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We show that for four-dimensional gauge theories in the conformal window, the anomaly, known as the
a function, can be computed from a two-point function of the trace of the energy momentum tensor making
it more amenable to lattice simulations. Concretely, we derive an expression for the a function as an integral
over the renormalization scale of quantities related to two- and three-point functions of the trace of the
energy momentum tensor. The crucial ingredients are that the square of the field strength tensor is an
exactly marginal operator at the Gaussian fixed point and that the relevant three-point correlation function
is finite when resummed to all orders. This allows us to define a scheme for which the three-point
contribution vanishes, thereby explicitly establishing the strong version of the a theorem for this class of
theories.
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I. INTRODUCTION

The conformal anomaly, first known as the central
charge c of the Virasoro algebra, is key to the physics
of conformal field theories (CFTs) as it is a measure of the
number of degrees of freedom. The Weyl anomalies
discovered in the 1970’s (see [1] for a review of the topic)
state that this central charge appears in the trace of the
energy momentum tensor (TEMT) when there is a curved
background, hTρ

ρiCFT ¼ −ðβc=ð24πÞÞR, elevating the cen-
tral charge to a β function; βc ≡ c. The c theorem [2] can be
stated in terms of Cardy’s formula [3]

Δβ2Dc ¼ βUVc − βIRc ¼ 3π

Z
d2xx2hΘðxÞΘð0Þic ≥ 0; ð1Þ

where Tρ
ρjflat → Θ and h…ic stands for the connected

component of the vacuum expectation value (VEV). It is
assumed that the theory flows from an ultraviolet (UV)
to an infrared (IR) fixed point (FP). The inequality,
Δβ2Dc ≥ 0, establishes the irreversibility of the renormali-
zation group (RG) flow and follows from the positivity
of the spectral representation and the finiteness of the
correlator in (1).

In 4D, the situation is more involved as there are further
terms in the TEMT,

hTρ
ρðxÞi ¼ −ðβIRa E4 þ βIRb H2 þ βIRc W2Þ þ 4b̄IR□H: ð2Þ

Above H ≡ R=ðd − 1Þ and as opposed to [4], we have
omitted a cosmological constant term for brevity. In
particular, we denote the coefficients of the geometric
invariants by β functions except the □R term which is a
Weyl variation of the local R2 term. In CFTs, βb ¼ 0 and
βa, βb and b̄ are the true conformal anomalies.
The a theorem, Δβa ¼ βUVa − βIRa > 0, was conjectured

early on [5], and a proof in flat space uses the four-point
function of the TEMT, anomaly matching and analyticity
[6,7].1 A stronger version of the theorem requires an
interpolating function β̃aðμÞ that reduces to βUV;IRa at the
respective FPs, satisfying monoticity, dln μβ̃a ≥ 0, along the
RG flow. A perturbative argument was given in [9] by
finding a function satisfying dln μβ̃a ¼ ðχAB þ…ÞβAβB,
where the Zamolodchikov metric χAB is positive by
unitarity at the Gaussian FP.2

A representation similar to (1) has been proposed
involving two- and three-point functions [11],

*vladimir.prochazka@physics.uu.se
†roman.zwicky@ed.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In curved space, βa can be assessed from a two-point
function [8].

2This argument was generalized to conformal perturbations at
interacting FPs in [10]. In both cases, the positivity is controlled
by the smallness of perturbative corrections encoded in the dots.
In 2D, the strong c theorem was proven in the original paper [2]
without reference to perturbation theory.
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Δβa ¼
1

3 · 28

�Z
x
x4hΘðxÞΘð0Þic

− 2

Z
x

Z
y
½ðx · yÞ2 − x2y2�hΘðxÞΘðyÞΘð0Þic

�
; ð3Þ

where
R
x ≡

R
d4x. This expression is derived in

Appendix B using conformal anomaly matching. As
alluded above, this expression does not lend itself to
positivity because of the presence of the three-point
function. In this work, we will show that for gauge theories
with gauge couplings only, the three-point function term
drops for theories in the conformal window cf. Fig. 1. This
establishes the positivity with Euclidean methods and
makes the evaluation more amenable to lattice simulations.

A. Executive summary

In the remainder of this introduction, we give an
executive summary of our work leaving the derivation of
equations and definitions of schemes to the main part of the
paper. Our assumptions are (i) that the TEMT assumes the
form

Θ ∼ βA½OA� þ equation of motion terms ð⇐L ¼ gA0OAÞ;
ð4Þ

(summation over A implied) and (ii) that the beta functions
βA ≡ d

d ln μ g
A vanish in the IR and UV.3 Above operators

with square brackets denote renormalized composite
operators, e.g., OA ∼G2 in the case at hand, where
G2 ≡ ðGa

μνÞ2, is the standard field strength tensor squared
known from quantum chromodynamics (QCD). Using
these assumptions allows us to derive

Δβa ¼
1

4

Z
∞

−∞
ðχRABðμ0ÞβAβB − χRABCðμ0ÞβAβBβCÞd ln μ0;

ð5Þ

from (3). The β functions are μ dependent through the
couplings, and the χ’s are the analogues of the
Zamolodchikov metric (cf. Appendix A for definitions
and notational conventions).4 The expression (3) is derived
in Sec. II and is a new result of this paper.
For our work, the crucial input is that the leading order

correction to the noninteracting FP is

χRABC ¼ OððgIÞ2Þ; χRAB ¼ OððgIÞ0Þ: ð6Þ

The main focus of this paper will be on asymptotically free
QCD in the conformal window regimewhere (6) follows by
using the conformal operator product expansion (OPE)
(c.f. Appendix C) and is of course easily established by
direct computation as well. Using (6) and our previous
work on finiteness of two- and three-point functions, we are
able to define a scheme, referred to as the R3χ scheme, for

which χ
R3χ

ABCðμÞ ¼ 0 along the flow. This establishes the
main result of our paper

FIG. 1. The conformal window for supersymmetric (left) and nonsupersymmetric (right) gauge theories for quarks in the matter in the
fundamental (yellow) and two index antisymmetric (green) representation of the SUðNcÞ gauge group. The upper boundaries are
dictated by the loss of asymptotic freedom, and the lower boundaries are known inN ¼ 1 supersymmetric gauge theories thanks to the
electromagnetic duality [12], and for nonsupersymmetric gauge theories, they are debated in lattice simulations, and for the actual
values, we have taken the boundaries given by Dyson-Schwinger equations [13]. Inside the yellow and green bands, the theory is
expected to flow to an conformal IR FP. Below these regions, the chiral symmetry is spontaneously broken in the IR which is the case for
quantum chromodynamics (QCD).

3For gauge theories with chiral symmetry breaking, the
assumption Θ ∼ βAOA breaks down since the goldstone bosons
couple with a termΘ ∼□π2, which cannot be improved since it is
in conflict with chiral symmetry [14,15] leading to subtleties for
flow theorems [4,16].

4Whereas the χ’s are dependent on a generic scheme R, the
two flow integrals themselves are scheme independent, cf. [4].
We will refer to χABC as the three metric throughout in a loose
analogy to the Zamolodchikov metric in two dimensions.
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Δβa ¼
1

4

Z
∞

−∞
ðχRABðμ0ÞβAβBÞd ln μ0

¼ 1

3 · 28

Z
x
x4hΘðxÞΘð0Þic > 0; ð7Þ

valid for the assumptions specified above and satisfying
(6). On a side note, this means that Δβa ¼ 2Δb̄≡
2ðb̄UV − b̄IRÞ, for the same conditions, since the flow
theorem for b̄ can be expressed in terms of the same
two-point function [4]. This relation was conjectured to
hold for general classically conformal QFTs in [17]. In this
work, we show under what conditions this relation holds. A
case where it fails is when the theory contains scalar
couplings and the three-point function does contribute.
The paper is organized as follows. The cornerstones,

formula (5) and the scheme χ
Rχ

ABCðμÞ ¼ 0, are established in
Secs. II and III, respectively. More precisely, in Sec. III. A,

it is shown that χ
Rχ

ABC satisfies (6), used in Sec. III B to
derive the finiteness of the counterterm which then allows
the explicit construction of the scheme for which

χ
Rχ

ABCðμÞ ¼ 0 in Sec. III C. Definitions, including notation
from our previous work, are reviewed in Appendix A. The
sum rule (3) is derived in Appendix B, and a more formal
argument for the first equation in (6), underlying the above
mentioned scheme, is given in Appendix C.

II. THE FLOW OF E4 (OR βa) AS AN
INTEGRAL OVER THE RG SCALE

It is the aim of this section to derive (5). The presentation
below is similar to the one given for the □R flow in [4],
where we have shown that5

Δb̄ ¼ 1

3 · 27

Z
x
x4hΘðxÞΘð0Þic ¼

1

8

Z
∞

−∞
χRABβ

AβBd ln μ0:

ð8Þ
The starting point is formula (3), which is derived in
Appendix B. Using (8), one may write

Δβa ¼ 2Δb̄ −
1

4
P̂λ3Γθθθðpx; pyÞjpx¼px¼0; ð9Þ

where

Γθθθðpx; pyÞ ¼
Z
x

Z
y
eiðpx·xþpy·yÞhΘðxÞΘðyÞΘð0Þic; ð10Þ

and P̂λ3 is defined in (B10).6

The transformation of the equation above into an
integral representation over the RG scale, necessitates
the discussion of the renormalization prescription. To
regularize, we use dimensional regularization with
d ¼ 4 − 2ϵ. The correlator is renormalized by a splitting
of the bare function into a renormalized ΓR and a counter-
term LR ¼ P

n≥1L
R
n ϵ

−n,

Γθθθðpx; pyÞ ¼ ΓR
θθθðpx; py; μÞ þ L1;R

ðθÞθθðμÞP3 þ L1;R
θθθ ðμÞλ3;

ð11Þ

which consists in a Laurent series. Above λ3 (Källén
function) and P3 are the three- and two-point kinematic
structures,

λ3 ≡ p4
x þ p4

y þ p4
z − 2ðp2

xp2
y þ p2

xp2
z þ p2

yp2
zÞ;

P3 ≡ p4
x þ p4

y þ p4
z ; ð12Þ

where momentum conservation, pz þ px þ py ¼ 0, is

implied. The quantities L1;R
ðθÞθθðμÞ,L1;R

θθθ ðμÞ are Laurent series
in ϵ depending on the running couplings of the theory.
From (9), it is seen that L1;R

θθθ is the key quantity which we
analyze by its scale dependence

χRθθθðμÞ¼
�
2ϵ−

d
d lnμ

�
L1;R
θθθ ðμÞ ¼ϵ→0−

d
d lnμ

L1;R
θθθ ðμÞ: ð13Þ

In the last equality, we used the result of [18] that L1;R
θθθ is

finite after resummation of divergences. In establishing the
flow formula (5), we follow the logic of [4] and introduce
the so-called momentum space subtraction (MOM)
scheme, defined by

χMOM
θθθ ¼ −

d
d lnp

����
p¼μ

P̂λ3Γθθθðp;−pÞ: ð14Þ

By solving the above ordinary differential equation, we
arrive at

P̂λ3ΓθθθðgQðpÞÞ ¼
Z

∞

lnp=μ0

χMOM
θθθ d ln μ0

¼
Z

ln μ=μ0

lnp=μ0

χMOM
θθθ d ln μ0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P̂λ3

ΓMOM
θθθ ðp=μ;gQðμÞÞ

þ
Z

∞

ln μ=μ0

χMOM
θθθ d ln μ0

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L1;MOM
θθθ ðgQðμÞÞ

; ð15Þ

where the split on the second line is compatible with (13).
In order to pass to the coupling coordinates, one uses the
assumption (4) to write

5For remarks concerning adding a local term δL ∼ w0R2 to the
bare action, with regards to Eqs. (3) and (8), cf. Appendix B.2 or
our previous work [4].

6Assuming the IR limit px, py → 0 to be regular, we can
choose to approach 0 by taking, for example, px ¼ −py ¼ p → 0

and define a function fðp2Þ≡ P̂λ3Γθθθðp;−pÞ.
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Γθθθ ¼ βAβBβCΓABCðpx; pyÞ; ð16Þ

with

ΓABCðpx;pyÞ¼
Z
x

Z
y
eiðpx·xþpy·yÞh½OAðxÞ�½OBðyÞ�½OCð0Þ�ic:

ð17Þ
Renormalization of the above correlator and further defi-
nitions [e.g., χRABC in (A8)] are reviewed in Appendix A. It
is now possible to define a MOM-scheme relation ana-
logical to (14) for the correlator (17). In this MOM scheme,
we can use the relation χMOM

θθθ ¼ βAβBβCχMOM
ABC , which in

turn follows from substituting (4) into (14).
The final expression forΔβa is obtained by taking p → 0

limit of (15) and inserting the result to (9)

Δβa ¼
1

4

Z
∞

−∞
ðχMOM

AB βAβB − χMOM
ABC βAβBβCÞd ln μ0: ð18Þ

Although as it stands, (18) is written in a specific scheme,
just like for Δb̄ [4], scheme independence followed by
observing that a change from a scheme R1 to R2 is given
by a cohomologically trivial term,

δχθθθ ¼ χR2

θθθ − χR1

θθθ ¼
d

d ln μ
ω; ð19Þ

where ω ¼ ðβAβBβCωABCÞ with ωABC parametrizing the
change of scheme, cf. Eq. (A10). This establishes the
representation (5) and completes the aim of this section.
We have also checked that Eq. (18) is consistent with the
MS-scheme formulas of [19] (namely 3.17b and 3.23 in
this reference).

III. THE THREE METRIC χ ggg IN
GAUGE THEORIES

In this section, we restrict ourselves to QCD-like theories
with one gauge coupling g and massless fermions. The
generalization of the following result to multiple coupling
theories satisfying (6) is straightforward. Before we pro-
ceed, let us establish the notation. The trace anomaly for
gauge theories reads

Θ ¼ β

2
½Og�; ð20Þ

where β ¼ d ln g
d ln μ is the logarithmic beta function. The

corresponding operator Og is the field strength squared

½Og� ¼
�
1

g20
G2

�
; ð21Þ

with the somewhat nonstandard treatment of the coupling
constant (and G2 has been defined previously). The
mapping to the general expressions (5) and (7) is done

by comparing (4) and (20), which gives OA → Og and
βA → 1

2
β omitting the superscript g on the β function for

brevity.
In Sec. III A, it is shown that χggg ¼ Oðg2Þ, from where it

is deduced, in Sec. III B, that the counterterm to the three-
point function Lggg is finite when summed to all orders for
all points along the flow. Based on this, in Sec. III C, a

scheme is defined for which χ
R3χ
ggg ðμÞ ¼ 0, leading to the

main result of the paper.

A. The vanishing of χ ggg at the UV fixed point

Technically, we will show that χggg ¼ Oðg2Þ. The three-
point function can be computed at leading order directly in
momentum space by evaluating the diagram in Fig. 2,
which gives

Γgggðpx;pyÞ≡ 1

g60

Z
x

Z
y
eiðpx·xþpy·yÞh½G2ðxÞ�½G2ðyÞ�½G2ð0Þ�ic

¼ 1

π2
1

ϵ
ðp4−2ϵ

x þp4−2ϵ
y þp4−2ϵ

z Þ

þ 1

π2

�
−
1

2
λ3−P3

�
þOðϵ;g2Þ; ð22Þ

where the two- and three-point kinematic structures P3 and
λ3 are defined in (12). It is observed that at leading order in
the coupling there is no divergent contribution to the three-
point function kinematic structure λ3; or more precisely, to
the projector P̂λ3 (B10) applied to the correlation function.
The two-point function structure P3 is not relevant for our
work. From (11) and the definition of χggg (A8), χggg ¼
Oðg2Þ follows. In principle, this completes the task of this
section, but we think it is instructive to add a few more
comments.
First, as demonstrated in the Appendix C, this can

also be understood from the fact that for an exactly
marginal operator the λ3 structure vanishes in a CFT
[20]. In the language of [20], the structure P3 is referred

FIG. 2. (left) Leading order diagram contributing to Γggg with
no divergence in the three-point structure λ3 after Fourier trans-
formation. This is in accordance with (6). (right) Leading order
diagram contributing to the correlator of ϕ4 operators (23). In
momentum space, this corresponds to a four loop graph and does
lead to divergencies in the λ3 structure from where one can infer
that the ϕ4 coupling acquires a RG running.
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to as semilocal, and that is at least one delta function in
coordinate space; δðxÞ 1

y2d þ permutations ↔ p4−2ϵ 1
ϵ þ

permutations, in the case (22). For noncoincident points,
the correlation function is indeed proportional to (d − 4),
cf. [21,22]. It is in particular instructive to consider a case
where this fails. An example is a free conformally coupled
scalar field for which ϕ4 is an operator of scaling dimension
four but since its perturbation δL ∼ λϕ4 induces an RG
flow, namely βλ ≠ 0, it is not exactly marginal. In the
explicit computation, one obtains in coordinate space

h½ϕ4ðxÞ�½ϕ4ðyÞ�½ϕ4ð0Þ�ic ¼
8

x4y4ðx − yÞ4 ; ð23Þ

which is clearly not semilocal and will contribute to the λ3
structure upon Fourier transformation. On a side note, it is a
remarkable circumstance that from the evaluation (23), one
can infer that the βλ ≠ 0, cf. discussion in Appendix C
and [20].
Second, one might wonder whether something similar

is possible for the two-point function. The answer is no for
the following reasons. If it were possible to set χAB ¼ 0 in
some scheme then it would also imply that Θ ¼ 0 by
reflection positivity in (8) which is incompatible with a
nontrivial flow. The explicit straightforward computa-
tion for the two-point function at leading order gives,
h½G2ðxÞ�½G2ð0Þ�i ¼ 96=x8 þOðg2Þ, a noncontact term
contribution, unlike (22), whose Fourier transform gives
rise to ln μ-dependent term. Moreover, the formal argument
given in Appendix C does not descend to two-point
functions.

B. Finiteness of the three-point function

Following the analysis in [18], we study the finiteness of
L1;R
ggg , the resummed Laurent series, after removing the

regulator ϵ ¼ ðd − 4Þ=2. This serves as the basis for
defining the R3χ scheme in the next section. The quantity
L1;R
ggg is defined in analogy to L1;R

θθθ in (11). In dimensional
regularization, the renormalization group equation (A8)
reads7

χRggg ¼ ð2ϵ − LβÞL1;R
ggg ¼ ð−2β̂∂ ln as − 6ð∂ ln as β̂Þ þ 2ϵÞL1;R

ggg ;

ð24Þ

where we used the d-dimensional logarithmic beta function
β̂ ¼ −ϵþ β and as ≡ g2=ð4πÞ2. This equation allows for
the integral solution

L1;R
ggg ðasðμÞ; ϵÞjUV ¼ μ2ϵ

β̂3

Z
∞

ln μ
β̂3ðμ0ÞχRgggðμ0Þ

d ln μ0

μ02ϵ
: ð25Þ

This expression is well-defined for μ > 0, convergent for
μ0 → ∞, as we will show shortly for the asymptotically free
and asymptotically safe case. Anticipating the result and
removing the regulator (ϵ → 0), the expression becomes

L1;R
ggg ðasðμÞ; 0Þ ¼

1

β3

Z
∞

ln μ
β3ðμ0ÞχRgggd ln μ0

¼ −
1

2β3

Z
asðμÞ

0

β2ðuÞχRgggðuÞ
du
u
; ð26Þ

where the second integral representation in (26) is useful
for practical computation.

(i) In the asymptotically free case (Gaussian FP), the β
function and the three metric behave as

β ∼ as ∼μ→∞ 1

ln μ
; χRggg ∼ as ∼

1

ln μ
; ð27Þ

in accordance with (6). Inserting this back into the
integral (26), we see that the solution behaves
regularly near the UVFP

L1;R
ggg ∼μ→∞

Oð1Þ; ð28Þ
since the ln μ−3 from the integral is cancelled by the
1=β3 prefactor.

(ii) We can also apply similar arguments for RG flows
in the vicinity of a nontrivial UVFP aUVs , which
corresponds to the asymptotically safe scenario (see
[23] for some recent discussion of this possibility).
In this case, the UV behavior is

β ∼μ→∞
μ−γ

�
; χRggg ∼μ→∞

χ�ggg; ð29Þ
where χ�ggg ≡ χRgggðaUVs Þ and γ� ¼ ∂ ln asβjas� > 0 is
the anomalous dimension of ½G2� at the FP. One getsZ

∞

ln μ
β3ðμ0ÞχRgggðμ0Þd ln μ0 ∼μ→∞ 1

3γ�
χ�gggμ−3γ

�
: ð30Þ

By inserting this back to (26), we find again finite

UV behavior L1;R
ggg ∼μ→∞

Oð1Þ. In fact, it is straight-
forward to see that provided γ� ≠ 0, for any FP as�
the Eq. (24) always allows for a finite solution

L1;R
ggg ðas�; 0Þ ¼ −

1

6γ�
χ�ggg: ð31Þ

Let us now turn to the issue of IR convergence. Clearly, the
presence of 1

β3
in the solution (26) indicates additional

problems when the IR limit as → aIRs is taken. Note
however, that near the IRFP another solution to (24) can
be found

L1;R
ggg ðasðμÞ;ϵÞjIR ¼−

μ2ϵ

β̂3

Z
lnμ

−∞
β̂3ðμ0ÞχRgggðμ0Þ

d lnμ0

ðμ0Þ2ϵ ; ð32Þ7The quantity χRggg corresponds to χ̄aggg in the classic paper of
Jack and Osborn [19].
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well-defined for μ < ∞. After taking ϵ → 0 [which is
justified for the same reasons as (25)], one gets

L1;R
ggg ðasðμÞ; 0Þ ¼ −

1

β3

Z
ln μ

−∞
β3ðμ0ÞχRgggðμ0Þd ln μ0

¼ −
1

2β3

Z
asðμÞ

aIRs

β2ðuÞχRgggðuÞ
du
u
: ð33Þ

By repeating the analysis leading to (27) and (28) near the
IRFP, we conclude that (32) is well-defined in the vicinity
of aIRs .
Assuming that the theory is free from any singularities in

the coupling space, the solutions (25) and (32) should be
compatible on overlapping domains. By subtracting (25)
from (32) (and taking ϵ → 0 limit), we find a continuity
condition

�Z
ln μ

−∞
þ
Z

∞

ln μ

�
β3ðμ0ÞχRgggd ln μ0

¼
Z

∞

−∞
β3ðμ0ÞχRgggd ln μ0 ¼ 0: ð34Þ

This is consistent with the vanishing of the three-point
contribution in (5), which can therefore be seen as the direct
consequence of the finiteness and coupling continuity of
L1;R
ggg . Indeed, in the next section, we will show how the

above results can be used to construct a scheme, where the
three metric vanishes.

C. Constructing the R3χ scheme
for the three metric χ ggg

A change of scheme, cf. Eq. (A10), is given by a finite
shift ωgggðasÞ in the counterterms

L1;R2
ggg ¼ L1;R1

ggg − ωgggðasÞ: ð35Þ

Using (24), we can deduce that under such a shift the three
metric transforms as

χR2
ggg ¼ χR1

ggg þ ð2β∂ ln as þ 6ð∂ ln asβÞÞωggg: ð36Þ

Since the ϵ → 0 limit of L1;R1
ggg is uniform as shown in the

previous section, we can choose

ωgggðasÞ≡ L1;R
ggg ðas; ϵ ¼ 0Þ; ð37Þ

to define a new scheme R3χ for which

χ
R3χ
ggg ðμÞ ¼ 0 ð38Þ

is automatic. This scheme is new to this paper and not to be
confused with the previously discussed MOM scheme.

By using (38) in the general scheme-independent expres-
sion (18), we finally arrive at the desired result

Δβa ¼
1

16

Z
∞

−∞
χRgggβ

2d ln μ0: ð39Þ

We would like to end this section by demonstrating how to
construct such a scheme in perturbation theory. Using the
two-loop formulas of [19], we extract

χMS
ggg ¼

ng
4π2

ð−2β0asÞ: ð40Þ

where β0 is one-loop coefficient of the beta function β ¼
−β0as þOðas2Þ, the gluons and Nf fermions are assumed
to be in the adjoint and fundamental representation of an
SUðNcÞ gauge group, respectively (ng ≡ N2

c − 1), and MS
denotes the standard minimal subtraction scheme. By
performing a scheme change (36) with

ωggg ¼ −
1

3

ng
4π2

; ð41Þ

we achieve

χ
R3χ
ggg ¼ 0þOðas2Þ; ð42Þ

as expected at this order in the perturbation theory. At the
perturbative Banks-Zaks FP asIR ∝ β0 ≪ 1. Since χggg is
absent, Δβa in this theory can be computed purely by
substituting the known perturbative expressions for the beta
function and χgg in (8) as was done up to five loops in [4]
(see Eq. 60 and the discussion below in this reference).

To find χ
R3χ
ggg at higher orders, one would need to use the

two-loop beta function together with the three-loop expres-
sion of χggg, which is not presently available to the authors.
Nevertheless, using the formulas of this paper, some
general predictions about the behavior of these higher
order corrections can be made (cf. Appendix D).
Recently, χMS

ggg was computed to leading order in the large
Nf expansion in [24] by resumming infinite number of
bubble diagrams. The result reads

χMS
ggg ¼

ng
4π2

1

3K
∂
∂K

�
K2H̄

�
2

3
K

��
þO

�
1

Nf

�
; ð43Þ

where K ¼ 2asNf and

H̄ðxÞ ¼ ð80 − 60xþ 13x2 − x3ÞxΓð4 − xÞ
120ð4 − xÞΓð1þ x

2
ÞΓð2 − x

2
Þ : ð44Þ

Since to leading order in 1
Nf

the β function is a one-loop

exact β ¼ 1
3
Kð1þOð1=NfÞÞ, it is possible to use our

formula (26) together with (37) to find the R3χ trans-
formation corresponding to (43). The result reads
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ωggg ¼ −
1

2

ng
4π2

H̄ð2
3
KÞ

K
þO

�
1

Nf

�
: ð45Þ

The formula above represents an application of our result
beyond perturbation theory. By reexpanding expression
(45) in small K, we find that the leading term agrees
with (41).

IV. CONCLUSIONS AND DISCUSSIONS

Our starting point was the derivation of a formula for the
Euler anomaly or a function as an integral over the RG
scale of a two- and three-point functions of the trace of the
energy momentum tensor (5), valid for theories which are
governed by β functions at both fixed points (4).
For gauge theories in the conformal window, the

formula collapses to the two-point function (7). Our main
assumption for the proof is that the ultraviolet and infrared
solution (25) and (32), of the renormalization group
equation (24), can be matched continuously. This allowed
us to define an explicit prescription, the R3χ scheme (37),
for which the three metric vanishes. In particular, our result
means that for those theories, the Euler flow and the □R
flow are identical (8). The reason this works for gauge
couplings, and not for generic couplings, is that for the
former the three-point function collapses to a two-point
function near the trivial FP (22). This is a consequence of
the vanishing of the leading order contribution to the three
metric (6) and can also be understood from the fact that the
field strength tensor squared is an exactly marginal operator
at zero coupling, cf. Appendix C. An example where this
fails is a scalar free field theory for which ϕ4 is not an
exactly marginal operator and its nonzero β function
induces a three-point function structure at leading order,
prohibiting the use of the R3χ scheme.
In the light of the above remarks, one might wonder,

whether the result can be applied to gauge theories with
supersymmetry including scalar fields such as supersym-
metric QCD (SQCD). The extension is possible owing the
same form of the anomaly (4) in SQCD [25]. In super-
symmetric gauge theories without a superpotential, the
matter and gauge contributions are related through the
Konishi anomaly [26], so that the trace anomaly can be
expressed solely in terms of the field strength tensor
squared up to equation of motion terms. We therefore
expect that the main results of this paper should apply to
N ¼ 1 SQCD in the conformal window.8

Another corollary of our analysis is that for the class of
theories studied in this paper, the strong a theorem applies.
One defines the off-critical quantity

β̃aðμÞ ¼ βUVa −
1

16

Z
∞

ln μ
χMOM
gg β2d ln μ0; ð46Þ

which reduces to βIRa in the limit μ → 0 by (39) and gives a
(scheme dependent) interpolating function between the
fixed points. The monotonicity of this function follows
from the positivity of χMOM

gg , established in [4].
Moreover, the perspective of implementing the a theo-

rem in the conformal window on the lattice have improved
since it is related to a two-point function.9 Supersymmetric
lattice gauge theories [31] could be a particularly interest-
ing test ground as the Euler anomaly is exactly known [32].
In practice though, lattice Monte Carlo simulation are done
at a finite quark mass, which does not fall into our class of
theories.10 A pragmatic way to deal with this problem is to
choose an infrared cutoff Λ−1

IR ,

AðΛIR; mq; LÞ≡ 1

3 · 28

Z
Λ−1
IR

0

d4xx4hΘðxÞΘð0Þic; ð47Þ

on the integral (7). The function A is expected to plateau
to Δβajmq¼0 for Λ−1

IR lower than the inverse quark mass mq

for which the theory behaves like a massless theory.11

FIG. 3. The Euler flow, Δβa (7), as a function of the IR cutoff
ΛIR on the spacial integral (47). The scale Λ−1

g is related to the
running of the β function and can be expected to be of the order of
the scale where the derivative of the β function changes sign
[34,35]. The proposed formula is given in Eq. (48). Note that the
asymptotic value 2Δb̄jmq>0 is a nontrivial quantity whose value is
not yet understood [4]. The determination of the latter would
therefore be an additional benefit of a lattice investigation.

8Some care has to be taken when passing from the dimensional
regularization to SUSY-preserving schemes (see Appendix A of
[27] for some details of how this is to be done).

9This requires the renormalization of the energy momentum
tensor on the lattice which is a nontrivial task because of the
breaking of the space-time symmetries [28]. See also [29,30] for
some recent proposals using the gradient flow technique.

10The TEMT contains a term of a the form Θ ∼mð1þ γmÞq̄q
in addition to the β-function terms (4), where γm is the quark mass
anomalous dimension. Thus, unless γIRm ¼ −1, this does not
correspond to a CFT in the IR.

11None of these scales should be confused with the lattice size
L. In particular, Λ−1

IR < L holds strictly by construction. To avoid
finite size effects, one has to impose m−1

q ≪ L; as for the two-
point function, the quark mass correction ought to be exponential
expð−mHLÞ, where mH ∼ ðmqÞηH with ηH ≡ 1=ð1þ γIRm Þ is a
mass of a hadron [33].
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More precisely, the flat region corresponds to the near-
conformal behavior in the vicinity of the IRFP. Thus, one
would expect Δβa to plateau to the massless case

Δβajmq¼0 ≃ AðΛ�
IR; mqÞ; Λ−1

g ≪ ðΛ�
IRÞ−1 ≪ m−1

q ; ð48Þ

for the above mentioned range, cf. Fig. 3 for a schematic
illustration and an explanation about the scale Λg. It would
be interesting to apply this procedure to the case where the
IR phase is chirally broken and investigate the expected
appearance of the lnmq divergence induced by the gold-
stone bosons [4,16].

ACKNOWLEDGMENTS

We are grateful to Luigi Del Debbio, José Latorre,
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APPENDIX A: CONVENTIONS FOR COMPUTING
CORRELATORS

In this Appendix, we will give a brief review of the
notation related to the renormalization of composite oper-
ator correlators adapted from [18].
We start with the two-point functions of classically

marginal renormalized operators ½OA�

ΓABðp2Þ ¼
Z

d4xeip·xh½OAðxÞ�½OBð0Þ�ic
¼ ΓR

ABðp2; μÞ þ L1;R
AB μ−2ϵp4; ðA1Þ

where the subtraction constant L1;R
AB is a function of

couplings of the theory and it contains Laurent series in
ϵ as well as a finite part and ΓR

ABðp2; μÞ is the finite
renormalized correlator. A scheme R is determined by the
choice of the finite part of L1;R

AB . The finite quantity called
Zamolodchikov metric is obtained via

ð2ϵ − LβÞL1;R
AB ¼ χRAB; ðA2Þ

where Lβ denotes the Lie derivative on a two tensor in
coupling space

LβL
1;R
AB ¼ ∂Aβ̂

CL1;R
CB þ ∂Bβ̂

CL1;R
AC þ β̂C∂CL

1;R
AB : ðA3Þ

Since the bare correlator is scale independent, the
Zamolodchikov metric can be also defined directly from
the finite renormalized correlators, e.g., [36], as follows:

�
−

∂
∂ ln μþ Lβ

�
ΓR
ABðp2; μÞ ¼ χRABp

4: ðA4Þ

A scheme change is implemented using a finite, coupling
dependent constant ωAB via

ΓR
AB → ΓR

AB þ ωABp4; L1;R
AB → L1;R

AB − ωAB; ðA5Þ

leaving the bare correlator invariant. Under such change,
we get a shift in the Zamolodchikov metric

χRAB → χRAB þ LβωAB: ðA6Þ

The three-point functions can be defined in a similar
manner

ΓABCðpx; pyÞ

¼
Z

d4xd4yeiðpx·xþpy·yÞh½OAðxÞ�½OBðyÞ�½OCð0Þ�ic
¼ ΓR

ABC þ L1;R
ðAÞBCp

4
x þ L1;R

ABCPyz þ cyclic; ðA7Þ

where cyclic permutation over the pairs ðA; xÞ, ðB; yÞ, and
ðC; zÞ is implied. Furthermore, px þ py þ pz ¼ 0 and
Pyz ¼ p4

x − p2
xðp2

y þ p2
zÞ are kinematic structures vanish-

ing whenever any of the three external momenta px;y;z is set

to zero. Just as above, L1;R
ðAÞBC and L1;R

ABC are subtraction

constants containing Laurent series and finite parts. It
follows that the L1;R

ðAÞBC coefficients can be determined

from the two-point functions information (see [18] for the
exact definition).
The new, purely three-point information is encoded in

the L1;R
ABC tensor. Again the scale derivative,

ð2ϵ − LβÞL1;R
ABC ¼ χRABC; ðA8Þ

proves useful. Above Lβ denotes the Lie derivative, acting
on a three-tensor,

LβL
1;R
ABC ¼ ∂Aβ̂

DL1;R
DBC þ ∂Bβ̂

DL1;R
ADC þ ∂Cβ̂

DL1;R
ABD

þ β̂D∂DL
1;R
ABC: ðA9Þ

We can also define χRABC through the finite renormalized
correlator ΓR

ABC by using a relation analogical to (A4) and
projecting onto Pyz etc.
The scheme change in χRABC is implemented via constant

ωABC, which is now independent of ωAB from (A6) (this
follows since the structure L1;R

ABC is independent of the two-
point function). Under such scheme change, we have
L1;R
ABC → L1;R

ABC − ωABC, and therefore,

χRABC → χRABC þ LβωABC: ðA10Þ
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APPENDIX B: DERIVATION OF THE
THREE-POINT SUM RULE

In this Appendix, we provide a derivation of the three-
point sum rule (3) used in Sec. II to derive a RG-scale
integral representation for the Euler flow Δβa. Using the
quantum action principle, a constraint on a gravity counter-
term is worked out in Sec. B. 1, which is then used in the
anomaly matching argument in Sec. B. 2 to derive the
sum rule.

1. Renormalization in curved space and βUVa
In an external gravitational field, one needs to add

counterterms,

Lgravity ¼ −ða0E4 þ c0W2 þ b0H2Þ; ðB1Þ

to the action to renormalize the theory [37]. The bare
couplings are defined as a0 ¼ μd−4ðaRðμÞ þ LR

a ðμÞÞ etc.,
and geometric quantities are the same as in (2) except for
□R, which being a total derivative does not contribute to
the action. The main idea is that the quantum action
principle (differentiation with respect to sources) leads
to finite quantities and thus, to constraints on the
counterterms. Concretely, a triple Weyl variation δsðxÞ
(gμν → e−2sðxÞgμν) leads to

Z
x

Z
y
eiðpx·xþpy·yÞ δ3

δsðxÞδsðyÞδsð0Þ lnZ ¼ ð2kϵa0 − 8b0Þλ3
þ Γθθθðpx; pyÞ ¼ ½finite�; ðB2Þ

where the abbreviation kϵ ≡ ðd − 4Þðd − 3Þðd − 2Þ is intro-
duced and we used (10) to include the dynamical con-
tribution. By using (11), we conclude that the finiteness of
L1;R
θθθ ensures finiteness of the combination ð2kϵa0 − 8b0Þ in

(B2). Since b0 has been shown to be finite [18], it is to
be concluded that the quantity kϵa0 is finite. In particular,
this means that the ϵ → 0 limit kϵa0 is meaningful

lim
ϵ→0

kϵa0 ≡ lim
ϵ→0

kϵðLUV
a þ aUVÞ ¼ −2βUVa : ðB3Þ

In the last step, we used that aUV is finite and that

LUV
a ¼ βUVa

2ϵ . The latter follows from βa ¼ −ð d
d ln μ − 2ϵÞLa

and the stationarity property d
d ln μL

UV
a ¼ 0 at FPs [which

can be seen by writing La ∼ x1 þ x2ðgI − gI;UVÞ with x1;2
constants and using βI;UV ¼ 0]. Equation (B3) is a relevant
observation as this implies finiteness of the corresponding
term in the dilaton effective action.

2. Sum rule from the dilaton effective action

In the three-point sum rule (3), the Euler flow βa arises,
in dimensional regularization, from an evanescent operator.

This can be seen by writing the d-dimensional Euler term as
a sum of a four dimensional and an evanescent term

ffiffiffi
g

p
Ed ¼

ffiffiffi
g

p
E4 − kϵe2ϵsð−2□sð∂sÞ2 þ ð∂sÞ4 − 2ϵð∂sÞ4Þ;

ðB4Þ

where we have assumed the conformally flat metric gαβ ¼
e−2sðxÞδαβ and kϵ ∼ ϵ is defined below (B2). The

ffiffiffi
g

p
E4 term

is a total derivative,

ffiffiffi
g

p
E4 ¼ ∂O ¼ −4ðd − 3Þðd − 2Þ

h1
2
□ðe2ϵsð∂sÞ2Þ

þ ∂ðe2ϵs∂sðð1 − ϵÞð∂sÞ2 −□sÞÞ
i
; ðB5Þ

characteristic of topological terms. The evanescent part of
the gravitational counterterms (B1) becomes the Wess-
Zumino term of the dilaton effective action in [6]

Lgravity ⊃ a0

Z
ddx

ffiffiffi
g

p ðEd − E4Þ

¼ −kϵa0
Z

ddxð−2□sð∂sÞ2 þ ð∂sÞ4 − 2ϵð∂sÞ4Þ

⟶
ϵ→0

2βUVa

Z
d4xð−2□sð∂sÞ2 þ ð∂sÞ4Þ ¼ 2βUVa SWZ;

ðB6Þ

where we have used (B3). In the preceding argument, the
finiteness of kϵa0 (and b0) was essential to ensure UV
finiteness of the dilaton effective action and match the bare
coefficient of the Wess-Zumino term to the Euler
anomaly βUVa .
Similarly, the IR effective action contains the term

2βIRa SWZ, which contributes at Oðs3Þ

lnZ ¼ −4b̄IR
Z
x
ð□sÞ2 − ð4βIRa − 8b̄IRÞ

Z
x
ð∂sÞ2□sþ � � � :

ðB7Þ

We are now ready to put all the pieces together. By Fourier
transforming the third functional derivative with respect to
s of (B7), we see that at low momenta, the lhs of (B2)
behaves as

−ð4βIRa − 8b̄IRÞλ3 þ � � � ; ðB8Þ

where the dots stand for nonlocal contributions subleading
in the momentum expansion. Assuming momentum con-
servation, pz ¼ −ðpx þ pyÞ, λ3 (12) assumes the form

λ3 ¼ 4½ðpx · pyÞ2 − p2
xp2

y�; ðB9Þ

with the associated projector P̂λ3λ3 ¼ 1 being
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P̂λ3 ¼
1

96
½ð∂px

· ∂py
Þ2 − ∂2

px
∂2
py
�; ðB10Þ

for which the P3 structure automatically vanishes
(P̂λ3P3 ¼ 0). Applying P̂λ3 to the right-hand side of (B2),
one gets

− P̂λ3Γθθθðpx; pyÞ
���
px¼px¼0

− ð4βUVa − 8b̄UVÞ
¼ −ð4βIRa − 8b̄IRÞ; ðB11Þ

where we used that ð2kϵa0 − 8b0Þ → −ð4βUVa − 8b̄UVÞ for
ϵ → 0. The three-point sum rule in momentum space
follows

Δβa ¼ 2Δb̄ −
1

4
P̂λ3Γθθθðpx; pyÞ

���
px¼py¼0

; ðB12Þ

which in position space assumes the form

Δβa¼
1

3 ·28

�Z
x
x4hΘðxÞΘð0Þic|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

3·29·Δb̄

−2

Z
x

Z
y
½ðx ·yÞ2−x2y2�hΘðxÞΘðyÞΘð0Þic

�
: ðB13Þ

The Euler flow formula (B13) is invariant under the
addition of the local δL ∼ ω0R2 term unlike the sum rule
for Δb̄ (8) which needs to be amended. Such a scheme
change (denoted as “R2 scheme” in [4]) should be viewed
as independent of (A6) and (A10).12 More concretely, the
contribution of such a shift precisely cancels between two-
and three-point parts in (B13). The reason this has to
happen is that βa is well-defined at each FP and not only as
a difference, like Δb̄. At last, we would like to mention that
Eq. (B13) itself has been derived by Anselmi [11] using
different methods.

APPENDIX C: VANISHING OF χ ggg AT THE
UV FIXED POINT—FORMAL ARGUMENT

In this Appendix, we will demonstrate how χggg ¼ 0 in
the free theory can be derived by using standard OPE
arguments [38]. We start the discussion by considering a
general perturbation,

δS ¼ λ

Z
x
OλðxÞ; ðC1Þ

for some coupling constant λ that can be set to 1 without
loss of generality. We now deform the constant λ → λþ δλ;
the corrections to a generic correlator h…i in the perturbed
theory read

h…i ¼ h…iδλ¼0 þ δλ

Z
x
hOλðxÞ…iδλ¼0

þ 1

2
δλ2

Z
x

Z
y
hOλðxÞOλðyÞ…iδλ¼0 þOðδλ3Þ:

ðC2Þ

The δλ2 term in (C2) can be obtained by using the OPE

OλðxÞOλðyÞ ¼
Cλ
λλ

jx − yj4OλðxÞ þ � � � ; ðC3Þ

where dots encompass terms irrelevant for the calculation.
By inserting this expression back into (C2) and evaluating
the

R
y integral with a UV cutoff Λ, one finds that a

logarithmic divergence appears

∼Cλ
λλδλ

2 lnΛ
Z
x
hOλðxÞ…iδλ¼0: ðC4Þ

This divergence can be removed by adding a counterterm of
the form

δλ2Cλ
λλ ln ðΛ=μÞ

Z
x
OλðxÞ: ðC5Þ

However, adding such a term amounts to introducing a β
function

βλ ∼ Cλ
λλδλ

2 þOðδλ3Þ: ðC6Þ
Hence, the nonvanishing of the βλ function and the OPE
coefficient Cλ

λλ are directly related.
We restrict our attention to the case at hand where Oλ ≡

Og ¼ G2 in the free-field theory. Since the value of δg only
affects the normalization of the kinetic term, it is clear that
the theory remains free (and therefore a CFT) for any value
of δg. Thus, β ¼ 0 and in the free theory,

Cg
gg ¼ 0: ðC7Þ

Using the fact that in a CFT the three-point function of an
operatorOλ is proportional toCλ

λλ, we conclude that also the
three-point function of Og has to vanish, which directly
implies that

χfreeggg ¼ 0: ðC8Þ
Note that the above argument shows that Og is exactly
marginal at the Gaussian fixed point. In general, an operator
is called exactly marginal if its beta function vanishes,
which is equivalent to the vanishing of the corresponding
three-point function as shown in [20,38].13

12For a more thorough discussion of various classes of
schemes, we refer the reader to [4], namely Secs. 2.3.2 and
2.3.3 of this reference.

13Note that the nonzero QCD β function should be understood
as a consequence of coupling to fermions and gluons rather than a
deformation by G2.
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APPENDIX D: THE R3χ SCHEME IN
PERTURBATION THEORY

In this Appendix, we will construct explicitly the
solutions (26) and (32) for a theory with a trivial UVFP
and a Banks-Zaks FP in the IR.
We start with the analysis near the trivial UVFP. The

scheme (37) means that given a χRggg, we should be able to
obtain ωggg to any given order in as through (26). We
demonstrate how this works for the first two nonvanishing
orders in perturbation theory. Introducing the notation,

χRggg ¼ χð1Þgggas þ χð2Þgggas2 þOðas3Þ; ðD1Þ
the scheme change ωggg to Oðas2Þ is given by performing
the integral on the right-hand side of (26) and expand-
ing the result in as,

ωgggkUV ¼ χð1Þggg

6β0
þ ð2β1χð1Þggg − β0χ

ð2Þ
gggÞas

2β20

−
7ð2β21χð1Þggg − β0β1χ

ð2Þ
gggÞas2

4β30
þOðas3Þ; ðD2Þ

where the two-loop β function is parameterized by
β ¼ −β0as − β1as2. It is easily verified that

χ
R3χ
ggg ¼ χRgggþð2β∂ lnas þ6ð∂ lnasβÞÞωggg¼ 0þOðas3Þ:

ðD3Þ
Note that (D2) is Oð1Þ and therefore, nonzero at the UVFP
even though χRggg itself vanishes there.

In the IR, we assume a (Banks-Zaks) FP at aIRs ¼
− β0

β1
≪ 1, which exists for an asymptotically free theory

with β0 > 0; β1 < 0. The three metric (D1) expands to

χ�ggg ≡ χRgggðaIRs Þ ¼ β20
β1

�
−rþ χð2Þggg

β1

�
þOðβ30Þ; ðD4Þ

where we used that χð1Þggg ¼ β0r for some finite constant r
[c.f. (40)]. Close to this FP, (32) admits a perturbative
solution in Δas ≡ as − aIRs ,

ωgggjIR ¼ χ�ggg
6γ�

−
ð2β1r − χð2ÞgggÞ

4β0
Δas

þ 7ð2β21r − β1χ
ð2Þ
gggÞ

20β20
ðΔasÞ2 þOððΔasÞ3Þ: ðD5Þ

Above we used that γ� ¼ −∂ ln asβjas� ¼
β2
0

β1
is the anomalous

dimension ofOg (field strength tensor squared). In the limit
as → aIRs , we get the expected dependence (31). Direct
computation shows that (D5) is compatible with (D3). The
leading Oð1Þ parts of the IR solution (D5) and the UV
solution (D2) match, up toOðβ0Þ corrections, provided that

−2β1rþ χð2Þggg ¼ Oðβ0Þ: ðD6Þ

The above should be regarded as the necessary condition
for continuity of ωggg, equivalent to (34).
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