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We study a Kerr-like black hole and naked singularity in perfect fluid dark matter (PFDM). The critical
value of spin parameter ac is presented to differentiate the black hole from naked singularity. It is seen that,
for any fixed value of dark matter parameter α, the rotating object is a black hole if a ≤ ac and naked
singularity if a > ac. Also, for −2 ≤ α < 2=3, the size of the black hole horizons decreases, whereas for
2=3 < α it increases. We also study the spin precession frequency of a test gyroscope attached to a
stationary observer to differentiate a black hole from naked singularity in PFDM. For the black hole, spin
precession frequency blows up as the observer reaches the central object, while for naked singularity, it
remains finite except at the ring singularity. Moreover, we study Lense-Thirring precession for a Kerr-like
black hole and geodetic precession for a Schwarzschild black hole in PFDM. To this end, we have
calculated the Kepler frequency (KF), the vertical epicyclic frequency (VEF), and the nodal plane
precession frequency (NPPF). Our results show that the PFDM parameter α significantly affects those
frequencies. This difference can be used by astrophysical observations in the near future to shed some light
on the nature of dark matter.
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I. INTRODUCTION

It is widely believed that the center of nearly every
galaxy contains a supermassive black hole. In particular,
the increase of the astronomical observations in recent
years strongly indicates the presence of a supermassive
black hole at the center of our Galaxy (Sgr A*). According
to the current model of cosmology, dark matter makes up
about 27% of the matter-energy composition of the
Universe, although, as of today, there is no direct exper-
imental detection of dark matter. Nevertheless, indirect
experimental observations strongly suggest that dark matter
reveals its presence in many astrophysical phenomena.
Especially important in this context are the problem of
galactic rotation curves [1] and the galaxy cluster dynamics
[2], while further evidence for dark matter comes from
measurements on cosmological scales of anisotropies in the
cosmic microwave background through PLANCK [3].
Therefore, it is extremely important to study the black

hole physics in the presence of dark matter. Li and Yang
investigated the possibility of the static black hole

immersed in dark matter [4]. Their model of dark matter
is based on a single parameter α which is the limitation of
the model. Furthermore, their model corresponds to a
specific case studied for the first time by Kiselev [5]. In
particular, the logarithmic dependence was introduced to
explain the asymptotic rotation curves for the dark matter in
terms of the of quintessential matter at large distances, i.e.,
in the halo dominated region. That being said, one possible
limitation of this model is the fact that no interaction
between the dark matter and other fields (say, dark energy
field) is assumed. One can certainly modify the distribution
of dark matter in a galaxy by considering an interaction
between those fields. In other words, one may consider a
more general scenario with a surrounding matter given as a
combination of more complicated fields with more dark
matter parameters.
Quite recently, a new Kerr black hole solution with the

dark matter effects has been reported in the literature [6].
This solution modifies the Kerr metric due to the presence
of dark matter encoded via the PFDM (PFDM) α which,
among other things, implies a modification of the ergo-
sphere structure of the black hole. This solution allows to
study the effect of PFDM in different astrophysical prob-
lems. Very recently, this solution was used in [7,8], to study
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the effect of PFDM and cosmological constant on the size
of black hole shadow, deflection angle, as well as the black
hole emission rate which is related to the idea that for a far
distant observer located at infinity the observed area of the
black hole shadow approximately equals to the high energy
absorption cross section. According to the general theory of
relativity, there is a rotational dragging of inertial frames
near the presence of a rotating black hole spacetimes
known as a Lense-Thirring precession (LT) [9–11].
Basically, we can explore the dragging effects with the
help of a gyroscope (or a test gyro) using the fact that a
gyroscope tends to keep its spin axis rigidly pointed in a
fixed direction in space, say fixed relative to a given star. In
a rotating spacetime, due to the frame dragging effects, it is
shown that the precession of the gyroscope frequency is
proportional to the spin parameter of the rotating object and
inversely proportional to cube of the distance from the
central object. In addition to that, there is a second effect
related to the gyroscopic precession due to the spacetime
curvature which is known as a geodetic precession [12]. LT
precession of a test gyroscope has been extensively studied
in recent years, along this line of thought, in [13] authors
study the LT precession frequency in a rotating traversable
Teo wormhole, in [14] the frame-dragging effect in a strong
gravity regime is considered, and references therein. It is
worth noting that great effort has been made to actually test
the frame dragging effect and geodetic effect in the Earth’s
gravitational field by the Gravity Probe B experiment [15].
The concept of the spacetime singularity is well known

in general relativity mainly due to the famous Penrose-
Hawking singularity theorem. A naked singularity on the
other hand is defined as a gravitational singularity without
an event horizon. According to the cosmic censorship
conjecture, spacetime singularities that arise in gravita-
tional collapse are always hidden inside of black holes and,
therefore, cannot be observed in nature [16,17]. Whether
naked singularities exist or not is an open question,
however, one can naturally raise the following intriguing
question concerning the nature of the final product of
gravitational collapse: How can we distinguish a naked
singularity from a black hole? In this context, the problem
of naked singularities has attracted a great interest in recent
years [18–20].
From the no-hair theorem we know that a Kerr solution is

completely characterized by the black hole massM and the
black hole angular momentum J. If the following condition
M ≥ a holds, where the angular momentum parameter a is
defined by the angular momentum per unit mass, then the
Kerr solution represents a black hole. On the other hand, if
M < a, then a naked singularity is recovered. In a very
interesting work, Chakraborty et al. [21,22] argued that one
can basically use the spin precession frequency of a test
gyroscope attached to both static and stationary observers,
to distinguish black holes from naked singularities.
Afterwards, a new spin forward to this idea was found

by Rizwan et al. [23] who studied the problem of
distinguishing a rotating Kiselev black hole from a naked
singularity using spin precession of test gyroscope. In some
recent papers [24], authors study the idea of distinguishing
black holes and naked singularities with iron line spec-
troscopy, rotating naked singularities are studied in the
context of gravitational lensing [25], while in [26], authors
study the problem of distinguishing rotating naked singu-
larities from Kerr-like wormholes by their deflection angles
of massive particles.
It is known that the process of matter accretion towards

rotating neutron stars and black holes is followed by the
emission of electromagnetic waves, mainly x rays and
gamma rays [27]. The quasiperiodic oscillations phenom-
ena (QPOs) is linked with high frequency x-ray binaries
[28,29]. In particular, there are known the high-frequency
(HF) quasiperiodic oscillations (QPOs) and three types of
low-frequency (LF) QPOs. It is quite amazing that the LT
effect can be linked with this phenomena and perhaps to
explain the QPOs of accretion disks around rotating black
holes, provided the disk is slightly misaligned with the
equatorial plane of the BH [30].
In the present paper, firstly we shall examine the critical

value of spin parameter ac to differentiate the Kerr-like
black hole from a naked singularity with PFDM. Then, we
shall calculate the spin precession frequency of a test
gyroscope attached to stationary observer to differentiate a
Kerr-like black hole from a naked singularity with PFDM.
The outline of this paper is as follows. In Sec. II, we

determine the critical value of spin parameter to differentiate
a Kerr-like black hole from naked singularities in PFDM. In
Sec. III, we calculate the spin precession frequency of a test
gyroscope in Kerr-like black hole with PFDM, in particular
we examine in detail the LT-precession of a gyroscope in
Kerr-like black hole with PFDM. In Sec. IV, we specialize
our results to elaborate the geodetic precession in
Schwarzschild black hole spacetime in PFDM. In Sec. V,
we shall focus on the problem of distinguishing black holes
from naked singularities. In Sec. VI, we study the effect of
PFDM on the KF, the VEF, and the NPPF. Section VII is
devoted to some concluding remarks.

II. KERR-LIKE BLACK HOLE IN PERFECT
FLUID DARK MATTER

The line element of the Kerr-like black hole in PFDM is
given as [6]

ds2 ¼ −
�
1 −

2Mr − αr lnð r
jαjÞ

Σ

�
dt2 þ Σ

Δ
dr2

þ Σdθ2 − 2a
ð2Mr − αr lnð r

jαjÞÞ
Σ

dtdϕ

þ sin2θ

�
r2 þ a2 þ a2sin2θ

2Mr − αr lnð r
jαjÞ

Σ

�
; ð1Þ
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where

Δ≡ r2 − 2Mrþ a2 þ αr ln

�
r
jαj
�
;

Σ≡ r2 þ a2cos2θ: ð2Þ

Here M and a are mass and angular momentum per unit
mass, parameters of the black hole. Using Komar integral,
total mass of black hole MT interior to the surface r ¼ r0,
and the corresponding angular momentum JT around the
axis of rotation of a stationary spacetime is obtained as

MT ¼ M −
α lnðr0jαjÞ
2ar0

�
ar0 þ ðr20 þ a2Þtan−1

�
a
r0

��
; ð3Þ

JT ¼ aM þ α

4a2r0

�
ðr20 þ a2Þ2tan−1

�
a
r0

�

− ar0ðr20 þ a2Þ − 2a3r0 ln

�
r0
jαj
��

: ð4Þ

In the absence of PFDM (α ¼ 0), the line element (1)
represents a Kerr black hole. The PDFMstress-energy tensor
in the standard orthogonal basis of the Kerr-like black hole
can be written in diagonal form diag½−ρ; pr; pθ; pϕ� [6],
where

−ρ ¼ pr ¼
αr

8πΣ2
; pθ ¼ pϕ ¼ αr

8πΣ2

�
r −

Σ
2r

�
: ð5Þ

The location of the black hole horizons can be obtained by
solving the horizon equation

Δ ¼ r2 − 2Mrþ a2 þ αr ln

�
r
jαj
�

¼ 0: ð6Þ

Note that depending on the choice of parameters a and α, (6)
has no solution, one solution or two solutions. In each case
the line element (1) represents naked singularity, extremal
black hole or black hole with inner ðr−Þ and outer horizon
ðrþÞ, respectively. To find out the critical value (the maxi-
mum value of the parameter for which (1) can represent a
black hole) of the spin parameterac in this sectionwe express
the black hole parameters and the radial distance in the unit of
black holemass, that is, a=M → a, α=M → α and r=M → r.
Assuming the spin parameter a as a function of r and α we
can write

a2ðr; αÞ ¼ 2r − r2 − αr ln

�
r
jαj
�
: ð7Þ

Now to find the extremevalue of the spin parameter awe use
the condition of extrema of a2, that is, da2=dr ¼ 0, which
yields

fðr; αÞ≡ 2 − 2r − α ln

�
r
jαj
�
− α ¼ 0: ð8Þ

and for any fixed α,

df
dr

¼ −2 −
α

r
; ð9Þ

Note that

For any α < 0;
df
dr

> 0 for 0 < r < −
α

2

and
df
dr

< 0 for −
α

2
< r: ð10Þ

For any α > 0;
df
dr

< 0 for all r: ð11Þ

The above conditions show that the function fðr; αÞ behaves
differently for negative and positive values of α. So we will
discuss these two cases separately.

A. Negative α

For any fixed chosen α < 0, the function fðr; αÞ has
maxima at r ¼ −α=2. The function increases in the interval
0 < r < −α=2 while decreases for −α=2 < r. Thus,
depending on the value of α, fðr; αÞ have no zero or have
two zeros say r1 and r2 such that r1 ≤ − α

2
≤ r2. If αmin is

the minimum value for which fðr;αÞ has a zero, than

r1 ¼ r2 for α ¼ αmin: ð12Þ

That is, r1 is a zero of fðr; αÞ of multiplicity 2. Solving (8)
for negative α, we find that one zero of fðr; αÞ is

r1 ¼
α

2
ProductLogð−2e−1þ2

αÞ; ð13Þ

where ProductLogðxÞ is a Lambert W-function. Now, if r1
is zero of fðr; αÞ of multiplicity 2, then it must also be zero
of df=dr, which gives

αmin ¼ −
2

lnð2Þ ≈ −2.88539: ð14Þ

Note that for any value of α in the range αmin ≤ α < 0 the
corresponding extremal value of a are

a2 ¼ r1ðr1 þ αÞ and a2 ¼ r2ðr2 þ αÞ: ð15Þ

As r1 ≤ −α=2, so in this case a2 is negative, which implies
r1 cannot be the horizon of the extremal black hole and
thus r2 can be the horizon of the extremal black hole.
Further, for α ¼ −2, r2 ¼ 2 and a ¼ 0. If α is in the range
−αmin ≤ α < 2, the cosponsoring solution r2 gives a2

negative. Thus, for negative α, the line element (1)
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represents a black hole only if −2 ≤ α < 0. Solving (8)
numerically for −2 ≤ α < 0 gives horizon of the extremal
black hole r2 and, henceforth, will be represented by re.
Using re in (8), we get the critical value of spin parameter
as follows

ac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reðre þ αÞ

p
: ð16Þ

The graph of re and ac for −2 ≤ α < 0 is plotted in
Fig. 1(a), which shows that re decreases with increasing
α, while ac has its maximum value āc ≈ 1.2577 at
ᾱ ≈ −0.58197. If α is in the range −2 ≤ α < ᾱ, the critical
value of spin parameter ac increases, and if ᾱ < α < 0,
then ac decreases. Further, as r− ≤ re ≤ rþ, we can say that
for −2 ≤ α < 0, with increasing α, the size of the inner
horizon r− decreases.

B. Case II: Positive α

To discuss the critical value ac for any positive α, we first
find zeros of the function fðr; αÞ. As for any chosen
positive α the function fðr;αÞ is decreasing function of r so
it has at most one zero. Further

fðr̄1; αÞ ¼ 2 > 0 with r̄1 ¼
α

2
ProductLog

�
2

e

�
; ð17Þ

and

fðr̄2; αÞ ¼ −2αe−1þ2
α < 0 with r̄2 ¼ αe−1þ2

α; ð18Þ

By Intermediate value theorem we can conclude that
for any α > 0, fðr; αÞ has one zero (say re) such that
r̄1 < re < r̄2. Solving (8) for r yields

re ¼
α

2
ProductLogð2e−1þ2

αÞ: ð19Þ

and the corresponding extreme value of spin parameter ac
is obtained as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
re

�
2 − re − α ln

�
re
α

��s
; ð20Þ

or

ac ¼
α

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ProductLogð2e−1þ2

αÞ½2þ ProductLogð2e−1þ2
αÞ�

q
;

ð21Þ

The horizon of the extremal black hole re and critical value
of spin parameter ac verses α is plotted in Fig. 1(b) which
shows that size of the extremal black hole has minimum
value for α ¼ 2=3. It decreases for 0 < α < 2=3 and
increase for 2=3 < α. For α̃ ¼ 1=ð1þ eÞ, ac has minimum
value ãc ≈ 0.855. Further, for 0 < α < α̃, ac decreases
while 1=ð1þ eÞ < α it increases.
We have plotted y ¼ r2 − 2rþ a2 for different values of

a and y ¼ −αr lnð r
jαjÞ for negative α in Fig. 2(a)–2(c) and

for positive α in Fig. 2(d)–2(f). In each case, values of r for
which these curves intersect are horizons of the black hole.
It is seen that for any value of −2 ≤ α, if a < ac the curves
intersect for two values of r that are locations of inner
horizon (r−) and event horizon (rþ). If a ¼ ac the horizons
merge into a single horizon re the horizon of extremal black
hole and if a > ac the curve does not intersect each other
that is no solution of horizon equation. Thus, we conclude
that for any fixed −2 ≤ α the line element (1) represents a
black hole with two horizons r− and rþ only if a < ac. For
a ¼ ac, the two horizons rþ and r− merge into a single
horizon re and (1) is a extremal black hole. However, for
any a > ac, the line element is a naked singularity.

r e
&

a c

{α, ac}

(a) (b)

FIG. 1. The horizon of the extremal black hole re (black line) and critical values of the spin parameter ac (blue line) verse negative and
positive α are plotted in panel (a) and (b). Here ᾱ ≈ −0.581977, āc ≈ 1.25776655499709, α̃ ¼ 1=ð1þ eÞ and ãc ≈ 0.855.
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III. SPIN PRECESSION FREQUENCY

In this section, we will discuss the spin precession
frequency of a test gyroscope attached to a stationary
observer with respect to some fixed star due to the
frame dragging effects of the Kerr-like black hole in the

PFDM. The precession frequency (Ωp) of a test
gyroscope attached to a stationary observer having 4−
velocity u ¼ ð−K2Þ−1=2K in a stationary spacetime with
timelike Killing vector field K ¼ ∂0 þ Ω∂t is defined
by [21]

Ω⃗p ¼
εckl

2
ffiffiffiffiffiffi−gp ð1þ 2Ω g0c

g00
þΩ2 gcc

g00
Þ
��

g0c;k−
g0c
g00

g00;k

�
þΩ

�
gcc;k −

gcc
g00

g00;k

�
þΩ2

�
g0c
g00

gcc;k −
gcc
g00

g0c;k

��
∂l; ð22Þ

where εckl is the Levi-Civita symbols and g is the determinant of the metric gμν. Using the metric coefficients from (1) in
(22) yields

Ω⃗p ¼ ðF ffiffiffiffi
Δ

p
cos θÞr̂þ ðH sin θÞθ̂

Σ3=2½Σ − f2Mr − αr lnð r
jαjÞgð1 − 2Ωasin2θÞ −Ω2sin2θfðr2 þ a2ÞΣþ a2sin2θð2Mr − αr lnð r

jαjÞÞg�
; ð23Þ

where

F ¼ a

�
2Mr − αr ln

�
r
jαj
��

−
Ω
8

�
3a4 þ 8r4 þ 8a2rð2M þ rÞ þ a2

�
a2 cos 4θ − 8αr ln

�
r
jαj
�
þ 4 cos 2θð2Δ − a2Þ

��

þ Ω2a3
�
2Mr − αr ln

�
r
jαj
��

sin4θ; ð24Þ

(a) (b) (c)

(d) (e) (f)

FIG. 2. The graphs of y ¼ r2 − 2rþ a2 for different value of a, a < ac (dash-dotted line), a ¼ ac (dashed line) and a > ac (dotted
line) and y ¼ −αrlnð r

jαjÞ (solid line) are plotted. For any α and a < ac, the point of intersection of solid lines and dash-dotted parabolas

in (a)–(f), give the locations of inner horizons r− and event horizons rþ. For a ¼ ac, the point of intersection of solid lines and dashed
parabolas give the locations of horizon of extremal black hole re. For a > ac, the solid line and dotted line do not intersect each other,
indicating that there does not exist a black hole, and the line element (1) represents a naked singularity.

DISTINGUISHING A KERR-LIKE BLACK HOLE AND A … PHYS. REV. D 99, 024050 (2019)

024050-5



H ¼ a

�
Mðr2 − a2cos2θÞ þ α

2

�
Σ − ðr2 − a2cos2θÞ ln

�
r
jαj
���

þ Ω
�
a4rcos4θ þ r2ðr3 − a2Mð1þ sin2θÞ − 3Mr2Þ þ a2cos2θf2r3 þ a2Mð1þ sin2θÞ −Mr2g

−
α

16

�
a2ð5a2 þ 16r2Þ þ 8r4 þ ð5a4 − 16a2r2 − 24r4Þ ln

�
r
jαj
�
þ a4ð4 cos 2θ − cos 4θÞ

�
1þ ln

�
r
jαj
����

þ aΩ2sin2θ½Mfr2ð3r2 þ a2Þ þ a2cos2θðr2 − a2Þg þ α

2

�
a2cos2θ

�
r2 þ a2 þ ða2 − r2Þ ln

�
r
jαj
��

þr2
�
r2 þ a2 − ð3r2 þ a2Þ ln

�
r
jαj
����

; ð25Þ

and r̂, θ̂ are the unit vectors in r and θ directions,
respectively. In the limiting case α ¼ 0, the spin precession
of a Kerr black hole is successfully obtained [21]. Note that
the above expression of the precession frequency (22) is
valid only for a timelike observer at fixed r and θ which
gives the restriction on the angular velocity Ω of the
observer

Ω−ðr; θÞ < Ωðr; θÞ < Ωþðr; θÞ; ð26Þ

with

Ω� ¼
a sin θf2Mr − αr lnð r

jαjÞg � Σ
ffiffiffiffi
Δ

p

sin θ½ðr2 þ a2ÞΣþ a2 sin2 θf2Mr − αr lnð r
jαjÞg�

:

ð27Þ

At the black hole horizons, Ωþ and Ω− coincide and no
timelike observer can exist there and hence the expression
for precision frequency Ωp is not valid at the horizons but
still we can study the behavior of precession frequency near
the black hole horizon.

A. Lense-Thirring precession frequency

The expression of the precession frequency (23) is valid
for all the stationary observers inside and outside the
ergosphere if their angular velocity Ω is in the restricted
range given by (26). The precession frequency contains the
effects because of the spacetime rotation (LT precession) as
well as due to spacetime curvature (geodetic precession). If
we set Ω ¼ 0 in (23), the expression for LT precession
frequency for a Kerr-like black hole in PFDM is obtained as

Ω⃗LT ¼ a
½2Mr − αr lnð r

jαjÞ�
ffiffiffiffi
Δ

p
cos θr̂þ sin θ½Mðr2 − a2 cos2 θÞ þ α

2
fΣ − ðr2 − a2 cos2 θÞ lnð r

jαjÞg�θ̂
Σ3=2½Σ − f2Mr − αr lnðrαÞg�

: ð28Þ

The magnitude of the LT precession frequency is given by

ΩLT ¼ a


½2Mr − αr lnð r

jαjÞ�2jΔjcos2θ þ ½Mðr2 − a2cos2θÞ þ α
2
fΣ − ðr2 − a2cos2θÞ lnð r

jαjÞg�2sin2θ
q

Σ3=2jΣ − f2Mr − αr lnð r
jαjÞgj

: ð29Þ

The magnitude of LT precession frequency ΩLT is
plotted against r in the Fig. 3, which indicates that the
LT precession frequency increases with increasing the
rotation a of the black hole as well as the dark energy
parameter α. Further, for α > 0 the LT precession frequency
is minimum near polar axis (θ ¼ 0) and increases towards
the equatorial plane (θ ¼ π=2) whereas for α < 0 it is
minimum in equatorial plane and increases towards the
polar axis. The vector field of the LT-precession frequency

for the black hole and naked singularity in Fig. 4 shows that
LT precession frequency for the black hole remains finite
outside the ergoregion and will diverge at ergoregion while
for naked singularity it remains finite up to the ring
singularity.

IV. GEODETIC PRECESSION

For a ¼ 0, the line element (1) reduces to the
Schwarzschild black hole in PFDM [4]. The
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Schwarzschild black hole in PFDM is nonrotating and have
zero precession due to the frame dragging effects. However,
due to spacetime curvature the precession frequency Ωp of

a test gyroscope is nonzero which is because of curvature of
spacetime and called geodetic precession frequency. The
geodetic precession effects can be obtained as

Ω⃗pja¼0 ¼ Ω
ð− cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2Mrþ αrð r

jαjÞ
q

Þr̂þ sin θðr − 3M − α
2
f1 − 3 lnð r

jαjÞgÞθ̂
r − 2M þ α lnð r

jαjÞ −Ω2r3sin2θ
: ð30Þ

Due to spherically symmetric geometry of the static black
hole in the PFDM the geodetic precession frequency is same
over any spherical symmetric surface around the black hole.
Thus,without loss of generalitywecan set θ ¼ π=2 and study
the geodetic frequency in equatorial plane. In this plane, for
any observer in circular orbit, the magnitude of precession
frequency is equal to the Kepler frequency given by

Ωpja¼0 ≡ΩKep ¼
�
M
r3

þ α

2r3

�
1 − ln

�
r
jαj
���

1=2
: ð31Þ

The above expression for precession frequency is valid
for Copernican frame a frame that does not rotate relative to

the inertial frame at asymptotic infinity i.e., the fixed stars,
computed with respect to proper time τ which is related
with the coordinate time t via

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
r

−
α

2r

�
1 − ln

�
r
jαj
��s

dt: ð32Þ

Using this transformation the geodetic precession fre-
quency associated with the change in the angle of the spin
vector after one complete revolution of the observer around
a black hole in the coordinate basis is given by

(a) (b) (c)

FIG. 4. The vector field of the LT- precession frequency (28) [in Cartesian plane corresponding to ðr; θÞ] for black holes is plotted in
panels (a) and (b) for negative and positive α and for naked singularity in panel (c). The field lines show that for black hole the vector
field is defined outside the ergoshpere only, while for naked singularities it is finite up to the ring singularity along all the directions.

(a) (b) (c)

FIG. 3. The LT precession frequency ΩLT (in M−1) verse r (in M) for different parameters is plotted.
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Ωgeodetic ¼
�
M
r3

þ α

2r3

�
1− ln

�
r
jαj
���

1=2

×

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

3M
r

−
α

2r

�
1− ln

�
r
jαj
��s !

: ð33Þ

In this absence of PFDM around the black hole that is
for α ¼ 0, the geodetic precession frequency for a
Schwarzschild black hole successfully recovered [31,32].
The geodetic precession frequency is plotted against r for
negative and positive α in panel (a) and (b) of Fig. 5, which
shows that with increasing PFDM parameter α the magni-
tude of the geodetic precession frequency increases.
Further, for any fixed α the geodetic precession frequency
decreases with increasing the radius of the circular orbit.

V. DISTINGUISHING BLACK HOLE
FROM NAKED SINGULARITY

In this section, using the precession frequency of a
gyroscope, we will differentiate a Kerr-like black hole in
PFDM from naked singularity and verify our results as
obtained in Sec. II. For this, we first express the angular
velocity of the timelike observer in term of a parameter k
such that

Ω ¼ kΩþ þ ð1 − kÞΩ−; ð34Þ

where 0 < k < 1 and Ω� given by (27). Thus for any
timelike observer the angular velocity defined as

Ω ¼
a sin θf2Mr − αr lnð r

jαjÞg − ð1 − 2kÞΣ ffiffiffiffi
Δ

p

sin θ½ðr2 þ a2ÞΣþ a2sin2θf2Mr − αr lnð r
jαjÞg�

; ð35Þ

Note that an observer with angular velocity parameter
k ¼ 1=2 is known as zero-angular-momentum observer
(ZAMO) and has an angular velocity

Ω ¼ −
gtϕ
gϕϕ

¼
af2Mr − αr lnð r

jαjÞg
ðr2 þ a2ÞΣþ a2sin2θf2Mr − αr lnð r

jαjÞg
; ð36Þ

The gyroscope attached to ZAMO observer is locally
nonrotating and useful to study physical procession near
astrophysical objects [33]. Further, the behavior of the
precession frequency attached to ZAMO observer is differ-
ent from the all other observers this situation is explain in
Fig. 6. Now the magnitude of the precession frequency Ωp

in term of parameter k is written as

Ωp ¼
jðr2 þ a2ÞΣþ a2sin2θð2Mr − αr lnð r

jαjÞÞj
4Σ7=2kð1 − kÞjΔj

× ½F2jΔjcos2θ þH2sin2θ�1=2: ð37Þ

where F and G are given by (24) and (25). From the
denominator of the above equation one can see that it
vanishes at the horizons of the black hole and ring
singularity. Thus we study the behavior of Ωp for different
values of spacetime parameters a and α and observer’s
angular velocity parameter k in detail.
In Fig. 6, we have plottedΩp for black hole with a ¼ 0.5

and α ¼ 1 in left column and for naked singular with a ¼
1.5 and α ¼ 1 in right column for different observers of
angular velocity parameter k ¼ 0.1, 0.5, 0.9 in first, second
and third row, respectively. It is seen that for a black hole
the precession frequencyΩp of a gyroscope attached to any
observer except ZAMO, diverges when ever it approach the
horizons along any direction. However, its remain finite for
ZAMO observer at horizon. On the other hand, for a naked
singularity the precession frequency remain finite even as
the observer approach r ¼ 0 along any direction except
θ ¼ π=2. Further, if the observer approach r ¼ 0 along

(a) (b)

FIG. 5. The geodetic precession frequencyΩgeodetic verse r for α < 0 in panel (a) and for α > 0 in panel (b) is plotted which shows that
the geodetic precession frequency increases with increasing α.
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(a) (b)

(c) (d)

(e) (d)

FIG. 6. We have plotted the magnitude of spin precession frequency Ωp (in M−1) versus r (in M) for the black hole in the
left column and the naked singularity in the right column. For the black hole, we take a ¼ 0.5, α ¼ 1, and for the naked
singularity, we take a ¼ 1.5 and k ¼ 0.1, 0.5, 0.9 in the first, second, and third row, respectively. For the black hole, the
precession frequency Ωp diverges for k ¼ 0.1, 0.9 and remains finite for k ¼ 0.5 as the observer approaches the event horizon along
any direction, whereas for the naked singularity case, it remains finite along all directions except at ring singularity
(r ¼ 0, θ ¼ π=2).
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θ ¼ π=2 the precession frequency Ωp becomes very large
because of the ring singularity. In Fig. 7, we further
illustrate that for all other choices of the parameters, the
behavior of the precession frequency Ωp remain the same
as in case of the black hole with a ¼ 0.5 and α ¼ 1 and
a ¼ 1.5 and α ¼ 1 in naked singularity. That is, for black
hole with any a and α the precession frequency Ωp of
gyroscope of all the observer except ZAMO, diverges near
the horizons while for naked singularity it remain finite up
to r ¼ 0 along any direction except θ ¼ π=2.
Finally, using the spin precession frequency of a test

gyroscope attached to stationary observer, we can differ-
entiate a black hole from naked singularity. The four
velocity of an observer in the spacetime of the line element
(1) is timelike if azimuthal components of the velocity
(equal to angular velocity) Ω at fixed ðr; θÞ remain in
between Ω− and Ωþ. Further, the angular velocity can be
parametrized k such that 0 < k < 1. Consider there are two
observer with different angular velocity Ω1 and Ω2

approaching the astrophysical object in the PFDM of line
element (1) along the different directions θ1 and θ2. If
(a) the precession frequency Ωp of a test gyroscope of at
least one observer becomes arbitrary large as the observer
approach the central object along any direction then the
object is a black hole and (b) if the precession frequency of
any of the observer along at most one of the two directions
becomes arbitrarily larges as it approach the central object,
then the object is a naked singularity.

VI. OBSERVATIONAL ASPECTS

Experimental observations obtained with the Rossi
X-ray Timing Explorer (RXTE) reveals the phenomena of
quasiperiodic oscillations (QPOs) by analyzing the power
spectrum of the time series of the x rays [28–30,34]. There
are various sources of cosmic x rays, and one of them is
accreting stellar mass near compact objects like black holes
and neutron stars. A careful monitoring identifies two types
of QPOs, namely the high-frequency quasiperiodic oscil-
lations (HF QPOs), and the low-frequency (LF QPOs).
Although the theoretical explanation behind this effect is not

yet well understood, QPOs are often linked with the
relativistic precession of the accretion disk near black holes
or neutron stars. QPOs may be potentially a useful tool in
astrophysics for investigating new features related to the
accretion process near black holes. For example, within a
certain model of x-ray timing measurements of QPOs can be
used to estimate the spin angular momentum and the mass of
the black hole which is of significant importance in
astrophysics [35]. Experimental data shows that, the
observed HF QPOs belong to the interval 50–450 Hz.
Furthermore, there are three classes of LF QPOs known
as: type-A, type-B, and type-C, LF QPOs, respectively.
The typical frequencies belong to the interval: 6.5–8 Hz,
0.8–6.4 Hz, and 0.01–30 Hz, respectively.
There are three characteristic frequencies attributed to a

test particle orbiting the black hole, namely the KF Ωϕ, the
VEF Ωθ, and the radial epicyclic frequency (REF) Ωr,
respectively. By taking into account the effect of PFDM we
have calculated the following expressions for the character-
istic frequencies [36]:

Ωϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ α

2
ð1 − lnð r

jαjÞÞ
q

r3=2 � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ α

2
ð1 − lnð r

jαjÞÞ
q ; ð38Þ

Ωr ¼
Ωϕ

r

�
r2 − 6Mr − 3a2 − αr

�
1 − 3 ln

�
r
jαj
��

� 8a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rM þ αr

2

�
1 − ln

�
r
jαj
��s

−
αfa2 þ arþ r2g

f2M þ 2αð1 − lnð r
jαjÞÞg

�1
2

; ð39Þ

Ωθ ¼
Ωϕ

r

"
r2 þ 3a2 ∓ 4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rM þ αr

2

�
1 − ln

�
r
jαj
��s

−
aαfa ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rM þ αr

2
f1 − lnð r

jαjÞg
q

g
fM þ α

2
ð1 − lnð r

jαjÞÞg

#1
2

: ð40Þ

(a) (b) (c)

FIG. 7. The precession frequency Ωp (in M−1) versus r (in M) for different parameters is plotted. The graphs show that, for black
holes, Ωp diverges near the horizons while, for naked singularities, it remains finite.
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(a) (b)

FIG. 8. The ISCO of the black hole (BH) and naked singularity (NS) (in the unit ofM) for positive and negative PFDM parameter α is
plotted in panel (a) and (b), respectively. For α ¼ −0.5;−0.75;−1.0, the critical values of spin parameter are ac ¼ 1.25486557,
1.246502349, 1.190826462 and for positive values of α the critical value of ac is obtained from (21).

(a) (b)

FIG. 9. We plot Ωnod (in units of M−1) as a function of r (in units of M) with α ¼ −1 and α ¼ 1. As can be seen, for black holes the
NPPFΩnod decreases as we increase r. From the plots, we can further observe that a naked singularity is characterized by a peak value of
Ωnod. Furthermore, Ωnod vanishes at some radius r0. The negative values of Ωnod physically can be interpreted as a reversion of the
precession direction.

(c) (d)

FIG. 10. We plot the NPPF Ωnod as a function of r for the black hole case with α ¼ −0.5 and α ¼ 0.5. Clearly Ωnod always decreases
with the increase of r.
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(e) (f)

FIG. 11. The Ωnod as a function of r is plotted in the case of naked singularities with α ¼ −0.5 and α ¼ 0.5. From the plots we can see
that Ωnod increases initially, then a particular peak value is obtained, and finally decreases with the increase of r. The negative values of
Ωnod, shows that the precession direction has changed.

(a) (b)

(c) (d)

FIG. 12. We plot Ωr versus r with PFDM parameter values (upper panel) α ¼ −1 and α ¼ 1, and spin parameter (lower panel)
a ¼ −0.7 and a ¼ 0.7. We can see that Ωr vanishes at some particular value of r depending on the particular value of PFDM parameter.
Note that Ωr reaches a particular peak value, then decreases with the increase of r.
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TABLE I. We have considered an object with massM ¼ 10 M⊙ to calculate the KF precession ναθ , VEF precession ναθ , and the NPPF
ναnod, respectively. We have chosen the ISCO radius r ¼ rISCO given by the interval M ≤ rISCO ≤ 6M.

α ¼ 1 (in M) α ¼ 0.5 (in M) α ¼ 0 (in M)

a=M r (in M) ναϕ (in Hz) ναθ (in Hz) ναnod (in Hz) ναϕ (in Hz) ναθ (in Hz) ναnod (in Hz) ν0ϕ (in Hz) ν0θ (in Hz) ν0nod (in Hz)

0.1 5.67 220 217 3 226 223 3 234 231 3
0.2 5.45 232 226 6 238 231 7 246 239 7
0.3 5.32 239 229 10 245 234 10 253 242 11
0.4 4.61 192 273 19 299 279 20 309 287 22
0.5 4.30 320 293 27 333 302 31 344 310 34
0.6 3.82 375 331 44 383 336 47 395 342 53
0.7 3.45 527 363 64 435 366 69 448 371 77
0.8 2.85 544 428 116 553 428 125 567 429 138
0.9 2.32 693 491 202 702 483 219 718 472 246
0.98 1.85 884 544 340 893 521 372 910 485 425
0.99 1.45 1137 575 562 1146 520 626 1163 420 743
0.9999 1.20 1350 593 757 1358 498 860 1375 276 1099
0.999999 1.05 1509 635 874 1517 507 1010 1533 89 1444
1.0 1 1568 669 899 1575 532 1043 1591 0 1591
1.001 0.95 1629 724 905 1636 583 1053 1652 133 1519
1.01 0.80 1825 1093 732 1830 968 862 1844 679 1165
1.02 0.75 1888 1339 549 1954 1428 526 1967 1199 768
1.04 0.65 2020 2025 −5 2024 1941 83 2035 1753 282
1.08 0.667 1944 2127 −183 1948 2054 −106 1959 1894 65
1.2 0.8 1646 1863 −217 1650 1808 −158 1662 1696 −34
2 1.26 919 1619 −700 923 1609 −686 932 1588 −656
3 3.20 353 453 −100 357 453 −96 365 453 −88
4 4.00 256 371 −115 260 373 −113 265 375 −110

α ¼ −1 (in M) α ¼ −0.5 (in M) α ¼ −0.1 (in M)

a=M r (in M) ναϕ (in Hz) ναθ (in Hz) ναnod (in Hz) ναϕ (in Hz) ναθ (in Hz) ναnod (in Hz) ναϕ (in Hz) ναθ (in Hz) ναnod (in Hz)

0.1 5.67 247 243 4 242 238 4 236 233 3
0.2 5.45 259 251 8 254 246 8 248 241 7
0.3 5.32 267 254 13 261 249 12 255 244 11
0.4 4.61 325 299 26 318 294 24 312 289 23
0.5 4.30 354 317 37 348 312 35 341 307 34
0.6 3.82 412 352 60 406 349 57 398 344 54
0.7 3.45 467 378 89 460 376 84 451 372 79
0.8 2.85 589 427 162 581 429 152 571 429 141
0.9 2.32 741 449 292 733 460 273 722 469 253
0.98 1.85 935 410 525 926 443 483 925 474 441
0.99 1.45 1188 113 1075 1180 281 899 1169 387 782
0.9999 1.60 1070 315 762 1069 384 685 1058 455 613
0.999999 1.50 1147 224 923 1138 330 808 1127 415 1712
1.0 1.55 1111 277 834 1138 330 808 1089 432 660
1.001 1.95 879 423 455 870 450 420 859 475 384
1.01 1.80 954 398 555 945 436 509 934 472 462
1.02 1.75 978 386 592 970 429 541 959 470 489
1.04 1.65 1032 357 675 1023 413 610 1012 464 548
1.08 1.667 1008 378 630 1000 430 570 980 478 512
1.2 1.8 902 437 465 895 472 422 985 506 378
2 1.26 944 1550 −606 941 1565 −624 935 1518 −646
3 3.20 376 449 −73 372 451 −79 367 457 −85
4 4.00 274 377 −103 271 377 −106 267 375 −108
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One can easily show that in the limiting case when α
vanishes, the characteristic frequencies in the Kerr geo-
metry are obtained [21,37,38]. With these results in mind,
we can extract further informations by defining the follow-
ing two quantities

Ωnod ¼ Ωϕ − Ωθ; ð41Þ

and

Ωper ¼ Ωϕ − Ωr: ð42Þ

Where Ωnod measures the orbital plane precession and is
usually known as the NPPF (or Lense-Thirring precession
frequency), on the other hand Ωper measures the precession
of the orbit and is known as the periastron precession
frequency. From Figs. 8–12, we can see that in the black
hole case, the NPPF Ωnod always decreases with r; there-
fore, we can write the following condition:

dΩnod

dr
< 0: ð43Þ

On the other hand, an interesting feature arises in the
case of naked singularities, namely Ωnod initially increases,
then a particular peak value is recovered, and finally Ωnod
decreases with the increase of r. Therefore, in the case of
naked singularities we can have the following condition
when Ωnod increases with r, written as follows

dΩnod

dr
> 0: ð44Þ

Finally we point out that negative values of Ωnod, can be
interpreted as a reversion of the precession direction.
We provide a detailed analyses of our results in Table I,

where we highlight the observational aspects by calculating
the impact of the PFDM parameter on different frequencies:
KF ναθ, VEF ναθ, and the NPPF ναnod. Our results reveal that,
typical values of the PFDM parameter α significantly
affects these frequencies. In particular we find that, with
the increase of positive α, all frequencies become smaller
and smaller. On the other hand, with the decrease of
negative α, all frequencies become bigger and bigger.
Our results further indicate that, the effects of PFDM are
getting stronger with the increase of spin angular momen-
tum parameter a. From the Table I, we see that one can
identify LF QPOs with ναnod, for a slowly rotating black
holes, i.e., a=M < 0.5. A significant difference between
ναnod and ν0nod, occurs when a=M > 0.5. Clearly, in this
range, we can identify ναnod with HF QPOs. In the near
future we plan to investigate the relativistic precession
model to get constraints on α using the data of GRO
J1655-40 and by following the analysis presented by
Bambi [38].

VII. CONCLUSION

In this paper, we have studied rotating object in PFDM
(1) to differentiate a Kerr-like black hole from naked
singularity. For a black hole we find the lower bound of
the dark matter parameter α, −2 ≤ α and gives the critical
value of spin parameter ac. For any fixed chosen α the line
element (1) represents a black hole with two horizons if
a < ac, extremal black hole with one horizon if a ¼ ac and
naked singularity if a > ac. It is seen that for α < 0, ac has
maxima at α ¼ ᾱ and for α > 0 it has minima at α ¼ α̃.
Further, for large value of α, ac increases very large without
any limit and thus a highly spinning black hole can form.
We also study the horizon of extremal black hole and find
that for α < 0 the size of extremal horizon re decrease
whereas for α > 0, re has minima at α ¼ 2=3. Further, as
r− ≤ re ≤ rþ, so we can conclude that for any fixed a and
−2 ≤ α < 2=3, with increasing α, size of the black hole
horizons decreases while for 2=3 < α increases.
We also studied the spin precession frequency Ωp of the

a test gyroscope attached to a stationary timelike observer.
For timelike observer we find the restricted domain for the
angular velocity Ω of the observer. From the precession
frequency Ωp, by setting Ω ¼ 0, we obtained LT- preces-
sion frequency for a static observer which can lies only
outside the ergosphere. We also find the geodetic preces-
sion frequency which is due to the of spacetime curvature
of Schwarzschild black hole in PFDM. It is seen that for
α < 0 the geodetic precession frequency is increases while
for α > 0 is increases.
Using spin precession frequency criteria we differentiate

a black hole from a naked singularity. We parametrize the
angular velocity of the observer and studied the spin
precession frequency for different choices of the parameter
along the different directions. If the precession frequency of
a gyroscope attached to at least one of two observers with
different angular velocities blow up if they approach the
central object in PFDM along any direction then the object
is a black hole. If the precession frequency of all the
observer show divergence as the observers approach the
center of spacetime along at most one direction then it is
naked singularity.
We have summarized our results by computing the

effect of PFDM on the KF, VEF, and NPPF given in
Table I. We observe that frequencies depend upon the value
of a=M, radial distance r, as well as the PFDM parameter α,
yielding notable differences in the corresponding frequen-
cies of black holes and naked singularities. We have
shown that, with the increase of positive PFDM parameter,
all frequencies become smaller. Consequently, with the
decrease of negative PFDM parameter, all frequencies
become bigger. Following our results we can conclude
that LF QPOs can be identified for a=M < 0.5. However,
most significant changes are observed in the interval
a=M > 0.5, whose frequencies can be identified with
HF QPOs.
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Given the fact that the accretion disk changes with time,
say, when the accretion disk approaches the black hole/
naked singularity, we need to study the evolution of QPO
frequencies to distinguish black holes from naked singu-
larities. In particular, for a given value of PFDM parameter
α and a=M, if the accretion disc approaches the rISCO, we
see that Ωnod always increases reaching its maximum
value. Interestingly, in the case of naked singularities, if
the accretion disc approaches the rISCO, we find that Ωnod
firstly increases, then reaches its peak, and finally
decreases. In fact, contrary to the black holes, in the case
of naked singularity Ωnod can be zero, as can be seen from
Fig. 9. Finally, we anticipate that future experiments could
produce constraints for the PFDM parameter α. For

example, recently Bhattacharyya has proposed a model
of fast radio bursts from neutron stars plunging into black
hole that implies the existence of event horizon, LT effects
and the emission of gravitational waves from a black hole
[39]. In this context, it would certainly be interesting to
explore the possible impact of the PFDM parameter α on
the gravitational wave signatures.
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