
 

Higgs vacuum decay from particle collisions?
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We examine the effect of large extra dimensions on black hole seeded vacuum decay using the Randall-
Sundrum model as a prototype for warped extra dimensions. We model the braneworld black hole by a tidal
solution and solve the Higgs equations of motion for the instanton on the brane. Remarkably, the action of
the static instanton can be shown to be the difference in the bulk areas of the seed and remnant black holes,
and we estimate these areas assuming the black holes are small compared to the bulk anti–de Sitter radius.
Comparing to the Hawking evaporation rate shows that small black hole seeds preferentially catalyze
vacuum decay, thus extending our previous results to higher-dimensional braneworld scenarios. The
parameter ranges do not allow for standard model Higgs decay from collider black holes, but they can be
relevant for cosmic ray collisions.
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I. INTRODUCTION

A fascinating consequence of the discovery of the Higgs
[1,2] is that the standard model vacuum appears to be
metastable [3–7] (see also earlier work [8–12]). Although it
was originally thought that this would not be an issue due to
the extremely long half-life predicted by the classic bubble
nucleation arguments of Coleman et al. [13–15] (see also
[16]), recent work by two of us [17–21] indicates that the
situation may not be quite so rosy. In [17], we developed a
description of vacuum decay catalyzed by black holes, with
the result that the strong local spacetime curvature of small
black holes catalyzes vacuum decay and dramatically
changes the prediction for the lifetime of the universe.1

Tunneling is initiated by a black hole seed in the false
vacuum that decays into a remnant black hole surrounded
by Higgs fields that have overcome the potential barrier and
lie in a lower energy state. The tunneling rate is determined
by the difference in action between the remnant black
hole–instanton combination and the seed black hole false

vacuum configuration that turns out to be proportional to
the difference in the horizon area of the seed and remnant
black holes. Because of this dependence on the black hole
area, enhancement occurs only for very small black holes,
the obvious candidates being primordial black holes in our
universe; indeed, there is an interesting thermal interpre-
tation of our result (see, for example, [23–25]).
There is, however, another possible scenario in which

small black holes could occur, and that is in particle
collisions. If we have a situation where our four-dimensional
Planck scale is derived from a higher-dimensional Planck
mass close to the standard model scale [26–29], then it is
easier to form black holes in particle collisions [30–33]. Such
higher-dimensional theories are dubbed large extra dimen-
sion scenarios, and the premise is that we live on a four-
dimensional “brane” in a higher-dimensional spacetime. Our
relatively high Planck scale, Mp ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
, is the result

of a geometric hierarchy coming from an integration over the
extra dimensions. Since the true Planck scale is the higher-
dimensional one, it is easier to form black holes in high
energy processes, leading to the possibility of black holes
being produced at the LHC (for a review see [34]). Given this
exciting possibility for producing small black holes, we
should revisit our four-dimensional black hole instanton
calculations and explore the impact of large extra dimensions.
As a first step in looking at vacuum decay with extra

dimensions, we considered the impact of dimensionality on
our toy model thin wall calculations in [19], finding that
extra dimensions seemed to impede vacuum decay; how-
ever, these estimates were predicated on a rather crude
higher-dimensional generalization that did not take the
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1Some of these results were examined in [22], however,
without explicitly computing the Euclidean instanton action.
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braneworld aspect of the large extra dimension models into
account. In this paper, we revisit the role of large extra
dimensions in vacuum decay, explicitly modeling the brane
black hole and finding exact solutions for the instanton on
the brane. We also make a more careful estimation of the
black hole Hawking radiation rate on the brane. We find
that, while for a given seed mass the higher-dimensional
tunneling rate is indeed lower than the four-dimensional
one, what we gain from higher dimensions is that lower
seed masses are allowed due to the lower value of the
fundamental Planck scale, MD.
The layout of the paper is as follows: in the next section,

we review the status of constructing instantons both in four
dimensions with black holes and for braneworlds in five
dimensions without black holes, and discuss the problems
involved in introducing a black hole to the higher-
dimensional calculation. In Sec. III we discuss the calcu-
lation of the action of an approximate black hole instanton,
showing that, as in four dimensions, the static instanton
action is the difference in black hole horizon areas. In Sec. IV
we solve for the brane scalar field and find the instantons and
their actions numerically. In Sec. V we conclude.

II. BRANEWORLDS AND BLACK HOLES

It is perhaps worth recalling the various challenges in
finding an instanton for vacuum decay in a braneworld
setting. The braneworld paradigm describes our universe
as an effective submanifold of a higher-dimensional
manifold, with standard model fields living only on the
four-dimensional braneworld, but with gravity propagat-
ing throughout all of the dimensions, leading to the
renormalization of Newton’s constant. For one extra
dimension we can consistently solve for the spacetime
geometry using the Israel approach [35], giving the standard
Randall-Sundrum (RS) braneworld [29], a paradigm for
warped compactifications. For higher codimension, there
is no unique “delta-function” limit for a thin braneworld
[36], and typically one resorts to approximate hybrid
Kaluza-Klein/warped descriptions for gravity on a lower-
dimensional brane.Thus, for a concretegravitational descrip-
tion in this paper we will remain within the RS model.
The RS model supposes that we have one extra dimen-

sion, and that the higher-dimensional spacetime, or bulk,
has a negative cosmological constant. The braneworld has
a positive tension, and the vacuum brane has an energy-
momentum tensor that is parallel to the brane with energy
and tension equal. The original solution presented by
Randall and Sundrum had the tension tuned to give a flat
brane:

ds2 ¼ e−2jzj=lημνdxμdxν − dz2; ð1Þ
where the cusp in the warp factor at z ¼ 0 corresponds to
the brane. The local negative curvature of the bulk supports
the brane tension σ that is easily calculated from the Israel
junction conditions,

KðþÞ
μν ¼ −

1

l
ημν ⇒ 8πG5σημν ¼ ΔKμν − ΔKημν ¼

6

l
ημν;

ð2Þ

and is tuned to fit with the cosmological constant Λ5 ¼
−6=l2. Detuned branes, with tension greater or less than
this critical value may also be embedded within the bulk
anti–de Sitter (AdS) spacetime, although the natural embed-
dings now become either spacelike or timelike [37–42], but
as long as the brane energy momentum is approximately
homogeneous (i.e., having a spatially isotropic pressure term
only), the bulk solution can be fully integrated, and the brane
trajectory found [41].
For a brane black hole solution, we must break this

spatial homogeneity, but even with the added benefit of
having only one codimension, the exact solution for a brane
black hole has been extremely elusive [43,44]. The natural
geometry of a Schwarzschild black hole that extends off the
brane into a black string, found by Chamblin, Hawking,
and Reall [45], has the problem that it is neither represen-
tative of matter localized on the brane nor stable, suffering
from a Gregory-Laflamme type of instability [46,47]. A
lower-dimensional analogue of the brane black hole was
found by Emparan et al. [48,49] by taking a (2þ 1)-
dimensional brane through the equatorial plane of a four-
dimensional AdS C-metric [50,51]. The black hole would
be expected to be accelerating from the perspective of the
bulk, since an observer hovering at a fixed distance from
the brane is, in fact, undergoing uniform acceleration
toward it. Unfortunately, there is no known exact solution
for a C-metric in more than four dimensions, and thus no
template for constructing a braneworld black hole plus bulk
analytically.
To maintain an analytic approach one can explore the

effective brane gravitational equations using the approach
of Shiromizu et al. [52], leading to the tidal solution that we
will use in this paper [53]. (One can also explore brane-
worlds with additional matter, either on the brane or in the
bulk, to support analyticity of the brane embedding; see, e.g.,
[54–57].) Alternately, one can take a numerical approach; the
equations of motion to be solved are an elliptic system [58],
with the brane junction conditions and asymptotic Poincarè
horizonproviding the boundary conditions. The solutions for
small black holeswere found in [59], although the large black
hole solutions have been far trickier to determine due to the
nonlinearity of the Einstein equations and the impact of the
bulk warping of the horizon; however, there has been some
interesting recent work in this direction [60,61].
Now let us consider the instanton from a higher-dimen-

sional perspective. The decay of a metastable false vacuum
was first computed by Coleman and collaborators in a
series of papers [13–15] in which a Euclidean approach
was used to find an instanton solution interpolating
between the true and false vacua. A convenient approxi-
mation, extremely useful for visualization, is to take the
region over which the vacuum interpolates to be very narrow
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in comparisonwith the interior of the bubble. This “thinwall”
then has a straightforward generalization to gravity, as
described in the paper with de Luccia [15] (CDL). While
this thin wall description is not appropriate for the Higgs
vacuum decay [20], where the vacuum interpolation is very
wide and relatively gentle, it nonetheless provides an
excellent shorthand for visualizing the process of decay.
The CDL picture, however, is very symmetric and

assumes that both the initial and the final states are com-
pletely devoid of features and are homogeneous. If instead
one relaxes this assumption, minimally, by allowing for an
inhomogeneity in the form of a black hole, the analytic
approach of CDL can be preserved, and the equations of
motion for the instanton are only minimally altered [17–20];
however, the impact on the action of the instanton can be
quite significant, and particularly for the thick scalar domain
walls appropriate to the Higgs potential [20], tunneling turns
out to be significantly enhanced to the extent that if there are
primordial black holes, false vacuum decay will happen.
Let us now consider how these arguments might lift

to higher dimensions. In [62], the equivalent of the CDL
instantons on a Randall-Sundrum braneworld were con-
structed, the five-dimensional (5D) instanton being geomet-
rically akin to the four-dimensional (4D) representations of
the CDL instantons. Sub- and supercritical branes follow
spherical trajectories in the AdS bulk, so the tunneling of a
Minkowski false vacuum to an AdS true vacuum is repre-
sented by a flat branewith a bubble sticking out, as shown in
Fig. 1. As is usual with the RS model, two copies of the
picture are identified, and the “bubblewall” is the sharp edge
between the spherical and flat parts of the braneworld,
appearing roughly as a codimension two object.
Ideally, onewould like to construct a similar instanton, but

with a black hole; however, at this point the lack of an exact
brane black hole solution becomes problematic. Even if we
drop a dimension to have a (2þ 1)-dimensional braneworld,
for which the brane black hole solution is constructed via
the C-metric [48], we have the problem that the C-metric
has a unique slicing for the braneworld [63], so we cannot
patch together two different braneworld trajectories such
as an equatorial subcritical slice matching to a flat brane
further away as suggested in Fig. 2. Indeed, slicing a bulk
Schwarzschild metric induces additional energy momentum
on the brane [54,55] (except for the uniform radius
“cosmological” brane solutions).
Thus as a direct approach to finding the instanton seems

problematic, we follow a more pragmatic approach, and
rather than seeking an exact analytic solution, instead
consider what a black hole instanton might approximately
look like. From the intuition gleaned in the 4D black hole
instantons, we expect that small black holes are the most
dangerous, and that the dominant instanton will be the
static instanton [20]. Then, analogous to the modeling
of collider black hole phenomenology [64], we use the
higher-dimensional Schwarzschild-AdS solution as an

approximation to the local bulk black hole: this allows
us to construct a method of calculating the instanton
action formally. Finally, in order to correctly identify the
asymptotics of our instanton, we need a way of inter-
polating between the near horizon and far-field brane
solution, which we expect to have a 4D Schwarzschild
GNM=r behavior. This final step requires a choice for
the braneworld solution, and we use the tidal brane
solution of Dadhich et al. [53], found by considering
vacuum solutions with a nonvanishing bulk Weyl tensor in
the formalism of Shiromizu et al. [52]. The tidal solution
has the attractive feature that it has the correct asymptotic
form at a large brane radius, but it looks like the five-
dimensional Schwarzschild potential for a small radius;
indeed, it is similar to the Reissner-Nordstrom black hole,
although the “tidal charge” term −r2Q=r2 is negative. This
tidal chargewas not related to the mass in [53], but left as an
arbitrary degree of freedom. Therefore, part of our task in
Sec. IV will be to relate the tidal charge to the mass of the
black hole.
Our strategy is then as follows: we first take our

brane black hole, approximately modeled by the 5D

FIG. 1. The braneworld instanton for decay of a Minkowski
false vacuum brane to a subcritical AdS brane from [62].
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Schwarzschild-Ads solution, and continue to Euclidean
time. We then compute the action of this solution in a rather
general way, using the approach of Hawking and Horowitz
[65]; as per usual, the direct way of computing the action
leads to an apparent divergence that we cannot in this case
regulate directly by introducing a cutoff as we will explain.
Nonetheless, however, we choose to regulate the action, and
the same method will apply for the false vacuum black hole
and the instanton bubble solution. Thus we simply subtract
the seed and bubble actions to get the final amplitude for
vacuum decay. Crucially, this turns out to be simply the
difference in areas of the seed and remnant black hole horizon
geometries. Finally, we integrate the scalar equations of
motion on the brane to obtain the brane bubble solution,
and we use the tidal metric to relate the near horizon and
asymptotic geometries. The net result is an amplitude for
brane black hole seeded vacuum decay that we can compare
to the higher-dimensional brane black hole evaporation rate to
explore whether brane vacuum metastability is an issue.

III. THE EUCLIDEAN BRANE BLACK
HOLE ACTION

In this section we will show that, just as in four
dimensions, the Euclidean action of any static black hole
solution can be expressed entirely by surface terms. This is
a remarkable result, because it not only applies to the

vacuum black hole, it also applies with a cosmological
constant, with matter and even with a conical singularity at
the horizon.
We begin by recalling the properties of the Euclidean

Schwarzschild black hole in four dimensions,

ds2 ¼ fðrÞdτ2 þ fðrÞ−1dr2 þ r2dΩ2
II; ð3Þ

where

fðrÞ ¼ 1 −
2GNM

r
: ð4Þ

In order to explore the geometry near the “horizon” rh ¼
2GNM, we expand using a new coordinate ϱ, defined by

ϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr − rhÞ

κ

r
; ð5Þ

where κ is the surface gravity, κ ¼ f0ðrhÞ=2. To leading
order fðrÞ ¼ κ2ϱ2 þOðϱ4Þ, and close to the horizon,

ds2 ¼ dϱ2 þ ϱ2dðκτÞ2 þ r2hdΩ2
II þOðϱ4Þ; ð6Þ

For small ϱ ≥ 0, the metric is geometrically the product of a
disk with a sphere, provided that κτ is taken to be an angular
coordinate with the usual range 2π. If κτ has a different
range, then the manifold has a conical singularity at rh. Note
that the Euclidean section is perfectly regular other than this,
but only covers the exterior region of the original black hole.
The event horizon of the original Lorentzian black hole is
encoded in the topology of the Euclidean solution: the
surface ϱ ¼ 0 is a 2-sphere of radius rh.
For the brane black hole in five dimensions, the metric is

extended into an additional direction, parametrized by χ in
Kudoh et al. [59], who numerically constructed small brane
black holes with the horizon size less than the AdS radius l.
In [59], the metric was written in the form

ds2 ¼ 1

ð1þ ρ
l cos χÞ2

½T2ðρ; χÞdτ2 þ e2Bðρ;χÞðdρ2 þ ρ2dχ2Þ

þ e2Cðρ;χÞρ2sin2χdΩ2
II�; ð7Þ

where the brane sits at χ ¼ π=2, and χ ≤ π=2 is kept as the
bulk. Clearly, in the small black hole limit, l → ∞, we
have the five-dimensional Schwarzschild black hole,

ds2¼
�
ρ2−ρ2h
ρ2þρ2h

�
2

dτ2þ
�
ρ2þρ2h
ρ2

�
2

½dρ2þρ2dΩ2
III�; ð8Þ

written here in homogeneous coordinates, rather than
the area gauge. The local Euclidean horizon coordinate is
ϱ ¼ 2ðρ − ρhÞ, and the horizon has area A ¼ 4ρ2h and
surface gravity

FIG. 2. The expected geometry of braneworld vacuum decay
with a braneworld black hole.
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κ ¼ e−BðρhÞT 0: ð9Þ
The black hole is corrected at order ρ=l by the conformal
factor, and at order ρh=l in the other metric functions
close to the horizon. Kudoh and collaborators integrated
the functions T, B, and C numerically and found that the
T function to a very good approximation extends hyper-
spherically off the brane. Although B and C are not
precisely the same, their difference is roughly of order
ρh=l as expected. At large ρ, T, B, C → 1, and the metric is
asymptotically AdS in the Poincaré patch.
We do not use the explicit form of the metric; however,

the features we require from the solutions of [59] are that
the event horizon is topologically hyperspherical with
constant surface gravity, and that the braneworld black
hole asymptotes the Poincaré patch of AdS. The coordinate
transformation between the local black hole coordinates
and the Poincaré RS coordinates is

ρ2¼ r2þl2ðejzj=l−1Þ2; tanχ¼ r

lðejzj=l−1Þ ; ð10Þ

and we expect that the “trajectory” of the brane in the black
hole metric will bend slightly in response to the black hole
at ρh, giving rise to a four-dimensional Newtonian potential
as described in [66]. From the perspective of the fρ; χg
coordinates, in which the brane sits at χ ¼ π=2, this will
show up as a 1=ρ correction to T, B, C. We therefore take
our asymptotic metric to be of the form

ds2 ¼ e−2jzj=l½Fðr; zÞdτ2 þ Fðr; zÞ−1dr2 þ r2dΩ2� þ dz2;

ð11Þ
where F ∼ 1–2GNMðzÞ=rþOðr−2Þ. We can think ofMðzÞ
as coming from the brane bending term of M=ρ in the
original coordinates.

A. Computing the action

The action of the black hole instanton combination
diverges and has to be regulated in some way. We do this
by truncating the five-dimensional manifold at large dis-
tances from the black hole, taking a surface at large radius
R on the brane, and extending this along geodesics in the
�z directions orthogonal to the brane to produce the outer
boundary surface ∂MR as indicated in the cartoon in Fig. 3.
The interior is denoted byMR, and the intersection ofMR
with the braneworld is denoted by B.
The Euclidean action for this truncated instanton or black

hole solution is

IR ¼ −
1

16πG5

Z
MR

ðR5 − 2Λ5Þ
ffiffiffiffiffi
g5

p þ
Z
B
Lm

ffiffiffiffiffi
g4

p

þ 1

8πG5

Z
∂MR

K
ffiffiffi
h

p
; ð12Þ

where K denotes the extrinsic curvature of the boundary
surface ∂MR defined with an inward pointing normal to
the bulk manifoldMR. The matter Lagrangian Lm includes
the contribution from any nontrivial Higgs field profile, as
well as the brane stress-energy tensor. The bulk integral is
understood to range across all z and includes the δ-function
curvature at the brane source in the spirit of the Israel
approach. Numerical subscripts distinguish between bulk
and brane geometry, with the gravitational constant in five
dimensions given in terms of Newton’s constant GN by
G5 ¼ lGN .
We now show that the tunneling exponent, given by the

difference between the actions of the instanton geometry
with a remnant black hole and the false vacuum geometry
with the seed black hole: B ¼ Iinst − IFV is finite in the limit
R → ∞. The first step is to introduce a small ball, H,

FIG. 3. A cartoon of the Euclidean tidal black hole and the cutoff surfaces. On the left, the τ, θ coordinates are suppressed, and the
cutoff surface is indicated relative to the brane and bulk black hole horizon. Only one-half of theZ2 symmetric solution is shown. On the
right, the Euclidean τ coordinate is shown, but the bulk and angular coordinates are suppressed, and the “black hole cigar” geometry is
indicated. Two circles denote the boundary ∂H of the region just outside the horizon and the boundary ∂Mr at large radius.

HIGGS VACUUM DECAY FROM PARTICLE COLLISIONS? PHYS. REV. D 99, 024046 (2019)

024046-5



extending a proper distance of order OðεÞ out from the
black hole event horizon, to formally deal with any conical
deficits arising from a generic periodicity in Euclidean
time. This splits the action calculation into two terms,

IR ¼ IhorR þ IextR ; ð13Þ

where2

IhorR ¼ −
1

16πG5

Z
H
ðR5 − 2Λ5Þ

ffiffiffiffiffi
g5

p þ
Z
BH

Lm
ffiffiffiffiffi
g4

p

þ 1

8πG5

Z
∂H

K
ffiffiffi
h

p
; ð14Þ

IextR ¼ −
1

16πG5

Z
MR−H

ðR5 − 2Λ5Þ
ffiffiffiffiffi
g5

p þ
Z
B−BH

Lm
ffiffiffiffiffi
g4

p

þ 1

8πG5

Z
∂H

K
ffiffiffi
h

p
þ 1

8πG5

Z
∂MR

K
ffiffiffi
h

p
; ð15Þ

and BH ¼ B ∩ H is the intersection of the event horizon
cap with the brane.
In order to deal with the near-horizon contribution, we

transform (7) to local horizon coordinates, analogous to the
Euclidean Schwarzschild transformation, Eq. (5), so that

ds2 ≈ dϱ2 þ A2ðϱ; ξÞdτ2 þD2ðϱ; ξÞdΩ2
II þ N2ðϱ; ξÞdξ2;

ð16Þ

where ϱ < ε inside H. Comparing to (7), we see A ¼ T=
ð1þ ρ

l cos χÞ,D¼ρsinχeC=ð1þρ
lcosχÞ, with ϱ ≈ ðρ − ρhÞ=

ð1þ ρh
l cos χÞ and ξ ¼ χ þOðϱ2Þ. The brane sits at

ξ ¼ π=2, and on the horizon, ξ ∈ ½0; π�.
As with the four-dimensional Euclidean Schwarzschild,

there is a natural periodicity of τ for which the Euclidean
metric is nonsingular; this periodicity is β0 ¼ 2π=κ, where
κ is the surface gravity of the black hole given in the
original coordinates by (9), and in the horizon coordinates
by ∂A=∂ϱ. From nonsingularity of the geometry, we deduce
N ∼ N0ðξÞ þOðϱ2Þ, D ∼D0ðξÞ þOðϱ2Þ, and A ∼ κϱþ
Oðϱ2Þ. Now let us consider a general periodicity β for
the Euclidean time τ, and then we will have a conical
singularity at ϱ ¼ 0. In order to compute the action, we
smooth this out by modifying the A function so that
A0ðε; ξÞ ¼ κ, but A0ð0; ξÞ ¼ κβ0=β. Computing the curva-
ture for this smoothed metric gives

ffiffiffiffiffi
g5

p ðR5 − 2Λ5Þ ¼ −2N0ðξÞD0ðξÞ2A00ðϱÞ þOðϱÞ; ð17Þ

which gives the bulk contribution to IhorR as

−
1

16πG5

Z
H
ðR5 − 2Λ5Þ

ffiffiffiffiffi
g5

p þ
Z
BH

Lm
ffiffiffiffiffi
g4

p

¼ β

2G5

½A0ðεÞ − A0ð0Þ�
Z

N0D2
0dξþOðε2Þ

¼ κ

8πG5

½β − β0�A5; ð18Þ

where A5 ¼ 4π
R
N0D2

0dξ is the area of the braneworld
black hole horizon extending into the bulk (on both sides of
the brane). Note that the matter term on the left gives no
contribution since the matter Lagrangian does not have a
singularity at ρ ¼ 0.
To compute the Gibbons-Hawking boundary term we

note that the normal to ∂H is n ¼ −dϱ; hence the extrinsic
curvature is

K ¼ −A−1A;ϱ þOðεÞ ð19Þ

and

1

8πG5

Z
∂H

K
ffiffiffi
h

p
¼ −

κβ

2G5

Z
N0D2

0dξ ¼ −
κβA5

8πG5

: ð20Þ

Thus the contribution to the action from the horizon
region is

IhorR ¼ −
κβ0A5

8πG5

¼ −
A5

4G5

: ð21Þ

In Appendix A, we show that the external part IextR can be
simplified by taking a canonical decomposition based on a
foliation of the manifold by surfaces of constant τ, Στ, and
the part of the action outside the horizon cylinder reduces to
simple surface terms,

IextR ¼ 1

8πG5

Z
β

0

dτ

�Z
CR

3K
ffiffiffi
h

p
þ
Z
CH

3K
ffiffiffi
h

p �
; ð22Þ

where 3K are the extrinsic curvatures of codimension two
surfaces of constant r, regarded as submanifolds of surfaces
of constant τ, Στ, as described in Appendix A.
Close to the horizon, we use the metric (16) and find

3K ¼ 2D−1D;ϱ þ N−1N;ϱ → 0; ð23Þ

at the horizon ϱ ¼ 0 for the behavior of the metric
coefficients Dðϱ; ξÞ and Nðϱ; ξÞ given earlier. There is
no contribution to the action from this boundary term.
At large distances, the metric approaches the perturbed

Poincaré form (11), and we find

3K ¼ −
2

R
ejzj=lF1=2;

ffiffiffi
h

p
¼ R2e−3jzj=lF1=2; ð24Þ

hence

2Note, the extrinsic curvature in the Gibbons-Hawking term is
computed with an inward pointing normal, hence the same sign
for that term in each expression.
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IextR ¼ −
β

GNl

Z
∞

0

dze−2z=lð2R − 4GNMðzÞ þOðR−1ÞÞ:

ð25Þ

Ideally, we would like to regularize this action either by
background subtraction or by adding in boundary counter-
terms along the lines of [67,68]; however, the counterterms
of [68] do not regulate this action, and one cannot replace
the interior of MR with a pure RS braneworld, due to the
variation of MðzÞ along ∂MR. Instead, we note that the
Higgs fields on the brane in any instanton solution will die
off exponentially for large r, so from the intuition that

MðzÞ=r ∼M∞=ρ ¼ M∞=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2ðejzj=l − 1Þ2

q
, we then

deduce that the mass function MðzÞ will be the same at
leading order for both the false vacuum with the seed brane
black hole and the instanton solution. Therefore, the
exterior terms will cancel when we take the difference
between the instanton action and the false vacuum action,

B ¼ Iinst − IFV ¼ lim
R→∞

½IextR jinst − IextR jFV� −
Ainst

5

4G5

þAFV
5

4G5

¼ AS

4G5

−
AR

4G5

; ð26Þ

whereAS andAR refer to the areas of the seed and remnant
black hole horizon areas, respectively.
This is simply the reduction in entropy −ΔS caused by

the decay process, and the tunneling rate is recognizable
as the probability of an entropy reduction ∝ expðΔSÞ. The
difficulty we face when applying (26) is that we have to
relate the black hole area to the mass of the black hole
triggering the vacuum decay and the physical parameters in
the Higgs potential. This requires explicit solutions for the
gravitational and Higgs fields.

IV. TIDAL BLACK HOLE BUBBLES

As we reviewed, the main obstacle to finding tunneling
instantons is the lack of any analytic brane black hole
solutions. The brane-vacuum equations are complicated
by the reduced symmetry of the expected static, brane-
rotationally symmetric geometry. Although we have
numerical brane black hole solutions, once we introduce
Higgs profiles on the brane, these would be modified, and a
new full numerical braneþ bulk solution would have to be
computed—a formidable task. Instead, we adopt a more
practical alternative, based on the tidal black hole solutions
of Dadhich et al. [53].
As described, for example, by Maartens [69], one can

take an approach of solving purely the brane “Einstein
equations,” i.e., the induced Einstein equations on the brane
found by the Gauss Codazzi projection of the Einstein
tensor in Shiromizu et al. [52] (SMS). These equations
are similar to the four-dimensional Einstein equations, but

contain additional terms involving the square of the energy
momentum of any matter on the brane, and an additional
so-called Weyl tensor, Eμν, coming from a projection of
the bulk Weyl tensor onto the brane. The Weyl tensor
for the tidal black hole satisfies the equations Eμ

μ ¼ 0 and
∇μEμν ¼ 0. Following [69], one uses the symmetry of the
physical setup to write the Weyl tensor as

Eμ
ν ¼ diag

�
U;−

ðU þ 2ΠÞ
3

;
Π − U

3

�
: ð27Þ

This is manifestly trace-free, and the “Bianchi” identity
implies a conservation equation for U, Π. For the spheri-
cally symmetric static brane metric

ds2brane ¼ fðrÞe2δðrÞdτ2 þ f−1ðrÞdr2 þ r2dΩ2
II; ð28Þ

the conservation equation implies

ðU þ 2ΠÞ0 þ
�
f0

f
þ 2δ0

�
ð2U þ ΠÞ þ 6Π

r
¼ 0: ð29Þ

Even for the vacuum brane this is not a closed system, but if
one assumes an equation of state, one can find an induced
brane solution [70]. The tidal black hole corresponds to
the choice Π ¼ −2U, for which (29) is easily solved by
U ∝ 1=r4.
The tidal black hole of Dadhich et al. [53] has δðrÞ≡ 0,

fðrÞ ¼ 1 −
2GNM

r
−
r2Q
r2

; ð30Þ

and

Eμνdxμdxν ¼ −
r2Q
r4

ðfðrÞdτ2 þ f−1ðrÞdr2 − r2dΩ2Þ; ð31Þ

where rQ is a constant parameter related to the tidal charge
Q of [53] by r2Q ¼ −Q. The motivation for this solution is
clear: at large distances, the Newtonian potential of a mass
source has the conventional GNM=r behavior due to a
“brane-bending” term identified by Garriga and Tanaka
[66]; the interpretation being that the brane shifts relative to
the bulk in response to matter on the brane. At small
distances, on the other hand, we would expect the higher-
dimensional Schwarzschild potential to be more appropri-
ate, hence the −r2Q=r2 term. The event horizon is distorted
by the Weyl tensor, hence the name. Other choices for the
Weyl tensor lead to different brane solutions [70]; however,
these tend to have either wormholes or singularities (or
both). Therefore, we do not consider these here.
For our bubble solution, we will need to find the fully

coupled Higgs plus brane SMS-gravitational equations of
motion in the spherically symmetric gauge (28), and we
will use the same tidal Ansatz for the equation of state of
the Weyl tensor: Π ¼ −2U. The beauty of the tidal Ansatz
is that even with the Higgs fields taking a nontrivial bubble
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profile, the conservation equation for the Weyl tensor (29)
is still solved by U ¼ −r2Q=r4.
We also have some limited information about the form of

the tidal black hole solution away from the brane from an
expansion in the fifth coordinate. According to Maartens
and Koyama [71], the metric parallel to the brane at proper
distance z from the brane is

g̃μνðzÞ ¼ gμνð0Þ − ð8πG5SμνÞzþ ½ð4πG5Þ2SμσSσν
− 8πGNSμν − Eμν�z2 þ � � � ; ð32Þ

where Sμν ¼ Tμν − 1
3
Tgμν is composed of the energy

momentum tensor of brane matter. In the false vacuum
state, we have Tμν ¼ 0, and the metric expansion away
from the brane reduces to

ds2 ≈ e−2jzj=lðgμν − Eμνz2Þ þ dz2

≈ e−2jzj=l
��

1þ r2Qz
2

r4

�
ðfdτ2 þ f−1dr2Þ

þ
�
1 −

r2Qz
2

r4

�
r2dΩ2

II

�
þ dz2; ð33Þ

which clearly shows how the horizon area decreases in the
z direction. The horizon forms into a true bulk black hole
when the area vanishes for some value of z of order r2h=rQ.
Although this tidal black hole hasmany attractive features,

the main difficulty that has to be overcome when finding the
bubble solutions is that the tidal constant rQ is undetermined.
Clearly a nonsingular brane black hole, if approximately
tidal, should have a relation between the asymptotic mass
measured on the brane,M, and the tidal charge r2Q. For very
large black holes, we expect the horizon radius to be
predominantly determined by M, and this ambiguity is not
relevant; however, for the small black holes we are interested
in, the horizon radius is primarily dependent on rQ, and we
must confront this ambiguity.
We start by noting that the tidal black hole solution should

be identical to the five-dimensional Schwarzschild blackhole
in the limit that the AdS radius l → ∞, as the brane stress-
energy tensor, which is tuned to the cosmological constant,
vanishes in this limit, and full SOð4Þ rotational symmetry is
restored. Since GN ¼ G5=l, Eq. (30) implies that r2Q → r2h
in this limit. Intuitively, we also expect that for small black
holes, the bulk AdS scale should also be subdominant, and
the black hole should look (near the horizon at least) mainly
like a five-dimensional black hole, i.e., r2Q → r2h as rh → 0.
We will therefore assume analyticity in rh=l and write

r2Q ¼ r2h

�
1 − b

rh
l
þO

�
r2h
l2

��
ð34Þ

for small rh=l, where b is some constant independent of rh
and l, expected to be roughly of order unity. For the tidal
black hole, a trivial rewriting of (30) gives the relation

M ¼ br2h
2G5

: ð35Þ

In other words, we have expressed the ambiguity in the tidal
parameter for small black holes by the parameter b, and the
relationship between the asymptotic mass of the black hole
as measured on the brane and the horizon radius explicitly
factors in this ambiguity. Aswe now see, this uncertainty can
be absorbed into a redefinition of the low energy Planck scale
in the tunneling rate.
The tunneling process starts with the uniform false

vacuum ϕv and a seed black hole with mass MS. This
false vacuum configuration resembles the tidal black hole
on the brane, and a slightly perturbed 5D Schwarzschild
solution in the bulk [59]. The bubble solution represents the
decay process to another state with the field asymptoting
the same false vacuum at large distances but with the field
approaching its true vacuum near the horizon of a remnant
black hole with mass MR, which remains after tunneling.
In the previous section we showed that the tunneling

exponent is given by

B ¼ 1

4G5

ðAS −ARÞ; ð36Þ

where S represents the seed black hole area and R that of
the remnant black hole (recall, this area is the full five-
dimensional area of the horizon extending into the bulk). To
leading order in rh=l, the small black hole horizon has an
approximately hyperspherical shape, therefore the area will
be well approximated by 2π2r3, and hence

B ¼ π2

2G5

ðr3S − r3RÞ ¼
π2r3S
2G5

�
1 −

�
MR

MS

�3
2

�
ð37Þ

using (35). In the limit that the difference in seed and
remnant black hole masses is small, ðMS −MRÞ=MS ¼
δM=Ms ≪ 1, we finally arrive at

B ≈
3

4

�
πMS

bM5

�
3=2 δM

MS
; ð38Þ

where M5 ¼ ð8πGNlÞ−1=3 is the low energy Planck scale.
Fortuitously, the uncertainty in the value of the tidal charge
parameter b can be absorbed into our uncertainty in the low
energy Planck scale, and so we let bM5 → M5.

A. Higgs bubbles on the brane

The Higgs bubble will correspond to a solution of the
brane SMS equations with an energy momentum tensor
derived from the (Euclidean) scalar field Lagrangian3

3Note that we have defined the Euclidean Lagrangian to
contain þV, meaning that the false vacuum solution will have
energy momentum −Vgμν, but that our 4D Einstein equations will
have the conventional sign for the energy momentum, i.e., Gμν ¼
8πGNTμν þ � � �.
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Lm ¼ 1

2
gμνϕ;μϕ;ν þ VðϕÞ; ð39Þ

where VðϕÞ has a metastable false vacuum. The SMS
equations for the bubble, assuming the general form (28),
are derived in Appendix B and are

fϕ00 þ f0ϕ0 þ 2

r
fϕ0 þ fδ0ϕ0 − V;ϕ ¼ 0; ð40Þ

μ0 ¼ 4πr2
�
1

2
fϕ02 þ V −

2πGN

3
l2

�
1

2
fϕ02 − V

�

×

�
3

2
fϕ02 þ V

��
; ð41Þ

δ0 ¼ 4πGNrϕ02
�
1 −

4πGN

3
l2

�
1

2
fϕ02 − V

��
; ð42Þ

where, for comparison with the vacuum case (30), we have
defined a “mass” function μðrÞ by

fðrÞ ¼ 1 −
2GNμðrÞ

r
−
r2Q
r2

: ð43Þ

These are integrated numerically from the black hole
horizon rh to r → ∞ where ϕ is in the false vacuum.
A “shooting” method is used, whereby the value of ϕ at
the horizon is varied until a regular solution is found.
The remnant mass MR and the tunneling exponent B are
determined in terms of the seed mass MS, the potential V,
and the AdS radius l.
The numerical results contained in this section are based

on a Higgs-like potential, assuming that the standard model
holds for energy scales up to the low energy Planck mass
M5. The detailed form of the potential is determined by
renormalization group methods and depends on low-energy
particle masses, with a strong dependence on the Higgs and
top quark masses. Of these, the top quark mass is less well
known, and for masses in the range 171–174 GeV, Higgs
instability sets in at scales from 1010–1018 GeV.
The Higgs potential is usually expressed in the form

VðϕÞ ¼ 1

4
λeffðϕÞϕ4 ð44Þ

with a running coupling constant λeffðϕÞ that becomes
negative at some crossover scaleΛϕ. Vacuum decay depends
on the shape of the potential barrier in the Higgs potential
around this instability scale, and in order to explore the
likelihood of decay it is useful to use an analytic fit to λeff .
In [20], we used a two parameter fit to λeff , where one of
the parameters was closely related to the crossover scale. We
found that the dependence of the instanton action on the
potential was strongly dependent on this parameter, but very
weakly dependent on the second parameter, which was more

related to the shape of the potential at low energy. For clarity
therefore, here we take a one parameter analytic fit to λeff ,
where the single parameter is the crossover scale Λϕ,

λeff ¼ gðΛϕÞ
��

ln
ϕ

Mp

�
4

−
�
ln

Λϕ

Mp

�
4
�
; ð45Þ

and gðΛϕÞ, chosen to fit the high energy asymptote of λeff ,
varies very little across the range of Λϕ of relevance to
the standard model λeff . Figure 4 shows a sample of our
analytic fit for the Higgs potential to the actual λeff
computed for Mt ¼ 172 GeV. In four dimensions, we
can have a Higgs instability scale very close to the
Planck scale; however, with large extra dimensions, new
physics could potentially enter at the low-energy Planck
scale M5. Thus to be consistent, we should restrict our
parameters to the range Λϕ < M5 < Mp.
Figure 5 gives profiles for a typical bubble centered on the

black hole after tunneling and for the mass term μðrÞ beyond
the horizon radius rh. The field is in the true vacuum at the
horizon and approaches the false vacuum as r → ∞ with a
characteristic thick wall profile. The bubble radius greatly
exceeds the horizon of the black hole.
The change in the mass term is given by ΔμðrÞ ¼ μðrÞ−

μðrhÞ. Near the horizon, ΔμðrÞ is negative due to the
negative potential V in Eq. (41). μðrÞ becomes positive at
large r where there is a positive contribution from the
kinetic term, and hence ΔM is positive.

B. Branching ratios

The calculation of the vacuum decay rate assumes a
stationary background which only makes sense when the
decay rate exceeds the Hawking evaporation rate. The brane
black hole can radiate in the brane or into the extra
dimension, but if we consider a scenario as close as possible

FIG. 4. The Higgs potential calculated numerically at one-loop
order for top quark mass Mt ¼ 172 GeV and the approximate
potential using (45) with values of g and Λϕ chosen for the
best fit.
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to the standardmodel, thenmost of the radiationwill be in the
form of quarks and leptons radiated into the brane, simply
because these are the most numerous particles. (For a review
ofHawking evaporation rates in higher dimensions see [72].)
Black hole radiation is similar to the radiation from a

black body with the same area as the black hole horizon and
at the Hawking temperature, but with additional “grey
body” factors representing the effects of backscattering of
the radiation from the spacetime curvature around the black
hole. Following [72], we can express the energy loss rate
due to evaporation as _E, where on dimensional grounds
(since rh is the only relevant dimensionful parameter)

j _Ej ¼ γr−2h ð46Þ

for some constant γ. The Hawking decay rate of the black
hole ΓH, using (35) to eliminate the radius, is

ΓH ¼ j _Ej
MS

¼ 4πγM3
5

M2
S

: ð47Þ

The vacuum decay rate is given by

ΓD ¼ Ae−B: ð48Þ

The prefactor A contains a factor ðB=2πÞ1=2 from a zero
mode and a vacuum polarization term from the other
modes, whose characteristic length scale is the bubble
radius rb. We estimate

ΓD ≈
�
B
2π

�
1=2 1

rb
e−B: ð49Þ

The branching ratio of the two is

ΓD

ΓH
≈
1

γ

�
B
2π

�
1=2

�
MS

M5

�
3=2

�
rh
rb

�
e−B: ð50Þ

Vacuum decay is important when this ratio is larger
than one.
In the case of small rh=l, the five-dimensional black

hole has a temperature

T ≈
1

2πrh
; ð51Þ

which is double the temperature of a black hole solely in
four dimensions. We would therefore expect to have energy
flux on the brane roughly ∝ T4 ∼ 16 times the flux solely in
four dimensions. Numerical results actually give a factor of
14.2 for fermion fields, which give the largest contribution
to the decay [73]. The energy loss due to a fermion in four
dimensions contributes a factor of 7.88 × 10−4 for each
degree of freedom to γ, giving a total for 90 standard model
fermion degrees of freedom of

γ ≈ 14.2 × 90 × 7.88 × 10−4 ¼ 0.10: ð52Þ

The branching ratio is plotted in Fig. 6 for M5 ¼
1015 GeV and the Higgs instability scale around 1012 GeV
(corresponding to a top quark mass of 172 GeV). Note that
the decay rates in this parameter range are larger than
M3

5=M
2
S; i.e., they are extremely fast. The figure shows an

example where black holes with masses between 1017 GeV
and 1020 GeV, or 10−7g to 10−4g, would seed rapid Higgs
vacuum decay.

FIG. 6. The branching ratio of the false vacuum nucleation rate
to the Hawking evaporation rate as a function of the seed mass for
a selection of Higgs models with M5 ¼ 1015 GeV.

FIG. 5. Profiles for the bubble and the mass term μðrÞ outside
the horizon rh with M5 ¼ 1015 GeV, Λϕ ¼ 1012 GeV, and rh ¼
20000=Mp. This particular solution has tunneling exponent
B ¼ 4.3.
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C. Rotating black holes

Black holes produced by high energy collisions would be
likely to be rotating. Rotating tidal black hole solutions [74]
can be used as the basis for these black hole seeds. The
bubble solutions about these rotating holes will become
distorted; however, the profile of the bubble solution (Fig. 5)
indicates that much of the variation of the bubble fields
occurs at large radii compared to the horizon size of the black
hole. This suggests that the distortion will be localized in the
small part of the bubble near the black hole, leaving the
effective mass δM in the field configuration relatively
unaffected. In this case, we can use our earlier result (38)
but replacing the horizon area with the areaAMP of a rotating
Myers-Perry black hole in flat space [75] when rh ≪ l,

B ≈
AMP

4G5

3δM
2MS

: ð53Þ

The area depends on two rotation parameters a1 and a2, but
for a rotation axis aligned to the branewe can take a2 ¼ 0. In
this case

AMP ¼ 2π2r30

�
1 −

a2

r20

�
1=2

; ð54Þ

where r0 is the horizon radius of the nonrotating black hole
solution,

r20 ¼
8G5MS

3π
: ð55Þ

The area is smaller than the nonrotating case. Furthermore,
the Hawking temperature is reduced, since

TH ¼ T0

�
1 −

a2

r20

�
1=2

: ð56Þ

The numerical results for vacuum decay are shown in Fig. 7.
The vacuum decay rate Ae−B with rotating seeds is larger
than with nonrotating seeds due to the reduced area.

V. CONCLUSIONS

In this paper we have explored the impact of large extra
dimensions on black hole seeded vacuum decay. We used
the Randall-Sundrum setup as a concrete example for
warped extra dimensions, and we numerically computed
the Higgs profile on the brane for vacuum decay assuming a
tidal Ansatz for the Weyl tensor on the brane. Although the
solution for a brane black hole is not known analytically,
we were nonetheless able to construct an argument that the
action for tunneling would still be the difference in areas of
the black hole horizons. In order to estimate these areas, we
focused on small brane black holes (expected to be the most
relevant for vacuum decay) and used qualitative features of
the numerical solutions to argue the black hole area would
be very well approximated by the hyperspherical result
2π2r3h. We then used the tidal model for a brane black hole
(in keeping with the tidal Ansatz for the Weyl tensor),
expanded for small masses, to relate the 4D brane mass of
the black hole, the 1=r falloff of the Newtonian potential, to
the horizon radius. This then allowed us to compute the
amplitude for tunneling.
Since a black hole can also radiate, we then have to

consider whether the evaporation rate is so fast that the
tunneling amplitude is irrelevant, or whether the tunneling
probability becomes so high for small black holes (as was
the case for purely four-dimensional black holes [20])
that the black hole always initiates decay. We therefore
estimated the net evaporation rate by taking the integrated
flux from [73], which is dominated by the fermion
radiation, and summing up the effect from the standard
model particles. The branching ratio plot of Fig. 6
demonstrates that, just as in 4D, small black holes in
higher dimensions are overwhelmingly likely to initiate
vacuum decay once they have radiated away sufficient
mass to enter this danger range. As with pure 4D, any
small black hole, formed either in the early universe or in a
high energy cosmic ray collision, will radiate, lose mass,
and then become sufficiently light that it seeds decay with
a rate of order 103−5T5.

4 What is interesting here is that
what we mean by small is now very different from the
pure 4D case.
With large extra dimensional scenarios,wegenerate a high

4D Planck scale geometrically, having a renormalization of
the Newton constant coming from the “volume” of the
internal dimensions. Thus, in 4D, where the typical black
hole seeding vacuum decay for the Higgs was in the range

FIG. 7. The branching ratio of the false vacuum nucleation rate
to the Hawking evaporation rate as a function of the seed mass for
a selection of Higgs models with M5 ¼ 1015 GeV, and Λϕ ¼
5 × 1012 GeV.

4Here, T5 ¼ ðc3=8πG5ℏÞ1=3 is the 5D Planck time.
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105–109Mp ≃ 1g − 10 tonnes, these black holes could only
be primordial in origin, having far too high a mass to be
produced in a particle collision. Here, however, our Planck
mass can be much lower, so 105M5 can potentially be
sufficiently low that the black hole could be produced in a
cosmic ray collision. For example, the highest energy cosmic
ray collisions [76–78] observed have an energy in excess of
1011 GeV. Hut and Rees [79] have shown that there are at
least 105 collisions with center of mass energy exceeding
1011 GeV in our past light cone. Thus, provided the higher-
dimensional Planck scaleswere belowM5 ≲ 109 GeV, black
holes could be formed in a cosmic ray collision that would be
sufficiently light to catalyze vacuum decay.
In the context of the Higgs field, the standard model

potential is only valid at best for energy scales below the
scale of new physics, M5; therefore the instability scale
should satisfy Λϕ < M5. The lowest possible value for the
instability scale consistent with experimental limits on the
top quark mass is around 108 GeV, and thus we cannot
use our standard model Higgs decay results unless M5 ≫
108 GeV, well outside the range probed by the LHC.
As an example, consider an instability scale Λϕ ∼

108 GeV and a Planck scale M5 ∼ 109 GeV; then black
holes of mass MS ∼ 1011 GeV could cause Higgs vacuum
decay. These values are below those for which wewere able
to obtain numerical results, but we can make a rough
approximation by taking the exponent for vacuum decay B
from (38), and the mass of the instanton δM ∼ Λϕ. For
these values we estimate B ¼ Oð1Þ and rapid Higgs decay
would take place.
While this is a rather rough argument, the basic intuition

that the branching ratio will be enhanced by both the larger
decay rate and the reduced Hawking evaporation rate is
likely to be correct. In other words, if the existence of large
extra dimensions does not destroy the vacuummetastability
of the standard model Higgs, then ultrahigh energy particle
collisions risk producing black hole seeds that will catalyze
the decay of the vacuum.
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APPENDIX A: CANONICAL DECOMPOSITION

In this appendix we review and extend the ideas given in
[65] that provide a canonical decomposition of amanifold (in
our case a Euclidean one) by a foliation of hypersurfaces Στ

to recast the gravitational action in its Hamiltonian version.
The gravitational equations on a manifold M with

boundary ∂M are obtained by the extremization of the
usual Einstein-Hilbert action plus a Gibbons-Hawking
surface term:

I ¼ −
1

16πG5

Z
M
ðR5 − 2Λ5Þ ffiffiffiffiffi

g5
p þ

Z
B
Lmðg;ϕÞ

ffiffiffiffiffi
g4

p

þ 1

8πG5

Z
∂M

ffiffiffi
h

p
K; ðA1Þ

whereLm is the matter Lagrangian, hab ¼ gab − nanb is the
induced metric, and K ¼ gabKab ¼ gabhachbd∇cnd is the
trace of the extrinsic curvature of the boundary ∂M with
normal vector na pointing in to M (Fig. 8).
To simplify this action we make a foliation of the

spacetime M by codimension one time slices Στ, labeled
by a periodic Euclidean time function τ which runs from
τ ¼ 0 to τ ¼ β. The induced metric on the time slices is
written as

hab ¼ gab − uaub; ðA2Þ
where ua is a unit normal vector to the slice Στ. In general,
∂=∂τ and ua will not be aligned, but we can decompose
∂=∂τ into components along the normal and tangential
directions,

� ∂
∂τ
�

a
¼ Nua þ Na: ðA3Þ

FIG. 8. The foliation of the Euclidean fτ; rg section of the
brane black hole. The normals ua and na of, respectively, the
foliation Στ and manifold boundaries are shown, together with
the codimension two surfaces CR;τ that are regarded as a codi-
mension one submanifold of the Στ surfaces.
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The lapse function, N, measures the rate of flow of proper
time with respect to the coordinate time τ as one moves
through the family of hypersurfaces. We construct the time
slices Στ to meet the boundary ∂M orthogonally for
convenience. In the case of the region outside the horizon
for IextR (15), the boundary ∂M is composed of two surfaces
of constant radius, ΣH near the horizon, and ΣR at large
radius.
We use the Gauss identity to relate the Riemann tensor of

gab in five dimensions to the Riemann tensor of hab in four,
and the extrinsic curvatures of the constant time slices
Kab ¼ hcahdb∇cud, as

R4
a
bcd ¼ haa0hbb

0
hcc

0
hdd

0
R5

a0
b0c0d0 þKa

cKdb −Ka
dKcb:

ðA4Þ
Notice this K is distinct from the extrinsic curvature of ΣR
in (A1). Contracting (A4) gives

R5 ¼ R4 þ 2R5abuaub − ðK2 −KabKabÞ; ðA5Þ
and we obtain a relation between the second term of this
expression and the extrinsic curvature by commuting
covariant derivatives of the normal vector

R5abuaub ¼ 2ub∇½c∇b�uc ¼ K2 −KabKab −∇aðua∇cucÞ
þ∇cðua∇aucÞ: ðA6Þ

Combining these two expressions leads to the identity

R5¼R4− ðKabKab−K2Þ−2½∇aðua∇cucÞ−∇cðua∇aucÞ�;
ðA7Þ

which forms the basis of all canonical decompositions of
the Einstein-Hilbert action.
When substituted in (A1), the last two terms of (A7) are

reduced to boundary contributions on ∂M. The first of
these vanishes due to orthogonality of ∂MR and Στ.
The second combines with

R
∂MK from the original action

and gives on ∂MR (with a similar expression for ∂H)

1

8πG5

Z
∂MR

d4x
ffiffiffi
h

p
ð∇ana þ nbua∇aubÞ

¼ 1

8πG5

Z
∂MR

d4x
ffiffiffi
h

p
ðgab − uaubÞ∇anb

¼ 1

8πG5

Z
∂MR

d4x
ffiffiffi
h

p
hab∇anb; ðA8Þ

but this four-dimensional integral can be viewed as an
integral over τ of a three-dimensional integrand that is
precisely the three-dimensional extrinsic curvature 3K of a
family of surfaces CRðτÞ ¼ ∂MR ∩ Στ living in the boun-
dary ∂MR. A similar term is obtained for the ∂H surface
near the horizon; however, for the black hole metrics, it

turns out that 3K → 0 as r → rh, and so this term does not
contribute to the action.
Noticing that

ffiffiffi
g

p ¼ N
ffiffiffi
h

p
, and introducing a metric 3h on

CR, we can divide the spacetime integral into space and
time, to express the action (A1) as

I¼−
Z

Ndτ

�
1

16πG5

Z
Στ

ffiffiffi
h

p
½R4− ðKabKab−K2Þ−2Λ5

−16πG5Lm�−
1

8πG5

Z
CR

ffiffiffiffi
3h

q
3K−

1

8πG5

Z
CH

ffiffiffiffi
3h

q
3K

�
:

ðA9Þ

Furthermore, we can see how the extrinsic curvature is
related to the Lie derivative of the intrinsic metric with
respect to τ via (A3),

Kab ¼
1

2
£uhab ¼

1

2N
ð£τhab − £NhabÞ

¼ 1

2N
ð _hab − 2DðaNbÞÞ; ðA10Þ

where _hab ¼ hcahdb£τhcd and Da is the derivative associated
with hab.
To obtain the Hamiltonian form of I we define the

canonical momentum πab conjugate to the intrinsic metric as

πab ≡ δI

δ _hab
¼

ffiffiffi
h

p
ðKab −KhabÞ: ðA11Þ

This allows us to recast (A9) in terms of the canonical
momentum

I ¼ −
Z

β

0

Ndτ

�
1

16πG5

Z
Στ

ffiffiffi
h

p �
R4 −

1

h

�
πabπab −

1

3
π2
�

− 2Λ5 − 16πG5Lm

�
−

1

8πG5

Z
CR

ffiffiffiffi
3h

q
3K

−
1

8πG5

Z
CH

ffiffiffiffi
3h

q
3K

�
: ðA12Þ

Now we are ready to perform a Legendre transformation
of the Lagrangian, using (A10) and (A11) to obtain the
Hamiltonian formulation,

I ¼ 1

8πG5

Z
β

0

dτ

�
1

2

Z
Στ

ffiffiffi
h

p
ðπab _hab − NH − NaHaÞ

þ
Z
CR

ffiffiffiffi
3h

q
ðN3K þ NaπabnbÞ

þ
Z
CH

ffiffiffiffi
3h

q
ðN3K þ NaπabnbÞ

�
; ðA13Þ

with the Hamiltonian constraint function H and the
momentum constraint function Ha given by
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Ha ¼ −2Db

�
1ffiffiffi
h

p πab
�
;

H ¼ R4 − 2Λ5 þ
1

h

�
πabπab −

1

3
π2
�
− 16πG5Lm:

ðA14Þ
Finally, for a static spacetime we have _hab ¼ 0 and in the

nonrotating case Na ¼ 0. The metric is a solution to the
field equations, so that in particular we have the constraint
equations H ¼ Ha ¼ 0. The only nonvanishing part of
the action are the two boundary terms 3K,

I ¼ 1

8πG5

Z
β

0

dτ

�Z
CR

3K
ffiffiffi
h

p
þ
Z
CH

3K
ffiffiffi
h

p �
: ðA15Þ

For our black hole solutions, this diverges in the limit
R → 0. However, the matter contributions to the black hole
instanton solutions die off exponentially at large radii, so
that the boundary terms cancel when we calculate the
difference in actions between the instanton solutions and the
false vacuum solutions with the samemass and periodicity β.

APPENDIX B: BRANE EQUATIONS FOR
THE INSTANTON BUBBLE

Following the work done in [52,53] we briefly review the
derivation of the equations (40)–(42), which describe the
dynamics of the bubble-brane system analyzed in Sec. IV.
The Einstein equations for a five-dimensional RS brane-

world can be written as

ð5ÞGab ¼ −Λ5gab þ 8πG5δðzÞð−σhab þ TabÞ; ðB1Þ
where z is a coordinate defined by taking the proper
distance from the brane into the bulk, G5 ¼ GNl, and
the cosmological constant of the bulk Λ5 ¼ −6=l2 is given
in terms of the AdS5 radius l. Notice that we use latin
indices for the bulk spacetime, whereas greek indices will
be reserved for objects living on the brane. The brane is
located at z ¼ 0 and has an induced metric hab, defined by

hab ¼ gab − nanb; ðB2Þ
where na is a unit vector in the z direction. The energy
momentum tensor of the brane carries the effect of the
tension σ and has a contribution Tab, coming from the
fields living in the brane.
The Israel junction conditions for the brane allow us to

write down a set of four-dimensional Einstein equations
(see [52]),

Gμν ¼ 8πGNT̃μν − Eμν − Λeffhμν; ðB3Þ
where Λeff is an effective four-dimensional cosmological
constant on the brane,

Λeff ¼ −
3

l2
þ ð4πG5σÞ2

3
; ðB4Þ

and Eμν is the projection of the five-dimensional Weyl
tensor onto the brane,

Eμν ¼ ð5ÞCα
βρσnαnρhμβhνσ; ðB5Þ

carrying information about the extra dimensional geometry
to the brane. Because of the properties of the Riemann
tensor, Eμν is traceless and divergence-free. In the critical
RS brane that will be our false vacuum, the tension of the
brane is tuned so as to set Λeff to zero, i.e.,

σ ¼ 3

4πG5l
: ðB6Þ

Finally, the effective energy momentum tensor, T̃μν ¼
Tμν þ πμν, consists of the standard energy momentum
tensor, together with second order terms

πμν ¼
1

σ

�
−
3

2
TμαTα

ν þ
1

2
TTμν þ

3

4
hμνTαβTαβ −

1

4
hμνT2

�
:

ðB7Þ

As discussed in Sec. IV, we consider static, spherically
symmetric solutions on the brane, with metric (28), and
make the tidal Ansatz for the Weyl tensor,

Eμνdxμdxν ¼ UðrÞðfe2δdτ2 þ f−1dr2 − r2dΩ2
IIÞ; ðB8Þ

where the conservation equation gives

UðrÞ ¼ −
r2Q
r4

: ðB9Þ

The metric functions fðrÞ and δðrÞ are determined by the
effective Einstein equations (B3). Following [20], we
define a “mass function” μðrÞ by

f ¼ 1 −
2GNμðrÞ

r
−
r2Q
r2

; ðB10Þ

where we have explicitly factored out the tidal term r2Q=r
2.

The relevant components of the Einstein tensor are

Gt
t ¼ −

2GNμ
0

r2
þ r2Q

r4
; Gr

r −Gt
t ¼

2f
r
δ0: ðB11Þ

For the instanton scalar profile with potential VðϕÞ, the
energy-momentum tensor for the scalar field is

Tμν ¼ ϕ02δrμδrν − hμν

�
1

2
fϕ02 þ V

�
; ðB12Þ

and thus inputting the form of f, we see that the tidal
contribution is canceled by the tidal tensor, and we finally
obtain the equations of motion (40)–(42) used in the
numerical integration:
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0 ¼ fϕ00 þ 2

r
fϕ0 þ δ0fϕ0 þ f0ϕ0 −

∂V
∂ϕ ;

μ0ðrÞ ¼ 4πr2
�
1

2
fϕ02 þ V −

2πGN

3
l2

�
1

2
fϕ02 − V

��
3

2
fϕ02 þ V

��
;

δ0 ¼ 4πGNrϕ02
�
1 −

4πGN

3
l2

�
1

2
fϕ02 − V

��
: ðB13Þ
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