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We obtain a (3þ 3)-dimensional global flat embedding of the generalized (2þ 1) charged Bañados-
Teitelboim-Zanelli black holes in massive gravity. We also study the local free-fall temperatures for freely
falling observers starting from rest and investigate the effect of the charge and graviton mass in free-fall
temperatures.

DOI: 10.1103/PhysRevD.99.024047

I. INTRODUCTION

As discovered by Hawking [1], an observer located at
asymptotic infinity sees the Hawking temperature TH of a
black hole that emits characteristic thermal radiation. On
the other hand, a fiducial observer at a finite distance from a
black hole sees a local temperature described by the Tolman
temperature [2]

TFID ¼ THffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνξμξν

p ; ð1:1Þ

where ξμ is a timelike Killing vector. Later, Unruh [3]
showed that a uniformly accelerating observer in a flat
spacetime, with a proper acceleration a, detects thermal
radiation at the Unruh temperature

TU ¼ a
2π

: ð1:2Þ
These two effects are related; i.e., the Hawking effect
for a fiducial observer in a black hole spacetime can be
considered as the Unruh effect for a uniformly accele-
rated observer in a higher-dimensional global embedding
Minkowski spacetime (GEMS). These ideas and their
corresponding GEMSs are studied through the analysis
of de Sitter [4] and anti-de Sitter (AdS) spacetimes [5,6].
Furthermore, Deser and Levin [7] have shown that the
GEMS approach provides a unified derivation of temper-
ature for uncharged Bañados-Teitelboim-Zanelli (BTZ)
[8,9], Schwarzschild-AdS, and Reissner-Nordström (RN)

spacetimes. After these works, we have constructed
GEMSs for the charged BTZ [10] and RN-AdS [11]
spacetimes according to this approach. Since then, there
have been many works on a variety of curved spacetimes
[12–25]. Furthermore, several years ago, Brynjolfsson and
Thorlacius [26] used the GEMS approach to define a
local temperature for a freely falling observer outside
Schwarzschild(-AdS) and RN spacetimes, showing that
freely falling temperatures remain finite at event horizons
while they approach the Hawking temperatures at asymp-
totic infinities. Here, a freely falling local temperature is
defined at special turning points of radial geodesics where
a freely falling observer is momentarily at rest with
respect to a black hole. After the work, we have extended
the results to RN-AdS [27], Gibbons-Maeda-Garfinkle-
Horowitz-Strominger black holes [28], a modified
Schwarzschild black hole in rainbow spacetime [29],
and a Schwarzschild-Tangherlini-AdS black hole [30].
However, up to now, all these studies of finding freely
falling temperatures have been mainly restricted to
massless graviton cases. By the way, it is known that
massive gravitons in general relativity [31,32] can be
introduced by various channels, one of which is breaking
the Lorentz symmetry of the system [33]. The modifica-
tion to the behavior of a black hole by including a
graviton mass has also been considered in the extended
phase space in order to study the phase transition of black
holes [34]. Moreover, the graviton mass terms have been
exploited to investigate many interesting models such as,
for instance, Gauss-Bonnet massive gravity [35]. It has
been noticed that the massive gravitons can yield inter-
esting modification of black hole thermodynamics.
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On the other hand, since the pioneering work in 1992,
the (2þ 1)-dimensional BTZ black hole in massless
gravity [8,9] has become a useful model for realistic black
hole physics [36]. Moreover, significant interest in this
model has recently increased with the discovery that the
thermodynamics of higher-dimensional black holes can
often be interpreted in terms of the BTZ solution [37]. It is
therefore interesting to study the geometry of (2þ 1)-
dimensional black holes and their thermodynamics through
further investigation. Moreover, it is possible to construct a
BTZ black hole in massive gravity [38–42]. In fact, an
asymptotically AdS charged BTZ black hole has been
constructed in a massive theory of gravity, and various
different aspects of such a solution have been studied. In
these works, they have considered three-dimensional mas-
sive gravity with an Abelian U(1) gauge field and negative
cosmological constant of which the action is of the form

S¼ −
1

16

Z
d3x

ffiffiffi
g

p �
R− 2ΛþLðF Þ þ M̃2

X4
i¼1

ciU iðg; fÞ
�
;

ð1:3Þ
where R is the scalar curvature, Λð¼ −1=l2Þ is the
cosmological constant, LðF Þ is the Lagrangian for the
vector gauge field, M̃ is the massive parameter, and f is
the reference metric.F ð¼ FμνFμνÞ is the Maxwell invariant
in which Fμνð¼ ∂μAν − ∂νAμÞ is the Faraday tensor and
Aμ is the U(1) gauge potential. ci are the constants for
massive gravity, and U i are the symmetric polynomials
of eigenvalues. Here, they take an ansatz that U1 ¼ c=r,
U2 ¼ U3 ¼ U4 ¼ 0, where c is a positive constant.
In this paper, we will generalize the Unruh, Hawking,

and freely falling temperatures of the charged BTZ black
hole in the massless case1 to those in the massive gravity
(1.3) with the ansatz in terms of the GEMS approach. In
Sec. II, we will briefly summarize the GEMS embedding of
the charged BTZ black hole in the massless gravity [10] and
then newly obtain desired temperatures of the black holes
as measured by freely falling observers. In Secs. III and IV,
we will derive the GEMS embeddings of the uncharged and
charged BTZ black holes in the massive gravity and then
evaluate local temperatures of the black holes as measured
by freely falling observers, respectively. In particular, in
Sec. IV, we discuss the effect of charge and massive
gravitons on the Hawking temperature in the charged
BTZ black hole in the massive gravity. Finally, our
conclusions are drawn in Sec. V.

II. CHARGED BTZ BLACK HOLE
IN MASSLESS GRAVITY

A. GEMS of charged BTZ black hole

We consider the (2þ 1)-dimensional charged BTZ black
hole in the massless gravity described by the 3-metric

ds2 ¼ N2dt2 − N−2dr2 − r2dϕ2 ð2:1Þ

with the lapse function

N2 ¼ −mþ r2

l2
− 2q2 ln

r
l
; ð2:2Þ

where m ¼ 8M and q ¼ 2Q with M and Q being the mass
and electric charge of the BTZ black hole, respectively.
Now, the mass m can be written in terms of the event
horizon rH as

m ¼ r2H
l2

− 2q2 ln
rH
l
; ð2:3Þ

and the Hawking-Bekenstein horizon surface gravity is
given by [43]

kH ¼ −
1

2
ð∇μξνÞð∇μξνÞjr→rH ¼ rH

l2
−
q2

rH
: ð2:4Þ

Then, according to the GEMS approach, a (3þ 3)-
dimensional AdS GEMS,

ds2 ¼ ðdz0Þ2− ðdz1Þ2− ðdz2Þ2þðdz3Þ2− ðdz4Þ2þðdz5Þ2;
ð2:5Þ

is given by the coordinate transformations for r ≥ rH [10],

z0 ¼ k−1H

�
r2 − r2H

l2
− 2q2 ln

r
rH

�
1=2

sinh kHt;

z1 ¼ k−1H

�
r2 − r2H

l2
− 2q2 ln

r
rH

�
1=2

cosh kHt;

z2 ¼ l
rH

r sinh
rH
l
ϕ;

z3 ¼ l
rH

r cosh
rH
l
ϕ;

z4 ¼ k−1H

Z
dr

q2l½r2 þ r2H þ 2r2gðrÞ�1=2
r2Hr

h
1 − q2l2

r2H
gðrÞ

i
1=2 ;

z5 ¼ k−1H

Z
dr

q
h
2r2H þ r4Hþq4l4

r2H
gðrÞ

i
1=2

r2H
h
1 − q2l2

r2H
gðrÞ

i
1=2 ; ð2:6Þ

where

gðrÞ ¼ 2r2H
r2 − r2H

ln
r
rH

: ð2:7Þ

Here, one notes that, due to l’Hôpital’s rule, gðrÞ
approaches unity as r goes to r ¼ rH.
For the trajectories, which follow the Killing vector

ξ ¼ ∂t, we can obtain a constant 3-acceleration,1In this work, we will call it massless when M̃ is zero.
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a3 ¼
r
l2 −

q2

r�
r2−r2H
l2 − 2q2 ln r

rH

�
1=2 : ð2:8Þ

In static detectors (ϕ, r ¼ const) described by a fixed point
in the (z2, z3, z4, z5) plane, an observer, who is uniformly
accelerated in the (3þ 3)-dimensional flat spacetime,
follows a hyperbolic trajectory in (z0,z1) described by a
proper acceleration a6 as follows:

a−26 ¼ ðz1Þ2 − ðz0Þ2 ¼
l2
�
r2 − r2H − 2q2l2 ln r

rH

�
�
rH − q2l2

rH

�
2

: ð2:9Þ

Here, we have the relation with a constant acceleration a3,

a26 − a23 ¼ −
1

l2
þ

q4l2

r2r2H
− q2

r2H
gðrÞ

1 − q2l2

r2H
gðrÞ

: ð2:10Þ

One notes that, in the limit of q ¼ 0, a26 − a23 becomes
−1=l2 as expected [7,10].
As was shown by Unruh [3], the Unruh temperature for a

uniformly accelerated observer in the (3þ 3)-dimensional
flat spacetime can be read as

TU ¼ a6
2π

; ð2:11Þ
so we can obtain

TU ¼
rH − q2l2

rH

2πlðr2 − r2H − 2q2l2 ln r
rH
Þ1=2 : ð2:12Þ

This is exactly the same with the local temperature
measured by a fiducial observer staying at a finite distance
from the black hole, the so-called fiducial temperature,

TFID ¼ THffiffiffiffiffiffi
g00

p ; ð2:13Þ

where the Hawking temperature TH is measured by an
asymptotic observer,

TH ¼ 1

2π

�
rH
l2

−
q2

rH

�
: ð2:14Þ

Next, by introducing dimensionless variables

x ¼ rH
r
; a ¼ l

rH
; b ¼ q2; ð2:15Þ

we can rewrite the Hawking temperature in Eq. (2.14) as
follows:

TH · rH ¼ 1

2π

�
1

a2
− b

�
: ð2:16Þ

B. Free-fall temperature of charged BTZ black hole

Now, we assume that an observer at rest is freely falling
from the radial position r ¼ r0 at τ ¼ 0 [26–30]. The
equations of motion for the orbit of the observer are
given as

dt
dτ

¼ Nðr0Þ
N2ðrÞ ;

dr
dτ

¼ −½N2ðr0Þ − N2ðrÞ�1=2: ð2:17Þ

Exploiting Eqs. (2.6) and (2.17), we obtain the freely
falling acceleration ā6 in the (3þ 3)-dimensional GEMS
embedded spacetime

ā6 ¼
1

l

"ð1þ q2l2

rrH
Þð1 − q2l2

rrH
Þ

1 − q2l2

r2H
gðrÞ

#1=2

; ð2:18Þ

which gives us the temperature measured by the freely
falling observer at rest (FFAR)

TFFAR ¼ ā6
2π

¼ 1

2πl

"ð1þ q2l2

rrH
Þð1 − q2l2

rrH
Þ

1 − q2l2

r2H
gðrÞ

#1=2

: ð2:19Þ

It is appropriate to comment that in the limit of q ¼ 0
free-fall temperature for an uncharged BTZ black hole seen
by the freely falling observer is reduced to

TFFAR · rH ¼ rH
2πl

¼ 1

2πa
: ð2:20Þ

Making use of the dimensionless variables introduced in
Eq. (2.15), we can rewrite the free-fall temperature in
Eq. (2.19) as

TFFAR · rH ¼ 1

2πa

�ð1þ a2bxÞð1 − a2bxÞ
1þ 2a2bx2

1−x2 ln x

�
1=2

; ð2:21Þ

where the relevant range of x is given by 0 ≤ x ≤ 1.
In the limit of x ¼ 0, we obtain

TFFAR · rHðx ¼ 0Þ ¼ 1

2πa
; ð2:22Þ

where we have used the identity limx→0x2 ln x ¼ 0. Here,
we note that the above value in Eq. (2.22) is independent of
the parameters b. This means that, as r → ∞, the charge of
the charged BTZ black hole does not affect the free-fall
temperature TFFAR. In other words, the free-fall temperature
TFFAR as r → ∞ in Eq. (2.22) is the same as that of the
uncharged BTZ black hole in Eq. (2.20).
At x ¼ 1, namely, at the event horizon r ¼ rH, we end

up with
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TFFAR · rHðx ¼ 1Þ ¼ 1

2πa
ð1þ a2bÞ1=2; ð2:23Þ

where we have exploited the relation limx→1
ln x
1−x2 ¼ − 1

2
. The

above result in Eq. (2.23) shows that there exists no
singularity of TFFAR at x ¼ 1. Moreover, we note that

TFFARðx ¼ 1Þ > TFFARðx ¼ 0Þ; ð2:24Þ

which means that the free-fall temperature at the event
horizon r ¼ rH is greater than that at the infinity, as
expected. These are summarized in Fig. 1 by plotting
T2
FFAR in units of T2

H. Here, Fig. 1(a) was drawn by
changing the charge b, while Fig. 1(b) was drawn by
changing the cosmological constant a.

III. UNCHARGED BTZ BLACK HOLE
IN MASSIVE GRAVITY

A. GEMS of uncharged BTZ black hole
in massive gravity

Now, let us consider a (2þ 1)-dimensional uncharged
BTZ black hole in the massive gravity described by the
3-metric in Eq. (2.1) with the lapse function

N2 ¼ −mþ r2

l2
þ 2Rr: ð3:1Þ

Here, the notation R related to the mass term in Eq. (1.3) is
given by

R ¼ 1

2
M̃2cc1: ð3:2Þ

Now, the mass m of the uncharge BTZ black hole in the
massive gravity can be given in terms of the event horizon
rH as

m ¼ r2H
l2

þ 2RrH; ð3:3Þ

and the Hawking-Bekenstein horizon surface gravity is of
the form

kH ¼ rH
l2

þ R: ð3:4Þ

Exploiting the GEMS approach, we obtain a (3þ 2)-
dimensional AdS GEMS,

ds2 ¼ ðdz0Þ2 − ðdz1Þ2 − ðdz2Þ2 þ ðdz3Þ2 − ðdz4Þ2; ð3:5Þ

given by the coordinate transformations for r ≥ rH and
R > 0 as

z0 ¼ k−1H

�
r2 − r2H

l2
þ 2Rðr− rHÞ

�
1=2

sinhkHt;

z1 ¼ k−1H

�
r2 − r2H

l2
þ 2Rðr− rHÞ

�
1=2

coshkHt;

z2 ¼ l
rH

r sinh
rH
l
ϕ;

z3 ¼ l
rH

rcosh
rH
l
ϕ;

z4 ¼ k−1H

Z
dr

h
R2l2r2Hr

2
�
1þ 4rH

rþrH

�
þRl4fðrÞ

i
1=2

r2Hr
h
1þ 2Rl2

rþrH

i
1=2 ; ð3:6Þ

where

f ¼ 2r3Hr
2

l4
þ 2r2R2r2H

rþ rH
: ð3:7Þ

For the trajectories, which follow the Killing vector
ξ ¼ ∂t, we can obtain a constant 3-acceleration,

a3 ¼
r
l2 þ Rh

r2−r2H
l2 þ 2Rðr − rHÞ

i
1=2 : ð3:8Þ

In static detectors (ϕ, r ¼ const) described by a fixed point
in the (z2, z3, z4) plane, an observer, who is uniformly
accelerated in the (3þ 2)-dimensional flat spacetime,
follows a hyperbolic trajectory in (z0,z1) described by a
proper acceleration a5 as follows:

0.2 0.4 0.6 0.8 1.0
x

50

100

150

TFFAR
2 TH

2

0.2 0.4 0.6 0.8 1.0
x

2

4

6

8

10

TFFAR
2 TH

2

(a) (b)

FIG. 1. Free-fall temperature for the charged BTZ black hole in the massless gravity: (a) for a fixed a ¼ 2 with b ¼ 0.16, 0.18, 0.20;
(b) for a fixed b ¼ 0.16 with a ¼ 1.2, 1.4, 1.6 from bottom to top, respectively.
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a−25 ¼ ðz1Þ2 − ðz0Þ2 ¼ l2½r2 − r2H þ 2Rl2ðr− rHÞ�
ðrH þRl2Þ2 : ð3:9Þ

Here, we have the relation with a constant acceleration a3,

a25 − a23 ¼ −
1

l2
; ð3:10Þ

which is the same as the result for the uncharged BTZ black
hole in the massless gravity [7,10].
Exploiting the relation in Eq. (2.11), we arrive at the

Unruh temperature for a uniformly accelerated observer in
the (3þ 2)-dimensional flat spacetime:

TU ¼ rH þ Rl2

2πl½r2 − r2H þ 2Rl2ðr − rHÞ�1=2
: ð3:11Þ

This is exactly the same with the fiducial temperature TFID
in Eq. (2.13) with TH being the Hawking temperature
measured by an asymptotic observer,

TH ¼ 1

2π

�
rH
l2

þ R

�
: ð3:12Þ

As a result, one can say that the Hawking effect for a
fiducial observer in the black hole spacetime is equal to the
Unruh effect for a uniformly accelerated observer in a
higher-dimensional flat spacetime. Next, introducing a new
additional dimensionless variable,

d ¼ RrH; ð3:13Þ

together with the other dimensionless variables in
Eq. (2.15), we rewrite the Hawking temperature in
Eq. (3.12) as follows:

TH · rH ¼ 1

2π

�
1

a2
þ d

�
: ð3:14Þ

B. Free-fall temperature of uncharged BTZ black hole
in massive gravity

Now, we assume that an observer at rest is freely falling
from the radial position r ¼ r0 at τ ¼ 0 [26–30]. The
equations of motion for the orbit of the observer are given
by Eq. (2.17). Exploiting Eqs. (3.6) and (2.17), we obtain
the freely falling acceleration ā5 in the (3þ 2)-dimensional
GEMS embedded spacetime

ā5 ¼
1

l
; ð3:15Þ

which gives us the temperature measured by the freely
falling observer at rest as follows:

TFFAR · rH ¼ 1

2πa
: ð3:16Þ

This is exactly the same as the result for the uncharged
BTZ black hole in the massless gravity. The squared
free-fall temperature T2

FFAR is depicted in Fig. 2 in units
of T2

H.

IV. CHARGED BTZ BLACK HOLE
IN MASSIVE GRAVITY

A. GEMS of charged BTZ black hole in massive gravity

A (2þ 1)-dimensional charged BTZ black hole in
massive gravity is described by the 3-metric in Eq. (2.1)
with the lapse function [38,42]

N2 ¼ −mþ r2

l2
− 2q2 ln

r
l
þ 2Rr; ð4:1Þ

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

TFFAR
2 TH

2

FIG. 2. Free-fall temperature for the uncharged BTZ black hole
in the massive gravity for a fixed a ¼ 2 with d ¼ 1, 2, 3 from top
to bottom.

m

0
1

2
3q

0

1

2

3
R

5

0

5

FIG. 3. Upper region of the surface in the mass-charge relation
in which charged BTZ black holes in massive gravity can exist.
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where R is given by Eq. (3.2). First of all, it is appropriate to comment on the metric function (4.1), which goes to positive
infinities if r → 0 and r → ∞ so that there is a minimum at

rmin ¼
−Rl2 þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ R2l2

p
2

: ð4:2Þ

Thus, the metric function has the value of

N2ðrÞjr→rmin
¼ −mþ q2 −

1

2
R2l2 þ 1

2
Rl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ R2l2

q
− 2q2 ln

�
−Rlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 þ R2l2

p
2

�
: ð4:3Þ

One can easily see that when N2ðrminÞ < 0 there are two
roots of rþ and r− and when N2ðrminÞ ¼ 0 the two roots
coincide and one has an extreme black hole. This is
depicted in Fig. 3, in which black holes with two horizons
exist over the (q, R) surface, an extremal black hole exists at
the (q, R) surface, and black holes cannot exist below the
(q, R) surface. On the figure, the red curve is drawn for
R ¼ 0, in which case one has some difficulties [44] such as
a logarithmic divergent boundary term at r → ∞ and a
cosmic censorship problem due to having arbitrarily
negative values of m. Reference [45] has studied how to
circumvent the problems. For a similar reason, the mass
function in Eq. (4.3) would have the same problems, which
may be addressed elsewhere. Here, we will obtain the
GEMS embedding only for r > rþ and nonextremal cases.
Now, the massm in Eq. (4.1) can be given in terms of the

event horizon rH as

m ¼ r2H
l2

− 2q2 ln
rH
l
þ 2RrH; ð4:4Þ

and the Hawking-Bekenstein horizon surface gravity is of
the form

kH ¼ rH
l2

−
q2

rH
þ R: ð4:5Þ

Exploiting the GEMS approach, we obtain a (3þ 3)-
dimensional AdS GEMS,

ds2 ¼ ðdz0Þ2 − ðdz1Þ2 − ðdz2Þ2 þ ðdz3Þ2 − ðdz4Þ2 þ ðdz5Þ2;
ð4:6Þ

given by the coordinate transformations for r ≥ rH as

z0 ¼ k−1H

�
r2 − r2H

l2
− 2q2 ln

r
rH

þ 2Rðr − rHÞ
�
1=2

sinh kHt;

z1 ¼ k−1H

�
r2 − r2H

l2
− 2q2 ln

r
rH

þ 2Rðr − rHÞ
�
1=2

cosh kHt;

z2 ¼ l
rH

r sinh
rH
l
ϕ;

z3 ¼ l
rH

r cosh
rH
l
ϕ;

z4 ¼ k−1H

Z
dr

h
q4l2ðr2 þ r2H þ 2r2gðrÞÞ þ R2l2r2Hr

2
�
1þ 4rH

rþrH

�
þ Rl4f1ðrÞ

i
1=2

r2Hr
h
1 − q2l2

r2H
gðrÞ þ 2Rl2

rþrH

i
1=2 ;

z5 ¼ k−1H

Z
dr

h
q2r2

�
2r2H þ r4Hþq4l4

r2H
gðrÞ

�
þ R2q2l4r2

�
gðrÞ þ 4rH

rþrH

�
þ Rl4f2ðrÞ

i
1=2

r2Hr
h
1 − q2l2

r2H
gðrÞ þ 2Rl2

rþrH

i
1=2 ; ð4:7Þ

where

f1 ¼
2r3Hr

2

l4
þ 2q4r2

rH
gðrÞ þ 2r2

rþ rH
ðq4 þ R2r2HÞ; f2 ¼

2q2rHr2

l2
½1þ gðrÞ� þ 2q2r2Hrð2rþ rHÞ

l2ðrþ rHÞ
; ð4:8Þ
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and gðrÞ is given by Eq. (2.7). In the limit of q ¼ 0, the
coordinate transformations in Eq. (4.7) are reduced to those
in Eq. (3.6) with f1 → f and f2 → 0. Here, note that the
dimensionality (3þ 3) becomes (3þ 2) since z5 disappears
in this limit.
For the trajectories, which follow the Killing vector

ξ ¼ ∂t, we can obtain a constant 3-acceleration:

a3 ¼
r
l2 −

q2

r þ Rh
r2−r2H
l2 − 2q2 ln r

rH
þ 2Rðr − rHÞ

i
1=2 : ð4:9Þ

In static detectors (ϕ, r ¼ const) described by a fixed point
in the (z2, z3, z4, z5) plane, an observer, who is uniformly
accelerated in the (3þ 3)-dimensional flat spacetime,
follows a hyperbolic trajectory in (z0,z1) described by a
proper acceleration a6 as follows:

a−26 ¼ ðz1Þ2 − ðz0Þ2

¼
l2½r2 − r2H − 2q2l2 ln r

rH
þ 2Rl2ðr − rHÞ�

ðrH − q2l2

rH
þ Rl2Þ2

: ð4:10Þ

Here, we have the relation with a constant acceleration a3,

a26 − a23 ¼ −
1

l2
þ

q4l2

r2r2H
− q2

r2H
gðrÞ − 2Rq2l2

rrHðrþrHÞ

1 − q2l2

r2H
gðrÞ þ 2Rl2

rþrH

; ð4:11Þ

which becomes Eq. (2.10) in the limit of R ¼ 0 and
Eq. (3.10) in the limit of q ¼ 0.
Exploiting the relation in Eq. (2.11), we arrive at the

Unruh temperature for a uniformly accelerated observer in
the (3þ 3)-dimensional flat spacetime:

TU¼
rH−q2l2

rH
þRl2

2πl½r2−r2H−2q2l2 ln r
rH
þ2Rl2ðr−rHÞ�1=2

: ð4:12Þ

This is exactly the same with the fiducial temperature TFID
in Eq. (2.13) with TH being the Hawking temperature
measured by an asymptotic observer,

TH ¼ 1

2π

�
rH
l2

−
q2

rH
þ R

�
: ð4:13Þ

As a result, one can say that the Hawking effect for a
fiducial observer in the black hole spacetime is equal to the
Unruh effect for a uniformly accelerated observer in a
higher-dimensional flat spacetime.
In terms of the dimensionless variables, the Hawking

temperature in Eq. (4.13) can be rewritten as

TH · rH ¼ 1

2π

�
1

a2
− bþ d

�
: ð4:14Þ

In Fig. 4(a), we have drawn the Hawking temperatures
TCBTZ;m
H =TBTZ;m

H of the charged/uncharged BTZ black hole
in the massive gravity compared to TCBTZ

H =TBTZ
H of the

charged/uncharged BTZ black hole in the massless gravity.
One can see that the massive gravitons in the BTZ black
holes only make the Hawking temperatures shift parallelly.
As rH → ∞, all the Hawking temperatures are proportional
to rH, while they are being curved near the event horizon
when either q is large or rH is small. In Fig. 4(b), one
can understand the relative roles of charge and massive
gravitons in the charged BTZ black hole in the massive
gravity that when q2 > RrH, TBTZ

H > TBTZ;m
H , while when

q2 < RrH, TBTZ
H < TBTZ;m

H .

B. Free-fall temperature of charged BTZ black hole
in massive gravity

Now, we assume that an observer at rest is freely falling
from the radial position r ¼ r0 at τ ¼ 0 [26–30]. The
equations of motion for the orbit of the observer are given
by Eq. (2.17). Exploiting Eqs. (4.7) and (2.17), we obtain
the freely falling acceleration ā6 in the (3þ 3)-dimensional
GEMS embedded spacetime,

0.2 0.4 0.6 0.8 1.0 1.2 1.4
rH

0.1

0.1

0.2

0.3

0.4

0.5

TH

0.075 0.080 0.085 0.090
rH

0.01

0.02

0.03

0.04
TH

(a) (b)

See b

TH
BTZ,m

TH
CBTZ,m

TH
BTZ

TH
CBTZ

q2 R rH

TH
BTZ

rH 0.08

q2 R rH

TH
CBTZ,m

FIG. 4. (a) Hawking temperatures for the charged/uncharged BTZ black hole in the massive gravity TCBTZ;m
H =TBTZ;m

H and the charged/
uncharged BTZ black hole in the massless gravity TCBTZ

H =TBTZ
H . Here, we have chosen q ¼ 0.4, R ¼ 2, and l ¼ 1 for the charged BTZ

black hole in the massive gravity. (b) The relative effect of charge and massive gravitons in the charged BTZ black hole in the massive
gravity: TBTZ

H > TBTZ;m
H when q2 > RrH and TBTZ

H < TBTZ;m
H when q2 < RrH .
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ā6 ¼
1

l

"�
1þ q2l2

rrH

��
1 − q2l2

rrH
þ 2Rl2

rþrH

�
1 − q2l2

r2H
gðrÞ þ 2Rl2

rþrH

#1=2

; ð4:15Þ

which gives us the temperature measured by the freely
falling observer at rest,

TFFAR ¼ 1

2πl

"�
1þ q2l2

rrH

��
1 − q2l2

rrH
þ 2Rl2

rþrH

�
1 − q2l2

r2H
gðrÞ þ 2Rl2

rþrH

#1=2

: ð4:16Þ

It is appropriate to comment that in the limit of R ¼ 0 the
free-fall temperature in Eq. (4.16) is reduced to Eq. (2.19),
as expected. Similarly, one can readily check that in the
R ¼ 0 limit the physical results possessing R terms
obtained in this section are reduced to those for the charged
BTZ black hole in the massless gravity. On the other hand,
in the q ¼ 0 limit, the physical results possessing q terms

obtained in this section are also reduced to those for the
uncharged BTZ black hole in the massive gravity discussed
in the previous section.
In Fig. 5, we have drawn the free-fall temperatures for

the charged/uncharged BTZ black hole in the massive/
massless gravity. Here, one can see the gap between the
charged BTZ black holes in the massive/massless gravity,
while they are the same at both rH and r → ∞. This gap
arises from the massive gravitons of the charged BTZ black
holes in the massive gravity. On the other hand, the free-fall
temperatures of the uncharged BTZ black holes in the
massive/massless gravity remain constant all over r ≥ rH.
This means that freely falling observers feel the temper-
ature insensitive to the mass term if they freely fall in an
uncharged BTZ black hole.
Now, introducing the dimensionless variables in

Eqs. (2.15) and (3.13), we rewrite the free-fall temperature
in Eq. (4.16) as

TFFAR · rH ¼ 1

2πa

"ð1þ a2bxÞ
�
1 − a2bxþ 2a2dx

1þx

�
1þ 2a2bx2

1−x2 ln xþ 2a2dx
1þx

#1=2

:

ð4:17Þ
Here, the relevant range of x is given by 0 ≤ x ≤ 1. In the
limit of x ¼ 0, we obtain

TFFAR · rHðx ¼ 0Þ ¼ 1

2πa
; ð4:18Þ

as in Eq. (2.22). Here, we note that the above value in
Eq. (4.18) does not depend on the parameters b and d. This
means that, as r → ∞, the charge and mass term of the
charged BTZ black hole in the massive gravity do not
contribute to the free-fall temperature of TFFAR as shown in
Fig. 5. Moreover, all the free-fall temperature TFFAR as
r → ∞ is the same as that of the uncharged BTZ black hole
in the massless gravity in Eq. (2.20).
On the other hand, at x ¼ 1 corresponding to r ¼ rH, we

are left with

TFFAR · rHðx ¼ 1Þ ¼ 1

2πa
ð1þ a2bÞ1=2: ð4:19Þ

TFFAR
CBTZ,m

TFFAR
CBTZ

rH
TFFAR

BTZ,m TFFAR
BTZ r

0.15

0.16

0.17

0.18

0.19

0.20

0.21
TFFAR

FIG. 5. Free-fall temperatures for the charged/uncharged BTZ
black hole in the massive/massless gravity. The gap between the
charged BTZ black holes in the massive/massless gravity comes
from the gravitons in the massive gravity. The free-fall temper-
atures for the uncharged BTZ black holes in the massive/massless
gravity are constant all over r ≥ rH. Here, we have chosen
rH ¼ 0.5, q ¼ 0.4, R ¼ 2, and l ¼ 1 for the charged BTZ black
hole in the massive gravity.

0.2 0.4 0.6 0.8 1.0
x

0.1
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0.4
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2

0.2 0.4 0.6 0.8 1.0
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2

(a) (b)

FIG. 6. Free-fall temperature for the charged BTZ black hole in the massive gravity: (a) for a fixed d ¼ 1 with a ¼ 2 and b ¼ 0.16,
0.18, 0.20 from bottom to top; (b) for a fixed d ¼ 1 with b ¼ 0.16 and a ¼ 1.2, 1.4, 1.6 from top to bottom.
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This free-fall temperature in Eq. (4.19) is the same as that of
the charged BTZ black hole in the massless gravity in
Eq. (2.23). Here, we note that at event horizon r ¼ rH there
exists no dependence on the parameter d in the above free-
fall temperature in Eq. (4.19), even though we consider the
massive gravity effect of the charged BTZ black hole case.
We have depicted in Fig. 6 the free-fall temperature

T2
FFAR in units of T2

H for a fixed d ¼ 1. Figure 6(a) was
drawn by changing the charge b, while Fig. 6(b) was drawn
by changing the cosmological constant. The free-fall
temperature for varying d is depicted in Fig. 7, where it
shows that if d is small the whole variation of T2

FFAR in T2
H

is large in the range of 0 ≤ x ≤ 1.

V. DISCUSSION

In summary, we have globally embedded a charged BTZ
black hole in the massive/massless gravity into a (3þ 3)-
dimensional flat spacetime, while having embedded an
uncharged BTZ black hole in the massless/massive gravity
into a ð2þ 2Þ=ð3þ 2Þ-dimensional flat spacetime as
shown in the Table I.
Making use of the embedded coordinates, we have

directly obtained the Unruh, Hawking, and freely falling

temperatures in the (un)charged BTZ black hole in the
massive/massless gravity and shown that the Hawking
effect for a fiducial observer in a curved spacetime is
equal to the Unruh effect for a uniformly accelerated
observer in a higher-dimensionally embedded flat space-
time. Moreover, we have evaluated all the free-fall temper-
atures of the (un)charged BTZ black hole in the massive/
massless gravity measured by observers freely falling into a
black hole. As a result, we have found that all the free-fall
temperatures given by 1

2πl at the infinity end up hotter but
finite at the horizon when black holes are charged, while
remaining the same as they start when black holes are
uncharged like in Table II.
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