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Recent discoveries of gravitational wave (GW) signals from astrophysical compact binary systems of
neutron stars and black holes have firmly established them as prime sources for advanced GW detectors.
Theoretical templates of expected signals from such systems have been used to filter the detector data using
the matched filtering technique. An efficient grid over the parameter space at a fixed minimal match has a
direct impact on improving the computational efficiency of these searches. We present the construction of
three dimensional template banks (in component masses and an effective spin parameter) by incorporating
several new optimizations to the hybrid geometric-random template placement algorithm that we proposed
recently. These optimizations allows us to create more efficient template banks in future compact binary
searches by shrinking the hybrid banks by ∼34% in comparison to the basic algorithm. Such optimized
banks are also found to be ∼22% smaller than the optimized stochastic bank constructed over a nominal
range of parameters. We also construct an explicit hybrid template bank with parameters identical to the
“uberbank” used in the recently-concluded CBC searches in the second observation run of the Advanced
LIGO and Virgo detectors. We demonstrate a reduction of more than 53 000 templates over the stochastic
template bank at a near-identical coverage as determined by fitting factor studies. A computationally
efficient technique for seminumerical calculation of the parameter space metric, applicable for aligned-spin
waveform family, is also outlined. The resulting hybrid template banks can be generated much faster in
comparison to the stochastic banks, and are ready to be used in the upcoming observation runs of Advanced
LIGO and Virgo.
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I. INTRODUCTION

Gravitational-wave (GW) observations have opened up a
new branch of astronomy with the detection of signals from
several binary black hole (BBH) mergers [1–4] in the
Advanced LIGO [5] and Advanced Virgo [6] detectors.
GW signal from a binary neutron star inspiral [7] was
detected recently, along with several optical counterparts
across the electromagnetic spectrum [8], heralding the era
of multimessenger astronomy. As the advanced detectors
are paced through their planned hardware upgrades, one
expects further improvements of their sensitivity and
bandwidth. Several advanced detectors such as KAGRA
[9] and LIGO-India [10] are expected to start operations
over the timescale of a few years. As such, one expects
several more detections of GWevents to be recorded by this

network of advanced detectors. This will usher in a new era
of precision GW astronomy.
GW searches from the inspiral, merger, and ringdown

phases of compact binary systems are based on two
broad techniques: modeled searches which use theoretical
waveforms for such systems as predicted by general
relativity and unmodeled or burst searches which assume
minimal information about these waveforms. Availability
of precise waveforms for these systems allows one to use
the matched filtering technique to detect weak signals
buried in detector noise at a higher statistical significance
over burst searches. For example, the GW150914 [1]
event was detected by the burst search [11] with a
significance of 4.1σ above background whereas, the
same event was reported with a signal-to-noise ratio
(SNR) of ∼24 at a significance ≥ 5.1σ by a matched-
filtering based modeled search [12]. The modeled
searches have also played a key role in the detection
of the relatively weaker BBH events GW151226 [2],
GW170104 [3] and GW170814 [4], as well as the binary
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neutron star (BNS) event GW170817 [7] thus under-
lining their importance in search pipelines.
Matched-filtering searches involve calculating the cor-

relation between the data and the expected waveform
[13,14] and can be shown to be the optimal strategy to
search for signals embedded in additive, stationary,
Gaussian noise. In reality, however, the detector noise is
neither stationary nor Gaussian; therefore one requires
additional consistency tests to distinguish between astro-
physical signals and noise transients that couple to the
detector. Signal consistency tests such as the χ2-test [15],
trigger coincidence test across multiple detectors [16], etc.,
help in reducing the false alarm rate and improve the
confidence of detections [17].
Since the signal parameters are not known a priori, one

filters the data using a set of expected signals, each
corresponding to a point in the intrinsic parameter space,
and are collectively known as the template bank. For the
first observational run (O1) of Advanced LIGO, the bank
was constructed by targeting compact binary systems
with individual masses between ð1; 99Þ M⊙, while restrict-
ing the total mass up to a maximum of 100 M⊙. The
dimensionless aligned-spin magnitude of the individual
objects was limited to 0.99 [12,18]. Out of these, objects
with mass less than 2 M⊙ were considered to be neutron-
stars and their dimensionless spin magnitude was restricted
to 0.05. The template bank consisted of ∼250 000 tem-
plates. Template waveforms were modeled using the
effective-one-body (EOB) formalism [19] combined with
reduced-order modeling techniques [20]. In the second
observational run (O2) of Advanced LIGO, the template
bank was constructed by extending the total masses up to
500 M⊙ in view of improved low-frequency sensitivity of
the detectors [21]. An improved version of aligned-spin
EOB waveform model [22] was used. The aligned-spin
magnitudes were similarly limited up to ∼0.998. In O2
searches, the number of templates in the bank increased by
over 60% in comparison to O1.
The template placement problem for GW searches is one

about the construction of a set of points over the parameter
space such that for any point chosen at random within its
boundaries, one can find a template in the bank within a
fiducial distance Dmax. The latter is related to the minimal
match (ζ) [23] of the bank as: Dmax ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p
and is kept

fixed for a given template bank. The distance Dmax
represents the maximum allowed mismatch between any
arbitrary signal in the manifold and the “nearest” template
in the bank. ζ must be carefully chosen as this parameter
controls the density of template points. On one hand,
setting a low value can lead to losses in SNR which in turn
can weaken the detection rate. On the other hand, a very
high value leads to a dense spacing of templates which in
turn can increase the computational cost of the search
significantly. Geometrically, the template placement prob-
lem is an instance of the sphere covering problem [24–26]:

where one seeks to cover a given parameter space volume
with the smallest set of metric spheres, each of radiusDmax.
The optimum placement of templates in parameter

spaces with nonvanishing intrinsic curvature is an open
optimization problem under which, one seeks the minimum
set of points in the bank at a given fixed, minimal match.
Two broad template placement strategies have been devel-
oped by the community over the past two decades—the
geometric placement algorithm [27–29] using a quasire-
gular lattice of points, and the stochastic construction built
from a set of random proposals [30,31].
The metric on the signal manifold is a crucial input in the

geometric approach of template placement. Under this
scheme, a set of coordinates is first identified in which
the parameter-space metric (defined in Sec. II) is almost
constant. In such coordinates, one assumes local flat
patches in which a suitably oriented A�

n lattice of points
are placed. If the variations are mild, then such local flat
patches mesh up neatly to provide adequate coverage over
the entire bank. Such banks have been constructed in
effective 2-dimensional parameter spaces for both non-
spinning and aligned-spin binary neutron stars and neutron
star-black hole systems [28,29,32,33] and have been used
in previous LIGO searches [34–37]. The most significant
drawback of such banks is the amount of fine-tuning
required in order to cover “holes” across local patches
because of the misalignment of the cells arising from the
variation of the metric. Excessive fine-tuning renders the
method impractical to be ported across waveform families.
It also becomes a challenge to scale the method to higher
dimensions.
The stochastic template placement algorithm, is one

where the template bank is built up from a list of random
proposals drawn from a uniform distribution over the
parameter space. In its original form (which we refer to
as bottom-up approach), one starts with an empty bank.
Only those randomly proposed points that lie at a distance
greater than Dmax from every existing template in the bank
are accepted as new templates. This process continues until
the preset convergence threshold is reached. The latter is
measured from the rate of rejection averaged over a fixed
number of acceptances. The distance calculation in the
stochastic bank can be sped up if the parameter space
metric is available. However, this method can be extended
to cases where the metric is not known, in which case the
distance is calculated in a brute-force manner by evaluating
the overlap integral [see Eq. (2.3)] explicitly, at a significant
increase in computational cost. Overall, the stochastic
method is robust and can be implemented in higher
dimensional curved parameter spaces.
Several recent efforts have been made to combine the

space-efficiency of lattice based geometric template place-
ment along with the robustness of stochastic methods. For
example, Capano et al. [38] used a seed 4-dimensional
geometric bank (constructed over the low-mass range of
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parameters) as a starting point for the stochastic placement
in 4-dimensions. By this approach, they demonstrated a
nominal reduction of ∼5.5% in the overall bank size over
the range of BBH parameters with component masses
greater than 2 M⊙. This bank was used in the first
observing run (O1) of Advanced LIGO. This method
was further extended [21] by varying the starting frequency
to include the high-mass BBH waveforms and have been
used in O2 searches. Other efforts include using binary tree
partitions of the parameter space into distinct hyperrectan-
gles of approximately constant metric over which a geo-
metric or stochastic bank can be placed [39].
Along this broad theme of combining the two placement

methods, we proposed [40] a new hybrid geometric-
random template placement algorithm and demonstrated
its efficacy in a 3-dimensional coordinate system where the
parameter-space metric is slowly varying. The idea is the
following: at first we start with a large number of random
proposals uniformly sprayed over the parameter space.
Thereafter, starting from a randomly chosen point we place
suitably oriented A�

3 lattice points assuming locally flat
patches within the space and remove the subset of random
proposals that lie within a distance Dmax of the lattice
points. The placement is terminated when all the random
proposals are exhausted. In a head to head comparison with
the hybrid bank, we found the vanilla-stochastic bank to
have ∼28% more templates at an identical coverage for a
specific range of search parameters and choice of waveform
family.
In this paper, we present a modified version of the hybrid

bank algorithm by incorporating a slew of new optimiza-
tions. The new algorithm presented here is suitable for
future gravitational wave searches from compact binaries in
Advanced-LIGO data. The modifications include the use of
a variable lower cut-off frequency and imposing a lower
bound on the template duration to extend the mass reach of
LIGO searches. We also capitalize on a new degree of
freedom by choosing to orientate the A�

3 lattices along a
direction governed by the target parameter space boundary,
which in turn, has a profound effect on the bank size.
We also use numerically computed exact match for
removing over coverage of templates in the high-mass
region of the parameter space. Each of these optimizations
has a profound effect on the overall bank size. The
combined effect results in ∼34% smaller hybrid banks
as compared to the basic algorithm. We also develop an
efficient semi-numerical technique for calculating the
parameter-space metric that is applicable for a wide range
of waveform models. We demonstrate the efficacy of these
modifications by explicitly constructing the O2 uber-
template bank (using the SEOBNRv4ROM waveform
model [22] and the power spectrum of the noise from
Advanced LIGO’s ER10 engineering run) to make a head-
to-head comparison against the optimized stochastic tem-
plate bank used in the recently concluded O2 observation

run. While both the banks are shown to provide near-
identical coverage as determined by fitting factor studies,
the stochastic bank is ∼15% larger in size.
The paper is organized as follows: In Sec. II, we briefly

introduce the SEOBNRv4ROM waveform models and
some basic terminology used in the paper. We also outline
the numerical calculation of the parameter-space metric
where relevant partial derivatives over dimensionless chirp-
time coordinates are evaluated using the finite difference
method. This simple method is versatile and can be used to
calculate the metric for any waveform family. We also show
that the contours of constant metric distance are in excellent
agreement with those of the numerically calculated ambi-
guity function. In Sec. III, we recapitulate the basic idea of
hybrid template-bank construction and highlight the mod-
ifications to this algorithm as mentioned earlier. In Sec. IV,
we construct a hybrid bank for the entire search parameter
space consisting of BNS, BBH and neutron star black hole
(NSBH) systems using the noise PSD from Advanced
LIGO’s ER10 engineering run1 calculated as the harmonic
mean of power spectral densities from the LIGO Hanford
(H1) and Livingston (L1) detectors with a reference
frequency set to 15 Hz. This bank is compared against
the optimized stochastic bank used for LIGO’s CBC
searches in O2 data. We also present a comparison of
the two banks by calculating the signal recovery fraction for
SEOBNRv4ROM injections at a canonical signal to noise
ratio of 8. In Sec. V, we summarize the main results of this
paper and highlight the suitability of the modified hybrid
bank algorithm presented in this paper for future LIGO
searches. We also give canonical bank size estimates for the
upcoming O3 search expected to start in March 2019. In
Appendix, we present a trivial extension of the basic
algorithm for template placement in higher dimensions
and calculate theoretical improvements in bank sizes for a
few idealized situations.

II. COMPUTATION OF NUMERICAL METRIC
FOR NONPRECESSING BLACK-HOLE BINARIES

Recent advances in analytical [41,42] and numerical
[43–45] relativity has made it possible to construct accurate
semi-analytical waveforms describing the entire coales-
cence of binary black holes, including the orbital inspiral,
merger and the subsequent ringdown of the remnant black
hole. Waveforms constructed using the effective-one-body
[46–50] and phenomenological [51–56] approaches have
been employed in the searches for GWs from binary
black holes, providing significant improvement in the
sensitivity of the searches and the accuracy and precision
of the estimation of the source parameters. In this paper,
we focus on the effective-one-body waveform family
SEOBNRv4ROM. This family of waveforms are faithful

1The ER10 noise PSD was used to generate the optimized
stochastic template bank used in LIGO’s O2 searches
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in modeling GWs from the inspiral, merger, and ringdown
of binary black holes with nonprecessing spins as estab-
lished by comparing them against available numerical-
relativity simulations over a wide range of the parameters.
The observed GW signal hðt; λ⃗; ξ⃗Þ from a compact

binary system is characterized by a set of intrinsic param-
eters λ⃗≡ fλig (such as the masses and spin angular
momenta of the compact objects) and a set of extrinsic
parameters ξ⃗≡ fξig (such as the time of arrival of the
signal at the detector and the phase of the signal corre-
sponding to a reference time). In the case of binaries with
nonprecessing spins, the intrinsic parameter space is four-
dimensional—fm1; m2; χ1; χ2g, where m1, m2 are compo-
nent masses and χ1, χ2 are the dimensionless spins of the
two objects. Spin effects appear as higher order corrections
to the inspiral waveform, and the leading spin-dependent
term in the post-Newtonian waveform is described by a
particular combination of the spins and mass ratio, called
the reduced spin [57]:

χr ¼ χs þ δχa −
76η

113
χs; ð2:1Þ

where χs and χa are symmetric and asymmetric combina-
tion of the spins (½χ1 � χ2�=2) while η and δ are called
symmetric and asymmetric mass ratios: η ¼ m1m2=ðm1 þ
m2Þ2 and δ ¼ ðm1 −m2Þ=ðm1 þm2Þ. As a result of this,
the dominant spin effects are described by the effective
parameter χr and it is possible to mimic, to a good accuracy,
the nonprecessing waveforms with arbitrary spins by
waveforms described by a single effective spin parameter.
This essentially means that, to a very good approximation,
the effective dimension of the parameter space is three. In
this paper, we will be constructing template banks in three
intrinsic dimensions and will illustrate that the bank is
highly effectual in detecting signals over the full parameter
space of nonprecessing binaries.
Matched filtering involves maximizing the following

inner product with the data dðtÞ over the intrinsic and
extrinsic parameters

ρ ¼ max
λ⃗;ξ⃗

hd; ĥðλ⃗; ξ⃗Þi; ð2:2Þ

where ĥ ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffihh; hip

is the normalized waveform and the
angular brackets define the following inner product

ha; bi ≔ 2

Z
fhigh

flow

df
ãðfÞb̃�ðfÞ þ ã�ðfÞb̃ðfÞ

ShðfÞ
; ð2:3Þ

where ãðfÞ, b̃ðfÞ denote the Fourier transform of aðtÞ, bðtÞ
respectively; and ShðfÞ denotes the one-sided detector
noise power spectral density. The inner product can be
maximized over the extrinsic parameters using efficient
numerical algorithms [14,23], while the maximization over

the intrinsic parameters requires the construction of a
template bank. In this context, it is useful to define the
match as the inner product between two normalized wave-
forms maximized over the extrinsic parameters:

Mða; bÞ ≔ max
ξ⃗

hâ; b̂i: ð2:4Þ

Following [23], the match between two nearby wave-
forms, whose intrinsic parameters differ by Δλ⃗, can be
Taylor expanded up to the quadratic terms which in turn,
can be rearranged to express the mismatch ð1 −MÞ in
terms of the parameter space metric gij as

1 −M ≃ gijΔλiΔλj; ð2:5Þ

where the metric is given by

gij ≔ −
1

2

∂2M
∂Δλi∂Δλj

����
Δλ¼0

: ð2:6Þ

We compute the metric by evaluating the Fisher informa-
tion matrix [27] of the waveforms over the full parameter
space and then projecting out the dimensions correspond-
ing to the extrinsic parameters [58]. The elements of the
Fisher matrix are given by

Γ̃αβ ¼ h∂αĥ; ∂βĥi; ð2:7Þ

where ∂α denotes the partial derivative of the waveform
with respect to the αth parameter (this includes intrinsic and
extrinsic parameters). The derivatives are computed
numerically using finite difference methods. In particular,
we compute the derivatives of the amplitude A and phase Ψ
of the frequency domain waveforms and compute the
Fisher matrix from these derivatives.

Γ̃αβ ≃
1

2khk2 ½hA∂αΨ; A∂βΨi þ h∂αA; ∂βAi� ð2:8Þ

The Fisher matrix is computed in the 5-dimensional
parameter space of three intrinsic parameters (λ⃗) describing
the total mass (M), symmetric mass ratio (η) and a reduced
spin parameter (χr) and two extrinsic parameters describing
the time of coalescence t0 and phase φ0 at coalescence.
Wherever possible, the numerical derivatives are carried out
by using the first-order accurate central finite differencing
scheme. At the boundaries of the parameter space, where
the central difference scheme cannot be applied, we use the
first-order accurate forward/backward schemes as appro-
priate. The inner product integrals in the expression of the
Fischer matrix Eq. (2.8) are evaluated numerically.
We describe the intrinsic parameters in terms of three

dimensionless chirp times θ0, θ3, and θ3S [59], which are
related to the total mass, symmetric mass ratio, and the
reduced spin parameters in the following way:
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M ¼ 5

32π2f0

θ3
θ0

;

η ¼
�
16π5

25

θ20
θ53

�
1=3

;

χr ¼
48πθ3S
113θ3

; ð2:9Þ

where f0 is the instantaneous frequency of the chirp
waveform at the fiducial starting time. The choice of this
set of parameters was motivated by the fact that, when
expressed in these coordinates, the metric is found to be
slowly varying over the parameter space. A nonsingular
Jacobian transformation J is used to transform the metric Γ̃
over the fM; η; χr; t0;φ0g space to the metric Γ over
fθ0; θ3; θ3S; t0;φ0g space:

Γ ¼ JΓ̃JT: ð2:10Þ

Finally, we compute the 3-dimensional metric g over the
intrinsic parameters fθ0; θ3; θ3Sg by projecting out Γ along
directions that are orthogonal to t0 and φ0. Operationally,

this is equivalent to evaluating the Schur complement of the
extrinsic parameters block (Γ4), explicitly given by:

g ¼ Γ=Γ4 ≔ Γ1 − ΓT
2Γ−1

4 Γ2; ð2:11Þ

where Γ1 is the intrinsic parameters block, and Γ2 refers to
the block of cross-terms between intrinsic and extrinsic
parameters of Γ.
We have outlined the method to compute the metric g

over 3-dimensional intrinsic parameters θ⃗≡ fθ0; θ3; θ3Sg
as given by Eq. (2.9), where the two spin parameters χ1;2
have been condensed to a single effective parameter χr. It is
obvious that χr ↦ ðχ1; χ2Þ is not bijective. A one-to-one,
onto mapping between the reduced spin and individual spin
parameters is imposed by assuming that the BBH and BNS
systems have equal-aligned spins (χ1 ¼ χ2), and that the
neutron star companions of NSBH systems are non-spin-
ning. The metric for aligned-spin NSBH system with
nonspinning neutron star component is found to have a
good agreement with the spinning neutron star case up to
dimensionless aligned-spin magnitude ≤ 0.1.

FIG. 1. Comparison between the M ¼ 0.97 ellipses computed from the resulting seminumerical metric (blue ellipses) and the
contours of the numerically calculated match function, for the non-precessing SEOBNRv4ROMwaveform model. The rows correspond
to different orthogonal slices over the fθ0; θ3; θ3Sg coordinate system. The columns correspond to different values of the dimensionless
equal-aligned-spin parameters χ1 ¼ χ2 ¼ ½−0.95;−0.5; 0.0; 0.5; 0.95�. The total mass is chosen to beM ¼ 30 M⊙ with symmetric mass
ratio η ¼ 0.2. All computations assume ER10 noise spectral density which is measured from the harmonic average over H1 and L1 noise
power spectral densities with a lower cutoff frequency 15 Hz. Some of the shaded areas are cut off along the boundary of the physical
parameter space.
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Figure 1 shows the comparison between mismatch
contours (solid blue ellipses) of g [calculated using
Eq. (2.5)] and the contours of the exact numerical match
function [Eq. (2.3)]. From the two dimensional slices over
various planes, it is evident that there is an excellent
agreement between the two, thereby validating the method
outlined in this section. We have also successfully tested
this method to calculate the metric for IMRPHENOMD and
TaylorF2 waveform families.

III. OPTIMIZING THE HYBRID
BANK ALGORITHM

The LALAPPS_CBC_SBANK code is a straightforward
vanilla implementation of the stochastic template place-
ment algorithm [30] available in the LALSUITE [60] code
base. This code was used as a benchmark to measure the
comparative efficiency of the hybrid algorithm as presen-
ted in our previous work [40]. It was shown that the
hybrid banks were about 21% smaller as compared to the
vanilla stochastic banks. Recently, new optimizations to
the stochastic algorithm were introduced in a paper by Del
Canton et al. [21] in the context of constructing template
banks for LIGO’s O2 searches, so as to increase the mass-
reach of the search beyond O1. Our present work is largely
motivated to incorporate similar optimizations within the
hybrid bank algorithm and also explore other improve-
ments to further reduce the bank size. In Table II, we show
that these improvements finally lead to a hybrid bank for
O2 search that has 53 000 fewer templates than the
optimized stochastic bank at an identical coverage. With
these changes in place, we aim to provide a viable template
bank with the smallest footprint for upcoming LIGO
searches. We also find that these changes lead to huge
computational advantages, such that the hybrid banks can
be created much faster as compared to the optimized
stochastic banks.
We start this section by recalling the classic geometric-

random hybrid template placement algorithm as shown in
Fig. 2. We then explain each of the new optimizations and
indicate the effect of these improvements on the final
bank size.
As mentioned in Sec. II, the templates are placed in the

dimensionless chirp time coordinates θ⃗ over which the
parameter space metric varies slowly. The hybrid algorithm
starts by initializing a large set of random proposals U,
uniformly distributed over θ⃗. After this, a random initial
seed is chosen from U and appended to an empty template
list T . Thereafter, it enters the geometric part of the
algorithm (refer to the shaded part of Fig. 2) where, the
metric gðθ⃗Þ at the seed point is evaluated at first using
which, a locally flat coordinate patch (assumed to be valid
up to a distance 2Dmax around the center) is created. The
positions of the local A�

3 lattice neighbors are calculated
with respect to this local coordinate frame using a

computationally efficient method outlined in the
Appendix. Finally, they are transformed back to the target
dimensionless chirp-time coordinates using the procedure
outlined below: scaling and rotation matrices are con-
structed using the eigenvalues fΛig and eigenvectors fe⃗ig
(where i ¼ 1, 2, 3) of the metric gðθ⃗Þ in the following
manner: the columns of the rotation matrix R consist of
the eigenvectors such that the element Rij is the jth
element of the ith eigenvector. The scaling matrix S is
diagonal with elements Sii ¼ Dmax=

ffiffiffiffiffi
Λi

p
. Let N̄p

k be the kth
coordinate of the pth A�

3 neighbour (where k ¼ 1, 2, 3 and
p ¼ 1; 2;…; 14) in the 3-dimensional local flat coordinate

FIG. 2. Flowchart of the hybrid template placement algorithm.
U and T are the lists of initial random proposals and template
points, respectively. See the text in Sec. III for a complete
description.
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system ðê1; ê2; ê3Þ. The transformation which converts
them to the θ⃗ coordinates is given by:

Np
i ¼

X3
j;k¼1

RT
ijSjkN̄

p
k : ð3:1Þ

Out of the 14 A�
3 neighbors, the ones that lie within the

search parameter space boundaries and are spaced farther
than a distance Dmax from all other templates in T are
appended to the template list. Thereafter the next point in T
is reassigned as the current seed point which leads to the
next geometric iteration.
The geometrical lattice of templates grows iteratively

until no new points can be appended any further to T . This
situation happens most commonly near the vicinity of the
parameter space boundary and also in extremely narrow
regions of the parameter space where the effective dimen-
sion is less than that of the search space. In such cases, the
A�

3 neighbors, when projected back to the target space, lie
outside the physical parameter space thereby halting the
geometric iterations. The latter may also be interrupted in
regions of the parameter space where the metric varies
rapidly. In such cases, one expects a small relative change
of orientation of the eigenvectors of g even for nearby
points as a result of which, the local flat patches do not
mesh properly. This results in an imperfect A�

3 lattice with
“holes” in the bank. In a flat parameter space (where the
metric is constant everywhere), the hybrid construction will
result in a perfect A�

3 lattice in the bulk of the search
volume, excluding the vicinity of the boundary.
Once the iterative geometric placement is over, random

proposals from U that lie within a distance Dmax from the
templates are eliminated. The geometric process is restarted
by seeding a new random proposal from the remaining
points in U. This process continues until U is completely
exhausted. The final bank size weakly depends (∼1%
variability) on the choice of the initial seed. By first
spraying a set of random proposals over the physical
parameter space and later eliminating the ones that lie
inside the minimal-match “spheres” of the accepted tem-
plates, we make sure that any hole left behind due to
varying curvature automatically gets covered by the
remaining random proposals that are not swept-up by
the deletion criteria mentioned above.
We now present new optimizations to the classic hybrid

template placement algorithm.

A. Orientation of the A�
3 lattice

Once a local flat patch fê1; ê2; ê3g is constructed, we still
have the freedom to rotate these coordinates by three Euler
angles α, β and γ. Such a rotation affects the alignment of
the symmetry axis of the A�

3 lattice that is placed in the
local patch. Due to the finite volume and boundary effects,
it is reasonable to assume that a preferred axis of rotation

exists such that the largest fraction of geometrical lattice
neighbours lie within the parameter space boundaries. By
extension, if there is no boundary (infinite volume), then
there is no such preferred axis and thus there is no need to
orientate the A�

3 lattice within the local flat patch.
We now outline a Monte Carlo simulation to find the

appropriate set of Euler angles. First, we generate a set of n0
random points Ur uniformly distributed within the range of
search parameters in dimensionless chirp time coordinates.
For each of these points, the metric g is calculated, using
which a local, flat coordinate system fê1; ê2; ê3g is set up.
As mentioned earlier, these axes are not unique: one can
always rotate them about any axis passing through the
origin. For every such rotation, the local coordinates of the
A�

3 lattice neighbors change, which in turn affect their
coordinates with respect to the chirp-time coordinates. The
aim is in finding the rotation for which a maximum number
of neighbors lie inside the parameter space boundaries.
For each point in Ur, we consider three successive

rotation angles α, β, and γ about ê1, ê2, and ê3-axis,
respectively. The coordinates of the neighbors in the θ⃗
space can be calculated by modifying Eq. (3.1) as:

Nq
i ¼

X3
j;k;l¼1

RT
ijSjkEklðα; β; γÞN̄q

l ; ð3:2Þ

where Eðα; β; γÞ is the multiplication of the three successive
rotation matrices E ê1ðαÞ, E ê2ðβÞ, and E ê3ðγÞ about the ê1,
ê2, and ê3-axis respectively. Suppose Zp A�

3 lattice
neighbors (out of 14) of the pth random point of Ur lie
inside the parameter space, then the average number of
valid neighbors can be defined as

hZðα; β; γÞi ¼ 1

14n0

Xn0
p¼1

Zpðα; β; γÞ: ð3:3Þ

To find the optimum set of angles, we maximize
the quantity hZðα; β; γÞi over α, β and γ. This leads to
the biggest geometrical lattice of templates in each of the
geometric iterations of the hybrid algorithm.
We have exploited this freedom of orientating the local

flat orthogonal coordinates to construct the hybrid O2 uber
bank by averaging over n0 ¼ 10 000 random points. It is to
be noted that this optimization depends on the overall
volume and boundaries of the target search space. The
optimally oriented hybrid O2 uber bank has ∼10% fewer
templates in comparison to the one where such optimal
rotations were not applied.

B. Incorporation of the exact match function

In the hybrid template placement algorithm, the metric
approximation is used in two different ways: (a) to find the
localA�

3 lattice neighbors of a point and (b) to calculate the
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distance between any two fiducial points in the parameter
space. It turns out that the semi-numerical metric approxi-
mation becomes inaccurate at high mass regions (especially
in the BBH region of the search space with total mass
M > 40 M⊙). In such regions, the mismatch contours
calculated in Eq. (2.5) using the seminumerical metric is
smaller than the contours of the exact match function
[Eq. (2.3)]. This affects both the geometric placement as
well as the elimination of the random proposals from U and
leads to an overcoverage in the resulting bank. To get
around this problem, we cannot fully rely on the semi-
numerical metric and have to use the exact match function.
However, the inclusion of the exact match function (in

favor of the more economical metric distance) in the bank
construction may lead to computational inefficiencies when
comparing the distance of a fiducial point from all the
templates in a very large list T . As such, we refine the
template placement part of the algorithm in two steps: at
first, we create a bounding box around the fiducial point
using the seminumerical metric and scale it up by a factor
μ ≥ 1. The dimensions of the bounding box [61] along e⃗i
are given in terms of the elements of the rotation matrix R
and the eigenvalues of g as:

Δθi ¼ 2Dmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ
X3
j¼1

R2
ij

Λj

vuut ; ð3:4Þ

which is in agreement with the expressions found in [16].
Thereafter the templates in T that lie within this box are

identified. This is further refined by retaining only those
template points whose metric distance from the fiducial
point are found to be less than or equal to

ffiffiffi
μ

p
Dmax. After

this point we are left with a much smaller list of template
points against which an exact match is calculated for
determining valid A�

3 neighbors (required in the geometric
iteration) and also in the elimination of initial proposals
from U. The scaling factor μ can be treated as a tunable
parameter. In our experiments with O2 uber bank con-
struction, we find that μ ¼ 3 for low mass systems and
μ ¼ 5 for systems with total mass greater than 40 M⊙
works adequately well.
We have implemented the exact match function within

the hybrid bank placement algorithm and tested it by
constructing the O2 hybrid uber bank. By a suitable choice
of the scale factor μ we found that the resulting bank had
∼9% fewer templates, as compared to a hybrid bank
constructed using only the seminumerical metric.

C. Inclusion of an optimal starting frequency

The vanilla stochastic algorithm was spruced up by the
inclusion of a (variable) optimal starting frequency at a
maximum allowed (small) SNR loss by Del Canton et al.
[21] for constructing the template bank used in LIGO’s O2
CBC searches. This modification led to a bank which could

be used to search for high mass BBH systems in the data.
For a given binary system (specified by its intrinsic
parameters λ⃗), this optimum lower cutoff frequency is
found by solving the equation that corresponds to a fixed
loss in signal power: RðflowÞ ¼ R� where R� is taken to be
0.995 corresponding to a nominal loss of SNR of 0.5% at a
reference lower-cutoff frequency set to fref ¼ 15 Hz below
which there is no appreciable signal power for any template
waveform and where,

RðflowÞ ¼
Z

fhigh

flow

Ã2ðf; λ⃗Þ
ShðfÞ

df=
Z

fhigh

fref

Ã2ðf; λ⃗Þ
ShðfÞ

df: ð3:5Þ

In the above equation, Ãðf; λ⃗Þ is the amplitude of the
template waveform in the frequency domain. On the flip
side, the inclusion of very high-mass BBH systems in the
template bank also increases the rate of triggers and it
becomes difficult to use the χ2 signal consistency test. This
is avoided to some extent by incorporating a lower-bound
on the filter waveform length to exclude very short-duration
templates. Such a bound is chosen empirically from
observation of the background distribution.
As the variable flow also has a profound effect on the size

of the template metric ellipses which in turn affect the
hybrid template placement algorithm, we have also incor-
porated this feature as explained below.
We begin by first pointing out that using the optimized

lower cutoff frequency is quite straightforward in the
stochastic placement algorithm as it is used only for
evaluating the exact match integrals. On the other hand,
for the hybrid placement, the optimized lower cutoff
frequency needs to be incorporated to calculate the metric
g. As outlined in the previous section, this involves
transformations back and forth between the physical
parameters and the dimensionless chirp time parameters.
As such, some care is needed in including this feature. We
modify the hybrid algorithm in the following way: first, we
initialize the set of random proposals U over the θ⃗ space by
assuming a fixed starting frequency f0 ¼ fref in the
Eq. (2.9). Second, we use an optimized lower cutoff
frequency to evaluate the inner product integrals of the
Fisher matrix (Eq. (2.8) elements over the physical param-
eter space λ⃗≡ fM; η; χr; t0;φ0g. Finally the Jacobian trans-
formation matrix is evaluated assuming a fixed f0 ¼ fref .
Such a protocol enables us to calculate g with an optimal
flow which in turn affects the coordinates of the A�

3 lattice
points. The fixed reference frequency fref is also used for
determining the proposal elimination criteria where pro-
posals in U are removed if they lie within the minimal
match distance from existing templates in the T . Inclusion
of this feature has a significant effect in reducing the overall
hybrid bank size.
In order to understand the effect of these optimizations

on the final bank, we have constructed toy hybrid template
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banks at a minimal match of ζ ¼ 0.98 over nominal BBH
search parameters where the total mass is in the range
M ∈ ½10; 100� M⊙, component masses are in the range
m1 ∈ ½5; 500� M⊙ and m2 ∈ ½5; 250� M⊙. The range of
dimensionless spin magnitude was taken to up to 0.998.
The ER10 PSD was used in this experiment with a lower
cutoff frequency at flow ¼ 15 Hz and fhigh ¼ 1024 Hz.
The parameters corresponds to the red-shaded region in
Fig. 3(a). As we shall see later, such precomputed banks are
used to seed the O2 uber bank. These banks were compared
against the vanilla and optimized stochastic banks con-
structed with identical parameters from random proposals
in the fθ0; θ3; ξ1; ξ2g space. The results are summarized in
Table I. The optimizations explained earlier in this section
have a profound effect on the final hybrid bank size. In this
example, the optimized hybrid bank is found to have 22%
fewer templates as compared to the optimized stochastic
bank. Fitting factor studies using 10 000 injections indicate
that the smaller hybrid bank provides marginally better
coverage compared to the optimized stochastic bank.

Our main goal in this paper is to construct the optimized
hybrid O2 uber bank which is described in the next section.
We end this section with a few comments on the hybrid
bank construction. By design, we can decouple the geo-
metric and stochastic parts of the hybrid bank algorithm.
To demonstrate this point, one may check that if we discard
the shaded region in the flowchart, then the algorithm will
choose one random proposal from U as a new template at a
time and eliminate the points from U that lie inside the
minimal match “sphere” centered at that point. This will
continue until U becomes empty. This is exactly the
stochastic placement turned on its head—where the final
bank is pared down from an initial list of a large number of
random proposals, instead of being built from the ground
up from single random proposals at a time (as described
earlier). We call this the top-down approach of constructing
a stochastic bank and have shown that it to be computa-
tionally more efficient than a bottom-up approach (where
the parameter space metric is available) but result in the
same bank sizes at a near-identical distribution of fitting
factors [40]. The reason of pointing out this ability to
decouple the two parts is to highlight the fact that in regions
of the parameter space that suffer from curvature and
boundary effects, the geometric part of the algorithm is
severely incapacitated and the construction essentially falls
back to a vanilla stochastic placement algorithm. Thus, in
the worst case scenario, the hybrid bank algorithm will
perform at least as well as the stochastic placement
algorithm.

IV. CONSTRUCTING AN OPTIMIZED HYBRID
BANK FOR ADVANCED LIGO

In this section, we discuss the construction of an
optimized hybrid template bank for the entire range of

FIG. 3. Parameter space boundaries depicted in the component mass space for the O2 uber bank. The shaded regions in the left and
right panels show the regions corresponding to the precomputed seed banks used in the uber stochastic and hybrid banks, respectively.
The plot legends also indicate the method and the range of mass and spin parameters used in either method. Both the banks were
generated using a optimized variable lower cutoff frequency flow and a reference frequency fref ¼ 15 Hz.

TABLE I. Comparison of the template bank sizes for the hybrid
template placement algorithm using a combination of new
optimizations presented in Sec. III against the vanilla/optimized
stochastic method. Their combined effect results in ∼34% smaller
hybrid banks as compared to the basic algorithm [40] at the cost
of 0.5% loss in SNR.

Bank size

Type of optimization Stochastic Hybrid

Vanilla 25 208 23 763
+ Inclusion of exact match 19 628
+ Orientation of A�

3 lattice 18 078
+ Variable starting frequency 20 070 15 671
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parameters in the O2 search and compare its performance
against the optimized stochastic O2 uber bank. The search
parameter space is summarized in Fig. 3(a) where the range
of component masses are depicted. Component masses
less than 2 M⊙ are assumed to have dimensionless spin
magnitude ≤ 0.05. The spin magnitude of heavier compo-
nent masses can extend up to 0.998. In O2 search, the
minimum length of the filtered waveform was set to be
150 ms to avoid the large number of triggers arising from
short duration noise transients (glitches) in the data.
The PyCBC “uber bank” for O2 searches was con-

structed using a combined geometric-stochastic approach.
First, the low-mass region of search space was covered by a
precomputed geometric seed bank at a minimal match 0.97
using the metric over post-Newtonian TaylorF2 waveforms
[32] with a fixed flow ¼ 27 Hz. This is depicted as the blue
shaded region in Fig. 3(a) and the geometric seed-bank size
has 129 000 templates. Another seed bank over BBH
parameters was also used which was constructed at a
higher minimal match 0.98 as depicted by the red-shaded
region in Fig. 3(a). This extra coverage (with seed bank size
of 20 070 templates) was driven by the fact that the
previously detected BBH sources were all found in this
range of parameters. Finally, the optimized stochastic bank
was generated by considering random proposals in the
fθ0; θ3; ξ1; ξ2g space at a minimal match of 0.965 by
seeding these two banks. The BBH seed bank and final
stochastic banks were generated by incorporating a variable
lower cutoff frequency corresponding to 0.5% acceptable
loss in SNR as compared to a fixed lower cutoff frequency
of 15 Hz.
The final stochastic O2 uber bank over the entire range of

parameters space had 404 019 templates.
A uber hybrid bank was constructed over the exact same

range of parameters, seeded by precomputed banks. The
hybrid bank construction was initialized using an initial
set of 7 × 106 random proposals drawn from a uniform
distribution in fθ0; θ3; θ3Sg coordinates. The placement
commenced from the center of the parameter space
corresponding to component masses m1;2 ≡ ð10; 3ÞM⊙
and dimensionless spin components χ1;2 ¼ 0. Before com-
mencing the construction over the full range of parameters,
a geometric seed bank consisting of 18 517 templates over
the range of component masses corresponding to BNS
systems was constructed at a minimal match 0.97 and the
lower cutoff frequency fixed to 27 Hz. A second precom-
puted hybrid seed bank consisting of 15 671 templates over
BBH systems was also used. The final O2 optimized hybrid
bank was found to have 350 768 templates.
Both these banks were generated using the harmonic

mean of the ER10 PSDs of H1 and L1 detectors. The
reference frequency fref was set to 15 Hz, below which
there was no appreciable signal power for all the CBC
templates within the search parameter space.
The reader may have noticed that BBH waveforms are

used to cover a wide range of parameters corresponding to

NSBH systems. GW signals from the late inspiral of NSBH
binaries will contain higher order corrections due to the
tidal deformation of the neutron star, depending on its
equation of state, the mass ratio of the binary as well as the
spins of the compact objects. However, the SNR of the
postinspiral part of NSBH binaries that Advanced LIGO
may observe is likely to be small. Hence BBH waveforms
are thought to provide a good approximation to such
waveforms for the purpose of GW detection. In particular,
NSBH waveforms with large mass ratios (m1=m2 ≳ 6–9)
are expected to be identical to BBH waveforms [62].

A. Performance of the full banks

To quantify the bank coverage, we have carried out
Monte-Carlo simulations to compute the distribution of
fitting factors of the O2 uber banks against a set of 30 000
injected aligned-spin SEOBNRv4ROM signal waveforms
with randomly chosen parameters. In this section, we
present the results of this comparison and demonstrate
that the both the optimized hybrid and the stochastic banks
provide near identical coverage. The pycbc_banksim
program as implemented in PYCBC [63] software was used
for carrying out the simulation.
The fitting factor FF of a template bank T with respect

to an injected signal h� is defined as the maximum value of
match over all the templates [64]:

FF ðh�Þ ¼ max
λ∈T

Mðĥ�; ĥðλÞÞ: ð4:1Þ

Note that 1 − FF ðh�Þ is the fractional loss of SNR in
capturing the signal h� with the template bank T . Here we
assume that the signal model is the same for both templates
and injections. As such, this loss arises from the discrete
placement of the templates. It is desirable that the mismatch
between the template and signal be bounded by a maximum
value (usually set equal to 1 − ζ), failing which can lead to
an enhanced loss of detection rate. A bank is said to be
effectual if it can capture any arbitrary signals with a
fractional loss in SNR less than this bound. The latter is
proportional to ð1 − FF Þ3 for a uniform distribution of
source in the universe. For example, a bank constructed at a
minimal match of 0.97 corresponds to a maximum of 10%
loss in the detection rate. On the other hand, matched
filtering searches using a densely packed template bank can
increase the computational cost of the search. Thus, one
requires a balance between computational cost and accept-
able loss of detection rate. As noted elsewhere, the O2 uber
banks (both stochastic as well as hybrid) were constructed
at a ζ ¼ 0.965 with the two seed banks constructed at ζ ¼
0.97 in the BNS region and at ζ ¼ 0.98 in the BBH region.
The injected signals were generated from a uniform distri-

bution over component masses and dimensionless spins. The
range of the intrinsic parameters of injected signals (mass
and spin) was taken to be identical to that of the O2 uber
bank search parameters. These aligned-spin injections were
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classified in three regions of the search space: BNS systems
with component masses between ½1 − 2�M⊙, BBH systems
with component massesm1;2 ≥ 2, and NSBH systems where
the BH mass lies between ½2 − 100�M⊙ and NS mass lies in
the range ½1 − 2�M⊙. The fitting factors for nonprecessing
binary systems are independent of the sky location, polari-
zation angle and inclination angles. As such, the polarization
angle was chosen from a uniform random distribution
between ½0; π�, the inclination angle was kept fixed corre-
sponding to the face-on orientation of the binary system with
respect to the line of sight and the sky location was taken
from a uniform random distribution over the celestial sphere.
The lower cutoff frequency for generating the injection
waveforms was kept at a fixed flow ¼ 15 Hz while tem-
plates were generated at the optimum starting frequencies.
In the right most column of Fig. 4, we show the results of

the cumulative fitting factor distribution for hybrid and uber

banks when both the template waveform and injected
signals are modeled from SEOBNRv4ROM approximant.
The solid black line and the black dashed line represent the
hybrid and uber banks respectively. The top right plot of
Fig. 4 corresponds to the injected BNS signals where, the
cumulative fitting factor distribution shows that 0.6%
signals are recovered below a 0.965 match for hybrid
bank whereas 0.5% signals are below this mark for the
stochastic bank. The minimum fitting factor values for
these set of injections are 0.96 and 0.957 in the hybrid and
stochastic banks respectively. The right most plot seen in
the second row of Fig. 4 corresponds to the full range of
NSBH injections. In this plot, the cumulative fitting factors
distribution for the hybrid bank shows that 0.39% injec-
tions are found below 0.965 match with a minimum fitting
factor of 0.96. The black dashed line (corresponds to the
stochastic bank) shows that 0.44% injections are found

FIG. 4. Performance of the banks over various regions of search space: BNS (top-row), NSBH (middle-row) and BBH (bottom-row)
systems. Distributions of the fitting factors computed by injecting a set of 10 000 SEOBNRv4ROM signals in each of these three regions
are depicted in the third column, where the solid line and the solid dashed line correspond to the hybrid and stochastic uber banks
respectively. All the fitting factors are computed assuming ER10 harmonic PSD. A complete description of the performance of the banks
are listed in Table II. The heat maps in the first two columns show the average signal recovery fraction in each bin of the parameter space.
It is evident that signal recovery fraction over the entire parameters space does not go below 0.924 (> 90%).
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below this mark with a minimum fitting factor 0.95. The
performance of the banks against BBH injections is
depicted in the bottom-right plot Fig. 4 and shows that
0.23% (hybrid bank) and 0.22% (stochastic bank) of the
injected signals are found below the mark 0.965 match.
Minimum fitting factor for both the banks were found to be
at 0.96. From these three plots, it is evident that the hybrid
uber O2 bank with 53 000 fewer templates provides a near
exact coverage as the O2 stochastic uber bank in all the
three regions of the search space.
As pointed out by Buonnanno et al. [58], the distribution

of fitting factor may not be adequate to quantify the
efficiency of a given template bank against short duration
signal injections with less signal power. Therefore to get a
complete picture, one also should compute the signal
recovery fraction (SRF) of the injected signals against a
template bank. The SRF is defined as:

SRF ¼
P

iFF 3ðhiÞσ3ðhiÞP
iσ

3ðhiÞ ; ð4:2Þ

where, σðhiÞ is the horizon distance and is proportional
to the signal power. The horizon distance is defined as
the farthest luminosity distance of an optimally inclined
(face-on) and oriented (overhead) CBC source at a fixed
canonical SNR.
In the first and second columns of Fig. 4 we show the SRF

for injected signals in different combination of parameters.
The three different rows correspond to the three mass ranges
of the search space corresponding to BNS, NSBH, and BBH
systems respectively. We have computed the average SRF in
each bin over mass-spin parameters by using Eq. (4.2). It is
expected that a bank must be constructed to achieve an SRF
greater than 90% over the entire search space. From these
three rows of plots in Fig. 4, it is clearly evident that SRF
does not fall below 92.4% over the entire search space,
thereby validating these banks.

V. SUMMARY AND CONCLUSIONS

We report the construction of effectual template banks
for GW searches from compact binaries in data from future
advanced LIGO runs, after incorporating several new
optimizations to the geometric-random hybrid placement

algorithm proposed by us in an earlier paper [40]. These
hybrid template banks are constructed in an effective 3
dimensional parameter space using the seminumerical
metric over the parameter space of aligned spin CBC
waveforms. The algorithm combines the space-efficiency
of a geometrical lattice of points along with the robustness
of the stochastic placement algorithm using which, one can
place a more efficient bank in parameter spaces having
slowly varying metric. No additional fine tuning is needed
for accommodating curvature and edge effects while
placing the templates. The new optimizations include the
use of a variable lower-cutoff frequency and imposing a
lower bound on the template duration which not only
improve the reach of LIGO searches to high-mass binary
black hole systems up to several hundred solar masses but
also keeps a check on the overall bank size. We also
capitalize on a degree of freedom wherein the underlying
geometrical lattice of template points is suitably oriented as
determined by the enclosing boundary of the target search
space. We also describe a computational efficient way of
including exact match values within the hybrid placement
algorithm. The combined effect of the new optimizations
presented in this paper leads to a ∼34% reduction in the
hybrid bank size as shown in Table I.
The hybrid algorithm assumes local flat patches that

extend up to a spherical region of radius 2Dmax for
relatively high values of ζ ¼ 0.97. For parameter spaces
where the metric varies even more slowly, it may be
possible to extend the notion of such a flat patch up to
twice of this radius. This may result in faster template
placement with additional reduction in the overall bank size
without affecting the coverage of the bank significantly.
Finally, the random proposals in U may be sprayed more
efficiently over the dimensionless chirp-time coordinates
according to the spatial density determined by

ffiffiffiffiffiffijgjp
. We

would like to explore these ideas in future.
We demonstrate the efficacy of the optimized hybrid

algorithm by constructing toy seed banks over a nominal
BBH range of parameters. As seen in Table I, such banks
are about 22% smaller in size as compared to the optimized
stochastic bank constructed over identical parameter space.
We also constructed the O2 uber hybrid bank and com-
pared it in detail with the one used in LIGO’s O2 search.

TABLE II. Summary of the O2 uber template banks. Hybrid banks were generated using a numerical SEOBNRv4ROM metric in 3D
dimensionless chirptime coordinates θ⃗≡ fθ0; θ3; θ3Sg. On the other hand, the stochastic bank was constructed by considering random
proposals in the four-dimensional fθ0; θ3; ξ1; ξ2g parameter space using the exact match function. The complete description of the
parameters for the full range of the search space is reported in Fig. 3. Please note that the O2 optimized hybrid bank took 40 hours over
50 CPUs while the O2 optimized stochastic uber bank was generated using 500 nodes over 25 days.

% of FF < 0.965

Binary system Placement algorithm Bank size BNS BBH NSBH Comments

BNSþ BBHþ NSBH Hybrid (with variable flow) 350 768 0.6 0.23 0.39 ∼14.5% larger templtes
Uber (with variable flow) 404 019 0.5 0.22 0.44
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The latter was generated [21] using precomputed seed
template banks in the BBH and low-mass region by an
optimized version of the stochastic algorithm with a
variable starting frequency. The distribution of fitting
factors and signal recovery fraction obtained from
Monte-Carlo signal injections over a wide range of param-
eters establish the fact that the hybrid bank, with 53 000
fewer templates, can provide nearly identical coverage.
The LIGO Scientific Collaboration is gearing up for the

O3 science run expected to start in March 2019. In view of
this, we have generated uber O3 hybrid banks with identical
parameters as those for the O2 uber bank and have used the
ER13 harmonic PSD. The corresponding bank found to
have 412 000 templates. This implies that by using the
optimized hybrid bank algorithm one should be able to
analyze the data from a more sensitive O3 search using
nearly the same computational resources as the previously
concluded O2 offline search. On the other hand, assuming
the O3 target PSD, we end up with a bank with 1.6 million
templates. In O3 searches, it may be possible to increase the
parameter space boundary to include systems with total
mass more than 500 M⊙ due to improvements in the low-
frequency sensitivity of the detectors.
While the effective banks presented in this paper are in

three-dimensional space, one may have to consider placing
template banks in higher dimensional spaces for future
CBC searches in LIGO data using binary waveforms with
fully precessing spins or with higher-order modes. In view
of this, we have also sketched an outline for extending the
hybrid formalism to arbitrary number of parameter-space
dimensions by the use of A�

n lattices in Appendix.
Our effectual template banks are ready to be used in CBC

searches in upcoming observation runs of advanced LIGO
and Virgo detectors.
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APPENDIX: HYBRID BANK CONSTRUCTION
IN HIGHER DIMENSION

In a previous work, we proposed the hybrid template
placement algorithm in a 3-dimensional parameter space by
using theA�

3 (or BCC) lattice. In this paper, we propose new
optimizations which leads to further improvements. The
algorithm can be easily extended to higher dimensional
parameter spaces with weakly varying metric by the use of
A�

n lattice (where n ≥ 3) in the geometrical part of the
algorithm. Such banks may be needed in future CBC
searches using template waveforms with fully precessing
spins. 4D stochastic banks have been constructed for CBC
searches using nonspinning template waveforms with higher
order modes [65]. Such banks have been shown to increase
the sensitivity of searches for high mass ratio and high total
mass systems. It would be prudent to use the hybrid method,
such as the one presented in this work in such cases.
To illustrate the performance of the hybrid algorithm and

also to compare it against the stochastic method in higher
dimensions, we generate both hybrid and stochastic banks
in 3 and 4 dimensions using a constant metric gij ≡ δij for
which the minimal match spheres have unit radius by
construction. Here, δ refers to the Kronecker delta function.
These templates are placed inside a spherical volume of
radius 10 in the corresponding dimensions. These choices
for the metric (constant) and volume (sphere has the
smallest surface to volume ratio) were made to theoretically
minimize the curvature and boundary effects. The hybrid

FIG. 5. Histogram of distances between a set of 106 uniformly
distributed random points and templates for n ¼ 3, 4 dimensions.
The template banks were generated using both the stochastic and
hybrid method by assuming a constant metric gij ¼ δij (corre-
sponding to unit covering radius) within a spherical volume of
radius ¼ 10 so as to minimize the effects of curvature and
boundary effects. Such injection studies have also been carried
out for fully lattice based template banks [25].
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banks were found to have 35% fewer templates as
compared to the stochastic bank in three-dimension and
25% fewer in four-dimension. As these toy banks have
been constructed in idealized conditions free of curvature
effects and minimum boundary effects, these numbers may
as well serve as theoretical limits to the improvement in
bank sizes from a hybrid construction in 3 and 4 dimen-
sions respectively.
The banks were tested for coverage by injecting 106

random points and calculating the Euclidean distance to the
nearest template point which is related to the mismatch
through Eq. (2.5). A histogram of such distances is shown
in Fig. 5: for both 3-D and 4-D cases. The peak of the
distribution is seen to shift to the right for the hybrid banks
in both cases which allude to the over-density of points in
the stochastic banks as expected. For the given constant
metric, it would interesting to check how close the hybrid
algorithm is to generating a fully lattice-placed template
bank [25] in the bulk. Near the vicinity of the parameter
space boundaries, the interaction between lattice and
random template placement will result in imperfections.

Any n-dimensional lattice can be constructed by the
orthogonal projection of the nþ 1 dimensional cubic
lattice Znþ1 onto the hyperplane perpendicular to a suitably
chosen vector v⃗ ∈ Znþ1 [66]. In particular, choosing v⃗ ¼ 1⃗
(column vectors of 1s) leads to the construction of the A�

n
lattice [67] using the projection matrix G defined as:

G ¼ I −
1⃗
T
1⃗

nþ 1
; ðA1Þ

where I is the identity matrix. It can be shown that the A�
n

lattice provides optimal sphere covering where each sphere
of radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jGGT j

p
is placed at the lattice points. The

nearest neighbours of any point in this lattice can be
identified to be the location of lattice points within the
distance 2r. We can transpose this idea for finding the A�

n
nearest neighbors for the template placement problem by
scaling r to the covering radius Dmax of each template,
which is related to the minimal match of the bank through
the expression Dmax ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 − ζ

p
.
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