
−κtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2t2 þ 1
p þ ln ðκtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2t2 þ 1

p
Þ
�
: ð19Þ

This has maximum velocity v at κ2t2 ¼ 2, and is asymp-
totically static with _z ∼ t−1. Again, the total energy is finite,
but since _z and, hence, SðtÞ are even, the integrated entropy
is again infinite.
Figure 6 shows the entropy flux as a function of time,

which can be compared to Fig. 5. Both die off as 1=t for
large times. While betaK has its maximum velocity for
t ¼ 0, and hence a spike in entropy flux there, the
Event−1 model has maximum velocity and entropy spikes
at κ2t2 ¼ 2.

III. FINITE RADIATION, ASYMPTOTICALLY
NULL AND DRIFTING DYNAMICS

As a counterpoint to the previous section on asymptoti-
cally static mirrors, their finite energy, asymptotically
vanishing entropy flux, and infinite integrated entropy,
we consider an asymptotically null and then a drifting
mirror.
Asymptotically null mirrors have no guarantee of finite

energy production but we develop a new solution that does,
and has interesting thermodynamic properties, allowing us
to study further the relation between energy and entropy.

FIG. 6. The entropy for the Event−1 mirror with trajectory
Eq. (18), with κ ¼ 1. The trajectory is asymptotically static with
finite energy but divergent integrated entropy, similar to betaK.
The solid (dashed) line is the entropy to the right (left).
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The solution employs exponential acceleration in proper
time and can be viewed as a new trajectory in the series:

(i) αðuÞ ∼ eu for Carlitz-Willey [24–26]
(ii) αðtÞ ∼ et for Hotta-Shino-Yoshimura [17,25,33]
(iii) αðxÞ ∼ ex for Davies-Fulling [6,25].
In this section, we investigate an exponentially accel-

erated trajectory for the mirror in proper time,

αðτÞ ¼ −κeκτ; ð20Þ
where the negative sign is by convention to send the mirror
accelerating to the left.
Based on the infinite total energy results of the afore-

mentioned exponentially asymptotically accelerated null
mirrors, one might expect an infinite total energy for
trajectory Eq. (20). A system which feels an ever increasing
acceleration might likewise produce an ever increasing
energy. However, this is not the case with this equation of
motion, Eq. (20).
A better intuition is found by considering that αðτÞ ∼ eτ is

increasingly gentle relative to αðtÞ ∼ et, due to time dilation.
Therefore, compared to the HSY trajectory, the exponential
accelerated proper time trajectory will have diminished
energy flux. Of course, the HSY trajectory has infinite total
energy production overall, but αðtÞ ¼ −κeκt=2 ↔ αðτÞ ¼
κcschκτ, which has a finite proper time divergence (τ → 0).
Since there is no finite proper time divergence in Eq. (20),
one might plausibly anticipate that the energy flux, will also
not diverge. However, when it comes to the total energy we
shall see that a finite value depends on just how sufficiently
diminished the flux dies off and not the presence of an
asymptotic divergence in proper time.

A. Trajectory dynamics

The dynamical trajectory functions are

ηðτÞ ¼ −eκτ γðτÞ ¼ coshðeκτÞ ð21Þ
wðτÞ ¼ − sinhðeκτÞ vðτÞ ¼ − tanhðeκτÞ ð22Þ

zðτÞ ¼ −
1

κ
ShiðeκτÞ tðτÞ ¼ 1

κ
ChiðeκτÞ; ð23Þ

where the rapidity, η, can be found by a proper time
derivative of the acceleration, η0ðτÞ ¼ αðτÞ. Elsewhere, the
Lorentz factor is γ ¼ cosh η, celerity (proper velocity)
w ¼ dz=dτ ¼ sinh η, velocity v ¼ dz=dt ¼ tanh η, and
Shi (Chi) is the hyperbolic sine (cosine) integral. We plot
the trajectory zðtÞ function in Fig. 7. Note that for large t
(or τ), z ∼ t. The mirror velocity asymptotically approaches
the speed of light, as to be expected.

B. Energy flux

To calculate the energy flux produced by this exponen-
tially accelerating mirror, we use the energy flux relation
12πFðτÞ ¼ −α0ðτÞe2ηðτÞ [25] to find

FðτÞ ¼ κ2

12π
eκτ−2e

κτ
: ð24Þ

The energy flux is plotted in Fig. 8. Note the emission is
always positive—there is no negative energy flux (NEF).
This is a particularly interesting case because unlike the
no NEF solutions of Carlitz-Willey [24], the black mirror
[12], or Hotta-Shino-Yoshimura (HSY)10 [17,25,33,34],
for example, in the far past and future the energy flux
asymptotes to zero, despite αðτÞ ∼ eτ. This indicates that
the radiation process completely terminates (as far as
energy evaporation is concerned); for a black hole analog
this would correspond to evaporation with an asymptoti-
cally infinite Doppler-shifting remnant (a ‘super-remnant’,
if you will) consistent with the conservation of energy
without backreaction [35].

C. Total energy

Recall our criteria from Sec. II A 8 for finite entropy
flux and integrated entropy. For the asymptotically static
mirror we wanted _z to die off quicker than 1=t, giving the
acceleration dying quicker than 1=t2 and the flux dying
quicker than 1=t3 in order to get both finite total energy
and integrated entropy. Here, however, we have _z going to
a constant (the speed of light), acceleration exponentially
increasing, but energy flux dying off rapidly.

3

3

4

4

FIG. 7. The exponential accelerating trajectory zðτÞ from
Eq. (23) is plotted in a coordinate time t spacetime diagram,
with κ ¼ 1.

10Exponential acceleration in coordinate time, the HSY
trajectory, is also referred to as the Arcx trajectory; see, for
instance, [17,25].
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To continue the investigation, we calculate the total
energy for an observer at Iþ

R ,

E ¼
Z

FðτÞdu; ð25Þ

where u ¼ t − z is the null coordinate. This integral can
be done and has a simple form. Since du=dτ ¼ cosh η −
sinh η ¼ e−η ¼ ee

κt
then

E ¼ κ

12π

Z
∞

−∞
κeκτ−2e

κτ
ee

κτ
dτ: ð26Þ

The result of the integral is unity, and so the total energy
emitted to the observer at Iþ

R is finite, with

E ¼ κ

12π
: ð27Þ

Thus, the condition for finite energy seems to depend only
the energy flux dying away sufficiently quickly, and not on
the asymptotic behavior of individual trajectory dynamics
quantities such as _z or acceleration per se (though in
combinations they do determine the flux).
This result from the exponentially accelerating mirror

has a drifting mirror counterpart [36], where the acceler-
ation asymptotically approaches zero in the far future
and the mirror can coast at the speed of light. There
E ¼ κ=ð96πÞ found in [17].
The new trajectory with exponential acceleration in

proper time, Eq. (20), is the only one of the exponential
forms mentioned to possess finite energy. It is surprising,
without yet considering the entropy, that despite an ever
increasing asymptotically infinite acceleration the system
radiates a finite total energy.

D. Entropy flux and integrated entropy

The entropy flux, SðτÞ, is found from the rapidity
ηðτÞ ¼ −6SðτÞ [18,27], so that

SðτÞ ¼ 1

6
eκτ: ð28Þ

It clearly diverges at late times, in stark contrast with the
rapidly vanishing energy flux, Eq. (24). The integrated
entropy is not saved by integration over u at Iþ

R , as the
integral

SI ¼
1

6

Z
∞

−∞
eκτee

κτ
dτ ð29Þ

also diverges. This demonstrates a loosening between the
information content and energy content carried by the
radiation. Despite the finite energy production, unitarity is
lost because the entropy flux SðτÞ does not asymptote to a
constant, but diverges as τ → þ∞.
Note that the entropy and the proper acceleration α ¼ κη

simply scale together for the new exponential mirror, with

α ¼ −6κS: ð30Þ

This is in contrast to the other exponential forms: Carlitz-
Willey, Hotta-Shino-Yoshimura, and Davies-Fulling, res-
pectively, have η ¼ −κu=2, η ¼ κx, and η ¼ −κt, so the
entropy involves inverse hyperbolic trig functions of the
acceleration.
We comment that the regime of applicability of ηðτÞ ¼

−6SðτÞ is reliant on the assumption that p0ðuÞ → 1 for
u → −∞ as used [32]. In terms of the trajectory, zðtÞ, this is
the requirement that the mirror starts asymptotically static
in the far past (not the far future). The trajectory, Eq. (20) is
asymptotically static in the far past.
Furthermore, it is sufficient but not necessary that finite

energy will result if S0ðuÞ → 0 as u → �∞ (see Ref. [32]).
Interestingly, our exponentially accelerated trajectory in
proper time, Eq. (20), is a case where the energy is finite,
even though S0ðuÞ → ∞ as u → þ∞.

E. Exponential in τ multiplicatively shifted

We can use the technique of multiplicatively shifting the
mirror trajectory, i.e., _z → v_z, to regularize the infinite
asymptotic acceleration [18]. This takes the asymptotically
null mirror to an asymptotically drifting one. As we just
saw, if _z ¼ dz=dt ¼ − tanhðeκτÞ then αðτÞ ¼ −κeκτ. This
gave zero flux at late times but infinite entropy. But if we
multiplicatively shift to

_z ¼ v tanhðeκτÞ; ð31Þ

which has asymptotically constant velocity less than the
speed of light, then the proper acceleration

0.8

0.6

FIG. 8. The energy flux to the right of the exponential
accelerating mirror contains no negative energy flux and dem-
onstrates terminal evaporation. Here κ ¼ ffiffiffiffiffiffiffiffi

48π
p

, normalized so
that thermal energy flux would be F ¼ 1.
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αðτÞ ¼ vκeκτ

cosh2ðeκτÞ − v2sinh2ðeκτÞ ; ð32Þ

which for any v < 1 goes to zero for large τ. So at large
times, energy flux and acceleration goes to 0, and the
rapidity η and entropy flux SðτÞ are finite, while the
integrated entropy still diverges.
As a broad principle relevant to the several cases

discussed, for entropy there is a straightforward relation
to the velocity _z, along the lines of the criterion in
Sec. II A 8. Recall SðτÞ ¼ −ð1=6Þη ¼ −ð1=6Þ tanh−1 _z.
When asymptotically _z → 0 then the entropy flux goes
to zero, and if this proceeds quickly enough then the
integrated entropy stays finite. For the exponentially
accelerating mirror cases, _z → const and so integrated
entropy is infinite. In the drifting mirror subcase (i.e.,
exponential acceleration regularized to approach zero),
with v < 1, SðτÞ stays finite while for the nonregularized
v ¼ 1 case above we have SðτÞ ∼ tanh−1ð1Þ → ∞.

IV. SUMMARY OF ENTROPY RESULTS

In Table I, we summarize trajectories considered in this
paper, showing how there can be a diversity of behaviors
in entropy even with the same characteristics in energy flux
or total energy.
The first three mirrors are closely related in their

properties, showing the “boundary” case of energy flux
dying off as t−3 and entropy flux diminishing as t−1. This
leads to a logarithmic divergence in integrated entropy—
except for the self-dual mirror which is saved by its time
symmetry (i.e., self-dual nature). If the flux fades more
rapidly then the integrated entropy would be finite. The
betaK and Event−1 mirrors are new, with the betaK
case of particular interest due to its solvable beta
Bogolyubov coefficients and tractable particle production
characteristics.
The last two mirrors add to the exponential mirror family

(which is completed in Appendix A), with Exptau being
a new solution on a par with well known mirrors—with
the added attractions of having no negative energy flux,
flux asymptoting to zero, and a particularly simple linear
relation between proper acceleration and entropy. The

Exptau(v) case is the drifting mirror sibling that regularizes
the acceleration from infinity at large times to zero and
keeps the entropy flux finite.

V. CONCLUSIONS

Particle production from accelerating mirrors by itself
is a fascinating physics phenomenon, but its relation to
entropy and information brings unexpected depths to
the study of moving mirrors. We presented four new
trajectories, comparing and contrasting their particle pro-
duction, energy flux, entropy flux, and integrated entropy
characteristics.
Looking for a time-asymmetric finite particle creation

solution, we found the betaK mirror which is only the
fourth solved asymptotically static mirror, and has beta
Bogolyubov coefficients of the form of a modified Bessel
function. It has a simple expression for its finite total
energy, and calculable finite total particle count, but infinite
integrated entropy. This raises interesting questions regard-
ing the exact relation between particle and energy pro-
duction and information. A close relative is the Event−1

mirror, slightly more complex and with different patterns of
entropy flux though the same asymptotic behavior. We also
compared these to the self-dual mirror introduced in [18],
which again has the same asymptotic energy and entropy
flux behaviors but a finite integrated entropy due to its time
symmetry.
We presented general guidelines to the asymptotic

behaviors in velocity, proper acceleration, energy flux,
and entropy flux; in particular we identified a “boundary”
behavior where when the velocity asymptotically van-
ishes more rapidly than t−1, and hence the other three
quantities asymptotically vanish more rapidly than t−2,
t−3, and t−1, respectively, the integrated entropy would
remain finite.
Moving from asymptotically static to asymptotically

null and drifting mirrors, we studied Exptau, a new
mirror in the exponential acceleration family (that
includes the Davies-Fulling and Carlitz-Willey mirrors),
this one exponential in proper time. It has no negative
energy flux at any time, and the flux rapidly vanishes
asymptotically, analogous to concluded evaporation

TABLE I. The energy and entropy properties are summarized for the models discussed in this article. The flux
behaviors listed are those in the asymptotic future. All these models have finite total energy but differing entropy
behaviors. Note the self-dual solution avoids infinite total entropy through its self-dual nature (symmetry in time).

Model Energy flux Total energy Entropy flux Integrated entropy

betaK [Eq. (1)] ∼t−3 κv2γ2=48 ∼t−1 Log divergent
Self-dual [18] ∼t−3 κv2γðγ2 þ 3Þ=48 ∼t−1 Finite
Event−1 [Eq. (18)] ∼t−3 Finite ∼t−1 Log divergent
Exptau [Eq. (20)] → 0 κ=ð12πÞ Diverges Infinite
Exptau(v) [Eq. (31)] → 0 Finite Finite Infinite
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(energy emission ends) of a black hole. Interestingly, the
entropy is directly proportional to the acceleration, and
becomes infinite. This seems to imply a disconnect, in
this case at least and asymptotically, between information
(presumably related to entropy) and the state of the black
hole (which has evaporated). We also introduced a
regularized variant, Exptau(v), that asymptotically drifts
at less than the speed of light and has vanishing
asymptotic acceleration. Its entropy flux remains finite,
though its integrated entropy diverges. In the Appendix
we also completed the exponential family by investigat-
ing acceleration in advanced time v, and identifying
interesting “duality”-like relations.
Considering future directions, as we have seen from

investigating proper time exponential acceleration in
Eq. (20), it could be useful to work with proper time in
more general contexts, such as for the energy-entropy flux
relations, which are easy to express in terms of both null
time and proper time. In terms of null time u, ηðuÞ ¼
−6SðuÞ and we can write Eq. (3) as

FðuÞ ¼ 1

2π
½6S0ðuÞ2 þ S00ðuÞ�; ð33Þ

and in terms of proper time we can use the relation ηðτÞ ¼
−6SðτÞ to write

FðτÞ ¼ 1

2π
S00ðτÞe−12SðτÞ: ð34Þ

This result demonstrates a direct relationship between
negative energy flux and entanglement entropy: It is the
sign of S00ðτÞ that determines the emission of NEF.
The possible concavity of the entropy found here (see

Ref. [7] for a relation in terms of correlations) indicates
the connection to the locally negative energy which
emerges in the usual analysis of the static Casimir effect
and of vacuum polarization near black hole horizons, yet
in this moving mirror case, the negative energy is
radiated.
The simplicity of Eq. (34) contains the deeper underlying

symmetry of the model [35], namely the Möbius trans-
formations of SLð2;RÞ,

pðuÞ → apðuÞ þ b
cpðuÞ þ d

; ad − bc ¼ 1; ð35Þ

in the Schwarzian derivative

−24πFðuÞ ¼ fp; ug≡ p000

p0 −
3

2

�
p00

p0

�
2

; ð36Þ

of the trajectory dynamics as encapsulated in the null-
coordinate function, pðuÞ (the v position of the mirror as
function of u). We intend to explore this symmetry as
connected to the Sachdev-Ye-Kitaev (SYK) model (see

e.g., Ref. [37] and references therein) whose action also
has this emergent conformal symmetry (in the IR, large N
limit), as a consequence of the two special properties:
conformal flatness and conformal invariance [38].
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APPENDIX A: EXPONENTIAL ACCELERATION
IN ADVANCED TIME v

In Sec. III, we added an important new exponential
mirror solution with interesting properties. This leaves only
one “exponential” unconsidered; in addition to exponential
acceleration in τ, u, t and x, for completeness we now
investigate the only clock not yet used for exponential
acceleration: advanced time v (not to be confused with
velocity).
For advanced time v ¼ tþ z, the proper acceleration

behavior αðvÞ ¼ κeκv implies η ¼ κv. Since

dη
dτ

¼ eη
dη
dv

¼ κeκv; ðA1Þ

then κτ ¼ −e−η and we have the interesting property that
the acceleration is scale independent, i.e., αðτÞ ¼ −1=τ.
Recall that in [25] such scale independence—but with a
positive sign—was shown to give eternal thermality of the
radiation.
This raises a second interesting aspect: from Eq. A19

of [25] we had obtained eternal thermality from αðvÞ ¼
−ð1=2Þ ffiffiffiffiffiffiffiffiffiffi

κ=jvjp
. That is effectively the back side of the

Carlitz-Willey eternally thermal moving mirror [17,24,26].
Both seem to be solutions, hinting at a potential “duality”
(not in a strict mathematical sense) in the representation.
Pursuing this further, Eq. A18 of [25] showed that
exponential acceleration in a u clock is also thermal
αðτÞ ∼ 1=τ. We have verified that αðuÞ ¼ ð1=2Þ ffiffiffiffiffiffiffiffiffiffi

κ=jujp
gives the same αðτÞ ¼ 1=τ solution as exponential in u.
So v ↔ e−v, and similar for u, seem to be related for
these forms.
Table II summarizes the complete family of mirrors with

acceleration exponential in the various time variables. The
expressions for energy flux have similarities to each other,
with the exponential in u having constant, thermal flux
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(Carlitz-Willey). The entropy flux, proportional to η, will
in all these cases asymptotically diverge in contrast to the
finite energy of the proper time exponentially accelerated
mirror of Sec. III.

APPENDIX B: ENERGY INTEGRAL

The total energy result, Eq. (6), perhaps can be obtained
most easily as follows. First, an integration by parts of
Eq. (3), with the correct Jacobian, that exploits the ability to
ignore the negligible boundary terms. The same can be done
for the left side by considering the right side again but for the
trajectory reflection. Summing leads to the simple integral,

ET ¼ 1

6π

Z
∞

−∞

̈z2

ð1 − _z2Þ3 dt; ðB1Þ

where substitution of derivatives of the asymptotically static
trajectory, Eq. (1), yields Eq. (6).

APPENDIX C: BETA COEFFICIENT INTEGRAL

The beta coefficient result, Eq. (7), is perhaps most
easily obtained by integrating with respect to laboratory
time, t. The unnormalized integral (Eq. (2.25) of [17]) is

βωω0 ¼
Z

∞

−∞
eiðωnz−ωptÞð_zωp − ωnÞdt: ðC1Þ

It is convenient to work in units of κ, restrict v, ω, ω0 to
positive reals and v < 1. Expanding ωp ≡ ωþ ω0, and
ωn ≡ ω − ω0, integrating, and normalizing by dividing by
4π

ffiffiffiffiffiffiffiffi
ωω0p

gives the result Eq. (7).
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