
 

Dirac equation in exotic spacetimes

Javier Faba García
Departamento de Física Teórica, Universidad Complutense de Madrid, Plaza de Ciencias,

1 28040 Madrid, Spain

Carlos Sabín
Instituto de Física Fundamental, CSIC, Serrano, 113-bis, 28006 Madrid, Spain

(Received 13 November 2018; published 14 January 2019)

We find solutions of the Dirac equation in curved spacetime. In particular, we consider 1þ 1

dimensional sections of several exotic metrics: the Alcubierre metric, which describes a scenario that
allows faster-than-light velocity; the Gödel metric, which describes a universe containing closed timelike
curves; and the Kerr metric, which corresponds to the metric of a rotating pointlike source, for instance a
rotating black hole. Moreover, we also show that the techniques that we use in these cases can be extended
to nonstatic metrics.
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I. INTRODUCTION

In 1928, Paul Dirac formulated a special relativistic
version of the wave equation in quantum mechanics
(ℏ ¼ 1, c ¼ 1):

iγμ∂μψ −mψ ¼ 0;

where, in the standard representation,

γ0 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA γ1 ¼

0
BBB@

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1
CCCA

γ2 ¼

0
BBB@

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

1
CCCA γ3 ¼

0
BBB@

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1
CCCA:

This equation was born as an attempt of linearization of
the Klein-Gordon equation, which comes from the appli-
cation of the Einstein relation E2 ¼ p2 þm2 to the
Schrödinger equation Hamiltonian. The Dirac equation
was a turning point in physics. Joining quantum mechanics
and relativity, this equation predicts the spin of the electron,
the existence of antimatter etc., and it is considered as the
natural transition between relativistic quantum mechanics
and quantum field theory [1]. Moreover, a renewed interest
in the Dirac equation has come from the field of quantum
simulations, which has enabled the experimental observa-
tion of some of its more interesting features in tabletop

experiments [2–8]. Nevertheless, even though the general
solutions of this equation are well known, this is not the
case of the Dirac equation in curved spacetime. In general,
obtaining solutions in curved space is more complicated.
For a detailed analysis of the 3þ 1 Dirac equation in
Riemannian spacetimes, see for instance [9]. Some par-
ticular 1þ 1 D cases can be found, for instance, in [10,11].
In this work, the method explained by one of us in [11]

will be applied to obtain solutions of the Dirac equation
in curved spacetime for different exotic metrics in 1þ 1
dimensional sections, with the help of known solutions
in Minkowski spacetime. If we take a 1þ 1 dimensional
section of the spacetime, the Dirac equations reduces to [10]

i

�
∂t þ

_Ω
2Ω

�
ψ ¼ −iσx

�
∂x þ

Ω0

2Ω

�
ψ þ σzΩmψ ;

where Ω is the conformal factor—note that any metric in
1þ 1 dimensions allow a coordinate change such that it
acquires the form ds2 ¼ Ω2ð−dt2 þ dx2Þ—the dot and
prime stand for time and spatial derivatives, respectively,
and σx and σz are the Pauli matrices:

σx ¼
�
0 1

1 0

�
σz ¼

�
1 0

0 −1

�
:

Note that if Ω ¼ 1, we obtain the well-known Dirac
equation in 1þ 1 dimensional flat spacetime (see, for
instance [12]). This equation has been studied in detail,
including striking properties such as Zitterbewegung or
Klein paradox [13,14]. Given Ω, we could try to find
solutions of this partial differential equation system.
However, that procedure could be very involved, depending
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on the particular form of Ω. The method presented in [11]
allows to find the solution of this partial differential
equation system through a coordinate change and an
existing solution in Minkowski spacetime. Thus, the
method will be applied to several exotic metrics of interest,
such as the Alcubierre metric, which allows faster-than-
light (FTL) velocity; to the Gödel metric, which allows
closed timelike curves (CTC); and the Kerr metric, which
describes the spacetime geometry generated by a rotating
body (rotating black holes). Furthermore, we will see that,
although in [11] _Ω ¼ 0 (static spacetime) is an apparent
requirement for the validity of the method, in fact the
method is also valid for nonstatic spacetimes.
Our results might be of interest in the context of quantum

simulation of the Dirac equation. Several ideas have been
proposed for simulating the Dirac equation in Minkowski
spacetime for 1þ 1 dimensional sections: e.g., experiments
have been already realized with trapped ions [2,5] and
Bose-Einstein condensates [7,8], while realistic proposals
exist with superconducting circuits [15]. Also, some ideas
have been proposed for simulating the Dirac equation in
curved spacetime for 1þ 1 dimensional sections: e.g.,
through a mapping between this equation and a multi-
photon quantum Rabi model [16]. However, since we
obtain solutions in curved spacetime through transforma-
tions of Minkowski solutions, the results obtained in this
work could be helpful for simulations of the Dirac equation
in nontrivial spacetimes with currently existing setups.
The structure of the paper is the following. We start in

Sec. II by recalling the procedure for obtaining solutions
of the Dirac equation in curved spacetimes out of flat-
spacetime solutions, first introduced in [11]. Then, we
proceed to apply it in Sec. III to the aforementioned curved
spacetimes of interest. Finally, we introduce a generaliza-
tion of the method to nonstatic spacetimes in Sec. IV, which
might be useful for further applications. We conclude in
Sec. V with a summary of our results.

II. METHOD

We summarize here the procedure to obtain solutions of
the Dirac equation in curved spacetimes, first discussed in
[11]. In general, the Dirac equation in curved spacetime is
obtained by replacing the standard partial derivatives in the
Minkowski equation by the corresponding covariant ones,
where the affine connection would carry the dependence
on the particular form of the metric. In 1þ 1 D, using the
conformally flat form of the metric and with a little algebra
(see the details in [10]), we can get

i

�
∂t þ

_Ω
2Ω

�
ψ ¼ −iσx

�
∂x þ

Ω0

2Ω

�
ψ : ð1Þ

For the static case, in which the conformal factor is time-
independent _Ω ¼ 0, the equation is

i∂tψ ¼ −iσx
�
∂x þ

Ω0

2Ω

�
ψ : ð2Þ

If wemake the transformationψ ¼ Ω−1=2ϕ, Eq. (2) becomes

i∂tϕ ¼ −iσx∂xϕ

which corresponds to the Dirac equation for a massless
particle in Minkowski spacetime, whose solution is well
known (see, for instance, [17]). Thus, using this trans-
formation and the conformal factor of the 1þ 1 dimensional
metric,we can find analytical solutions for theDirac equation
in curved spacetime. So, for a givenmetric, we have to follow
this three-step procedure:
(1) Find a change of coordinates ðt; xÞ → ðt̄; x̄Þ such

that, in the new coordinates, the metric acquires the
form ds2 ¼ Ω2ð−dt̄2 þ dx̄2Þ.

(2) Using those new coordinates ðt̄; x̄Þ, apply ψðt̄; x̄Þ ¼
Ω−1=2ðx̄Þϕðt̄; x̄Þ, where ϕðt̄; x̄Þ is the solution of the
Minkowski spacetime Dirac equation.

(3) Once having ψðt̄; x̄Þ, apply the coordinate change
ðt̄; x̄Þ → ðt; xÞ to finally find the solution of the curved
spacetime Dirac equation in ðt; xÞ coordinates.

Please note that, in spite of its apparent simplicity, in
general itmight not be necessarily straightforward to perform
steps (1) and (3). To write the metric in a conformally flat
form, it might be needed to express the change of coordinates
in a differential form, which could generate an equation that
might still not be straightforward to solve, as we will see in
Sec. III B.
This method was applied in [11] to find solutions of

the Dirac equation in a 1þ 1 dimensional section of a
traversable wormhole spacetime. Let us now consider other
examples of interest.

III. RESULTS

A. Gödel and Alcubierre metric

Both metrics will be discussed in the same section
because of their similarity.
In 1994, Alcubierre proposed a metric that, in principle,

allows FTL motion [18]. Note that, in general relativity,
FTL speed is only forbidden locally. This is not as exotic as
it might seem at first glance: for instance, the expansion of
the Universe can make that two distant galaxies move at
FTL speed between them, while each one is moving locally
inside its light cone. The opposite might be possible too: if
the spacetime were contracting fast enough, each galaxy
were moving near the speed of light locally (inside its light
cone) in opposite directions, but globally both were getting
closer. With these considerations in mind, Alcubierre’s idea
is simple: to create, in the front of an object, a spacetime
contraction, and in the back, a spacetime dilation. Thus, the
contraction will pull the object forward, and the dilation
will push the object forward too. Locally the object will be
inside its light cone, but due to this spacetime manipulation,
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it would move FTL—as compared with c, the speed of light
in flat-spacetime vacuum.
The Alcubierre metric inside the “bubble” created by the

space-temporal contraction/dilation, under the limit σ → ∞
[18], and taking a spatial section y ¼ y0 and z ¼ z0 (with
constant y0, z0), acquires the form [18,19]

ds2 ¼ −ð1 − v2sÞdt2 þ dx2 − 2vsdxdt: ð3Þ
As expected, Eq. (3) becomes the Minkowski metric

when vs ¼ 0. Now we make a coordinate change ðt; xÞ →
ðt̄; x̄Þ, such that

dt ¼ dt̄

dx ¼ dx̄þ vsdt̄:

The Alcubierre metric, using those new coordinates,
acquires the form ds2 ¼ −dt̄2 þ dx̄2, which is simply the
Minkowski metric, so the conformal factor will be Ω2 ¼ 1,
and the solution of the curved spacetime Dirac equation,
ψðt̄; x̄Þ, will be equal to the Minkowski spacetime solution,
ϕðt̄; x̄Þ. Now, due to the big similarity—regarding to the
application of our techniques—between the Alcubierre
and Gödel metric, we first discuss the latter case and then
we compare both results. It is relevant to mention that,
although the Dirac equation in a Gödel universe has already
been considered in the study of tachyon’s stability [20], our
objective is to find explicit analytical solutions for this
equation in the Gödel’s background, using our procedure.
Gödel, in 1949, found a solution of the Einstein equations

[21] corresponding to a homogeneous mass distribution that
rotates at each point of the space [22]. That distribution of
matter causes unusual effects, such as the existence of CTC.
In cylindrical coordinates [22], the metric is given by the
following expression:

ds2 ¼ dt2 −
dr2

1þ ð r
2aÞ2

− r2
�
1 −

�
r
2a

�
2
�
dϕ2 − dz2

þ 2r2

a
ffiffiffi
2

p dtdϕ; ð4Þ

where a is a parameter with units of length, which represents
a characteristic distance. In particular, rG ¼ 2a represents
the critical radius from which CTC can exist [22].
Now, taking a radial section with ϕ ¼ ϕ0 and z ¼ z0

[19], the Gödel metric becomes

ds2 ¼ dt2 −
1

1þ ð r
2aÞ2

dr2:

By making the coordinate change ðt; rÞ → ðt̄; r̄Þ, with
dr̄2 ¼ 1

1þ ð r
2aÞ2

dr2

dt̄2 ¼ dt2 ð5Þ
the previous metric transforms into the Minkowski metric
ds2 ¼ dt̄2 − dr̄2. Furthermore, we can find the relationship

between the ðt; rÞ and ðt̄; r̄Þ coordinates by performing the
following integration:

r̄ðrÞ ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð r

2aÞ2
q

whose solution—setting r̄ðr ¼ 0Þ ¼ 0—is

r̄ðrÞ ¼ 2a sinh−1
�

r
2a

�
:

With these new coordinates, the conformal factor becomes
Ω2 ¼ 1, and the Minkowski spacetime solution will be the
same as the curved spacetime solution, as in the case of
the Alcubierre metric. Thus, the only difference between the
Gödel and the Alcubierre metric is the relationship between
the original coordinates and the new coordinates.
Now, if we assume that the wave function has a Gaussian

initial form:

ϕðx̄; 0Þ ¼ Ne−
ðx̄−x̄0Þ2

σ2

�
1

1

�
;

where x̄ is the conformally flat coordinate and N is a
normalization constant, the solution for the Dirac equation
in Minkowski’s spacetime will be [11,17]

ϕðx̄; t̄Þ ¼ Ne−
ðt̄−ðx̄−x̄0ÞÞ2

σ2

�
1

1

�
: ð6Þ

Since ψ ¼ ϕ, to find the curved spacetime solution we only
have to apply the coordinate change for each metric. In the
Alcubierre case we have

ϕðx̄ðxÞ; t̄ðtÞÞ ¼ Ne−
ðt−ðx−vst−x̄0ÞÞ2

σ2

�
1

1

�
; ð7Þ

while, for the Gödel metric

ϕðr̄ðrÞ; t̄ðtÞÞ ¼ Ne−
ðt−ð2asinh−1ðr=2aÞ−x̄0ÞÞ2

σ2

�
1

1

�
: ð8Þ

Both solutions are represented in Fig. 1.
For (a), (b) and (c), as the parameter vs increases, the

slope of the Gaussian wave packet’s “trajectory” decreases.
In other words, the particle’s velocity increases as vs is
bigger. In fact, if we take a look to the expression (7), we
can see its equivalence to the solution of the Minkowski
spacetime Dirac equation (6) if we substitute t with
ð1þ vsÞt. This means that, physically, the particle moves
with a FTL velocity c̄ ¼ 1þ vs, as expected for a massless
particle since this is precisely the speed of light in this
spacetime.
For (d), (e) and (f), we can see that the particle velocity is

no longer constant. This variation is inversely proportional
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to the value of a, as expected, since in the limit a → ∞ the
Gödel metric (4) becomes the Minkowski metric in
cylindrical coordinates. In addition, the slope decreases
with the propagation of the particle, implying FTL
velocity. Of course, in general the existence of CTC—
which is the most genuine feature of Gödel spacetime—is
intimately linked with the possibility of FTL (see, for
instance, [23]).

B. Rotating black hole

The main motivation to study the Kerr metric is the fact
that it describes the spacetime geometry of a rotating body,
so it can be used to analyze the physics of black holes in
a more realistic scenario than the one provided by the
Schwarzschild metric. Using Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ, the Kerr metric is [24,25]

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Marsin2θ
Σ

dtdθ þ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Ma2rsin2θ

Σ

�
sin2θdϕ2;

where

Σðr; θÞ ¼ r2 þ a2cos2θ ΔðrÞ ¼ r2 þ a2 − 2Mr:

If we take a radial section (θ ¼ θ0, ϕ ¼ ϕ0), we obtain [19]

ds2 ¼ −
�
1 −

2Mr
Σðr; θ0Þ

�
dt2 þ Σðr; θ0Þ

ΔðrÞ dr2;

where Σðr; θ0Þ is a function of the coordinate r [for
simplicity, Σðr; θ0Þ ¼ ΣðrÞ]. So, if we make the coordinate
change ðt; rÞ → ðt̄; x̄Þ with

ΣðrÞ
ΔðrÞ dr

2 ¼
�
1 −

2Mr
ΣðrÞ

�
dx̄2

dt2 ¼ dt̄2 ð9Þ

the metric acquires the form

ds2 ¼ Ω2ðrÞð−dt̄2 þ dx̄2Þ

with

Ω2ðrÞ ¼ 1 −
2Mr
ΣðrÞ :

Due to the conditions (9), r will be a function of x̄, whereas
t ¼ t̄, so the conformal factor ΩðrÞ will be a function
of rðx̄Þ:

Ω2ðrðx̄ÞÞ ¼ 1 −
2Mrðx̄Þ
Σðrðx̄ÞÞ : ð10Þ

To find the conformal factor Ωðrðx̄ÞÞ we need to obtain
rðx̄Þ. Using the first equation in (9) and, after doing some
algebraic manipulations, we obtain that x̄ðrÞ is given by

x̄ðrÞ ¼
Z

drΣðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ΔðrÞðΣðrÞ − 2MrÞ

s
þ C: ð11Þ

In general, solving this integral is not straightforward.
Later, we will analyze some particular cases in which the
integral can be solved. For now, let us just assume that rðx̄Þ
is known. Thus, the conformal factor is given by Eq. (10)
and, therefore, the relation between the solution to Dirac
equation in curved spacetime (ψ) and flat spacetime (ϕ)
will be

jψðx̄; t̄Þj2 ¼ jΩ−1=2ðrðx̄ÞÞj2jϕðx̄; t̄Þj2

¼
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σðrðx̄ÞÞ

Σðrðx̄ÞÞ − 2Mrðx̄Þ

s �����jϕðx̄; t̄Þj2: ð12Þ

All the wave function properties caused by the spacetime
curvature are contained in the factor Ω−1ðrðx̄ÞÞ, so it is
interesting to analyze this function. First, there exist regions
in which the probability density of the wave function in
curved spacetime becomes infinite. It happens when the

FIG. 1. Spacetime diagrams for the probability density of Dirac
equation solutions in (a)–(c) Alcubierre metric with (a) vs ¼ 0
(equivalent to Minkowski spacetime), (b) vs ¼ 0.5 (subluminal
spacetime bubble), (c) vs ¼ 2 (superluminal spacetime bubble);
(d)–(f) Gödel metric with (d) a ¼ 2, (*e) a ¼ 1, (f) a ¼ 0.5.
Please note that the wave function is not normalized.
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following condition is fulfilled—we relax the notation and
write r instead of rðx̄Þ:

ΣðrÞ − 2Mr ¼ 0: ð13Þ
This condition is satisfied whenever r ¼ r�, with

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ0

q
; ð14Þ

which are the well-known apparent singularities where the
temporal component of the metric changes sign, defining
the ergosphere [26]. On the other hand, there exist points in
which the wave function is null, independently of the form
of the solution in Minkowski’s spacetime. This will happen
whenever Ω−1ðrÞ ¼ 0, that is, when

ΣðrÞ ¼ 0 → r2 þ a2 cos2 θ0 ¼ 0;

which will be satisfied when at least one of those
conditions apply:
(1) r ¼ 0, a ¼ 0 (no rotation).
(2) r ¼ 0, θ0 ¼ π

2
.

Finally, there is a region of the space in which the
conformal factor is an imaginary number. This occurs if

ΣðrÞ − 2Mr < 0:

This second-degree inequality is verified for r− < r < rþ,
namely, within the ergosphere.

1. Radial section with θ0 = 0

Let us consider θ0 ¼ 0. Then ΣðrÞ ¼ r2 þ a2, ΔðrÞ ¼
Σ − 2Mr, and the integral becomes

x̄ðrÞ ¼
Z

dr
ΣðrÞ
ΔðrÞ þ C ¼

Z
dr

r2 þ a2

r2 þ a2 − 2Mr
þ C

whose solution is

x̄ðrÞ ¼ 2M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −M2

p tan−1
�

r −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −M2

p
�

þM logða2 − 2Mrþ r2Þ þ rþ C:

Bearing in mind that, for a rotating black hole, M2 > a2 is
satisfied (otherwise, it would not be a black hole, but
a highly rotating body [27]), and using the relationship
tan−1ðixÞ ¼ i tanh−1ðxÞ, we can write the solution as

x̄ðrÞ ¼ 2M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p tanh−1
�

M − rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
�

þM logða2 − 2Mrþ r2Þ þ rþ C: ð15Þ
The constant of integration can be chosen in such a way that
the constant imaginary part of Eq. (15) cancels out in each
of the three spacetime regions defined by the apparent
singularities r�. Thus,

C ¼

8>><
>>:

−i πM2ffiffiffiffiffiffiffiffiffiffi
M2−a2

p if r < r−

−iMπ if r− < r < rþ
−i πM2ffiffiffiffiffiffiffiffiffiffi

M2−a2
p if rþ < r:

In Fig. 2, we plot x̄ðrÞ for different values of M and a.
Finally, assuming again that our particle is character-

ized by a Gaussian wave packet, the solution in Kerr
spacetime is

jψðx̄ðrÞ; tÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣðrÞ
ΣðrÞ − 2Mr

s
jϕðx̄ðrÞ; tÞj2

¼ 2N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðrÞ

ΣðrÞ − 2Mr

s
e−

2ðt−ðx̄ðrÞ− ¯̄x0ÞÞ2
σ2 :

This solution is represented in Fig. 3 for several values of
a and M.
Naturally, when we set M ¼ a ¼ 0, the metric becomes

the Minkowski one, Ω2 ¼ 1, and the expression (15)
reduces to x̄ðrÞ ¼ r. In other words, the solution corre-
sponds to a free particle in flat spacetime, as it is observed
in Fig. 3(a). If we slightly increase the value of M (with
a ¼ 0, thus we are in Schwarzschild spacetime), we see
that the free solution is slightly disturbed, increasing the
probability density near the horizon, as can be seen in
Fig. 3(b). As the mass increases, the probability density
accumulates nearby the horizon, placed in r ¼ 2M. In
addition, we see that the width of the wave packet is
drastically reduced (the particle is more localized in space),
and the particle’s speed diminishes, vanishing in the
horizon. Finally, if we set the mass to a constant value
and we change a [Figs. 3(e)–3(h)], we see that, as a
increases, the inner horizon is generated, around which,
again, the probability density accumulates in the same

FIG. 2. x̄ðrÞ for different values of the parameter a. In the
absence of rotation (a ¼ 0), the singular points are in r ¼ 0 and
r ¼ 2M (Schwarzschild’s black hole). As the rotation increases,
both points (r ¼ r�) come closer to r ¼ M.
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way as before. In addition, in the region between both
singular points—the ergosphere—we see how the particle
tends to be expelled towards the interior or exterior
horizon.

IV. NONSTATIC SPACETIMES

So far, we have only analyzed static metrics, that is,
_Ω ¼ 0. We now show that our techniques are also valid

FIG. 3. Dirac equation solution for Kerr metric and different values of the parameters a and M. (a)–(d), a ¼ 0 (no rotation,
Schwarzschild metric) andM ranging from 0 to 2. The horizon is at r ¼ 2M. (e)–(h)M ¼ 2 and a ranging from 0 to 2, two singularities
appear according to Eq. (14) with θ0 ¼ 0 giving rise to an ergosphere which splits the full spacetime into three separate regions. Notice
that as a increases rþ, r− move from 2M and 0, respectively, toM, where they would merge in the limitM ¼ a. Please note that the wave
function is not normalized.
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for the case of nonstatic metrics ( _Ω ≠ 0). Performing the
substitution ψ ¼ Ω−1=2ϕ in Eq. (1) and with a little algebra,
we find

i

�
∂tþ

_Ω
2Ω

�
ðΩ−1=2ϕÞ¼−iσx

�
∂xþ

Ω0

2Ω

�
ðΩ−1=2ϕÞ

∂tðΩ−1=2ϕÞþ
_Ω
2Ω

Ω−1=2ϕ¼−σx
�
∂xðΩ−1=2ϕÞþ Ω0

2Ω
Ω−1=2ϕ

�
:

Notice that

∂tðΩ−1=2ϕÞ ¼ −
1

2
Ω−3=2 _Ωϕþ Ω−1=2∂tϕ: ð16Þ

Therefore the terms not containing ∂tϕ cancel out. The same
thing happens with the spatial partial derivative: the terms
without ∂xϕ cancel out. Thus, putting everything togetherwe
recover the equation:

i∂tϕ ¼ −iσx∂xϕ

which is the Dirac equation for Minkowski spacetime.
Therefore, our techniques could be also applied to nonstatic
spacetimes, such as Friedmann-Lemaître-Robertson-Walker
spacetime, as in [10].

V. CONCLUSIONS

Following [11], we have shown that is possible to obtain
solutions of the Dirac equation in curved spacetime by
means of a transformation ψðx̄; t̄Þ ¼ Ω−1=2ðx̄Þϕðx̄; t̄Þ,
where ψðx̄; t̄Þ is the curved spacetime solution, ϕðx̄; t̄Þ
is the Minkowski spacetime solution and Ωðx̄Þ is the
conformal factor. Then, in order to be able to apply this
transformation, it is necessary to perform first a coordinate

change ðx; tÞ → ðx̄; t̄Þ, such that in the new coordinates, the
metric is conformally flat. We have applied this technique
to three different metrics: 1þ 1 dimensional sections of
Alcubierre, Gödel and Kerr metrics. For Alcubierre and
Gödel, the conformal factor turns out to be Ω2 ¼ 1, so the
only difference between both solutions is the coordinate
transformation employed in each case. Setting a Gaussian
solution in Minkowski spacetime, and after undoing the
coordinate transformation, we obtain the solutions (7)
and (8), for Alcubierre and Gödel spacetimes, respectively.
In this way, we have been able to analyze the FTL behavior
of massless particles in these exotic spacetimes. In the case
of the Kerr metric, the conformal factor is nontrivial
Ω2ðrÞ ¼ 1 − 2Mr

ΣðrÞ. We find an analytical solution in a spatial

section with θ0 ¼ 0. We have discussed the dependence of
this solution on the black-hole mass and rotation, as well
as the behavior of the particle near the singularities and
within the ergosphere. Finally, we have shown that our
technique is valid also for nonstatic spacetimes.
Our results might, in principle, be useful in the context of

quantum simulations of the Dirac equation. In particular,
following the spirit of [11], notice that our technique entails
that curved spacetimes can be encoded into a transforma-
tion realized onto a flat-spacetime Dirac wave packet.
Therefore, in principle, our results could be tested in
already existing quantum simulators of the Dirac equation
in flat spacetime.
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