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Using the background field method, we study in a general covariant gauge the renormalization of the
six-dimensional Yang-Mills theory. This requires background gauge invariant counterterms, some of which
do not vanish on shell. Such counterterms occur, even off shell, with gauge-independent coefficients.
The analysis is done at one-loop order and the extension to higher orders is discussed by means of the
Becchi-Rouet-Stora-Tyutin identities. We examine the behavior of the beta function, which implies that this
theory is not asymptotically free.
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I. INTRODUCTION

The background field formulation is a procedure which
enables the calculation of quantum corrections, while
preserving the gauge invariance of the background field.
This is a useful method which has been much employed in
non-Abelian field theories, like the Yang-Mills (YM) [1–9]
or gravity [10–12] gauge theories. In particular, it has been
shown that on mass shell, pure gravity is renormalizable to
one-loop order, despite the fact that it contains a dimen-
sional coupling which would make the theory nonrenor-
malizable by power counting. This calculation has been
done in particular gauges, by using a “topological invari-
ant” which relates the scalars constructed from four
derivatives of the gravitational field. It could be interesting
to extend this calculation to a general gauge, but this would
be very involved in the context of quantum gravity.
The purpose of this work is to perform such an analysis

in a simpler gauge model. To this end, we consider the
conventional YM theory in six dimensions, where the
coupling constant has dimension of length, like in gravity.
The present analysis is done in a general covariant gauge

which maintains the background gauge symmetry. The
one-loop counterterms have been earlier given in the
Feynman gauge by van de Ven [13]. Other aspects of
the six-dimensional YM theory have been preciously
studied from several points of view [13–18].
Similarly to gravity, there exist Bianchi invariants con-

necting various counterterms involving four and higher
derivatives of the YM field. But unlike the case of gravity,
we find to one-loop order a counterterm which does not
vanish on mass shell and appears with a gauge-independent
coefficient. This means that the six-dimensional YM theory
is not renormalizable in the power-counting sense.
However, we show that it is renormalizable in the sense
that there are gauge-invariant counterterms available to
cancel all the ultraviolet divergences. We also find that this
YM theory is not asymptotically free, which is consistent
with general arguments concerning nonrenormalizable (by
power counting) gauge theories [6,19].
In Sec. II we outline the background field method and

give the basic Lagrangian which contains all interactions
allowed, to one-loop order, by the background gauge
symmetry. We study the renormalizability of the theory,
which requires the inclusion of two independent counter-
terms involving four derivatives of the background field.
The renormalization to higher orders is examined in
Sec. IV, by means of a generalization of the Becchi-
Rouet-Stora-Tyutin (BRST) identities.
This symmetry, together with the background gauge

invariance, is sufficient to ensure the renormalizability
of the theory to all orders, in the more general sense.

*fbrandt@usp.br
†jfrenkel@if.usp.br
‡dgmckeo2@uwo.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 025003 (2019)

2470-0010=2019=99(2)=025003(13) 025003-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.025003&domain=pdf&date_stamp=2019-01-04
https://doi.org/10.1103/PhysRevD.99.025003
https://doi.org/10.1103/PhysRevD.99.025003
https://doi.org/10.1103/PhysRevD.99.025003
https://doi.org/10.1103/PhysRevD.99.025003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In Sec. IV we study the beta function, which is relevant
for the asymptotic behavior, and discuss its dependence on
the definition of the running coupling. We analyze the
gauge independence of the coefficients of nonvanishing
(on-shell) counter terms in Sec. V, where we give a
summary of the results. An outline of one-loop calculations
in a general covariant gauge is presented in Appendix A
while other technical details are provided in the subsequent
Appendices.

II. ONE-LOOP RENORMALIZATION

In the YM theory, the background field method is based
on the gauge invariant Lagrangian

LYMðAÞ ¼ −
1

4
ð∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
νÞ2

≡ −
1

4
ðFa

μνðAÞÞ2 ð2:1Þ

where Aa
μ is split into a background field Ba

μ and a quantum
field Qa

μ, so Aa
μ ¼ Ba

μ þQa
μ. The gauge-fixing Lagrangian

is made to depend upon Ba
μ as

LGF ¼ −
1

2ξ
ðDμðBÞ ·QμÞ2 ð2:2Þ

where ξ is a gauge-fixing parameter and DμðBÞ is the
covariant derivative

DμðBÞ ¼ ∂μ þ gBμ ∧ : ð2:3Þ

Here we suppressed color indices and used the notation
Bμ ·Qν ¼ Ba

μQa
ν ; ðBμ ∧ QνÞa ¼ fabcBb

μQc
ν This gauge-

fixing term leads to the following ghost Lagrangian:

Lghost ¼ −½c̄DμðBÞ� · ½DμðBþQÞc�: ð2:4Þ

Thus, the complete tree Lagrangian is given by

Lð0Þ ¼ LYMðBþQÞ − 1

2ξ
½DμðBÞQμ�2

− ½c̄DμðBÞ� · ½DμðBþQÞc�: ð2:5Þ

This Lagrangian has a background gauge symmetry under

δBμ¼DμðBÞω; δQμ¼gQμ∧ω; δðc;c̄Þ¼gðc;c̄Þ∧ω;

ð2:6Þ

where ω is an arbitrary infinitesimal parameter.
We renormalize the theory to one-loop order, by requir-

ing the ultraviolet divergences of the background field
amplitudes to be canceled by appropriate counterterms.

On dimensional and background gauge invariance grounds,
one finds that the corresponding counterterm Lagrangian
may have the structure

Lð1ÞðBÞ ¼ c1g2ðDσFσμÞ2 þ c2g3Fμ
σ · ðFσρ ∧ FρμÞ

þ c3g2Fμν · ðD2FμνÞ ð2:7Þ

where c1, c2, and c3 are dimensionless coefficients. But, as
shown in Appendix C, one finds a Bianchi identity which
relates these terms as

ðDσFσμÞ2 þ gFμ
σ · ðFσρ ∧ FρμÞ þ 1

2
Fμν · ðD2FμνÞ

¼ ∂μðFμν ·DσFσνÞ: ð2:8Þ

Being a pure derivative, it follows that only two structures
in Eq. (2.8) may be independent. For definiteness, we can
take these to be the first two terms in Eq. (2.8). Hence, to
one-loop order, the counterterm action may be written in
the form

ΓCT
ð1Þ ½B�¼

Z
d6xfc11g2ðDσFσμÞ2þc12g3Fμ

σ ·ðFσρ∧FρμÞg:

ð2:9Þ

Using dimensional regularization in d ¼ 6 − 2ϵ dimen-
sions, we have evaluated in a general covariant gauge
[see Eqs. (A31) and (A35) in Appendix A] the divergent
coefficients c11 and c12. To one-loop order, we have
obtained that, for SUðNÞ YM theory,

c11 ¼ −
N

32π3ϵ

�
107

240
−
ξ

8
−
ξ2

48

�
; c12 ¼ −

N
32π3ϵ

1

180
:

ð2:10Þ

In consequence of the background gauge invariance, this
effective action should obey the simple Ward identity

DμðBÞ ·
δΓð1Þ½B�
δBμ

¼ 0: ð2:11Þ

The corresponding identities for the two and three point
background field amplitudes have been explicitly verified
to one-loop order.
We note here that the term proportional to c11 in Eq. (2.9)

vanishes when the B-field equation of motion is used. This
term may be removed by a nonlinear field transformation in
LYMðBÞ

Bμ → Bμ − c11g2DσðBÞFσμðBÞ: ð2:12Þ

Such a field redefinition has no physical observable effects.
Thus, there is no reason why the coefficient of this structure
should be independent of the gauge parameter. On the other

BRANDT, FRENKEL, and MCKEON PHYS. REV. D 99, 025003 (2019)

025003-2



hand, the coefficient c12 of the structure which does not
vanish on shell is gauge independent. This result is
necessary in order to ensure the gauge independence of
physical S-matrix elements, as discussed in Appendix B.

III. RENORMALIZATION TO HIGHER ORDERS

In order to cancel the ultraviolet divergences of the
background field amplitudes at two loops, we must add an
appropriate set of independent gauge-invariant counter-
terms. As discussed in Appendix C, the Bianchi identities
lead to a suitable set of the form

LCT
ð2ÞðBÞ ¼ c21g4½DμDσFσν�2

þ c22g5ðDσFσμÞ ∧ ðDρFρνÞ · Fμν

þ c23g5ðDμDσFσνÞ · ðFνρ ∧ F ρμÞ
þ c24g6½ðFμνÞ2�2 þ c25g6½Fμν · Fρσ�2
þ c26g6½Fμν · Fνρ�2
þ c27g6ðFμσ ∧ FσρÞ · ðFρν ∧ FνμÞ ð3:1Þ

where c2i are real dimensionless coefficients. We remark
that, on shell, we need four new counterterms, compared
with the pure gravity at two loops which requires just one
new counterterm.
We must show that the theory can be renormalized in

the sense that there is a counterterm available to cancel
every ultraviolet divergence, in a way which preserves the
background gauge invariance. To this end, one must also
use the BRST symmetry. We note that when the back-
ground method is used to two-loop order or higher, the
subgraphs become functionals of Bμ as well as ofQμ, c, and
c̄, leading to an effective action Γ½B;Q; c; c̄� which has a
background gauge invariance under Eq. (2.6).
We remark that Lð0Þ in (2.5), with the gauge-fixing term

left out, is also invariant under the BRST transformations

ΔB ¼ 0; ΔQμ ¼ DμðBþQÞcτ;

Δc ¼ −
1

2
gc ∧ cτ; Δc̄ ¼ 0 ð3:2Þ

where τ is an infinitesimal anticommuting constant. Thus,
we have that

Z
d6x

�δΓ0
ð0Þ

δQμ
· ΔQμ þ

δΓ0
ð0Þ

δc
· Δc

�
¼ 0 ð3:3Þ

where a prime denotes the fact that the gauge-fixing term
has been left out.
One may write this invariance in a more useful form, by

introducing the Zinn-Justin source terms Uμ, V [20] which
are coupled respectively to the BSRT variations ΔQμ and
Δc as

LZJ ¼ UμΔQμ þ VΔc ¼ UμDμðBþQÞc − 1

2
V · ðc ∧ cÞ:

ð3:4Þ

One may verify that this Lagrangian is also invariant under
the BRST transformations (3.2).
Adding LZJ to Lð0Þ in (2.5), with the gauge-fixing term

omitted, and denoting by L̃ð0Þ the total tree Lagrangian thus
obtained, one gets from (3.3) the lowest order Zinn-Justin
equations

Z
d6x

�
δΓ̃ð0Þ
δQμ

·
δΓ̃ð0Þ
δUμ þ δΓ̃ð0Þ

δc
·
δΓ̃ð0Þ
δV

�
¼ 0 ð3:5Þ

which may be extended to all orders. These identities,
together with the background gauge invariance, are suffi-
cient to fix the renormalization of the YM theories which
are renormalizable by power counting.
However, for gauge theories which are nonrenormaliz-

able by power counting, the proof of renormalizability in
the more general sense requires a generalization of the
Zinn-Justin method, known as the Batalin-Vilkovisky
formalism. In this formalism one includes, apart from
the linear source terms in (3.4) also nonlinear functionals
of the sources, which have ghost number zero [21,22]. The
inclusion of such supplementary terms preserves the master
equation

Z
d6x

�
δΓ̃
δQμ

·
δΓ̃
δUμ þ

δΓ̃
δc

·
δΓ̃
δV

�
¼ 0: ð3:6Þ

This equation reflects the invariance of the action under a
generalized BRST transformation. The relevance of the
Batalin-Vilkovisky method is that all the consistency
conditions for this generalized symmetry are incorporated
in the master equation.
Defining

Γ̃0 ⋆ Γ̃00 ¼
Z

d6x

�
δΓ̃0

δQμ
·
δΓ̃00

δUμ þ
δΓ̃0

δc
·
δΓ̃00

δV

�
ð3:7Þ

we can write (3.6) in the concise form

Γ̃ ⋆ Γ̃ ¼ 0: ð3:8Þ

Let us now perform a loop expansion on the generating
functional Γ̃ ¼ P

nΓ̃ðnÞ. Substituting this in (3.8), gives to
second order

Γ̃ð0Þ ⋆ Γ̃ð2Þ þ Γ̃ð2Þ ⋆ Γ̃ð0Þ þ Γ̃ð1Þ ⋆ Γ̃ð1Þ ¼ 0 ð3:9Þ

where Γ̃ð1Þ was made finite by the addition of the counter-
term (2.9). Since Γ̃ð0Þ is finite, the divergent part of Γ̃ð2Þ
satisfies
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Γ̃ð0Þ ⋆ Γ̃div
ð2Þ þ Γ̃div

ð2Þ ⋆ Γ̃ð0Þ ¼ 0: ð3:10Þ

Using (3.7), this leads to the relation

Z
d6x

��
δΓ̃ð0Þ
δQμ

·
δ

δUμþ
δΓ̃ð0Þ
δc

·
δ

δV

�

þ
�
δΓ̃ð0Þ
δUμ ·

δ

δQμ
þδΓ̃ð0Þ

δV
·
δ

δc

��
Γ̃div
ð2Þ≡GΓ̃div

ð2Þ ¼0: ð3:11Þ

Here G has the important property that it is idempotent:
G2 ¼ 0. This implies that a solution of (3.11) may be
written as

Γ̃div
ð2Þ ¼ GFðB;Q; c; c̄;U;VÞ þG½B;Q�; ð3:12Þ

where F is some function and G½B;Q� is a generic gauge-
invariant functional.
But, unlike the case in renormalizable theories, this

solution is not sufficient to generate all the ultraviolet
divergences at two loops. In order to account for all infinities,
one must also include a set of renormalized fields and
sources, defined in terms of the original quantities by a
general canonical transformation [6]. This procedure yields,
in a way that preserves the background gauge invariance, all
the counterterms Γ̃CT

ð2Þ ¼ −Γ̃div
ð2Þ which are needed to cancel

every divergence [7]. Integrating out the fields Q, c̄, c and
dropping the auxiliary sources U, V, leads, at two-loop
order, to the general counterterm action Γ̃CT

ð2Þ ½B�, which has a
background gauge symmetry

Γ̃CT
ð2Þ ½B� ¼

Z
d6xLCT

ð2ÞðBÞ; ð3:13Þ

where LCT
2 is given in (3.1). The proof that this operation

holds to all orders may be made recursively by introducing,
order by order, appropriate sets of renormalized fields and
sources, as has been argued in [23].
Using this result, we still need to examine a subtlety which

arises in the background gauge formalism. In this method,
it is necessary to omit certain one-particle reducible graphs
involving vertices which are linear in Q [3,6,9]. Although
the omission of such terms preserves the background gauge
invariance, this violates the BRST symmetry. Thus, the
correct effective action for the background field, is not BRST
invariant. However, the BRST invariance of the original
action Γ½B;Q; c; c̄�, can be used in an indirect way to control
the renormalization of Γ̄½B;Q; c; c̄�. To this end, we may use
the generalized BRST approach to renormalize Γ½B;Q; c; c̄�
and then deduce the renormalization of the background
effective action Γ½B;Q; c; c̄� by the operation [9]

Γ̄R ¼ ΩΓR ≡ ΓR −
Z

d6xQμ ·

�
δΓR

δQμ

�
Q¼c¼0

ð3:14Þ

where the terms which are linear inQμ, but independent of c,
have been subtracted.

IV. THE BETA FUNCTION

The renormalized coupling constant gðμÞ is usually
defined in terms of the value of some physical process,
which is evaluated at a characteristic energy of magnitude μ.
For example, one may consider the gluon-gluon scattering
amplitude: p1 þ p2 → p3 þ p4, where μ may be identified
with the total energy of the system in the center of mass
frame.
The one-loop divergent contributions to this physical

amplitude, involving structures like those in the first
counterterm in (2.9), cancel among themselves (see
Appendix B). Thus, such a counterterm is superfluous in
this case, as one may expect from the discussion at the end
of Sec. II. On the other hand, the contributions arising from
the second counterterm in (2.9), which occurs with the
coefficient c12, are necessary to cancel out the remaining
divergences in the one-loop amplitude. In the six-
dimensional theory, the form of the divergent part of the
one-loop amplitude is different from that of the tree-level
amplitude. However, evaluating these amplitudes with
transverse polarization vectors, it turns out that at the point

p2
1¼p2

2¼p2
3¼p2

4¼0;

ðp1þp2Þ2¼−2ðp1−p3Þ2¼−2ðp1−p4Þ2¼μ2 ð4:1Þ

the divergent part of the one-loop amplitude becomes
proportional to the bare tree amplitude evaluated from
the first term in Eq. (2.9), with a bare coupling g0. This fact
enables us to connect the bare coupling to the one-loop
divergences, by requiring the sum of these two amplitudes
to be finite. The value of the total physical amplitude at the
point (4.1) may then be used to define the renormalized
coupling constant gðμÞ.
This procedure allows us to relate the bare coupling g0

to the renormalized coupling gðμÞ through a factor which
involves the divergent coefficient c12. To this end, we note
that the ultraviolet divergences in the loops arise as powers
of poles 1=ϵ. To cancel these poles, the bare coupling g0
must itself have such poles. Thus, the coupling g0 may be
expressed in terms of a series of powers of 1=ϵ as

g0 ¼ gðμÞ½1þ c1½gðμÞ�=ϵþ � � �� ð4:2Þ

where, to one-loop order, the dimensionless factor c1=ϵ is
proportional to c12μ2g2ðμÞ.
We note that in d ¼ 6 − 2ϵ dimensions, the mass

dimension of gðμ; ϵÞ is ϵ − 1. It is convenient to rescale
this dimensionful coupling as

gðμ; ϵÞ≡ μϵ−1g̃ðμ; ϵÞ ð4:3Þ
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where g̃ðμ; ϵÞ is a dimensionless renormalized coupling
constant.
Thus, we may rewrite (4.2) in the form

g0 ¼ ðμÞϵ−1g̃ðμ; ϵÞ
�
1þ c1ðg̃Þ

ϵ
þ c2ðg̃Þ

ϵ2
þ � � �

�

≡ ðμÞϵ−1g̃ðμ; ϵÞZ̃½g̃ðμ; ϵÞ� ð4:4Þ
where, to lowest order, c1ðg̃Þ=ϵ ≈ c12g̃2.
An important property of the parameter Z̃ is that it is a

gauge-independent quantity, when using the minimal sub-
traction renormalization scheme. To see this, we note that
since the bare coupling constants g0 and μ are independent
of the gauge parameter, we have from (4.4)

d
dξ

ðg̃ Z̃Þ ¼ 0: ð4:5Þ

Inserting Z̃ defined by (4.4) into (4.5) and grouping the
terms in powers of 1=ϵ, we get

dg̃
dξ

þ 1

ϵ

�
c1

dg̃
dξ

þ dc1
dξ

g̃

�
þ � � � ¼ 0: ð4:6Þ

Since the terms of different powers of 1=ϵ in (4.6) are
independent (because the coefficients of these powers are
finite as ϵ → 0) each term should vanish separately, so that

dg̃
dξ

¼ 0;
dc1
dξ

¼ 0; … ð4:7Þ

Thus, we find that g̃ as well as Z̃ must be gauge-
independent quantities. In particular, this explains the fact
that coefficient c12 in (2.10) is independent of the gauge
parameter ξ.
To calculate the beta function, one differentiates (4.4)

with respect to μ and use the fact that the bare coupling is
independent of μ. One then gets the relation

Z̃−1μ2−ϵ
dg0
dμ

¼ 0

¼ ðϵ − 1Þg̃ðμ; ϵÞ þ β½g̃ðμ; ϵÞ�

×

�
1þ g̃ðμ; ϵÞ d logðZ̃Þ

dg̃ðμ; ϵÞ
�

ð4:8Þ

where we have used the chain rule and defined

β½g̃ðμ; ϵÞ�≡ μ
d
dμ

g̃ðμ; ϵÞ: ð4:9Þ

Since the beta function should be finite, the coefficients
of the various powers of 1=ϵ in Z̃ must be related in such a
way so as to ensure the cancellation of pole terms in (4.8).
To get the beta function, one expands all quantities in
powers of ϵ and equates to zero the terms of zeroth and first
order in ϵ. Then, taking the limit ϵ → 0, one finds the
simple relation

β½g̃ðμÞ� ¼ g̃ðμÞ þ
�
g̃ðμÞ d

dg̃ðμÞ − 1

�
g̃ðμÞc1½g̃ðμÞ�; ð4:10Þ

which involves only the coefficient c1 of the simple pole
in (4.4).
We show in Appendix D that the form of the first term in

the power series for the beta function is independent of the
definition of the running coupling. But this is generally not
the case for the higher order terms. However, this arbitrari-
ness is not important for small couplings, since then it is just
the first term which determines the leading behavior of the
beta function. It then follows from (4.9) and (4.10) that for
small couplings, g̃ðμÞ grows linearly with μ. One may note,
upon inverting (4.3), that g̃ is a function of μ as well as of
the dimensional coupling g. Thus, the original renormalized
coupling gðμÞ in (4.3) becomes (up to small corrections)
independent of the scale μ. This implies that the six-
dimensional Yang-Mills theory is not asymptotically free.

V. CONCLUSION

We have examined the renormalization of the six-
dimensional Yang-Mills theory, which has a coupling with
length dimension, as a model for the gauge theory of
gravity. The YM theory was studied in a general covariant
gauge which preserves the background field invariance. To
one-loop order we find, similarly to pure gravity which has
been studied in particular gauges, that there appear counter-
terms which vanish on shell, with gauge-dependent coef-
ficients. But such terms are unphysical, since they can be
turned away by a field redefinition [Eq. (2.12)]. On the
other hand, unlike pure gravity where all the counterterms
vanish on shell, we get a nonvanishing counterterm on
shell, which occurs with a gauge-independent coefficient
even off shell [Eqs. (2.9) and (2.10)]. This result was
verified in a general background gauge, to one-loop order.
At two loops, the renormalizability of the theory requires
four more counterterms which do not vanish on shell
[Eq. (3.1)], as compared with pure gravity where only
one such counterterm is needed.
We note here that the gauge independence of the

coefficients of the counterterms which do not vanish on
shell is an outcome of the background field method. To
understand this, let us compare the present theory with
the four-dimensional YM theory, which is renormalizable
by power counting. The usual theory is multiplicatively
renormalizable because the divergent part of Greens func-
tions has the same form as the tree functions. In this case
the bare coupling and the bare field may generally be
related to the renormalized quantities by simple rescalings

g0 ¼ Zgg; B0 ¼ Z1=2
B B: ð5:1Þ

In order to preserve the background gauge invariance, the
renormalization constants Zg and ZB must be connected,
which leads to the renormalized Lagrangian
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L4R
YMðBÞ ¼ −

1

4
ZBðFμνðBÞ�2 ¼ −

1

4
Z−2
g ðFμνðBÞ�2 ð5:2Þ

where Zg is a gauge-independent quantity [see Eqs. (A30)
and (A34)].
On the other hand, the six-dimensional YM theory is

not multiplicatively renormalizable, since the form of the
divergent terms at (nþ 1) loops is, in general, quite
different from the one which arise at n loops. Instead,
the theory is renormalizable in the more general sense that
there are counterterms available to cancel all ultraviolet
divergences [23]. For example, considering only the
independent nonvanishing (on-shell) counterterms and
using Eqs. (2.9) and (3.1), we may write the counterterm
(up to two loops) Lagrangian in the form

L6CT
YM ðBÞ ¼ c12g3Fσ

μ · ðFσρ ∧ FρμÞ þ c24g6½ðFμνÞ2�2
þ c25g6½Fμν · Fρσ�2 þ c26g6½Fμν · Fν

ρ�2
þ c27g6ðFμσ ∧ FσρÞ · ðFρν ∧ FνμÞ: ð5:3Þ

This involves only the field strength FμνðBÞ of the back-
ground field and is manifestly invariant under background
gauge transformations.
As we have pointed out, the counterterms which vanish

on shell are unphysical and decouple in observable proc-
esses. In physical amplitudes, only the counterterms which
do not vanish on shell are necessary to cancel the loop
divergences (see Appendix B). Using the Ward identities,
one can show that the only possible gauge dependence in
these amplitudes may arise just from the coefficients of
these counterterms. But physical processes are generally
gauge invariant, a feature which must hold in particular in
the background field approach [24]. Thus, in order to
ensure this property, it follows that the coefficients of the
counterterms which do not vanish on shell should be gauge-
independent quantities. This explains the explicit result
obtained at one-loop order in (A32) and (A35).
A further argument, based on the renormalization group

method, for the gauge independence of the coefficients of
nonvanishing (on-shell) counterterms is given in Sec. IV
[see Eq. (4.7)]. Here, we have derived a beta function which

encodes the dependence of the running coupling gðμÞ on
the energy scale μ [Eq. (4.10)]. From this, we conclude that
the six-dimensional YM theory is not asymptotically free,
as expected for field theories which are not renormalizable
by power counting.
We presume that a similar behavior also occurs in pure

gravity at two-loop order, which requires a new counterterm
that is cubic in the curvature tensor [10–12]. We expect the
coefficient of this counterterm, which does not vanish on
mass shell, to be gauge independent. This may hold since
such counterterms are relevant for the renormalization of
physical quantities.
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APPENDIX A: PERTURBATIVE CALCULATIONS

1. Feynman Rules

Using the tree Lagrangian given by Eq. (2.5) it is
straightforward to obtain the momentum space Feynman
rules which arise from iSð0Þ ¼ i

R
ddxLð0Þ. The gluon and

ghost propagators are given respectively by

ðA1Þ

ðA2Þ

The interaction vertices which are relevant for the one-loop
contribution to the two- and three-gluon background field
functions (see Figs. 1 and 2) are

ðA3Þ

BRANDT, FRENKEL, and MCKEON PHYS. REV. D 99, 025003 (2019)

025003-6



ðA4Þ

ðA5Þ

ðA6Þ

where all momenta are oriented inwards and a blob
indicates a background field. Vertices with all the external
fields of the same type (B or Q) can be obtained from
Eqs. (A3) and (A4) by setting 1=ξ ¼ 0.

2. Two- and three-gluon functions
at one-loop order

The one-loop contributions to the two-point function
hBBi are given by the Feynman diagrams of Fig. 1.
Since the diagram in Fig. 1(c) vanishes in dimensional
regularization, we only have to compute diagrams 1(a)
and 1(b). After the loop momentum integration, the result
can only depend (by covariance) on the two tensors ημν
and pμpν. A convenient tensor basis in terms of these
tensors is

T 1
μν ¼ pμpν − k2ημν and T 2

μν ¼ pμpν ðA7Þ

so that the diagrams in Fig. 1 can be written as
ΠIab

μν ðpÞ ¼ Ng2δabΠI
μνðpÞ (we are using famnfbmn ¼

Nδab), where

ΠI
μνðpÞ ¼

X2
i¼1

T i
μνðpÞCI

iðpÞ; I ¼ a and b: ðA8Þ

The coefficients CI
i can be obtained solving the following

system of two algebraic equations:

FIG. 1. One-loop contributions to hBBi. The diagrams in (a)–(c) represent the contributions arising from the Feynman rules.
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X2
i¼1

T i
μνðpÞT jμνðpÞCI

iðpÞ ¼ ΠI
μνðpÞT jμνðpÞ≡ JIjðpÞ;

j ¼ 1; 2: ðA9Þ

Using the Feynman rules of the previous section, it is
straightforward to obtain the expressions for each ΠI

μνðpÞ.
Then, the integrals on the right-hand side of (A9) have the
following form:

JIjðpÞ ¼
Z

ddk
ð2πÞd s

Ijðk; q; pÞ; ðA10Þ

where q ¼ kþ p; k is the loop momentum, p is the
external momentum, and sIjðk; q; pÞ are scalar functions.
Using the relations

k · p ¼ ðq2 − k2 − p2Þ=2; ðA11aÞ

q · p ¼ ðq2 þ p2 − k2Þ=2; ðA11bÞ

k · q ¼ ðk2 þ q2 − p2Þ=2; ðA11cÞ

the scalars sIjðk; q; pÞ can be reduced to combinations of
powers of k2 and q2. As a result, the integrals JIjðpÞ can be
expressed in terms of combinations of the following well-
known integrals:

Ilm ≡
Z

ddk
ð2πÞd

1

ðk2Þlðq2Þm

¼ i
ðk2Þd=2−l−m
ð4πÞd=2

Γðlþm− d=2Þ
ΓðlÞΓðmÞ

Γðd=2− lÞΓðd=2−mÞ
Γðd− l−mÞ ;

ðA12Þ

where powers l and m greater than 1 may only arise from
the terms proportional to 1 − ξ in the gluon propagator
[see Eq. (A1)]. The only nonvanishing (i.e., non tadpole)
integrals are

I11 ¼ i
ðk2Þd=2−2
2dπd=2

Γðd
2
− 1Þ2Γð2 − d

2
Þ

Γðd − 2Þ ðA13aÞ

I12 ¼ I21 ¼ ð3 − dÞ
k2

I11 ðA13bÞ

I22 ¼ ð3 − dÞð6 − dÞ
k4

I11: ðA13cÞ

We remark that the UV divergences, which occurs only for
even dimensions, arise from the factor Γð2 − d

2
Þ in I11.

Implementing the above described procedure as a
straightforward computer algebra code, we readily obtain
the following exact results for CI

1 and CI
2:

Ca
1 ¼

�
d − 4

8
ξ2 þ 3ðd − 4Þ

4
ξþ 1

2

1

d − 1
−
7d
8

�
I11;

Cb
1 ¼ −

1

d − 1
I11; Ca

2 ¼ Cb
2 ¼ 0: ðA14aÞ

Adding the two contributions, we obtain the following
transverse result for the one-loop contribution to hBBi:

Πab
μνðpÞ ¼ Ng2δab

�
d − 4

8
ξ2 þ 3ðd − 4Þ

4
ξþ 1

2 − 2d
−
7d
8

�

× I11ðpμpν − p2ημνÞ: ðA15Þ

We notice that this expression is gauge parameter inde-
pendent only for d ¼ 4 in which case it has the following
well known UV pole for d ¼ 4 − 2ϵ [25]:

Πab
μνðpÞjd¼4

UV ¼ −
11

3

Ng2

16π2ϵ
iδabðpμpν − p2ημνÞ; ðA16Þ

which yields the correct gauge-independent result for the
beta function.
For d ¼ 6 − 2ϵ, Eq. (A15) the UV pole becomes

Πab
μνðpÞjd¼6

UV ¼−
�
107

240
−
ξ

8
−
ξ2

48

�
Ng2

32π3ϵ
iδabp2ðpμpν−p2ημνÞ

¼−b6iδabp2ðpμpν−p2ημνÞ; ðA17Þ

where

b6 ¼
N

32π3ϵ

�
107

240
−
ξ

8
−
ξ2

48

�
: ðA18Þ

Let us now consider the three-gluon function. Figure 2
shows the one-loop loop contributions [one can easily
verify that the contribution obtained by joining the
vertices (A5) and (A6) vanishes trivially].
The calculation of graphs with two internal lines in

Figs. 2(a), 2(b), and 2(c), is similar to the calculation of
the self-energy graphs, in the sense that the momentum
integrals can be performed in a closed form, for any
dimension d. This can be done using the usual Feynman
parametrization. We can also use the tensor decomposition
procedure employed for the calculation of the self-energy,
so that each tensor integral is reduced to the calculation
of scalars given by Eq. (A12). Then, using the Feynman
rules given by Eqs. (A1), (A3), and (A4), a straightforward
computer algebra calculation yields the following result for
the diagram (a) in Fig. 2:
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ΓðaÞabc
μνλ ðp; q; rÞ ¼

Γðd
2
− 1Þ2Γð2 − d

2
Þ

Γðd − 2Þ
ðξþ 3Þð3ξþ 1Þ½ðd − 4Þξ − d�

16ξ

Ng3fabc

2dπd=2
ðp2Þd=2−2ðpλημν − pνημλÞ: ðA19Þ

The other two graphs can be obtained from cyclic permu-
tations of (A19) as follows:

ΓðbÞabc
μνλ ðp; q; rÞ ¼ ΓðaÞabc

νλμ ðq; r; pÞ and

ΓðcÞabc
μνλ ðp; q; rÞ ¼ ΓðaÞabc

λμν ðr; p; qÞ: ðA20Þ

The expression (A19) has UV divergences for even
dimensions. In particular, for d ¼ 4 and d ¼ 6 we obtain

ΓðaÞabc
μνλ ðp; q; rÞjd¼4

UV
¼ −

ðξþ 3Þð3ξþ 1Þ
4ξ

Ng3fabc

16π2ϵ

× ðpλημν − pνημλÞ ðA21Þ

and

ΓðaÞabc
μνλ ðp; q; rÞjd¼6

UV
¼ −

ðξ2 − 9Þð3ξþ 1Þ
96ξ

Ng3fabc

32π3ϵ

× ðpÞ2ðpλημν − pνημλÞ: ðA22Þ

In four dimensions, the full result [adding the two permu-
tations in Figs. 2(b) and 2(c) becomes proportional to the
tree three-gluon vertex

ΓðaþbþcÞabc
μνλ ðp; q; rÞjd¼4

UV
¼ −

ðξþ 3Þð3ξþ 1Þ
4ξ

Ng2

16π2ϵ
gfabc½ημλðrν − pνÞ þ ημνðpλ − qλÞ þ ηνλðqμ − rμÞ�: ðA23Þ

Let us now consider graphs (d), (e), and (f) of Fig. 2. To illustrate the method of calculation, we first consider the ghost
loop diagram in Fig 2(e). Using Eqs. (A2) and (A5), we can express this contribution as follows:

FIG. 2. One-loop contributions to hBBBi. The diagrams in (a)–(f) represent the contributions arising from the Feynman rules.
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− iNg3fabc
�
4Jμνλ111 þ 2½Jμν111ðqλ − pλÞ þ Jμλ111qν − Jνλ111pμ�

−Jλ111pμqν − Jμ111qνðpλ − qλÞ þ Jν111pμðpλ − qλÞ þ J111
pμqνðpλ − qλÞ

2

�
; ðA24Þ

where

J
μ1μ2���μj
lmn ≡

Z
ddk
ð2πÞd

kμ1kμ2 � � � kμj
ðk2 þ i0Þl½ðk − pÞ2 þ i0�m½ðkþ qÞ2 þ i0�n ðA25Þ

is the general type of integrals that will also arise in the
much more involved contribution from the diagram of
Fig. 2(d) (terms which depend on ξ will involve integrals
with m, n, and l greater than 1).
Since the integrals in Eq. (A25) cannot be expressed in a

closed form as a function of the dimension d (the integrals
in the two Feynman parameters cannot be done in a closed
form, for a general d), we must now first expand in ϵ ¼
ðn − dÞ=2 and afterwards perform the Feynman parameter
integrals. In particular, when considering the UV pole 1=ϵ,
the Feynman parameter integrals become trivial.

For a given dimension n such that d ¼ n − 2ϵ, not all the
integrals in Eq. (A25) will be divergent. For instance, for
n ¼ 4 only the terms in the first line of Eq. (A24) are UV
divergent. By power counting, these divergences come
from Jμνλ111, J

μλ
111 and J

νλ
111. Computing these integrals with the

standard Feynman parametrization procedure, and adding
also the contribution from the graph in the Fig. 2(f), we
obtain the following pole part for the ghost loop diagrams
in four dimensions:

ΓðeþfÞabc
μνλ ðp; q; rÞjd¼4

UV
¼ −

1

3

g2N
16π2ϵ

gfabc½ημλðrν − pνÞ þ ημνðpλ − qλÞ þ ηνλðqμ − rμÞ�; ðA26Þ

which is proportional to the tree three-gluon vertex. Using the same basic procedure, we have obtained the following result
for the graph in Fig. 2(d) in four dimensions:

ΓðdÞabc
μνλ ðp; q; rÞjd¼4

UV
¼ −

9ξ2 − 10ξþ 9

12ξ

g2N
16π2ϵ

gfabc½ημλðrν − pνÞ þ ημνðpλ − qλÞ þ ηνλðqμ − rμÞ�: ðA27Þ

Adding Eqs. (A23), (A26), and (A27), the gauge parameter dependence cancels and we are left with the following result in
four dimensions:

Γabc
μνλ ðp; q; rÞjd¼4

UV
¼ −

11

3

g2N
16π2ϵ

gfabc½ημλðrν − pνÞ þ ημνðpλ − qλÞ þ ηνλðqμ − rμÞ�: ðA28Þ

In six dimensions, all the terms in (A24) have a UV pole. As a consequence, the tensor structure of the resulting
expression is much more involved than in four dimensions. In the case of the graph in Fig. 2(d), because of the gauge
parameter dependence, the possible structures in the integrand are even richer, so that there will be terms involving integrals
like J111; J

μ
111; J

μν
112;…; Jμ1μ2…μ7

112 ;…; Jμ1μ2…μ7
122 (the order of possible UV divergences goes up to three). We have generated all

the needed integrals using a computer algebra code. After pattern matching all the possible terms in the integrand and
making the corresponding substitutions, we have obtained the following result in six dimensions:

Γabc
μνλ ðp; q; rÞjd¼6

UV
¼ Ng3

16π3ϵ
fabc

��
−
ξ2

48
−
ξ

8
þ 107

240

�
½p2ð−pνgλμ − rμgλν þ rνgλμÞ þ p · rpμgλν þ pλpμðpν − rνÞ�

þ 1

180
½p · qðrμηλν − rνηλμÞ þ p · rðqλημν − qμηλνÞ þ q · rðpνηλμ − pλημνÞ þ pλqμrν − pνqλrμ�

�

þ six permutations of ða; μ; pÞ; ðb; ν; qÞ; ðc; λ; rÞ: ðA29Þ
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We now consider Eqs. (A16), (A17), (A28), and (A29) as
the effective “vertices” which can be read from effective
actions of the form

S4 ¼ a4

Z
d4xðFa

μνÞ2 ðA30Þ

and

S6 ¼
Z

d6x½b6½ðDFÞaμ�2 þ a6fabcFa
μνFbν

ρ Fcρμ�; ðA31Þ

where

Fa
μν ¼ ∂μBa

ν − ∂νBa
μ þ gfabcBb

μBc
ν ðA32Þ

and

ðDFÞaν ¼ ∂μFa
μν þ gfabcBbμFc

μν: ðA33Þ

Comparing the quadratic and cubic parts of S4 and S6, in
momentum space, with Eqs. (A16), (A17), (A28), and
(A29) we obtain

a4 ¼ −
11

3

N
16π2ϵ

; ðA34Þ

where b6 is the same coefficient defined in Eq. (A18) and

a6 ¼
N

32π3ϵ

1

180
ðA35Þ

is a gauge parameter independent coefficient. It is remark-
able that all the gauge parameter dependence is only
present in the first term of S6, which would vanish on shell.

APPENDIX B GAUGE-INVARIANCE OF
THE S-MATRIX

We show here that the gauge independence of the
coefficient c12 in (2.10) ensures the gauge invariance of
the one-loop S-matrix elements. To this end, let us consider
the gluon-gluon scattering amplitude p1 þ p2 → p3 þ p4

involving a pair of background fields which are on shell,
which contains transverse polarization vectors. To one-loop
order, typical Feynman diagrams are shown in Fig. 3, but
other relevant graphs must also be included.
The contribution from the graph Fig 3(a) involves a

background gluon self-energy which has a form consistent
with that coming from the structure proportional to c11
in (2.9). This yields a factor

c11g2ðp2
1η

μ1σ − pμ1
1 p

σ
1Þ ðB1Þ

which vanishes on shell, at p2
1 ¼ 0, when contracted with a

transverse polarization vector. However, the self-energy
insertion on the internal line shown in graph 3(b) is
nonvanishing. But it may be verified that the contributions
arising from the structure ðDσFσμÞ2 cancel out among
themselves in the sum of the graphs in Figs. 3(b), 3(c),
and 3(d). Thus, the first counterterm in Eq. (2.9) has no
observables effects, as expected. On the other hand, the
structure Fμ

σ · ðFσρ ∧ FρμÞ in the second counterterm in
(2.9) does contribute to the diagrams shown in Figs. 3(c)

FIG. 3. Examples of one-loop Feynman diagrams for the gluon-gluon scattering amplitude. The diagrams in (a)–(d) represent the
contributions arising from the Feynman rules.
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and 3(d). For example, diagram 3(c) will yield in this case a
contribution involving the factor

c12g2ðpσ
1η

ρμ1 − pρ
1η

σμ1Þðpρ
2η

τμ2 − pτ
2η

ρμ2Þðqτησα − qσηταÞ
ðB2Þ

which is transverse with respect to the momenta pμ1
1 , p

μ2
2 ,

qα. This is a reflection of the Ward identity satisfied by the
last structure in Eq. (2.9). Then, the ξ dependent part of the
gluon propagator

1

q2

�
ηαβ − ð1 − ξÞ qαqβ

q2

�
ðB3Þ

decouples. Thus, a possible gauge dependence may come
only from the coefficient c12. A similar conclusion also
holds for the corresponding contribution arising from
diagram 3(d). But the sum of such contributions yields
the S-matrix element for the gluon-gluon scattering ampli-
tude at one-loop order, which should be gauge invariant.
This requires the coefficient c12 to be a gauge-independent
quantity.

APPENDIX C BIANCHI IDENTITIES

We discuss here some useful Bianchi identities for the
YM fields, which hold in any dimension, whether or not
the gauge fields satisfy the field equations. We start from
the identity

DρFμν þDμFνρ þDνFρμ ¼ 0: ðC1Þ

Multiplying (C1) by FμνDρ and using the antisymmetry of
Fμν under μ ↔ ν, we obtain

FμνD2Fμν þ 2Fμν ·DρDμFν
ρ ¼ 0: ðC2Þ

Employing the relation

DμDν −DνDμ ¼ −gFμν ðC3Þ

one can write (C2) in the form

FμνD2Fμν þ 2Fμν ·DμDρFνρ þ gFμν · Fμρ ∧ Fν
ρ ¼ 0:

ðC4Þ

Integrating by parts the second term in (C4), we get the
identity

ðDμFμνÞ · ðDρFρνÞ þ 1

2
FμνD2Fμν þ gFμν · Fμρ ∧ Fν

ρ

¼ ∂μðFν
μ ·DρFνρÞ: ðC5Þ

Since a total derivative may be disregarded, we see that
only two of the above three structures can be taken as being
independent. These two structures may then be used for the
gauge-invariant counterterms required to one-loop order.
In order to find the relevant structures at two loops, we

multiply (C1), for example, by

FμσFσνDρ; FμνFρσDσ; FμσDρFσν;

FμνDσFρσ; FμνDσDρDσ; FμσDνDσDρ: ðC6Þ

Ignoring total derivatives and using a procedure similar to
the one employed above, it turns out that the Bianchi
identities lead to the following independent structures:

½DμDσFσν�2; ðDσFσμÞ ∧ ðDρFρνÞ · Fμν;

ðDμDσFσνÞ · ðFνρ ∧ FρμÞ;
½ðFμνÞ2�2; ½Fμσ · Fσν�2; ½FμνFρσ�2;
ðFμσ ∧ FσρÞ · ðFρν ∧ FνμÞ: ðC7Þ
We observe that the first three structures vanish when the
equations of motion are used. Thus, on shell, four new
gauge-invariant counterterms are required at the two-loop
order.

APPENDIX D SCHEME DEPENDENCE OF
THE BETA FUNCTION

We examine here the dependence of the beta function
on the definition of the coupling constant. To this end,
consider two definitions g̃ðμÞ and ḡðμÞ of the running
coupling corresponding to different definitions of the
renormalization scale μ. Since both couplings are finite
and dimensionless, we must have ḡðμÞ ¼ ḡ½g̃ðμÞ�, so that

β̄ðḡÞ≡ μ
dḡ
dμ

¼ μ
dḡ
dg̃

βðg̃Þ: ðD1Þ

Using the same definition of the bare coupling constant, the
renormalized couplings must be equal to lowest order, so
one may write

ḡðg̃Þ ¼ g̃þ bg̃3 þOðg̃5Þ ðD2Þ
or, equivalently

g̃ ¼ ḡ − bḡ3 þOðḡ5Þ: ðD3Þ
In d dimensions, the power series for βðg̃Þ takes the form
½c ¼ ðd − 4Þ=2�

βðg̃Þ ¼ cg̃þ c0g̃3 þOðg̃5Þ: ðD4Þ
This may be rewritten in terms of ḡ, as

βðḡÞ ¼ cḡþ ðc0 − bcÞḡ3 þOðḡ5Þ: ðD5Þ
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From (D1) and (D3) we have then

β̄ðḡÞ ¼ ½1þ 3bḡ2 þOðḡ4Þ�½cḡþ ðc0 − bcÞḡ3 þOðḡ5Þ�
¼ cḡþ ðc0 þ 2bcÞḡ3 þOðḡ5Þ: ðD6Þ

We see that the first term in the power series for β̄ in terms of ḡ has the same coefficient as in the power series for β in terms
of g̃. But this is generally not the case for higher order terms in the power series of the beta function. For instance, one could
choose in (D2) the coefficients of higher powers of g̃, such that all higher order terms in (D6) would vanish.

[1] B. S. DeWitt, Phys. Rev. 162, 1195 (1967).
[2] H. Kluberg-Stern and J. B. Zuber, Phys. Rev. D 12, 482

(1975).
[3] L. Abbott, Nucl. Phys. B185, 189 (1981).
[4] D. G. C. McKeon, Can. J. Phys. 72, 601 (1994).
[5] P. A. Grassi, Nucl. Phys. B462, 524 (1996).
[6] S. Weinberg, The Quantum Theory of Fields (Cambridge

University Press, Cambridge, England, 1995).
[7] A. O. Barvinsky, D. Blas, M. Herrero-Valea, S. M.

Sibiryakov, and C. F. Steinwachs, J. High Energy Phys.
07 (2018) 035.

[8] I. A. Batalin, P. M. Lavrov, and I. V. Tyutin, Eur. Phys. J. C
78, 570 (2018).

[9] J. Frenkel and J. C. Taylor, Ann. Phys. (Amsterdam) 389,
234 (2018).

[10] G. ’t Hooft, Nucl. Phys. B62, 444 (1973).
[11] M. H. Goroff and A. Sagnotti, Nucl. Phys. B266, 709

(1986).
[12] A. E. M. van de Ven, Nucl. Phys. B378, 309 (1992).
[13] A. E. M. van de Ven, Nucl. Phys. B250, 593 (1985).

[14] P. Van Nieuwenhuizen, Ann. Phys. (N.Y.) 104, 197 (1977).
[15] E. Witten, J. High Energy Phys. 01 (1998) 001; Adv. Theor.

Math. Phys. 2, 61 (1998).
[16] C. Saemann, R. Wimmer, and M. Wolf, J. High Energy

Phys. 05 (2012) 020.
[17] C. Becchi, A. Rouet, and R. Stora, Phys. Lett. 52B, 344

(1974).
[18] J. A. Gracey, Phys. Rev. D 93, 025025 (2016).
[19] G. ’t Hooft, Nucl. Phys. B61, 455 (1973).
[20] J. Zinn-Justin, Lectures given at International Summer

Institute for Theoretical Physics, Bonn, West Germany,
1974 (Bonn Conf., 1974), p. 2.

[21] I. A. Batalin and G. A. Vilkovisky, Phys. Lett. 102B, 27
(1981).

[22] I. A. Batalin and G. A. Vilkovisky, Nucl. Phys. B234, 106
(1984).

[23] J. Gomis and S. Weinberg, Nucl. Phys. B469, 473 (1996).
[24] L. F. Abbott, M. T. Grisaru, and R. K. Schaefer, Nucl. Phys.

B229, 372 (1983).
[25] L. F. Abbott, Acta Phys. Polon. B 13, 33 (1982).

RENORMALIZATION OF SIX-DIMENSIONAL YANG-MILLS … PHYS. REV. D 99, 025003 (2019)

025003-13

https://doi.org/10.1103/PhysRev.162.1195
https://doi.org/10.1103/PhysRevD.12.482
https://doi.org/10.1103/PhysRevD.12.482
https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/10.1139/p94-077
https://doi.org/10.1016/0550-3213(96)00017-X
https://doi.org/10.1007/JHEP07(2018)035
https://doi.org/10.1007/JHEP07(2018)035
https://doi.org/10.1140/epjc/s10052-018-6031-6
https://doi.org/10.1140/epjc/s10052-018-6031-6
https://doi.org/10.1016/j.aop.2017.12.014
https://doi.org/10.1016/j.aop.2017.12.014
https://doi.org/10.1016/0550-3213(73)90263-0
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(92)90011-Y
https://doi.org/10.1016/0550-3213(85)90496-1
https://doi.org/10.1016/0003-4916(77)90051-3
https://doi.org/10.1088/1126-6708/1998/01/001
https://doi.org/10.4310/ATMP.1998.v2.n1.a3
https://doi.org/10.4310/ATMP.1998.v2.n1.a3
https://doi.org/10.1007/JHEP05(2012)020
https://doi.org/10.1007/JHEP05(2012)020
https://doi.org/10.1016/0370-2693(74)90058-6
https://doi.org/10.1016/0370-2693(74)90058-6
https://doi.org/10.1103/PhysRevD.93.025025
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1016/0370-2693(81)90205-7
https://doi.org/10.1016/0370-2693(81)90205-7
https://doi.org/10.1016/0550-3213(84)90227-X
https://doi.org/10.1016/0550-3213(84)90227-X
https://doi.org/10.1016/0550-3213(96)00132-0
https://doi.org/10.1016/0550-3213(83)90337-1
https://doi.org/10.1016/0550-3213(83)90337-1

