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Explaining the late-time acceleration is one of the most challenging tasks for theoretical physicists today.
Infrared modification of Einstein’s general theory of relativity (GR) is a possible route to model late-time
acceleration. In this regard, vector-tensor theory, as a part of gravitational interactions on large
cosmological scales, has been proposed recently. This involves generalization of a massive Proca
Lagrangian in curved spacetime. Black hole solutions in such theories have also been constructed. In
this paper, we study different astrophysical signatures of such black holes. We first study the strong lensing
and time delay effect of such static spherically symmetric black hole solutions, in particular for the case of
gravitational lensing of the star S2 by Sagittarius A� at the centre of Milky Way. We also construct the
rotating black hole solution from this static spherically symmetric solution in Proca theories using the
Newman-Janis algorithm and subsequently study lensing, time delay and black hole shadow effect in this
rotating black hole spacetime. We discuss the possibility of detecting the Proca hair in future observations.
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I. INTRODUCTION

Einstein’s general theory of relativity (GR) is an
extremely successful theory to describe gravity from solar
system scales involving planetary motions up to cosmo-
logical scales describing the expansion of the Universe,
formation of light elements, existence of cosmic microwave
background radiation, formation of large scale structures.
But the late-time acceleration of the Universe, first con-
firmed by SNIa observations two decades ago [1–5], is the
first observed astrophysical phenomena, that attractive
gravity fails to explain. Accelerated expansion in the
Universe demands the existence of repulsive gravity at
large cosmological scales. This can be done if one modifies
either the matter part with exotic components having
negative pressure or the gravity at large cosmological
scales (see [6–9], for review on this topic). Although the
cosmological constant (Λ), as introduced by Einstein to
model a static Universe, is the simplest solution to the late-
time acceleration of the Universe, the large discrepancy
between the observed value of Λ and what we expect its
value to be from the field theory point of view is the greatest
obstacle to its successful explanation for the late-time
acceleration of the Universe (also recent observations
suggest tensions in ΛCDM with the data [10,11]). A
consistent theory of quantum gravity is needed to solve
this cosmological constant problem.
Going beyond Λ, whether to modify the matter sector or

the gravity sector, scalar fields play themost important role in

late-time acceleration of the Universe [6]. Scalar fields do
exist in nature; Higgs field, which is the fundamental
ingredient of standard model of particle physics [12], is
the best example of a scalar field that exists in nature.
Moreover, being a scalar, it can be naturally incorporated in a
isotropic and homogeneous Universe. It also can give rise to
repulsive gravity with its slow-roll property and hence can
explain late-time acceleration. But these scalar fields have to
bevery light in order to slow-roll at large cosmological scales
and without any mechanism to avoid their possible inter-
actions with baryons, they give rise to long-range fifth force
in baryons that is absent in solar system scales. To avoid such
tensions, we need to have some screening mechanism that
prevents the scalar field to interact with baryons on small
scales, but allows the scalar field to give desired late-time
accelerated expansion at large cosmological scales. The
chameleon mechanism [13] and Vainshtein mechanism
[14] are examples of such screening processes.
Among the scalar field models for infrared modification

of gravity, the Galileon model is one of the most studied
models [15–17]. It was first introduced as a natural
extension of the DGP brane-world model [18] in the
decoupling limit [19]. The Lagrangian for the Galileon
field respects the shift symmetry and contains higher
derivative terms. Despite this, the equation of motion for
the Galileon field is second order and hence the theory is
free from Ostragradsky ghosts [20]. One can also imple-
ment the Vainshtein mechanism in this model to preserve
the local physics and to satisfy the solar system constraints.
The general Galileon action with second-order equations
of motion, contains nonminimal derivative coupling with
Ricci and Einstein tensor. This is a subclass of more general

*mostafizur@ctp-jamia.res.in
†aasen@jmi.ac.in

PHYSICAL REVIEW D 99, 024052 (2019)

2470-0010=2019=99(2)=024052(17) 024052-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.024052&domain=pdf&date_stamp=2019-01-31
https://doi.org/10.1103/PhysRevD.99.024052
https://doi.org/10.1103/PhysRevD.99.024052
https://doi.org/10.1103/PhysRevD.99.024052
https://doi.org/10.1103/PhysRevD.99.024052


Horndeski theories [21] which contain scalar-tensor inter-
actions with second-order equations of motion on a curved
background. Massive gravity theories [15,22] are other
examples of general scalar-tensor theories giving second-
order equations of motion.
Similar to scalar-tensor theories, one can also have

consistent models of vector-tensor theory as a part of the
gravitational interactions on large scales resulting the late-
time acceleration in the Universe [23]. In Minkowski space,
allowing the mass of the vector fields, leads to Proca
Lagrangian. One can then generalize this massive Proca
Lagrangian to curved spacetime. This has been done in a
recent paper by Heisenberg [24], where a generalized
massive Proca Lagrangian in curved background with
second-order equations of motion has been proposed. This
constitutes a Galileon-type self-interaction for the vector
field including the nonminimal derivative coupling to grav-
ity. Different cosmological aspects of such models as well as
constraints from cosmological observations have been stud-
ied in several recentworks [25]. In a recent paper,Heisenberg
has studied, in a systematic way, different generalizations of
Einstein gravity and their cosmological implications [26].
The recent results from Advanced Ligo experiment for

measuring gravitational waves [27], have opened up the
opportunity to probe astrophysical black holes. The latest
gravitational wave measurements from two colliding neu-
tron stars and its electromagnetic counterparts [28], have
confirmed the validity of GR for these astrophysical
processes. This put extremely tight constraints on different
modified gravity theories based on scalar fields [29],
explaining the late-time acceleration in the Universe. In
a recent work, Jimenez and Heisenberg [30] have put
forward vector models for dark energy based on a Proca
Lagrangian with cgw ¼ 1 making it consistent with latest
Ligo observations for neutron star merger. But the model
can still give nontrivial predictions for gravitational waves.
To probe any gravitational theory at astrophysical scales,

black hole are the best candidates. Recently, Heisenberg
et al. have constructed hairy black hole solutions in
generalized Proca theories [31]. For power-law coupling,
they found a class of asymptotically flat hairy black hole
solutions. These are not exact solutions but are iterative
series solutions up to Oð1=r3Þ which matches excellently
with the numerical solutions. These are hairy black hole
solution in a modified gravity scenario and it is extremely
interesting to study their astrophysical signatures to probe
the underlying modified gravity theory.
Gravitational lensing is one of most interesting astro-

physical phenomena due to gravitational effects of massive
bodies. It is broadly the bending of light due to the curvature
of the spacetime and as the curvature of the spacetime
depends on the gravitational properties of massive bodies,
one can directly constrain different properties of a massive
body like its mass or angular momentum, by observing its
gravitational lensing effect. In solar system, through lensing

effects, observers first confirmed the validity of Einstein GR.
But in solar system, the effect is pretty weak with deflection
anglemuch small compared to2π [32–34]. But it can be large
in the vicinity of strong gravitating objects like black holes,
where the photon can circle in closed loops around the black
hole many times due to the strong gravitational effect, before
escaping. There exists a sphere around the black hole called a
“photon sphere,” where the deflection angle for the photon
can even diverge. Gravitational lensing in the spacetime of
Schwarzschild black holeswas first studied byVirbhadra and
Ellis [35] and later it was extended to Reissner-Nordstorm
[36] and Kerr black holes [37], black holes in brane-world
models [38] and Galileon models [39], in extra dimensions
with the Kalb-Ramond field [40], and so on. As strong
gravitational lensing in the vicinity of black holes probes
different properties of the black holes, it is also useful to
probe different modified gravity theories as standard
Schwarzschild or Kerr black solutions get modified in
different versions of modified gravity theories. Moreover,
through gravitational lensing, one can probe the region
around black holes, known as a “black hole shadow” [41].
The shape and size of the black hole shadow is a direct probe
for the black hole spacetime and hence the underlining
gravity theory. With the prospects of the Even Horizon
telescope [42] as well as telescopes like SKA [43], one can
resolve the black hole shadowwith great accuracy and hence
probing modified gravity through such observations is
possible in near future. In this paper, we study the strong
lensing phenomena for the black hole spacetimes in gener-
alized Proca theories. Throughout the paper, we have used
the geometrical unit G ¼ c ¼ 1.

II. HAIRY BLACK HOLE SOLUTION IN
GENERALIZED PROCA THEORIES

The action for general Proca theory is given by
[24,30,31,44]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F þ

X6
i¼2

Li

�
; ð1Þ

with

L2 ¼ G2ðXÞ; L3 ¼ G3ðXÞAμ
;μ;

L4 ¼ G4ðXÞRþG4;X½ðAμ
;μÞ2 −Aν;μAμ;ν� − 2g4ðXÞF;

L5 ¼ G5ðXÞGμνAν;μ −
G5;X

6
½ðAμ

;μÞ3 − 3Aμ
;μAσ ;ρAρ;σ

þ 2Aσ;ρAρ;νAν
;σ� − g5ðXÞF̃αμF̃β

μAβ;α;

L6 ¼ G6ðXÞLμναβAν;μAβ;α þ
G6;X

2
F̃αβF̃μνAμ;αAν;β: ð2Þ

Here F ¼ −FμνFμν=4. The functions G2 −G6 as well as g4
and g5 depend on X ¼ −AμAμ=2. We denote Gi;X ¼
∂Gi=∂X. The vector fieldAμ has nonminimal couplings with
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spacetime curvature through Lμναβ ¼ EμνρσEαβγδRρσγδ=4,
where Eμνρσ is the Levi-Civita tensor and Rρσγδ is
the Riemann tensor. The dual strength tensor F̃μν ¼
EμναβFαβ=2. The Einstein-Hilbert term M2

pl=2 is contained
in G4ðXÞ.
To describe the black holes in this general Proca theory,

one assumes a static spherically symmetric spacetime:

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞðdϑ2þ sin2ϑdφ2Þ; ð3Þ

together with the vector field Aμ ¼ ðA0ðrÞ;A1ðrÞ; 0; 0Þ.
Here AðrÞ, BðrÞ, A0ðrÞ, and A1ðrÞ are arbitrary functions
of r. In [31,44], the following action has been considered
for general Proca theory:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ β3A

μ
;μX þ F

�
: ð4Þ

Up toOð1=r3Þ, the Black hole solution for such theory is
given by [31,44]

AðrÞ ¼ 1 −
2

r
−

P2

6r3
þOð1=r4Þ

BðrÞ−1 ¼ 1 −
2

r
−

P2

2r2
−

P2

2r3
þOð1=r4Þ

CðrÞ ¼ r2 ð5Þ

where, we have set r ¼ r=M, where M is the mass of the
black hole. Throughout the paper, all the distances are
measured in the unit of the mass of the black hole (M ¼ 1)
unless otherwise specified. Here P is Proca hair, related to
the time component of the vector field as A0 ¼
ðP − P=r − P=ð2r2ÞÞMPl þOð1=r3Þ. We set P ¼ P=MPl
where MPl is the Planck mass. Clearly, the metric
satisfies asymptotically flat condition, limr→∞AðrÞ ¼
limr→∞BðrÞ ¼ 1. Note that, in the limit P → 0, i.e., when
the Proca hair P vanishes, the above metric elements reduce
to that of Schwarzschild metric.

III. LENSING EFFECT IN STRONG
FIELD LIMIT IN A STATIC, SPHERICALLY

SYMMETRIC METRIC

Before considering the spacetime of our interest, we
review the gravitational lensing effect in Strong Field Limit
(SFL) in a general asymptotically flat, static and spherically
symmetric spacetime. In this section we discuss about the
main concepts and different observables related to gravi-
tational lensing in the strong field limit following Ref. [45].

A. Observables in the strong field limit

Anygeneric static, spherically symmetric spacetime can be
described by the line element (3). In order to study the photon
trajectory, we will assume that the equation [35,45,46]

C0ðrÞAðrÞ − A0ðrÞCðrÞ ¼ 0 ð6Þ

admits at least one positive solution and the largest positive
solution of this equation is defined as the radius of photon
sphere, rm. We further assume that AðrÞ, BðrÞ and CðrÞ are
finite andpositive for r ≥ rm [45]. Since the spacetime admits
spherical symmetry, we can restrict our attention to equatorial
plane (ϑ ¼ π=2) without losing any generality. Now we can
formulate the lensing problem. Consider a black hole situated
at the origin. A photon with impact parameter u incoming
froma source situated at rS, deviateswhile approaching it. Let
the photon approach the black hole at a minimum distance r0
and then deviate away from it. An observer situated at rR
detects the photon [see Fig. 1]. In the strong field limit, we
consider only those photons whose closest approach distance
r0 is very near to rm and hence the deflection angle α can be
expanded around the photon sphere, rm or equivalently
minimum impact parameter um. When the closest approach
distance r is greater than rm, it just simply gets deflected (it
may complete several loops around the black hole before
reaching the observer). When it reaches a critical value r0 ¼
rm (or u ¼ um), α diverges and the photon gets captured.
Following the method developed by Bozza [45], one can
show that this divergence is logarithmic in nature and the
deflection angle can be written as

αðθÞ ¼ −ā ln
�

θ

θm
− 1

�
þ b̄ ð7Þ

where subscript ‘m’ denotes function evaluated at r ¼ rm.
θ is the incident angle to the observer whereas θm ¼
um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrRÞ=CðrRÞ

p
corresponds to the incoming photon with

minimum impact factor, um ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cm=Am

p
. When θ ≤ θm, the

photon gets captured. The parameters ā and b̄ are called
the Strong Lensing coefficients whose functional forms
are given in Eqs. (35)–(36) of Ref. [45].
With the help of Eq. (7), we can calculate the observables

for strong lensing corresponding to any given static and
spherically symmetric metric using the lens equation. The
corresponding observables are (i) position of the innermost
image, θm, (ii) the angular separation between the first
relativistic image (outermost image) with the innermost
image, s, and (iii) relative flux between different images,R.
In order to do so, we introduce co-ordinate independent
lens equation: α ¼ θ − θS þ ϕRS, where θ and θS denote
the angles that are measured at the receiver position and
the source position, respectively, while ϕRS is the angle
between the azimuthal coordinate of source and observer
[47]. The quantity α is geometrically invariant which in
asymptotically flat limit, coincides with the deflection
angle. If θ̄ denotes the impact angle as seen from the
source, then angle measured from source position becomes
θS ¼ π − θ̄. Let γ be the angle between the optic axis (the
line joining the observer and the lens) and the line joining
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the lens and the source (see Fig. 1). Note that ϕRS ¼ π − γ.
Then the lens equation connecting the observer and source
position takes the form

γ ¼ θ þ θ̄ − αðθÞ ð8Þ

This equation is known as the Ohanian lens equation [48]
and as discussed in Ref. [49], is the best approximate lens
equation in asymptotically flat spacetime. Since both the
source and observer are situated far away from the black
hole, θ̄ can be approximated as θ̄ ¼ θrR=rS. With this
condition and using Eqs. (7) and (8), one can obtain the
position of the nth-order image [45],

θn ¼ θm

�
1þ exp

�
b̄þ γ − 2nπ

ā

��
; ð9Þ

where n corresponds to the number of windings around the
black hole. When n → ∞, θn becomes θm. So θm represents
the position of innermost relativistic image. In simplest of
situation, we consider that the outermost image (first
relativistic image) θ1 is resolved as a single image and
all the other images packed together at θm [40,45]. Then
the angular separation between these two images is defined
as [45]

s ¼ θ1 − θm ¼ θm exp

�
b̄þ γ − 2π

ā

�
ð10Þ

Magnification of the image is defined as the ratio of solid
angle to the observer with a lens to the solid angle without
lens, i.e., μ ¼ sin θdθ= sin χdχ, where χ is the angle
between source to observer with respect to the optic axes
(see Fig. 1). Note that lens equation Eq. (8) does not have
any term that contains χ. So using the relation, rS sin γ ¼
DOS sin χ and considering DOS ≫ rS, one can easily show

that the magnification of nth relativistic image can be
written as [45]

μn ¼
�
DOS

rS

�
2 θ2menð1þenÞ

āsinγ
; en¼ exp

�
b̄þ γ−2nπ

ā

�
:

whereDOS is the distance between the source and observer.
The ratio of magnification, hence the flux from the first
relativistic image to all the other images, is given by [45]

R ¼ 2.5log10

�
μ1P∞
n¼2 μn

�
¼ 5π

ā ln 10
ð11Þ

If we have a precise knowledge of γ and observer to lens
distance rR, then we can predict strong lensing co-efficient
ā, b̄ and minimum impact parameter um by measuringR, s,
θm. Then by comparing them with the values predicted by
given theoretical models, we can identify the nature of the
black hole.

B. Time delay in strong field gravitational lensing

In this section we briefly review the Time Delay effect in
a static, spherically symmetric spacetime following the
method developed by Bozza and Manchini [50]. From the
discussion in the previous section, it is clear that formation
of multiple images is a key feature of strong lensing and
generally the time taken by different photons following
different paths (which correspond to different images) are
not the same. So there are some time delay between
different images. Moreover time delay between the images
will depend on which side of the lens the images are
formed. When both the images are on the same side of the
lens, time delay between m and n th relativistic image can
be expressed as [50]

FIG. 1. A schematic diagram of the lensing system has been presented. Light from source S get lensed by the black hole L and incident
on the observer O with an angle θ. Image is formed at I. The line joining O and L is called the Optic axis [40].
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ΔTs
mn ¼−um2πðm−nÞþ2

ffiffiffiffiffiffi
um

p
ffiffiffiffiffiffi
Bm

Am

s �
exp

�
b̄þ γ−2mπ

2ā

�

− exp

�
b̄þ γ−2nπ

2ā

��
ð12Þ

The sign of γ depends on which side of the source images
are formed. When the images are formed on the opposite
side of the lens time delay between m and n th relativistic
image can be expressed as [50]

ΔTo
mn ¼−umð2πðm−nÞ−2γÞ

þ2
ffiffiffiffiffiffi
um

p
ffiffiffiffiffiffi
Bm

Am

s �
exp

�
b̄þ γ−2mπ

2ā

�

− exp

�
b̄− γ−2nπ

2ā

��
ð13Þ

We need instruments with high observational precision in
order to find the contribution from the second term. Thus
for practical purposes, we can approximate the time delay
by its first term’s contribution. In terms of θm one can get an
interesting result when both the images are formed in the
same side of the lens. Then time delay between first and
second relativistic image can be expressed as [51]

ΔTs
12 ¼ θm2πrR ð14Þ

In principle, using this formula, we can get a very accurate
estimate for the distance of the black hole. Note that for a
distant observer, AðrRÞ practically becomes 1 and θm can be
written as θm ¼ rm=

ffiffiffiffiffiffiffiffiffiffiffi
Amr2R

p
. Using Eq. (14), we can find

an interesting result given by

r2mAðrmÞ ¼
�
ΔTs

12

2π

�
2

: ð15Þ

This equation beautifully relates an observational param-
eter, the time delay ΔTs

12 between first and second
relativistic image with a theoretical parameter, the metric
function AðrÞ evaluated at r ¼ rm. Thus, one can verify a
given theoretical model by solving this equation using the
observational data of ΔTs

12.

IV. NUMERICAL ESTIMATION OF DIFFERENT
OBSERVABLES FOR GRAVITATIONAL LENSING

OF THE STAR S2 BY SGR A�

In this section we will numerically estimate the values of
different observable parameters related to strong lensing for
a spacetime described by Eqs. (3)–(5). For this purpose, we
take the nature of the super massive black hole (SMBH) at
the center of our Galaxy (Sgr A�) is given by solutions of
second order generalized Proca theories. Here we take the
star S2 as the source. This star revolves around the SMBH
in a highly elliptic orbit with orbital time period around
15.92 years and has the minimum average distance from it.
In the early 2018, it had been at its periapse position.
Previous studies have shown that the magnification of
images is maximum when the star reaches its pariapse
position [51]. This gives us an unique opportunity to
observe different lensing parameters in this time and thus
make it possible to verify different theories of gravity. In
this section, we first reconstruct the lensing system using
the data given in Ref. [51,52] and then numerically
calculate different observables related to strong lensing in
this scenario.

A. The lensing system

The mass of black hole at the center of our Galaxy is
estimated to be 4.01 � 106M⨀ which is located at a distance
7.8 kpc away from us [53]. S2 is one of the star with the
minimum average distance from it (S-102 has even smaller
minimum average distance but it is 16 times fainter than S2
[54]). As stated earlier, it was at its periapse position in early
2018 where one expect to have maximum magnification
[51]. Sowe have used it as a source for gravitational lensing.
Moreover, S2 has radius of few solar radii, so one can treat it
as point source. It’s orbital motion (along with other short-
period stars around SMBH) has been studied over 20 years
mainly by two groups, one at Keck Observatory while the
other with New Technology Telescope (NTT) and with Very
Large Telescope (VTT) [52]. From those studies, we now
have a precise understanding about its orbital motion.
Its orbital parameters are reported in Table I [51,52]. Its
position (rS, γ), can be expressed in terms of the orbital
parameters of the system [51,55],

rS ¼
ϱð1 − e2Þ
1þ e cos ξ

ð16Þ

TABLE I. Orbital parameters for S2. Its orbit can be described by an ellipse with ϱ as the semimajor axis and e as the eccentricity of the
orbit. The inclination angle i denotes the angle between the ellipse and a reference plane in the line of sight. Ω and ω describes the
position angle of the ascending node and the periapse anomaly with respect to the ascending node respectively. The orbital time period is
described by T. T0 describes the epoch when it reaches the periapse position [51,52].

Orbital Parameter ϱ (pc) T (yr) e To (yr) i (deg) Ω (deg) ω (deg)

Value 4.54 × 10−3 15.92 0.89 2018.37 45.7 45.9 244.7
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rR ≃Dos ¼ 7.8 kpc ð17Þ

γ ¼ arccos½sinðξþ ωÞ sin i�; ð18Þ

whereDos is the distance between observer and the source, ϱ
is the major semiaxis, e is the eccentricity, i is the inclination
of the normal of the orbit with respect to the line of sight, ω
is the periapse anomaly with respect to the ascending node. ξ
is the anomaly angle from the periapse, determined by the
differential equation and initial condition

T
2π

ð1 − e2Þ3=2
ð1þ e cos ξÞ2

_ξ ¼ 1

ξðT0Þ ¼ 2κπ ð19Þ

whereT is the orbital time period of S2 andT0 is the epoch of
periapse and κ be any integer.We have plotted anomaly angle

as a function of time in Fig. 2. From the plot, we can see that
the star reached its periapse position in early 2018.

B. Numerical estimation of
different lensing parameters

In this section, we present the numerical estimation of
different observational parameters considering the SMBH
at the center of our Galaxy as a lens and the star S2 as a
source. Here we have considered that nature of black hole
spacetime is given by solutions of second order generalized
Proca theories presented in Eq. (5) and the S2 star is at its
pariapse position. The radius of the photon sphere is given
by the largest positive solution of the equation [see Eq. (6)]

12r3 − 36r2 − 5P2 ¼ 0 ð20Þ

Clearly, one can see that in the limit P ¼ 0, the radius of
the photon sphere is reduces to rm ¼ 3, representing photon
circular orbit in Schwarzschild spacetime. By solving the
above equation, one can express the radius of the photon
sphere as

rm ¼ 1þ 2ffiffiffiffiffiffiffi
K13

p þ
ffiffiffiffiffiffiffi
K13

p

2
ð21Þ

where,

K1¼
��

5P2

3
þ8

�
þ

ffiffiffi
5

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ð5P2þ48Þ

q �

As stated earlier, we assumed that AðrÞ, BðrÞ, and CðrÞ are
finite and positive for r ≥ rm. But here BðrÞ fails to remain
positive for P ≥ 2.48 at r ¼ rm and hence in our analysis
we will concentrate in the range P < 2.48. In Table II, we
have presented the numerical estimation of different obser-
vational parameters namely the angular position of the
innermost image θm, the angular separation between inner-
and outermost image s, the relative magnification of the
outermost relativistic image with the other images R and

FIG. 2. Orbital position of S2 as a function of time have been
presented. Here ξ represents the anamoly angle from the periapse
position. Previous studies have shown that the maximum mag-
nification of the images will be obtained when S2 is in its periapse
position, i.e., when ξ ¼ 2κπ, where κ is an integer [51]. The plot
indicates that this had been achived in early 2018.

TABLE II. Numerical estimations of the observables related to strong lensing (θm, s, R, ΔTs
12) have been presented. A comparison

between the values of the observables obtained from generalized Proca theories (Proca BH) to those obtained from the Reissner-
Nordström black hole (RN BH) have also been presented. Here the parameter “hair” corresponds to Proca hair P in the case of Proca BH
and charged hair q in the case of RN black holes. Note that, hair ¼ 0 case corresponds to the Schwarzschild black hole. Here the SMBH
at the center of our Galaxy is taken as the lens whereas the star S2 is taken as the source. The observables have been calculated at the
epoch of periapse of the star S2 (early 2018).

Hair

θm in μas s in μas R ΔTs
12 in sec

Proca BH RN BH Proca BH RN BH Proca BH RN BH Proca BH RN BH

0 19.0033 19.0033 0.182 214 0.182 214 15.708 15.708 32.6484 32.6484
0.3 19.0191 18.713 0.185 641 0.188 735 15.5854 15.5434 32.6755 32.1498
0.6 19.066 17.7691 0.196 129 0.214 982 15.2132 14.934 32.7563 30.5281
0.9 19.143 15.7962 0.214 176 0.314 308 14.5764 13.0677 32.8885 27.1385
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the time delay between first and second relativistic image
ΔTs

12 (formed on the same side of the lens). We also
compare the results with those obtained from Reissner-
Nordström (RN) black hole solution with charge q whose
line element can be expressed as [56,57]

ds2 ¼ −
�
1 −

2M
r

þ q2

r2

�
dt2 þ

�
1 −

2M
r

þ q2

r2

�−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ ð22Þ

In Table II, “hair” corresponds to Proca hair P in the case
of generalized Proca black holes [Eq. (5)] and charged hair
q in the case of Reissner-Nordström (RN) black holes
[Eq. (22)]. We also have plotted the observables as a
function of hair parameter for these two black hole
spacetime in Fig. 3. From Table II, we found out that in
the case of generalized Proca black holes, angular position
of the innermost image θm increases as the hair parameter
increases which is contrary to the RN case. This means that

the size of the innermost Einstein ring is bigger for the
generalized Proca black hole spacetime than those
obtained from RN spacetime for the same value of the
hair parameter. The angular separation s increases with the
increase of the hair parameter similar to case of RN black
hole spacetime while the relative fluxR decreases with the
increase of the hair parameter. From Table II, one can see
that ΔTs

12 increases with the increase of hair parameter for
the case of generalized Proca black holes which is contrary
to the RN case. Note that the size of the innermost Einstein
ring θm (or, the time delay between first and second
relativistic image ΔTs

12) is maximum for the case q ¼ 0

(Schwarzschild black hole) in static, spherically symmetric
spacetime predicted by general relativity. So any value of
θm (or ΔTs

12) greater than those predicted in Schwarzschild
spacetime implies the existence of Proca hair. Thus by
measuring the size of the innermost Einstein ring (or the
time delay between first and second relativistic image) in a
static, spherically symmetric spacetime, one can observa-
tionally verify the “no-hair” theorem [58].

FIG. 3. Variation of different observables: (a) angular position of innermost image θm, (top-left corner) (b) the angular difference
between the outermost and inner images s (top-right corner) (c) Flux ratio of the innermost image with respect to the others,R (bottom-
left corner) and (d) Time delay between first and second relativistic image that formed on the same side of the lens ΔTs

12 (bottom-right
corner) as a function of the hair parameters. Here the parameter “hair” corresponds to Proca hair P in the case of generalized Proca black
holes and charge hair q in the case of Reissner-Nordström black holes. The solid red lines indicates the behavior of the observables as
function Proca hair P for generalized Proca black holes whereas the blue dashed lines indices the variation of the observables as a
function charge hair q for Reissner-Nordström black holes.
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Now, in order to probe the Proca hair, one have to
observationally measure both the position of the innermost
image θm and angular septation s. From Table II, we can
see that the angular separation between the images is
∼Oð10−1Þ μ arcsec, which is too hard to detect with present
technologies.
Before doing further study with Proca black hole, we

want to discuss an important issue regarding the validity of
our estimates for different astrophysical parameters. As
mentioned in Sec. II, the solution (5) for Proca black hole
that we consider in our study, is not an exact solution of the
Einstein equations, but an approximated analytical solution
which agrees well with the full numerical solution up to
order Oð1=r3Þ. Although this is ok for regions away from
the black hole horizon, but for near-horizon regions,
analytical approximation may break down. To see how
far it affects the numerical estimates of different observ-
ables, we consider solution up to order Oð1=r4Þ (next
order) [44], calculate different observables and study the
percentage deviations from the corresponding values for
solution up to order Oð1=r3Þ. The result is shown in
Table III. As one can see, for most of the cases, the
deviation is around 1% or less, except for the parameter s
with high value of Proca hair, when the deviation is around
3%. Hence, as long as the errors in future observational
estimates for these parameters are larger than these per-
centage deviations, our results are reliable.

V. LENSING OF ROTATING
PROCA BLACK HOLES

In the previous section, we have studied the bending of
light ray trajectory in the presence of a static and spheri-
cally symmetric black hole. But several observations
indicate that the super massive black hole in the center
of our Galaxy possesses angular momentum [59]. So for
observational perspective, it is important to consider the
lensing effect for a rotating black hole. Moreover,
the spacetime geometry is much more richer in this case.
So from pure theoretical point of view, we can expect some
interesting result will emerge when we consider strong
lensing effect around a rotating black hole. Indeed, pre-
vious studies has showed that the caustic points are no
longer aligned with the optical axis for the rotating black
hole, but shifted in according to the rotation of the black
hole and now they have a finite extension [60]. In this
present section, we will discuss the gravitational lensing
effect for a more general rotating black hole. First we
calculate the metric for a rotating black hole in generalized
Proca theories using Newman-Janis algorithm and then
study the null trajectories in this spacetime.

A. Null geodesic equation and photon trajectory

Applying Newman-Janis algorithm [61] to the metric.(5)
and retaining only terms up to the order OðP2

r3 Þ, we found
out the stationary, axisymmetric solution to Einstein’s field
equation which in Boyer-Lindquist coordinates (t, r, ϑ, ϕ)
[62] can be written as

ds2¼−
�
1−

2r
ρ2

−
P2

6ρ2r

�
dt2−

4asin2ϑ
ρ2

�
rþP2

8
þP2

6r

�
dtdϕ

þρ2

Δ
dr2þρ2dϑ2

þ
�
r2þa2þ2ra2sin2ϑ

ρ2
þP2a2sin2ϑ

2ρ2

�
1þ1

r

��
×sin2ϑdϕ2 ð23Þ

where a ¼ L=M2, where L and M denotes the angular
momentum and mass of the black hole, respectively. The
Proca field in this case is turned out to be

Aμ ¼
�
Ã0;−

Ã0ρ
2

Δ
1ffiffiffiffiffiffiffiffi
Ã B̃

p þ
�
Ã0 þ Ã1

ffiffiffiffĩ
B

Ã

s ��
1 −

a2sin2θ
Δ

�
; 0; Ã1

ffiffiffiffĩ
B

Ã

s
asin2θ

�
; ð24Þ

where “tilde” denotes the components after complexifica-
tion. We have checked that Eqs. (23) and (24) together
satisfy the Einstein’s equation for an axisymmetric metric
for a rotating Proca black hole up to order Oð1=r4Þ. As our
original nonrotating black hole solution is valid up to order

Oð1=r3Þ, we can safely take the metric given by Eq. (23)
for a rotating Proca black hole for further study.
We can also identify the quantity a in Eq. (23) as the

specific angular momentum of the black hole. The func-
tions ρ and Δ is given by

TABLE III. In Table II, numerical estimation of different
observables related to strong lensing (θm, s, R, ΔTs

12) for metric
(5) have been presented where we have considered metric
components up to order Oð1=r3Þ only. This table shows the
percentage modification of the observables when the contribution
from the next leading order [Oð1=r4Þ] is taken into account. As
one can see for most of the cases, the deviation is below 1%.

Proca hair

Percentage modification of the value
when Oð1=r4Þ is included in the metric

for the observables

θm s R ΔTs
12

0.3 0.055 051 6 0.444 458 0.111 209 0.055 051 6
0.6 0.214 403 1.702 92 0.447 742 0.214 403
0.9 0.4623 3.571 28 1.031 14 0.4623
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ρ2 ¼ r2 þ a2cos2ϑ ð25Þ

Δ ¼ r2 þ a2 − 2r −
P2

2

�
1þ 1

r

�
ð26Þ

Here, also, we have set r ¼ r=M and P ¼ P=MPl. In the
limit of vanishing Proca hair, i.e., P → 0, the solution
coincides with the Kerr black hole. Horizon of the black
hole is a surface where Δ ¼ 0 and outer horizon is
determined by the largest possible solution of the equation,
which in this case turns out to be

rH ¼ 2

3
−

−16þ 12a2 − 6P2

3
ffiffiffi
43

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ffiffiffiffi
K

p
− 144a2 þ 180P2 þ 128

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ffiffiffiffi
K

p
− 144a2 þ 180P2 þ 128

3
p

6
ffiffiffi
43

p ð27Þ

where the function K ¼ 2ð6a2 − 3P2 − 8Þ3 þ ð−36a2þ
45P2 þ 32Þ2. It is easy to see in the limit a, P → 0, and
radius of the horizon turns out to be rH ¼ 2 as expected
for the Schwarzschild case.
Null geodesic equations can be obtained by using the

Hamilton-Jacobi equation [57]. For the metric (23), the
relevant geodesic equations are given by

ρ2 _r ¼
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
ð28Þ

ρ2 _ϑ ¼
ffiffiffiffiffiffiffiffiffiffi
ΘðϑÞ

p
ð29Þ

ρ2 _ϕ¼ a
Δ
ðr2þa2−aJÞþP2a

Δ

�
1

2
þ 1

3r

�
þðJsin−2ϑ−aÞ;

ð30Þ

where

RðrÞ ¼ ðr2 þ a2 − aJÞ2 − P2a

�
1

2
þ 1

3r

�
− ΔðQþ ðJ − aÞ2Þ ð31Þ

ΘðϑÞ ¼ Q − ðJ2sin−2ϑ − a2Þcos2ϑ: ð32Þ

In Eqs. (28)–(30), the dot indicates derivative with respect
to some affine parameter λ. In Eqs. (31) and (32),Q denotes
a constant of separation called Carter constant, J is the
angular momentum of the photon with respect to the axis of
the black hole. In our analysis, we have set pt ¼ −E ¼ −1
by a suitable choice of affine parameter.
Since we are interested in studying the photon trajectory

in an isolated black hole spacetime, we can ignore the effect
of other celestial bodies on the photon trajectory and can
approximate the spacetime at a large distance from the
black hole as flat Minkowski spacetime. We will assume
that both the source and observer are situated at a large

distance from the black hole. Now we can formulate the
lensing problem as follows: the initial photon trajectory
starts off as a straight line. If there were no black hole, then
it would continue to follow this straight line trajectory. But
because of the presence of the black hole, its path gets
deviated from this initial trajectory near the black hole.
Finally, it approaches the observer along this deviated path.
In this scenario, we can relate the constant of motionQ and
J in terms of a set of geometric quantities (ψR, u, h) [63].
Here the inclination angle ψR denotes the angle between
the initial photon trajectory and the equatorial plane. The
projected impact parameter u describes the minimum
distance of the projected photon trajectory on the equatorial
plane from the origin if there were no black hole and,
finally, the height of the light ray trajectory at u from the
equatorial plane is denoted by h.
Let (α, β) denote the celestial coordinate of the image as

seen by an observer sitting on (rR, ϑR) in Boyer-Lindquist
coordinate. The coordinate α and β represents the apparent
perpendicular distance of the image from the axis of
symmetry and its projection on the equatorial plane,
respectively [57]. Taking into consideration that the
observer is situated far away from the black hole and
using Eqs. (28)–(32), we can express α and β as [57,64]

α ¼ −r2R sin ϑR
dϕ
dr

����
rR→∞

¼ J
sin ϑR

ð33Þ

β ¼ r2R
dϑ
dr

����
rR→∞

¼ h sinϑR ð34Þ

Taking the asymptotic limit ϑR ¼ π=2 − ψR and α ¼ u, we
can finally express the constants of motion in terms of
geometric parameters of the incoming ray as

J ≈ u cosψR ð35Þ

Q ≈ h2cos2ψR þ ðu2 − a2Þsin2ψR ð36Þ

VI. BLACK HOLE SHADOW ANALYSIS

In this section, we will describe the shadow of rotating
black hole. For nonrotating black hole, it is just a black
circular disc in the observable sky with a radius that
corresponds to the position of the photon sphere. As we
will see, things goes a bit interesting in the case of rotating
black hole.
We will use the celestial coordinates (α, β) given in

Eqs. (33)–(34) to give a description of the shadow. For
simplicity, let us assume that the observer is sitting on the
equatorial plane. Then using Eqs. (33)–(36), it is easy to
check that photons reaching from an generic point (α=rR,
β=rR) can be characteristic by J ¼ −α and Q ¼ β2. In our
calculation we have considered that positive angular
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momentum J corresponds to counterclockwise winding of
the light rays as seen from above. So when a > 0, the
photons rotates in the same direction as the black hole
(prograde/direct photons) while they rotate in the opposite
direction for a < 0 case (retrograde photons). One can
visualize the shape of black hole shadow by plotting β vs α.
In Fig. 4, we have plotted the shadows casted by a black
hole described by metric (23) for different values of a and
P. Note that, for the nonrotating case (a ¼ 0), the shadow
of the black hole is just a dark circular disc. But when the

black hole has a nonvanishing angular momentum (a ≠ 0),
the shape of the shadow gets slightly distorted. Moreover, it
gets shifted towards right.
Following Ref. [65], we define the observables for black

hole shadow as the radius Rs of a reference circle and the
distortion parameter δs. We will consider a reference circle
that passes through three points of the shadow: the top
(αt, βt) and the bottom (αb, βb) and a point corresponds to
the unstable retrograde circular orbit (αr, 0). The distortion
parameter δs is the ratio of the difference between the

FIG. 4. Shadow casted by rotating black hole in generalized Proca theories given by the metric.(23) for different values of a and P as
seen by observer in equatorial plane. The shadow region is corresponds to the inside of each dashed curve. The case a ¼ 0 defines
shadow for nonrotating black hole. An increase of a causes the deformation of the black hole shadow.
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endpoint of the circle (ᾱp, 0) and the point corresponding to
the prograde circular orbit (αp, 0) [both of them at the
opposite side of the point (αr, 0)] to radius of the reference
circle [66]. Typically Rs gives the approximate size of the
black hole shadow, while δs is a measure of its deformation
with respect to the reference circle. For an equatorial
observer, the observables take the form

Rs ¼
ðαt − αrÞ2 þ β2t

2jαt − αrj
ð37Þ

δs ¼
ᾱp − αp

Rs
: ð38Þ

Bymeasuring this two observables, one can predict the black
hole parameters very accurately. A simple way to extract the
information about parameters a and P is to plot the contour
curves of constant Rs and δs in the (a, P) plane [67]. The
points in that plane where they intersect give the value of
corresponding a andP. In Fig. 5, we show the contour plot of
Rs and δs in the (a,P) plane.As stated earlier, ifwe can obtain
values ofRs and δs very accurately from the observations, the
point where the associated contours intersect, gives the
corresponding values of a and P.

VII. GRAVITATIONALLENSINGBYAROTATING
BLACK HOLE IN STRONG FIELD LIMIT

In this section, we briefly review the main concepts and
the observables related to strong lensing in a stationary,

axisymmetric spacetime following the methods developed
by Bozza [63]. Throughout our discussion, we have
considered that both the source and observer are situated
very far away from the black hole. For the sake of
simplicity, we restrict our attention to the trajectories that
are very close to the equatorial plane. Advantage of
considering such a scenario is that the angular position
of the images can still be described by those obtained in the
equatorial plane but now one can understand the problem at
some deeper level as one can calculate the magnification of
the images from the two-dimensional lens equation.
We formulate the lensing problem as follows: we

consider that the observer and the source are situated at
a height hR and hS from the equatorial plane respectively. A
photon with impact parameter u incoming from the source
situated at rS, approaches the black hole at a minimum
distance r0 and then deviates away from it. An observer at
rR receives the photon. Now we want to find the angular
position and the magnification of the images. In order to do
so, we first restrict our attention to the light rays on the
equatorial plane by setting ϑ ¼ π=2 or equivalently by
taking ψ ¼ π=2 − ϑ ¼ 0 and h ¼ 0. Substituting these
conditions on Eq. (23), we get reduced metric of the form

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞdϕ2−DðrÞdtdϕ ð39Þ

In order to study the photon trajectory in a stationary
spacetime, we assume that the equation [64]

ðA0C0
0 − A0

0C0Þ2 ¼ ðA0
0D0 − A0D0

0ÞðC0
0D0 − C0D0

0Þ ð40Þ

admits at least one positive solution and largest positive
root of the equation is defined as the radius of photon
sphere, rm. Here subscript ‘0’ implies functions evaluated
at closest approach distance r0. Note that, when we put
D0 ¼ 0, this equation coincides with the condition for
photon sphere in static case given by Eq. (6). In the strong
field limit, we consider only those photons whose closest
approach distance r0 is very near to rm and hence the
deflection angle α can be expanded around the photon
sphere, rm or equivalently minimum impact parameter um.
When the closest approach distance r is greater than rm, it
just simply gets deflected (it may complete several loops
around the black hole before reaching the observer). When
it reaches a critical value r0 ¼ rm (or u ¼ um), α diverges
and the photon gets captured. Using the same method as in
the case static case, we can express total deflection as
follows [63],

αfðθÞ ¼ −ārot log
�

θ

θm
− 1

�
þ b̄rot; ð41Þ

where um is the impact parameter evaluated at rm. The
parameters ārot, b̄rot are the strong field coefficient for
rotating metric in the equatorial plane (for explicit

FIG. 5. The contour plot of constant Rs (green solid lines)and δs
(red dashed lines) curves in the (a, P) plane have been presented.
Intersection of the curves corresponding to constant Rs and δs
obtained from observation gives value of a and P of the
black hole.
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expression of ārot, b̄rot, see Eqs. (34)–(35) of Ref. [63]). θ
denotes the angular position of the image. From Eq. (41),
we can see that the deflection angle diverges at θ ¼ θm ¼
um=rR. It represents the position of the innermost image.
Once the deflection angle is known, we can obtain the
angular position of different images using the lens equa-
tion (8). In the simplest situation, one can express the
angular position of the n-th order image as [63]

θn ¼ θ0n

�
1 −

umen
ārot

�
rR þ rS
rRrS

��
ð42Þ

where,

θ0n ¼ θmð1þ enÞ; en ¼ exp

�
b̄rot þ γ − 2nπ

ārot

�
:

Now we turn our attention to the trajectories that are very
close to the equatorial plane; i.e., those trajectories have the
very small value of declination angle ψ ¼ π=2 − ϑ. With
the help of this condition and assuming the height of light
ray trajectory from equatorial plane h is small compared to
the projected impact parameter u, it is easy to show that the
inclination angle ψR ≈ h=u. The constants of motion given
in Eqs. (35)–(36) can then be written as

J ≈ u; Q ≈ h2 þ ū2ψ2
R; ð43Þ

where ū ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − a2

p
. Moreover, we expect the declination

angle ψ to remain small (of the order of ψR) during the
motion. Small declination condition for the photon trajec-
tory readily implies that ðhR; hSÞ ≪ u ≪ ðrR; rSÞ. If we
neglect the higher order terms, then the polar lens equation
can be written as [63]

hS ¼ hR

�
rR
ū
sin ϕ̄f − cos ϕ̄f

�

− ψR

�
ðrR þ rSÞ cos ϕ̄f −

rRrS
ū

sin ϕ̄f

�
ð44Þ

where

ϕ̄fðθÞ ¼ −ârot ln
�

θ

θm
− 1

�
þ b̂rot ð45Þ

Here, ârot and b̂rot denotes two numerical parameters (for
more details see Eqs. (52)–(53) of Ref. [63]). Equation (44)
along with Eq. (8) represents the two-dimensional lensing
equation. Using these two equations, one can find we get
the magnification of the nth image as

μn ¼
ðrR þ rSÞ2
ðrRrSÞ

�
μ̄ðaÞ
KðγÞ

�
ð46Þ

where

μ̄ðaÞ¼ ūmðaÞumðaÞeγ
ârotðaÞ

; eγ ¼ exp

�
b̂rotþ γ

ârot

�
;

KðγÞ¼ rRrS sin ϕ̄f;n− ūmðrSþ rRÞcos ϕ̄f;n: ð47Þ

where ϕ̄f;n is the phase of the nth order image given by the
Eq. (45) with θn is the solution of Eq. (42). Note that μn
diverges when KðγÞ vanishes. This condition gives the
position of the caustic points which formally defined as the
positions of source for which one gets infinite magnifica-
tion of the images.

VIII. TIME DELAY BETWEEN DIFFERENT
IMAGES IN STATIONARY SPACETIME

In this section we will extend our study of time delay
effect in a rotating black hole spacetime. As stated earlier,
formation of different image is a result of photons follow-
ing different trajectories, time taken by different photons is
not the same and hence there will be a time delay between
them. Bozza [50] solved this problem using the same
method used to find deflection angle and showed that the
leading term in time delay between m-th and n-th order
image can be expressed as [50]

ΔTs
mn ¼ 2πðn −mÞ ãrotðaÞ

ārotðaÞ
ð48Þ

When both the images are formed on the same side of the
black hole. We can see that the time delay for direct photons
(a > 0) and retrograde photons (a < 0) will be different.
When images are formed on the opposite side of the lens,

then time delay between m-th and n-th order image can be
expressed as [50]

ΔTo
mn¼

ãrotðaÞ
ārotðaÞ

ð2πnþ γ− b̄rotðaÞÞþ b̃rotðaÞ

−
ãrotð−aÞ
ārotð−aÞ

ð2πn− γ− b̄rotð−aÞÞ− b̃rotð−aÞ ð49Þ

This extra contribution comes due to the fact that the
coefficient b̄rot and b̃rot is not same for direct and retrograde
photons in the stationary case. The functional form of
ãrotðaÞ and b̃rotðaÞ is given in Eqs. (35)–(36) in Ref. [50].

IX. NUMERICAL ESTIMATION OF DIFFERENT
OBSERVATIONAL PARAMETERS

In this section, we present the numerical estimation of
different observational parameters related to strong lens-
ing for stationary, axiasymmetric spacetime considering
the SMBH at the center of our Galaxy as a lens. Here we
have considered that nature of black hole spacetime is
given by solutions of second order generalized Proca
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theories presented in Eq. (23) and numerically estimated
the values of different observables in the strong-field
limit for two separate lensing configurations, namely,
(a) when the source, lens, and the observer are highly
aligned with the source and the observer is at infinity and
(b) taking the star S2 as a source.
We have first considered a lensing system where the

source, lens, and the observer are highly aligned and both
the source and the observer are very far away from the lens.
We numerically solved Eq. (40) to get the radius of the
photon sphere rm and angular radius of innermost image
using the relation θm ¼ uðrmÞ=rR. We have further
assumed that the outer most image θ1 is resolved as a
single image and all other images packed together at θm.
Then the observables- angular separation between the
inner- and outermost image s, the ratio of flux from the
outermost image to those from all other image R and time
delay between first and second relativistic image ΔTs

12

(formed on the same side of the lens) can be approximated
by [45,50,68]

s ¼ θ1 − θm ≈ θm exp

�
b̄rot − 2π

ārot

�

R ¼ 2.5log10

�
μ1P∞
n¼2 μn

�
¼ 5π

ârot ln 10

ΔTs
12 ≈ 2π

ãrotðaÞ
ārotðaÞ

ð50Þ

So by measuring θm, s and R we can correctly predict
strong lensing co-efficient ārot, b̄rot and the minimum
impact parameter um and comparing them with the values
predicted by a given theoretical model, we can identify the
nature of the black hole. In Table IV, we have presented the
numerical estimation of different observational parameters
(θm, s, R, ΔTs

12). We also compare the results with those
obtained from Kerr-Newmann (KN) black hole solution
with charge q whose line element can be expressed as [69].

ds2¼−
�
1−

2Mr
ρ2

þq2

ρ2

�
dt2−

4asin2ϑ
ρ2

�
r−

q2

2

�
dtdϕ

þ ρ2

ΔKN
dr2þρ2dϑ2

þ
�
r2þa2þ2ra2sin2ϑ

ρ2
−
q2a2sin2ϑ

ρ2

�
sin2ϑdϕ2 ð51Þ

where

ΔKN ¼ r2 − 2rþ a2 þ q2; ρ2 ¼ r2 þ a2cos2ϑ:

In Table IV, “hair” corresponds to Proca hair P in the case
of rotating black holes in generalized Proca theories
[Eq. (23)] and charged hair q in the case of Kerr-
Newmann (KN) black holes [Eq. (51)]. We also have
plotted the observables as a function of hair parameter for
these two black hole spacetime in Fig. 6. From Table IV, we

TABLE IV. Numerical estimations of the observables related to strong lensing (θm, s, R, ΔTs
12) by a rotating black hole have been

presented. A comparison between the values of the observables obtained from rotating black holes in generalized Proca theories (Proca
BH) to those obtained from Kerr-Newmann black hole (KN BH) have also been presented. Here the parameter “hair” corresponds to
Proca hair P in the case of rotating Proca BH and charged hair q in the case of Kerr-Newmann black holes. Note that, hair ¼ 0 case
corresponds to Kerr black hole. Here the SMBH at the center of our Galaxy is taken as the lens. We have assumed that the lensing system
is highly aligned and both the source and observer are situated at infinity. The time delay between the first and second relativistic image
ΔTs

12 have been calculated under the assumption that both of these images are formed on the same side of the lens.

a Hair

θm in μas s in μas R Time delay ΔTs
12

Proca BH KN BH Proca BH KN BH Proca BH KN BH Proca BH KN BH

0.0 0.0 19.0033 19.0033 0.023 782 5 0.023 782 5 15.708 15.708 32.6484 32.6484
0.2 19.0103 18.8756 0.024 150 3 0.024 371 1 15.6536 15.6367 32.6605 32.429
0.4 19.0313 18.4796 0.025 286 7 0.026 399 6 15.4896 15.4039 32.6966 31.7488
0.6 19.066 17.7691 0.027 294 3 0.031 020 6 15.2132 14.934 32.7563 30.5281

0.1 0 .0 18.2607 18.2607 0.029 515 1 0.029 515 1 15.708 15.708 31.3726 31.3726
0.2 18.2666 18.1332 0.030 041 7 0.030 246 3 15.6413 15.6371 31.3829 31.1537
0.4 18.2845 17.7382 0.031 675 0.032 756 8 15.4398 15.4058 31.4135 30.475
0.6 18.314 17.0297 0.034 583 6 0.038 427 1 14.0986 14.9395 31.4642 29.2577

0.2 0.0 17.4932 17.4932 0.037 183 9 0.037 183 9 15.708 15.708 30.054 30.054
0.2 17.4978 17.3667 0.037 956 1 0.038 079 1 15.6247 15.6388 30.0619 29.8367
0.4 17.5115 16.9749 0.040 363 3 0.041 128 9 15.3721 15.4133 30.0855 29.1635
0.6 17.5343 16.2738 0.044 688 4 0.047 884 4 15.9415 14.9618 30.1247 27.9591

0.3 0.0 16.6958 16.6958 0.047 692 4 0.047 692 4 15.708 15.708 28.684 28.684
0.2 16.6986 16.5713 0.048 857 0.048 752 15.6018 15.6427 28.6889 28.4701
0.4 16.707 16.1864 0.052 506V7 0.052 304 2 15.2765 15.4316 28.7033 27.8089
0.6 16.7209 15.5015 0.059 122 6 0.059 865 3 14.7165 15.0155 28.7272 26.6322
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can see that the angular position of the innermost image θm
decreases with the increase of black hole spin a. But it
increases with the increase of the hair parameter which is
contrary to the KN case. Physically this implies that the size
of the innermost Einstein ring is bigger for a slowly rotating
black hole than those obtained from a rapidly rotating black
hole. Moreover, that the size of the ring is bigger for the
generalized Proca black holes spacetime than those
obtained from Kerr-Newmann spacetime for the same
value of the hair parameter. In Proca black hole spacetime,
angular separation between the inner- and outermost image
increases with the increase of a. This angular separation
increases monotonically with the increase of the hair
parameter similar to KN case. The relative fluxR decreases
with increase of both a and hair parameter similar to KN
case. Now the time delay between first and second
relativistic image (formed on the same side of the lens)
ΔTs

12 increases with the increase of the hair parameter
which is in contrary to the KN case. Note that size of the

innermost Einstein ring θm (or, the time delay between first
and second relativistic image ΔTs

12) is maximum for the
case a, q ¼ 0 (Schwarzschild black hole) for the black
holes predicted by general relativity. So any value of θm (or
ΔTs

12) greater than those predicted in Schwarzschild
spacetime implies the existence of Proca hair. Thus by
measuring the size of the innermost Einstein ring (or the
time delay between first and second relativistic image), one
can observationally verify the “no-hair theorem” [58]. Note
that in Table IV we have considered a highly aligned
lensing system, where both the source and observer are
situated at infinity whereas, in Table II, we have taken S2 as
a source. Now compare a ¼ 0 case (corresponds to non-
rotating black hole with source at infinity) for different
values of the hair parameter presented in Table IV with the
numerical values presented in Table II. Here one can see the
value of the angular separation between the innermost and
outermost image s is ∼Oð10Þ times higher for later case
than those presented in Table IV. Thus, the observable is in

FIG. 6. Variation of different observables: (a) angular position of innermost image θm, (top-left corner) (b) the angular difference
between the outermost and inner images s, (top-right corner) (c) Flux ratio of innermost image with respect to the others,R (bottom-left
corner) and (d) Time delay between first and second relativistic image ΔTs

12 when both of these images are formed on the same side of
the lens (bottom-right corner) as a function of the hair parameters have been presented. Here the parameter “hair” corresponds to Proca
hair P in the case of rotating black hole in generalized Proca black holes and charge hair q in the case of Kerr-Newmann black holes. The
solid red lines indicates the behavior of the observables as function Proca hair P for generalized Proca black holes whereas the blue
dashed lines indices the variation of the observables as a function charge hair q for Kerr-Newmann black holes. Here we have assumed
that the lensing system is highly aligned and both the source and observer are situated at infinity. We have taken that the value of the
black hole spin is taken as a ¼ 0.44, which is the current estimated value of spin of Sgr A� [59].
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more detectable range when one considers S2 as a source.
However, still, the small value of angular separation
(∼Oð10−1Þ μ arc- sec) makes the detection of angular sep-
aration very difficult with present technologies.
Now we will turn our attention to the gravitational

lensing by a rotating black hole in generalized Proca
theories with S2 as a source. In this case a high alignment
of the source with the optic axes does not happen due to
inclination of the source orbit. So the simplified formula
presented in Eq. (50) does not work in this case. Rather we
have to relay on the more general formula of lensing given
by Eqs. (42) and (46) to have correct estimation of angular
position and the magnification of the images. Using those
expression, we have plotted the observables θm (top-left
corner), s (top-right corner) for different values of Proca
hair P and the magnification of the images corresponding
to different winding number n (bottom) as a function of a
in Fig. 7. The peaks in the magnification corresponds to
caustic points of the given lensing configuration whereKðγÞ
vanishes [see Eq. (47)]. One can see that images correspond-
ing to low winding number has fewer caustic points in
the allowed range of a. As a result dimmer images meet
caustic more often in the allowed range of a. For drawing

the caustics, we assume P ¼ 0.5; but the overall behavior
remains the same for other values of P.

X. DISCUSSION AND CONCLUSION

In this paper, we discuss different astrophysical aspects
for a black hole in second-order generalized Proca theories
with derivative vector field interactions coupled to gravity.
These black hole solutions are hairy and hence give us a
perfect opportunity to observationally verify the “no-hair”
theorem. We considered that the supermassive black hole in
the center of the Galaxy is given by these generalized Proca
theories and numerically estimated the values of different
observables in the strong field limit for two separate lensing
configurations, namely, (a) when the source, lens, and the
observer are highly aligned and both the source and the
observer are situated at infinity and (b) taking the star S2 as
a source. For the latter case, we have shown that although
the lensing system is not perfectly aligned, it gives observ-
ables in a more detectable range. In early 2018, S2 was at its
periapse position, where one gets maximum magnification
[51], and thus gave us a perfect opportunity to measure
different lensing parameters.

FIG. 7. Variation of different observables: (a) angular position of innermost image θm, (top-left corner) and (b) the angular difference
between the outermost and innermost images s (top-right corner) for different values of Proca hair, (c) Magnification of second, third and
fourth relativistic images, log μn (bottom) as a function of black hole spin a have been presented. Here we have taken S2 as source. Note
that the peaks in the magnification corresponds to caustic points. For drawing the caustics, we assume P ¼ 0.5; but the overall behavior
remains the same for other values of P.
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We also compare our results with those obtained from
the Reissner-Nordström (Kerr-Newmann for rotating case)
black hole to see how the generalized Proca theory modifies
the observables, taking the stationary black holes predicted
by GR as a reference. Our study shows that the size of the
innermost Einstein ring increases with the increase in Proca
hair P for Proca black holes, whereas the Einstein ring will
shrink with the increase of charge q for the Reissner-
Nordström black hole (Kerr-Newmann for rotating case).
The contribution of black hole spin can be well understood
in the analysis of the black hole shadow. Adding angular
momentum to a black hole will cause a slight distortion in
the shape of the black hole shadow. Following Ref. [65], we
have shown that by measuring this distortion with respect
to a reference circle, one can accurately measure the black
hole parameters (a, P). Thus, by analyzing black hole
shadow, we can directly probe the black hole spacetime and
hence the underlying gravity theory. With the prospects of
the Even Horizon telescope as well as telescopes like SKA,
one can resolve the black hole shadow with great accuracy
and, hence, probing modified gravity through such obser-
vations is possible in the near future. The other two
observable angular separations between inner- and outer-
most images and relative flux in between them exhibit the
same behavior as in the case of the Reissner-Nordström
black hole (Kerr-Newmann for rotating case) with the
change of the hair parameter (which is Proca hair P for
Proca black holes and charged hair q for Reissner-
Nordström black hole). Angular separation between the
images increases while the relative flux in between them

decreases with the increase of the hair parameter. The time
delay between first and second relativistic images, when
both of them are formed on the same side of the lens,
increases with the increase of the hair parameter which is in
contrary to RN black hole (Kerr-Newmann for rotating
case). The size of the innermost Einstein ring θm (or, the
time delay between first and second relativistic image
ΔTs

12) is maximum for a, q ¼ 0 case (Schwarzschild black
hole) for the black holes predicted by general relativity.
So any value of θm (or ΔTs

12) greater than those predicted
in Schwarzschild spacetime, implies the existence of
Proca hair. Thus by measuring the size of the innermost
Einstein ring (or the time delay between first and second
relativistic image), one can observationally verify the “no-
hair” theorem.
Unfortunately, the angular separation between the inner-

and outermost relativistic image is extremely small
(∼Oð10−1Þ μas while taking S2 as a source), which puts a
great challenge for present technologies. However, modern
near-infrared (NIR) instruments like PRIMA [70],
GRAVITY [71], ASTRA [72] hope to achieve an astrometric
accuracy of 10–100 μas in combination with milliarcsec
angular-resolution imaging. With the help of these tech-
niques, one can probe the Proca hair in near future.
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