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We study the optical properties of the solar gravitational lens (SGL) under the combined influence of
the static spherically symmetric gravitational field of the Sun—modeled within the first post-Newtonian
approximation of the general theory of relativity—and of the solar corona—modeled as a generic, steady-
state, spherically symmetric free electron plasma. For this, we consider the propagation of mono-
chromatic electromagnetic (EM) waves near the Sun and develop a Mie theory that accounts for the
refractive properties of the gravitational field of the Sun and that of the free electron plasma in the
extended Solar System. We establish a compact, closed-form solution to the boundary value problem,
which extends previously known results into the new regime where gravity and plasma are both present.
Relying on the wave-optical approach, we consider three different regions of practical importance for the
SGL, including the shadow region directly behind the Sun, the region of geometrical optics and the
interference region. We demonstrate that the presence of the solar plasma affects all characteristics of
an incident unpolarized light, including the direction of the EM wave propagation, its amplitude, and its
phase. We show that the presence of the solar plasma leads to a reduction of the light amplification of the
SGL and to a broadening of its point spread function. We also show that the wavelength-dependent
plasma effect is important at radio frequencies, where it drastically reduces both the amplification factor
of the SGL and also its angular resolution. However, for optical and shorter wavelengths, the plasma’s
contribution to the EM wave is negligibly small, leaving the plasma-free optical properties of the SGL
practically unaffected.
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I. INTRODUCTION

When an electromagnetic (EM) wave propagates
through a nonmagnetized free electron plasma occupying
a region that is much larger than the wavelength, there is a
complex interaction between the wave and the medium. As
a result, depending on the frequency of the EM wave, the
electron plasma frequency, and the electron elastic collision
frequency, the wave is transmitted, reflected, or absorbed
by the plasma medium [1,2]. Understanding this interaction
became important with the advent of Solar System explo-
ration, where EM waves are used for tracking and com-
municating with deep space probes. This is why, in part,
the effect of the solar plasma on the propagation of radio
waves was explored extensively [3–7]. It is now routinely
accounted for in any radio link analysis used either for
communication or for navigation [8], and especially for
precision radio science experiments [9–11].
Plasma acts as a dispersive medium. Light rays passing

through plasma deviate from lightlike geodesics in a way
that depends on the frequency [12,13]. This effect plays a
significant role in geometric optics models of gravitational
microlensing [14,15]. The refraction of EM waves from a
distant background radio source by an interstellar plasma

lens with a Gaussian profile of free electron column density
could lead to observable effects [14]. The relative motion of
the observer, the lens, and the source may modulate the
intensity of the background source. There are other effects,
including the formation of caustic surfaces, the possible
creation of multiple images of the background source, and
changes in its apparent sky position. The properties of
geodesics on a plasma background were investigated exten-
sively. Significant literature on general relativistic ray optics
in refractive media is available (for review, see Ref. [16]).
In the context of the optical properties of the solar

gravitational lens (SGL) [17,18], the effects of the solar
corona were investigated using a geometric optics approach
[19]. It was shown that in the immediate vicinity of the Sun,
the propagation of radio waves is significantly affected by
the solar plasma, which effectively pushes the focal area
of the SGL to larger heliocentric distances. At the same
time, one anticipates that the propagation of EM waves at
optical frequencies is not significantly affected by the solar
plasma. In Ref. [20], we show at the required level of
accuracy that the direction of travel of visible or near-IR
light is indeed unaffected by the plasma. However, the
plasma results in a phase shift that depends on the solar
impact parameter of an affected ray of light.
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In the present paper, we continue to investigate the
optical properties of the SGL using a wave theoretical
treatment initiated in Refs. [18,21]. Specifically, we study
light propagation on the background of the solar gravi-
tational monopole and also introduce effects of light
refraction in the solar corona. We consider the first
post-Newtonian approximation of the general theory of
relativity, presented in a harmonic gauge [22,23]. We use a
generic model for the electron number density in the solar
corona, used in Refs. [5,6,10,11] (using the geometric
optics approximation) and in Refs. [20,24] (using a wave
optical treatment), which extends the results of Ref. [25]
to the case of a free electron plasma distribution repre-
senting the solar corona and the interplanetary medium in
the Solar System. Here we take a further step and study
light propagation on the combined background of the
post-Newtonian monopole gravitational field and the solar
plasma distribution, thereby extending the results of our
earlier work on the SGL [18,20,21,25].
Our main objective here is to investigate the optical

properties of the SGL in the presence of the solar corona.
What is the effect of the refractive background in the
Solar System on the structure of the caustic formed by
the solar gravitational mass monopole? Specifically, what is
the plasma effect on light amplification, the point spread
function (PSF), and the resulting angular resolution of the
SGL? Are there plasma-induced optical aberrations? How
does the solar plasma affect the ultimate image quality?
These questions are important for our ongoing efforts to
study the application of the SGL for the direct high-
resolution imaging and spectroscopy of exoplanets [26,27].
This paper is organized as follows: In Sec. II A, we

discuss the solar plasma and present the model for the
electron number density distribution in the solar system.
Section II presents Maxwell’s field equations for the EM
field on the background of the solar gravitational monopole
and the solar plasma. In Sec. VI E, we discuss the optical
properties of the SGL in the presence of the solar plasma.
We also offer some practical considerations for the use of
this improved realistic model of the SGL for exoplanet
imaging. In Sec. VII, we discuss the results and their
importance to the exploration of exoplanets. To make the
main results more accessible, we have placed some material
in the Appendixes. Appendix A discusses the decomposition
of the Maxwell equations and their representation in terms of
Debye potentials. In Appendix B, we study light propagation
in weak and static gravity and steady-state plasma using
the geometric optics approximation. Section I of Appendix B
is devoted to a study of light’s path in weak and static gravity
in the presence of the extended solar plasma. In Sec. II of
Appendix B, we study the phase evolution of a plane wave
propagating in the vicinity of a massive body in the presence
of plasma. Appendix C discusses an approximate solution
for the radial equation that relies on the Wentzel-Kramers-
Brillouin (WKB) approximation.

II. EM WAVES IN A STATIC GRAVITATIONAL
FIELD IN THE PRESENCE OF PLASMA

We consider the propagation of monochromatic light
emitted by a distant source and received by a detector at the
focal area of the SGL. For the purposes of this paper, this
light is assumed to originate at a very large distance from
the Solar System. Thus, by the time it reaches the Solar
System, this light may be approximated as a plane wave
whose phase is logarithmically modified due to the pres-
ence of the solar gravity [21]. As this light reaches the Sun
and before it is detected by an imaging telescope, its
propagation is affected by the plasma of the solar corona.
Our current objective is to investigate the contribution of
this plasma to the optical properties of the SGL.

A. Modeling the solar atmosphere and
the interplanetary medium

For an EM wave of angular frequency ω, propagating
through a free electron plasma, the dielectric permittivity of
the plasma is defined as [2]

ϵðt; rÞ ¼ 1 −
4πneðt; rÞe2

meω
2

¼ 1 −
ω2
p

ω2
; ð1Þ

where ω2
p ¼ 4πnee2=me; e is the electron charge and me

is its mass, while ne ¼ neðt; rÞ is the electron number
density. The quantity ωp is known as the electron plasma
(or Langmuir) frequency. As far as magnetic permeability
goes, it is reasonable to assume that the solar plasma is
nonmagnetic, which is captured by setting μ ¼ 1.
The effects of the solar plasma are significant at

microwave frequencies, but light propagation at optical
and IR wavelengths remains almost unaffected [28,29].
Nonetheless, the level of sensitivity of the SGL, given its
extreme resolution and light amplification capabilities,
makes it obligatory to account for even such minute
effects.
To evaluate the plasma contribution, we need to know

the electron number density, as given by Eq. (1), along the
path of a light ray. Much of our knowledge about the solar
plasma comes from spacecraft tracking in the inner Solar
System [5–7,9–11]. In addition, distant spacecraft and
astronomical observations provide information about the
properties and extent of the interplanetary medium towards
interstellar space [30–32].
In the general case, the electron density shows temporal

variability, which we represent by decomposing ne into a
steady-state, spherically symmetric part n̄eðrÞ, plus a term,
δneðt; rÞ, describing temporal and spatial fluctuations:

neðt; rÞ ¼ n̄eðrÞ þ δneðt; rÞ: ð2Þ

The variability of the solar atmosphere, δneðt; rÞ, has no
preferred timescale. Variations in the electron number
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density can be of a magnitude equal to that of the steady-
state term [33]. These variations are carried along by the
solar wind, at a typical speed of ∼400 km=s; over integra-
tion times measured in the thousands of seconds, the spatial
scale of the fluctuations will therefore be comparable to the
solar radius.
For the heliocentric regions of interest in the context of

the SGL, 650–900 AU [26], the corresponding range of
the impact parameters is b ∼ ð1.1–1.3ÞR⊙, where R⊙ is the
solar radius. This region, ∼ð0.1–0.3ÞR⊙ from the solar
surface, is the most violent region of the solar corona,
characterized by significant fluctuations of the electron
content density.
Consequently, we may reasonably expect that the deflec-

tion of a light ray for a given impact parameter b due to
spatial and temporal fluctuations will be of the same order as
the deflection due to the mean solar atmosphere. This is
certainly the case for microwave frequencies [10,19].
As these deviations are unpredictable in nature, their

contributions must be treated as noise (e.g., as a stochastic
component to the convolution matrix that characterizes
how the SGL forms an image in the image plane; see
Ref. [26] for discussion.) In contrast, the steady-state
component of the solar corona is well understood, and
the magnitude of its contribution can be estimated. These
results can also be used to characterize the noise component
due to fluctuations, making it possible to understand the
extent to which such contributions will reduce the effective
resolution of the SGL, and to devise effective data analysis
strategies.
As a result, in the present paper, we focus on the

contribution of the steady-state, spherically symmetric
component of the electron plasma density and its effect
on the SGL. We therefore ignore any dependence on
heliographic latitude and any additional spatial and tem-
poral variations. The spherically symmetric, steady-state
plasma may be parametrized in the following generic form
(also shown in Figs. 1 and 2):

neðrÞ ¼

8>><
>>:

0; 0 ≤ r < R⊙;P
i
αi

�
R⊙

r

�
βi
; R⊙ ≤ r ≤ R⋆;

n0; r > R⋆;

ð3Þ

where βi > 1 (to match the properties of the solar wind at
large heliocentric distances, that behaves as ∝ 1=r2) and R⋆
is the heliocentric distance to the termination shock, which
we take to be R⋆ ≃ 100 AU [30–32]. The termination
shock is an intermediate border situated before the helio-
pause, which is the last frontier of the solar wind. It is the
boundary at ∼130 AU, where the solar wind fades and the
interstellar medium begins [34]. It is, of course, true (as
evidenced by, for instance, the findings of Voyagers 1 and
2) that the actual distance to the termination shock varies
with time and direction. However, as we find below, our

main results are not sensitive to the numerical value of R⋆
so long as it is of Oð100 AUÞ; contributions from the
plasma to the propagation of EM waves come mostly from
the region within a few solar radii from the solar surface.
Finally, n0 is the electron number density in the

interstellar medium, which is assumed to be homogeneous.
The presence of this term is for completeness only. As it
does not influence the scattering of light, it may be safely
assumed to be that of a vacuum, namely n0 ¼ 0. Note that
the model in Eq. (3) neglects the variability in the electron
number density within the heliosheath. Any variability, if it
exists, does not contribute an observable effect to the
scattering of light by the SGL.
The steady-state behavior is reasonably well known,

and we can use one of the several plasma models found in
the literature [5–7,11]. To be more specific, we make use
of the following steady-state, spherically symmetric
model of electron distribution (see Refs. [19,35] and
references therein):

n̄eðrÞ ¼
��

2.99 × 108
�
R⊙

r

�
16

þ 1.55 × 108
�
R⊙

r

�
6

þ 3.44 × 105
�
R⊙

r

�
2
�
cm−3: ð4Þ

At a large distance from the source, the model replicates the
expected 1=r2 behavior of the solar wind. Other existing
models are somewhat different from Eq. (4). Such models
may account for the nonsphericity of the electron plasma
density and offer a slightly different distance power law (for
discussion, see Ref. [11]). These additional features of these
plasma models are not important for our purposes, as their
effects are below the detection accuracy. Also, any inho-
mogeneities of the plasma distribution in the interplanetary
medium are small, and thus, they are not expected to yield a
significant mechanism of refraction for light propagating
through the Solar System.
We emphasize that the model in Eq. (4) was developed

using the tracking data for interplanetary spacecraft, which
were conducted at multiple radio frequencies [5–7].
Astronomical observations conducted on the solar back-
ground at optical wavelengths also support this model
[3,36]. When studying light propagation in the immediate
vicinity of the solar photosphere, Eq. (4) may have to be
augmented by terms containing higher powers of ðR⊙=rÞ.
However, even in extreme proximity to the Sun, the
electron number density would be at most n̄eðrÞ ≲ 6 ×
108 cm−3 [11,37].
The plasma frequency ω2

p in Eq. (1), in the case of the
spherically symmetric plasma distribution model [Eq. (3)],
in the range of heliocentric distances, R⊙ ≤ r ≤ R⋆, has the
form

ω2
p ¼ 4πe2

me

X
i

αi

�
R⊙

r

�
βi
: ð5Þ
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This generic spherically symmetric model for the plasma
frequency in the extended solar corona allows us to study
the influence of solar plasma on the propagation of EM
waves throughout the Solar System in the range of helio-
centric distances given by R⊙ ≤ r ≤ R⋆. Clearly, the model
in Eq. (5) may be further extended, for instance, to include
known (nonrandom) effects due to nonsphericity, such as
dependence on the solar latitude. If needed, such effects
may be treated using the same approach as presented in
this paper.

B. Maxwell’s equations in three-dimensional form

We now focus on solving Maxwell’s equations on the
Solar System’s background set by gravity and plasma. We
rely heavily on Refs. [18,21,24] (that were inspired by
Refs. [38,39]), which the reader is advised to consult first.
Following Refs. [18,21], we begin with the generally

covariant form of Maxwell’s equations:

∂lFik þ ∂iFkl þ ∂kFli ¼ 0;

1ffiffiffiffiffiffi−gp ∂kð
ffiffiffiffiffiffi
−g

p
FikÞ ¼ −

4π

c
ji; ð6Þ

where gmn is the metric tensor and g ¼ det gmn is its
determinant. We use a (3þ 1) decomposition [21] of the
generic interval (see Sec. 84 of Ref. [13]):

ds2 ¼ gmndxmdxn ¼
� ffiffiffiffiffiffi

g00
p

dx0 þ g0αffiffiffiffiffiffi
g00

p dxα
�

2

− καβdxαdxβ; ð7Þ
where the three-dimensional symmetric metric tensor καβ is
given as

καβ ¼ −gαβ þ
g0αg0β
g00

; κ ¼ det καβ: ð8Þ

Physical fields are defined as the 3-vectors E, D and the
antisymmetric 3-tensors Bαβ and Hαβ (see the problem in
Sec. 90 of Ref. [13]):

Eα ¼ F0α; Dα ¼ −ϵ
ffiffiffiffiffiffi
g00

p
F0α;

Bαβ ¼ μFαβ; Hαβ ¼ ffiffiffiffiffiffi
g00

p
Fαβ; ð9Þ

where, following Ref. [13], we also introduce the per-
mittivity ϵ and magnetic permeability μ of the medium.
The quantities in Eq. (9) are not independent. Introducing
the 3-vector g≡ −g0α, we see that the following identities
exist:

D ¼ ϵ

�
1ffiffiffiffiffiffi
g00

p Eþ ½H × g�
�
;

B ¼ μ

�
1ffiffiffiffiffiffi
g00

p Hþ ½g ×E�
�
: ð10Þ

As a result, Eq. (6) yields the following three-
dimensional Maxwell equations:

curlκE ¼ −
1ffiffiffi
κ

p ∂0ð
ffiffiffi
κ

p
BÞ; divκB ¼ 0; ð11Þ

curlκH ¼ 1ffiffiffi
κ

p ∂0ð
ffiffiffi
κ

p
DÞ þ 4π

c
s; divκD ¼ 4πρ; ð12Þ

where the differential operators curlκ and divκ are taken
with respect to the three-dimensional metric tensor καβ from
Eq. (8) [40] (also, see relevant details in Appendix A of
Ref. [21]).
To describe the optical properties of the SGL in the post-

Newtonian approximation, we use a static harmonic metric,
for which the line element may be given in spherical
coordinates ðr; θ;ϕÞ as [22,23]

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ; ð13Þ

where, to the accuracy sufficient to describe light propa-
gation in the Solar System, the quantity u has the form

u ¼ 1þ c−2U þOðc−4Þ; U ¼ G
Z

ρðx0Þd3r0
jr − r0j ; ð14Þ

with U being the Newtonian gravitational potential. Using
the metric (13), we may compute Eq. (8) and derive
Maxwell’s equations [Eqs. (11) and (12)] in terms of the
physical components of the vector E and similar compo-
nents for H, D and B [40]. The fact that the chosen metric
is static simplifies the expressions for physical fields.
Indeed, with g0α ¼ 0 (thus, g ¼ 0) and ∂0gmn ¼ 0, expres-
sions of Eq. (10) take the form

D ¼ 1ffiffiffiffiffiffi
g00

p ϵE ¼ ϵuE≡ ϵD;

B ¼ 1ffiffiffiffiffiffi
g00

p μH ¼ μuH≡ μB; ð15Þ

where we introduce the quantities D ¼ uE and B ¼ uH
that describe the EM field in static gravity in the vacuum.
We consider the propagation of an EM wave in the

vacuum, where no sources or currents exist, i.e., jk ≡
ðρ; jÞ ¼ 0. Furthermore, as in Ref. [21], we focus our
discussion on the largest contribution to the gravitational
scattering of light, which, in the case of the Sun, is due to
the gravity field produced by a static monopole. In this
case, the Newtonian potential in Eq. (14) may be given by
c−2UðrÞ ¼ rg=2rþOðr−3; c−4Þ, where rg ¼ 2GM=c2 is
the Schwarzschild radius of the source. Therefore, the
quantity u in Eqs. (13) and (14) has the form

uðrÞ ¼ 1þ rg
2r

þOðr−3; c−4Þ: ð16Þ
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If needed, one can account for the contribution of
higher-order multipoles using the tools developed in
Refs. [20,41,42].
This allows us to present the vacuum form of Maxwell’s

equations [Eqs. (11) and (12)] for the steady-state, spheri-
cally symmetric plasma distribution as (see Appendix A
for details)

curlD ¼ −μu2
1

c
∂B
∂t þOðG2Þ; divðϵu2DÞ ¼ OðG2Þ;

ð17Þ

curlB ¼ ϵu2
1

c
∂D
∂t þOðG2Þ; divðμu2BÞ ¼ OðG2Þ;

ð18Þ

where the differential operators curl and div are now with
respect to the three-dimensional Euclidean flat metric.
Evaluating Eq. (4) at the shortest relevant heliocentric

distance, r ¼ R⊙, we see that the electron density given by
this model is of the order of n̄eðrÞ≲ 4.54 × 108 cm−3,
which implies that ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnee2=me

p
∼ 1.20 × 109 s−1,

corresponding to a frequency of νp ¼ ωp=2π ¼ 191 MHz.
For optical frequencies (ν ¼ c=λ ∼ 300 THz) and for
r ¼ R⊙, we see that Eq. (1) may contribute at most at
the order of ðωp=ωÞ2 ∼ 4.08 × 10−13, while for radio
frequencies (ν ∼ 10 GHz) this ratio is much higher:
ðωp=ωÞ2 ∼ 3.67 × 10−4. At the same time, the effective
contribution of the gravitational monopole to the refraction
index from Eq. (16) is rg=r≲ 4.25 × 10−6ðR⊙=rÞ.
Therefore, in our discussion below, we need to carry out
the necessary analysis up to terms that are linear with
respect to gravity and plasma contributions while neglect-
ing higher-order terms—an approach that is certainly
justified for optical wavelengths, but may need to be
augmented to include higher-order contributions, if dealing
with radio wavelengths (as was done, for instance, in
Refs. [43,44]). Nevertheless, our approach remains valid
even for lower frequencies, and may be used to provide
insight into the physical processes of the EM wave
interacting with extended solar corona given by a generic
model [Eq. (3)].

C. Representation of the EM field in terms
of Debye potentials

In the case of a static, spherically symmetric gravita-
tional field and steady-state, spherically symmetric plasma
distributions, solving the field equations (17) and (18) is
most straightforward. Following the derivation in Ref. [21]
(see Appendix E therein), we obtain the complete solution
of these equations in terms of the electric and magnetic
Debye potentials [38], eΠ and mΠ. For details, see
Appendix A [see, for instance, derivations leading to
Eqs. (A27)–(A32)]. The result is a system of equations

for the components of the monochromatic EM field with
the wave number1 k ¼ ω=c:

D̂r ¼
1ffiffiffi
ϵ

p
u

� ∂2

∂r2
�
reΠffiffiffi
ϵ

p
u

�
þ
�
ϵμk2u4 −

ffiffiffi
ϵ

p
u

�
1ffiffiffi
ϵ

p
u

�00�

×

�
reΠffiffiffi
ϵ

p
u

��
; ð19Þ

D̂θ ¼
1

ϵu2r
∂2ðreΠÞ
∂r∂θ þ ik

r sin θ
∂ðrmΠÞ
∂ϕ ; ð20Þ

D̂ϕ ¼ 1

ϵu2r sin θ
∂2ðreΠÞ
∂r∂ϕ −

ik
r
∂ðrmΠÞ
∂θ ; ð21Þ

B̂r ¼
1ffiffiffi
μ

p
u

� ∂2

∂r2
�
rmΠffiffiffi
μ

p
u

�
þ
�
ϵμk2u4 −

ffiffiffi
μ

p
u

�
1ffiffiffi
μ

p
u

�00�

×

�
rmΠffiffiffi
μ

p
u

��
; ð22Þ

B̂θ ¼ −
ik

r sin θ
∂ðreΠÞ
∂ϕ þ 1

μu2r
∂2ðrmΠÞ
∂r∂θ ; ð23Þ

B̂ϕ ¼ ik
r
∂ðreΠÞ
∂θ þ 1

μu2r sin θ
∂2ðrmΠÞ
∂r∂ϕ ; ð24Þ

where the electric and magnetic Debye potentials eΠ and
mΠ satisfy the wave equations (A33), given as

�
Δþ ϵμk2u4 −

ffiffiffi
ϵ

p
u

�
1ffiffiffi
ϵ

p
u

�00�� eΠffiffiffi
ϵ

p
u

�
¼ Oðr2g; r−3Þ;

ð25Þ
�
Δþ ϵμk2u4 −

ffiffiffi
μ

p
u

�
1ffiffiffi
μ

p
u

�00�� mΠffiffiffi
μ

p
u

�
¼ Oðr2g; r−3Þ:

ð26Þ

Expressions (19)–(26) represent the solution of the
Mie problem in terms of Debye potentials [38,45], in
the presence of the gravitational field of a mass monopole
taken at the first post-Newtonian approximation of the
general theory of relativity [18,21] and a steady-state,

1When an EM wave is propagating in an electron plasma, its
frequency is given by the dispersion relation ω2ðkÞ ¼ k2c2 þ
ω2
pðkÞ [2]. That is, the plasma modifies the dispersion relation

and affects the group and phase velocities. Realizing that the
electron number density for the solar plasma is at most n̄eðrÞ≲
6 × 108 cm−3 [11,37], using Eq. (1), we compute the largest
relevant value of ω2

pðkÞ that yields ω2ðkÞ ¼ k2c2ð1þ 5.38×
10−13ðλ=1 μmÞ2Þ. Therefore, throughout this paper we use
ω2 ¼ k2c2ð1þOð10−12ÞÞ, signifying that at the optical and
near-IR wavelengths relevant to the SGL, λ ≃ 1 μm, the differ-
ence between the group and phase velocities can be neglected.
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spherically symmetric distribution of the free electron solar
plasma [Eq. (3)].
For the quantities ϵ and u, given correspondingly by

Eqs. (1) and (16), we can rewrite Eq. (25) as the time-
independent Schrödinger equation that describes the scat-
tering of light by a Coulomb potential and in the presence
of plasma:�
Δþ k2

�
1þ 2rg

r
−
ω2
pðrÞ
ω2

�
þ rg
r3

−
ðω2

pÞ00
4ω2

�� eΠffiffiffi
ϵ

p
u

�
¼ Oðr2g; r−3Þ: ð27Þ

A similar equation may be obtained for mΠ= ffiffiffi
μ

p
u from

Eq. (26), which, with μ ¼ 1, takes the form�
Δþ k2

�
1þ 2rg

r
−
ω2
pðrÞ
ω2

�
þ rg
r3

�� mΠffiffiffi
μ

p
u

�
¼ Oðr2g; r−3Þ:

ð28Þ
Equations (27) and (28) are almost identical, except for

the last term in (27), which comes from ϵ, introduced by
Eq. (1). To demonstrate that this difference is negligible, we
note that, as seen from Eq. (1) together with Eq. (3), in
addition to the purely Newtonian potential of a static
relativistic monopole that behaves as 1=r, Eq. (27) has
the plasma potential that contains several terms that decay
either as ∝ r−2 or faster. Recognizing that ω ¼ kc, and
using the plasma model (3) in the expression (1) for ϵ, these
extra terms may be given as

k2
ω2
p

ω2
þðω2

pÞ00
4ω2

⇒
ω2
p

c2
þðω2

pÞ00
4k2c2

¼ 4πe2

mec2
X
i

αi

�
R⊙

r

�
βi
�
1þ βiðβiþ 1Þ

4k2R2
⊙

�
R⊙

r

�
2
�
: ð29Þ

The two terms in the curly braces of Eq. (29) represent
the repulsive potentials due to plasma that, based on the
model in Eq. (3), vanish as 1=r2 or faster. The second
plasma term in this expression is dominated by a factor of
ðkR⊙Þ−2, which, given the large value of the solar radius,
makes its contribution negligible, especially at optical
wavelengths (λ ∼ 1 μm), for which ðkR⊙Þ2 ∼ 5.32 ×
10−32 [20]. Thus, the term ∝ ðω2

pÞ00=ω2 may be neglected.
Although the remaining terms are small, they may con-
tribute to the phase shifts of the scattered wave, and
therefore, they may affect the diffraction of light by the
Sun. Thus, we retain these terms for further analysis. As a
result, we introduce the steady-state, spherically symmetric
plasma potential, which to OððkR⊙Þ−2Þ is given as

VpðrÞ ¼
ω2
pðrÞ
c2

¼ 4πe2

mec2
X
i

αi

�
R⊙

r

�
βi þOððkR⊙Þ−2Þ:

ð30Þ

Also, we note that the last term in Eqs. (27) and (28),
representing the 1=r3 tail of the gravitational potential, may
be discarded as insignificant (see relevant discussion in
Appendix C, and also in Appendix F of Ref. [21]).
As a result, and taking into account that magnetic

permeability μ is constant, Eqs. (27) and (28) take an
identical form:�
Δþ k2

�
1þ 2rg

r

�
− VpðrÞ

��
Π
u

�
¼ Oðr2g; r−3Þ; ð31Þ

where the plasma potential Vp is given by Eq. (30) and the
quantity Π represents either the electric Debye potential,
eΠ=

ffiffiffi
ϵ

p
, or its magnetic counterpart, mΠ= ffiffiffi

μ
p

, namely

ΠðrÞ ¼
� eΠffiffiffi

ϵ
p ;

mΠffiffiffi
μ

p
�
: ð32Þ

Therefore, the set of Eqs. (19)–(24) with (31) and (32) is
greatly simplified, as now we need to solve only one
equation [Eq. (31)], which ultimately determines the Debye
potential for the entire problem.

III. SOLUTION FOR THE EM FIELD

A. Separating variables in the equation
for the Debye potential

Typically [38], in spherical polar coordinates, Eq. (31) is
solved by separating variables [20,21]:

Π
u
¼ 1

r
RðrÞΘðθÞΦðϕÞ; ð33Þ

with integration constants and coefficients that are deter-
mined by boundary conditions. Direct substitution into
Eq. (27) reveals that the functions R, Θ, and Φ must satisfy
the following ordinary differential equations:

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−

α

r2
− VpðrÞ

�
R ¼ O

�
r2g; rg

ω2
p

ω2

�
;

ð34Þ

1

sin θ
d
dθ

�
sin θ

dΘ
dθ

�
þ
�
α −

β

sin2θ

�
Θ ¼ O

�
r2g; rg

ω2
p

ω2

�
;

ð35Þ
d2Φ
dϕ2

þ βΦ ¼ O
�
r2g; rg

ω2
p

ω2

�
: ð36Þ

The solution to Eq. (36) is given as usual [38]:

ΦmðϕÞ ¼ e�imϕ → ΦmðϕÞ ¼ am cosðmϕÞ þ bm sinðmϕÞ;
ð37Þ
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where β ¼ m2, m is an integer and am and bm are
integration constants.
Equation (35) is well known for spherical harmonics.

Single-valued solutions to this equation exist when α ¼
lðlþ 1Þ with (l > jmj, integer). With this condition, the
solution to Eq. (35) becomes

ΘlmðθÞ ¼ PðmÞ
l ðcos θÞ: ð38Þ

Now, we focus on the equation for the radial function
[Eq. (34)], where, because of Eq. (35), we have
α ¼ lðlþ 1Þ. As a result, Eq. (34) takes the form

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−
lðlþ 1Þ

r2
− VpðrÞ

�
R

¼ O
�
r2g; rg

ω2
p

ω2

�
: ð39Þ

This equation describes light scattering that is dominated
by a spherical relativistic potential due to a gravitational
monopole (which is equivalent to an attractive Coulomb
potential discussed in quantum mechanics [46–48]).
To determine the solution to Eq. (39), similarly to

Ref. [20], we first separate the terms in the plasma potential
Vp, [Eq. (30)], by isolating the 1=r2 term and representing
the remaining terms as the short-range potential Vsr:

VpðrÞ ¼
μ2

r2
þ Vsr; ð40Þ

where μ2 and Vsr are given by

μ2 ¼ 4πe2R2
⊙

mec2
α2;

Vsr ¼ 4πe2

mec2
X
i>2

αi

�
R⊙

r

�
βi þOððkR⊙Þ−2Þ; ð41Þ

where μ2 is the strength of the 1=r2 term in the plasmamodel
at r ¼ R⊙.

2 Using the values from the phenomenological
model [Eq. (4)], we can evaluate this term: μ2 ≃ 5.89 × 1015.
Also, we note that the range of Vsr is very short. In fact, as
we see from Fig. 1, this potential provides a negligible
contribution after r ≃ 8R⊙. Nevertheless, as it propagates
through the Solar System, light acquires the largest phase
shift as it travels through the rangeof validity of this potential.
Note that if the model in Eq. (30) were to have the term

∝ α1ðR⊙=rÞ, this would imply the presence in Eq. (39) of
another Coulomb potential of the type 2μ1=r, where

2μ1 ¼ ð4πe2R⊙=mec2Þα1. The presence of such a term
may be easily accounted for by modifying the rg term in
Eq. (39) as rg → rg − μ1, with all other calculations
unchanged. However, the current observations [5–11]
suggest that such a term must be absent in the model,
thus α1 ¼ μ1 ¼ 0.
The separation of the terms performed in the plasma

potential [Eqs. (40) and (41)] allows us to appropriately
present the radial equation (39) as

d2RL

dr2
þ
�
k2
�
1þ 2rg

r

�
−
LðLþ 1Þ

r2
− VsrðrÞ

�
RL

¼ O
�
r2g; rg

ω2
p

ω2

�
; ð42Þ

where the new index L for the plasma-modified centrifugal
potential is determined from

LðLþ 1Þ ¼ lðlþ 1Þ þ μ2: ð43Þ

Representing Eq. (43) equivalently as ðLþ1
2
Þ2¼ðlþ1

2
Þ2 þ

μ2 and requiring that when μ → 0, the index Lmust behave
as L → l, we find the solution to Eq. (43):

L ¼ lþ μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1

2
Þ2 þ μ2

q
þ lþ 1

2

: ð44Þ

FIG. 1. The electron number density model [Eq. (4)] (thick blue
line) given by Refs. [5–7]. The leftmost part of the curve, at short
heliocentric distances dominated by terms with higher powers of
(R⊙=r), corresponds to the visible solar corona [29,36]. The thin
dotted line shows the contribution of the inverse square term,
which dominates beyond a few solar radii. The lightly shaded
region on the left represents the solar interior. The approximate
location of the termination shock is also marked, beyond which
the radial dependence disappears, leaving only an approximately
homogeneous interstellar background (not shown). Diagram
adapted from Ref. [20], with the horizontal axis extended beyond
the termination shock.

2Note that following Ref. [20], we reuse the symbol μ; do not
confuse it with magnetic permeability.
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When μ=l ≪ 1, this solution behaves as

L ¼ lþ μ2

2lþ 1
−

μ4

ð2lþ 1Þ3 þ
2μ6

ð2lþ 1Þ5 þOðμ8=l7Þ

≈ lþ μ2

2lþ 1
þOðμ4=l3Þ: ð45Þ

For a typical region where the plasma potential [Eq. (3)]
is present, the value of lmay be estimated using its relation
to the classical impact parameter, namely l ¼ kb ≥ kR⊙ ¼
4.37 × 1015 at near optical wavelengths. Therefore, using
the result for μ2 given above, we see that the ratio μ=l ≤
1.75 × 10−8 is indeed small while μ2=l ¼ Oð1Þ, justifying
the approximation in Eq. (45), as the order term is l2 times
smaller than the leading term.

B. Eikonal solution for Debye potential

Equations similar to Eq. (31) are typical for many
problems of nuclear scattering. However, no exact sol-
ution is known for an arbitrary short-range potential Vp
[Eqs. (40) and (41)]. This has motivated the development
of various approximation tools [49,50]. One such approxi-
mation is known for the case of short-range potentials
that decay faster than 1=r2, where a small parameter is
introduced and the total solution to Eq. (31) is presented
as a series expansion with respect to this parameter.
This method is called the Born approximation (BA)
[51]. The method uses the radial Green’s function solution
to Eq. (39) (obtained while setting Vp ¼ 0) to determine
each successive term in the expansion. The final solution
determines the cumulative phase shift for the EM wave as
it traverses the area where the short-range scattering
potential is present. Since this is a Born-type approxima-
tion for the phase shifts relative to the plasma-free wave,
the relevant approximation is referred to as the distorted
wave Born approximation (DWBA). It determines the
additional phase shift due to the short-range potential Vsr
[52,53]. However, it is known that for potentials that
behave as 1=r2, this approximation leads to divergent
results, as such potentials do not decay fast enough with
distance. This is precisely our situation, where the plasma
potential contains the 1=r2 terms. Thus, neither the BA nor
the DWBA is particularly useful for our purposes.
To solve Eq. (31), we follow the approach presented in

Ref. [20], where we developed a method that relies on the
properties of the short-range plasma potential and the
eikonal (or high-energy) approximation. The region of
scattering of high-frequency EM waves on the plasma-
induced potential Vp is bounded by the heliocentric
distance to the heliopause, R⋆ from Eq. (3). We implement
the eikonal approximation [54–59]. In this approximation,
the short-range plasma potential contributes only a phase
shift to the EM wave, which can be directly calculated.
Here we extend the method introduced in Ref. [20] on the

curved spacetime induced by the solar gravitational mass
monopole.

1. Solution with short-range potential Vsr absent

No analytical solution is known to exist for Eq. (31) in
the general case when Vsr ≠ 0. Therefore, we seek a
suitable approximation method. A number of methods were
developed to solve equations of this type in scattering
problems in quantum mechanics. At large incident ener-
gies, for a wavefront moving in the forward direction, a
very useful method is the eikonal approximation [54–59].
The eikonal approximation is valid when the following two
criteria are satisfied [59]: kb ≫ 1 and VsrðrÞ=k2 ≪ 1,
where k is the wave number and b is the impact parameter.
In our case, both of these conditions are fully satisfied.
The first condition yields kb ¼ 4.37 × 1015ðλ=1 μmÞ
ðb=R⊙Þ ≫ 1. Taking the short-range plasma potential
Vsr from Eq. (41), we evaluate the second condition as
VsrðrÞ=k2 ≤ VsrðR⊙Þ=k2 ≈ 4.07 × 10−13ðλ=1 μmÞ2 ≪ 1.
Therefore, we may proceed.
To develop a solution to Eq. (31) using the eikonal

approximation, we first note that when the short-range
potential Vsr is absent, Eq. (42) takes the form

d2RL

dr2
þ
�
k2
�
1þ 2rg

r

�
−
LðLþ 1Þ

r2

�
RL ¼ 0: ð46Þ

The solution to this equation is well known and is given
in terms of the Coulomb functions FLðkrg; krÞ and
GLðkrg; krÞ [21,46–48,60] (the presence of these functions
is the main difference from the situation encountered in
Ref. [20], where a similar equation, but without the
Coulomb rg=r term, is solved in terms of the Riccati-
Bessel functions):

Rð2Þ
L ¼ cLFLðkrg; krÞ þ dLGLðkrg; krÞ; ð47Þ

where we use the superscript (2) to indicate that the solution
to Eq. (46) includes the inverse square term, 1=r2, from the
plasma potential, which is represented by the index L from

Eq. (45) [20]. When the solution for Rð2Þ
L is known, we

combine results for ΦðϕÞ and ΘðθÞ, given by Eqs. (37) and
(38), to obtain the corresponding Debye potential, Πð2ÞðrÞ,
in the form

Πð2ÞðrÞ ¼ 1

r

X∞
l¼0

Xl
m¼−l

μlR
ð2Þ
L ðrÞ½PðmÞ

l ðcos θÞ�

× ½am cosðmϕÞ þ bm sinðmϕÞ�; ð48Þ

where L ¼ LðlÞ is given by Eq. (45), and μl, am, and bm
are arbitrary and as yet unknown constants to be deter-
mined later. This solution is well established and can be
studied with available analytical tools (e.g., Ref. [38]).
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Examining Eq. (31), we see that Πð2ÞðrÞ is a solution to
the following wave equation:

�
Δþ k2

�
1þ 2rg

r

�
−
μ2

r2

�
Πð2ÞðrÞ ¼ 0; ð49Þ

which is the equation for the “free” Debye potential in the
presence of gravity and 1=r2 plasma, Πð2ÞðrÞ, and which is
yet “unperturbed” by the short-range plasma potential, Vsr.

2. Eikonal wave function

We may now proceed with solving Eq. (31), given the
relevant form of Vsr [Eq. (41)], first representing this
equation as

�
Δþ k2

�
1þ 2rg

r

�
−
μ2

r2
− VsrðrÞ

�
ΠðrÞ ¼ Oðr2g; r−3Þ:

ð50Þ

To apply the eikonal approximation to solve Eq. (50), we
consider a trial solution in the form

ΠðrÞ ¼ Πð2ÞðrÞϕðrÞ; ð51Þ

where Πð2ÞðrÞ is the “free” Debye potential [Eq. (48)].
In other words, in the eikonal approximation, the Debye
potential Πð2ÞðrÞ becomes “distorted” in the presence of the
potential Vsr given in Eq. (41), by ϕ, a slowly varying
function of r, such that

j∇2ϕj ≪ kj∇ϕj: ð52Þ

When substituted into Eq. (50), the trial solution
[Eq. (51)] yields

�
ΔΠð2ÞðrÞ þ

�
k2
�
1þ 2rg

r

�
−
μ2

r2

�
Πð2ÞðrÞ

�
ϕðrÞ

þ Πð2ÞðrÞΔϕðrÞ þ 2ð∇Πð2ÞðrÞ · ∇ϕðrÞÞ
− VsrðrÞΠð2ÞðrÞϕðrÞ ¼ Oðr2g; r−3Þ: ð53Þ

As Πð2ÞðrÞ is the solution of the homogeneous equa-
tion (49), the first term in Eq. (53) is zero. Then, we neglect
the second term, Πð2ÞðrÞΔϕðrÞ, because of Eq. (52). As a
result, from the last two terms we have

ð∇ lnΠð2ÞðrÞ · ∇ lnϕðrÞÞ ¼ 1

2
VsrðrÞ þOðr2g; r−3Þ: ð54Þ

As we discussed above, the plasma contribution is rather
small, and it is sufficient to keep the terms that are first
order in ω2

p=ω2. Thus, to formally solve Eq. (54), we may
present the solution for Πð2ÞðrÞ from Eq. (48) in series form
in terms of the small parameter μ=l, which enters there via

the index L, as shown by Eq. (45). Then, to solve Eq. (54),
it is sufficient to take only the zeroth-order term (i.e., with
μ ¼ 0) in Πð2ÞðrÞ. It is easier, however, to obtain such a
solution directly from Eq. (49) by setting μ ¼ 0, which
yields the well-known solution for the incident wave in the
presence of a gravitational monopole (see Eq. (23) in
Ref. [21]):

Πð2ÞðrÞ ¼ e�ikðz−rg ln kðr−zÞÞ þOðr2g;ω2
p=ω2Þ: ð55Þ

To compute the gradient of Πð2ÞðrÞ, following Ref. [21],
we represent the unperturbed trajectory of a ray of light as

rðtÞ ¼ r0 þ kcðt − t0Þ þOðrg;ω2
p=ω2Þ; ð56Þ

where k is the unit vector on the incident direction of the
light ray’s propagation path and r0 represents the starting
point (see Fig. 2). Following Refs. [21,41,61], we define
b ¼ ½½k × r0� × k� to be the impact parameter of the
unperturbed trajectory of the light ray. The vector b is
directed from the origin of the coordinate system toward the
point of the closest approach of the unperturbed path of the
light ray to that origin.
With Eq. (56), we introduce the parameter τ ¼ τðtÞ along

the path of the light ray (see details in Sec. 1 of
Appendix B):

τ ¼ ðk · rÞ ¼ ðk · r0Þ þ cðt − t0Þ; ð57Þ

which may be positive or negative. Note that τ ¼ z cos α,
with α being the angle between ez and k; τ ¼ z when the z
axis of the chosen Cartesian coordinate system is oriented
along the incident direction of the light ray. The new
parameter τ allows us to rewrite Eq. (56) as

rðτÞ ¼ bþ kτ þOðrg;ω2
p=ω2Þ; ð58Þ

with krðτÞk≡ rðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þOðrg;ω2

p=ω2Þ:
Using Eq. (58), the gradient ofΠð2ÞðrÞ from Eq. (55) may

be computed as

∇ lnΠð2ÞðrÞ ¼ �ik

�
k

�
1þ rg

r

�
−
rg
b2

b

�
1þ τ

r

��
þOðr2g;ω2

p=ω2Þ: ð59Þ

As a result, Eq. (54) takes the form

� ik

��
k

�
1þ rg

r

�
−
rg
b2

b

�
1þ τ

r

��
· ∇ lnϕðrÞ

�

¼ 1

2
VsrðrÞ þOðrgω2

p=ω2; r2g;ω4
p=ω4; r−3Þ: ð60Þ

As we want to identify the largest plasma contribution
to light propagation, we keep only linear terms with
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respect to gravity and plasma. As a result, neglecting the
rg-dependent terms in Eq. (60), we may present Eq. (54) as

�ikðk · ∇Þ lnϕ ¼ 1

2
Vsr þOðrg;ω4

p=ω4Þ: ð61Þ

Wemay now compute the eikonal phase due to the short-
range plasma potential Vsr. Using the representation of the
light ray’s path as r ¼ ðb; τÞ given by Eq. (58), we observe
that (as was also shown in Ref. [21]) the gradient ∇ may be
expressed in terms of the variables along the path as ∇ ¼
∇b þ kd=dτ þOðrg;ω2

p=ω2Þ, where ∇b is the gradient
along the direction of the impact parameter b, with τ being
the parameter taken along the path. Thus, the differential
operator on the left side of Eq. (61) is the derivative along the
light ray’s path, namely ðk · ∇Þ ¼ d=dτ.
As a result, for Eq. (61) we have

d lnϕ�

dτ
¼ � 1

2ik
Vsr þOðrg;ω2

p=ω2Þ; ð62Þ

the solutions of which are

ϕ�ðb; τÞ ¼ exp

�
∓ i

2k

Z
τ

τ0

Vsrðb; τ0Þdτ0
�
: ð63Þ

We therefore have the following two particular eikonal
solutions of Eq. (50) for ΠðrÞ:

ΠðrÞ ¼ Πð2ÞðrÞ expf�iξbðτÞg þOðω4
p=ω4Þ; ð64Þ

where we introduce the eikonal phase

ξbðτÞ ¼ −
1

2k

Z
τ

τ0

Vsrðb; τ0Þdτ0: ð65Þ

Given VsrðrÞ from Eq. (41), we reduce the problem to
evaluating a single integral to determine the Debye

potentiual ΠðrÞ from Eq. (51), which is a great simpli-
fication of the problem. Given the fact that b is constant,
and by taking the short-range plasma potential VsrðrÞ
from Eq. (41), we evaluate Eq. (65) as

ξbðrÞ ¼ −
2πe2R⊙

mec2k

X
i>2

αi

�
R⊙

b

�
βi−1fQβiðτÞ −Qβiðτ0Þg;

ð66Þ

where we introduce the function QβiðτÞ, which, with

τ ¼ ðk · rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
, is given as

QβiðτÞ ¼ 2F1

�
1

2
;
1

2
βi;

3

2
;−

τ2

b2

�
τ

b
; ð67Þ

with 2F1½a; b; c; z� being the hypergeometric function [60].
For r ¼ b, or equivalently, for τ ¼ 0, the function (67) is
well defined, taking the value ofQβið0Þ ¼ 0 for each βi. For
large values of r, and thus for large τ, for any given value of
βi, the function QβiðτÞ rapidly approaches a limit:

lim
τ→∞

QβiðτÞ ¼ lim
r→∞

Qβi

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p 

¼ Q⋆

βi
; ð68Þ

where Q⋆
βi
≡ 1

2
βi

βi−1
B½1

2
βi þ 1

2
; 1
2
�; with B½x; y� being Euler’s

beta function [20]. For the values of βi used in the model in
Eq. (4) for the electron number density in the solar corona,
βi ¼ f2; 6; 16g, these values are

Q⋆
2 ¼ π

2
; Q⋆

6 ¼ 3π

16
; Q⋆

16 ¼
429π

4096
: ð69Þ

Note that the quantities QβiðrÞ [Eq. (67)] for βi > 2 are
always small, 0 ≤ jQβi j < 1, and as functions of r, they

FIG. 2. Schematic of the Solar System using an approximate log-square scale. Shading indicates the solar plasma density that is
traversed by an incident plane wave. The termination shock at ∼100 AU is where the solar plasma collides with the interstellar medium,
the density of which is constant and does not contribute to the scattering of light. The spherical (r, θ, ϕ) coordinate system (with ϕ
suppressed) and the cylindrical z coordinate used in this paper are indicated. Diagram is adapted from Ref. [20], with the heliocentric
distance range extended beyond the termination shock.
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reach their asymptotic values Q⋆
βi
[Eq. (68)] quite rapidly,

typically after r ≃ 3.2b. (Thus, they may be treated as being
constant for all the relevant distance ranges.)
Next, we place the source at a very large distance from

the Sun: jτ0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − b2

p
≫ R⋆ (see Fig. 2). Then, from

the definition in Eq. (67) and the asymptotic behavior
given by Eq. (68), we haveQβiðτ0Þ ¼ −Q⋆

βi
. As a result, we

express the total eikonal phase shift acquired by the wave
along its path through the Solar System [Eq. (66)] as

ξpathb ðrÞ ¼ −
2πe2R⊙

mec2k

X
i>2

αi

�
R⊙

b

�
βi−1

×
n
Q⋆

βi
þQβi

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p 
o
: ð70Þ

Expression (70) is the total phase shift induced by the
short-range plasma potential along the entire path of the
EM wave as it propagates through the Solar System. One
may see that, as the light propagates from the source to the
point of closest approach to the Sun, it acquires the first part
of the phase shift—i.e., the term proportional to Q⋆

βi
in

Eq. (70). As it continues to propagate, the second term in
Eq. (70) kicks in, providing an additional contribution.
Substituting the solution that we obtained for the total

eikonal phase shift ξbðrÞ of Eq. (70) in Eq. (64) results in
the desired solution for the Debye potential ΠðrÞ.
Effectively, this solution demonstrates that the phase of
the EM wave is modified by the short-range plasma
potential, as expected from the eikonal approximation.
Although Eq. (64) is the solution to Eq. (50), it still has
arbitrary constants μl, am, bm present in Eq. (48). These
constants must be chosen to satisfy a particular boundary
value problem that we set out to solve: Obtaining the
solution for the EM field as it propagates through the Solar
System with the refractive medium given by Eq. (3).

C. Solution for the radial function RLðrÞ
At this point, we already have all the key components

needed to develop the solution for the Debye potentials
in the presence of a spherically symmetric gravitational
field produced by the solar monopole, and the spherically
symmetric solar plasma modeled by Eq. (3). As we
observed above, with the short-range plasma potential
[Eq, (41)], the equation for the radial function (39) takes
the form of Eq. (42). Solving this equation leads to a
solution for the Debye potential [Eq. (33)]. Following
Ref. [21], with the help of Eq. (33), a particular solution
for the Debye potential, Π, is obtained by multiplying
together the functions given by Eqs. (37) and (38) with RL
from Eq. (42); we then obtain a general solution to
Eq. (27). Specifically, by combining results for ΦðϕÞ
and ΘðθÞ, given by Eqs. (37) and (38), the solution for the
Debye potential takes the form

Π
u
¼ 1

r

X∞
l¼0

Xl
m¼−l

μlRLðrÞ½PðmÞ
l ðcos θÞ�½am cosðmϕÞ

þ bm sinðmϕÞ� þO
�
r2g; k−2; rg

ω2
p

ω2

�
; ð71Þ

where L ¼ LðlÞ is given by Eq. (45) and μl, am, bm are
arbitrary and as yet unknown constants.
As we discussed earlier, no analytic solution to Eq. (42)

for RL in the case of an arbitrary form of the short-range
plasma potential Vsr is known. However, we may proceed
with solving Eq. (71) by relying on the eikonal approxi-
mation discussed in Sec. III B 2. For this, we notice that in
the plasma-free case (at the great heliocentric distances
beyond the termination shock), the entire plasma potential
Vp is absent, and thus L ¼ l. The solution to the Maxwell
field equations in this case is known and describes the
scattering of the EM waves by a gravitational monopole,
given in Ref. [21]. In that plasma-free case, to determine
the coefficients μl in Eq. (71), we choose RlðrÞ to be the
regular Coulomb wave function Flðkrg; krÞ, and we
require that the resulting EM field match the incident
Coulomb-modified plane EM wave.
As a result, in the vacuum, the solutions for the electric

and magnetic potentials of the incident wave, eΠ0 and mΠ0,
are found to be given in terms of a single potential Π0ðr; θÞ
(see Ref. [21] for details): 

eΠ0=
ffiffiffi
ϵ

p
mΠ0=

ffiffiffi
μ

p
!

¼
�
cosϕ

sinϕ

�
Π0ðr; θÞ;

whereΠ0ðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlFlðkrg; krÞ

× Pð1Þ
l ðcos θÞ þOðr2gÞ. ð72Þ

In other words, the incident EM wave is not affected by
the solar plasma, thus its form is identical to that of the free
wave propagating in gravity, discussed in Ref. [21].
Considering the plasma, we notice that, for large r, the

potential VsrðrÞ in Eq. (42) can be neglected in comparison
to the Coulomb potential UcðrÞ ¼ 2k2rg=r, and this
equation reduces to the Coulomb equation discussed in
Ref. [21] with the solution given by Eq. (72). The solution
of Eq. (42) that is regular at the origin can thus
be written asymptotically as a linear combination of the
regular and irregular Coulomb wave functions FLðkrg; krÞ
and GLðkrg; krÞ, respectively [49,50,62,63], which are
solutions of Eq. (42) in the absence of the potential
VsrðrÞ. Asymptotically, at large values of the argument
ðkrÞ, these functions behave as [21]

FLðkrg;krÞ∼ sin

�
kðrþ rg ln2krÞþ

LðLþ1Þ
2kr

−
πL
2
þσL

�
;

ð73Þ
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GLðkrg;krÞ∼cos

�
kðrþ rg ln2krÞþ

LðLþ1Þ
2kr

−
πL
2
þσL

�
:

ð74Þ

Since the Coulomb potential falls off more slowly than
the centrifugal potential [i.e., the LðLþ 1Þ=r2 term in
Eq. (42)] at large distances, it dominates the asymptotic
behavior of the effective potential in every partial wave.
Hence, we look for a solution satisfying the following
boundary conditions [63]:

RLðrÞ ∼
r→0

nrLþ1; ð75Þ

RLðrÞ ∼
r→∞

FLðkrg; krÞ þ tan δlGLðkrg; krÞ

∝
kr→∞

sin

�
kðrþ rg ln 2krÞ þ

LðLþ 1Þ
2kr

−
πL
2

þ σL þ δl

�
; ð76Þ

where n is a normalization factor and FLðkrg; krÞ and
GLðkrg; krÞ are solutions of Eq. (42) in the absence of the
potential VsrðrÞ, which, as we discussed above, are regular
and irregular at the origin, respectively. The real quantities
δlðkÞ introduced by these equations are the phase shifts for
spherically symmetric scattering [64] due to the short-range
potential VsrðrÞ [Eq. (41)] in the presence of the Coulomb
potential UcðrÞ ¼ 2k2rg=r in Eq. (42). We note that δlðkÞ
fully describes the non-Coulombic part of the scattering
and vanishes when this short-range potential is not present.
We generalized these expressions to the case where the
additional plasma potential has a 1=r2 term, which creates
an additional centrifugal potential in Eq. (42) that was
absorbed by the substitution l → L.
We can satisfy the conditions of Eqs. (75) and (76) by

choosing the function RLðrÞ as a linear combination of the
two solutions [Eq. (64)]. Oneway to do that is by relying on
the two solutions to Eq. (64) taken in the form of the
incoming and outgoing waves [65], which are given by the
functions H−

Lðkrg; krÞ and Hþ
L ðkrg; krÞ, correspondingly,

and to show explicit dependence on the eikonal phase shift,
ξbðrÞ, which can be captured in the following form:

RLðrÞ ¼
1

2i
ðHþ

L ðkrg; krÞeiξbðrÞ −H−
Lðkrg; krÞe−iξbðrÞÞ;

ð77Þ

where the Coulomb-Hankel functions Hð�Þ
L are related to

the Coulomb functions by H�
L ðkrg; krÞ ¼ GLðkrg; krÞ �

iFLðkrg; krÞ (for discussion, see Appendix A of Ref. [21]),
and their asymptotic behavior is given by (see Appendix F
of Ref. [21])

H�
L ðkrg; krÞ ∼

kr→∞
exp

�
�i

�
kðrþ rg ln 2krÞ þ

LðLþ 1Þ
2kr

−
πL
2

þ σL

��
: ð78Þ

Clearly, using the approach demonstrated in Appendix C
and especially Eq. (C19), this expression may be extended
to include terms with higher powers of 1=kr. In addition,
ξbðrÞ in Eq. (77) is the eikonal phase shift that is
accumulated by the EM wave starting from the point of
closest approach, r ¼ b. The expression for the quantity is
obtained directly from Eq. (66) by setting z0 ¼ 0 [or,
equivalently, from Eq. (70) by dropping the Q⋆

βi
term],

which results in

ξbðrÞ ¼ −
2πe2R⊙

mec2k

X
i>2

αi

�
R⊙

b

�
βi−1

Qβið
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
Þ: ð79Þ

The form of the radial function RL from Eq. (77) captures
our expectation that, in the presence of a potential VsrðrÞ
from Eq. (41), the Coulomb-Hankel functions [which
represent the radial free-particle wave function solutions
of the homogeneous equation (46)], become “distorted” by
this short-range potential. Clearly, Eq. (77) satisfies the radial
equation (42). We can verify that RL in the form of Eq. (77)
also satisfies the asymptotic boundary conditions in
Eqs. (75) and (76). Indeed, as the plasma potential exists
only for R⊙ ≤ r ≤ R⋆ [which is evident from Eq. (3)],
the eikonal phase ξb is zero for r < R⊙. Therefore, as r → 0,
the index L → l and the radial function (77) becomes
RLðrÞ → Flðkrg; krÞ, where the function Flðkrg; krÞ obeys
the condition (75). Next, we consider another limit, when
r → ∞. Using the asymptotic behavior ofH�

L from Eq. (78),
we see that, as r → ∞, the radial function obeys the
asymptotic condition (76), taking the form where the phase
shift δl is given by the eikonal phase ξb introduced by
Eq. (65). As a result, we have established that the radial
function (77) represents a desirable solution to Eq. (42)
inside the termination shock boundary, 0 ≤ r ≤ R⋆ and, of
course, it is a good choice for the radial function for the
region outside the Solar System, r > R⋆.
We may put the result [Eq. (77)] in the following

equivalent form:

RLðrÞ ¼ cos ξbðrÞFLðkrg; krÞ þ sin ξbðrÞGLðkrg; krÞ;
ð80Þ

which explicitly shows the phase shift, ξbðrÞ, induced by
the short-range plasma potential, clearly satisfying the
boundary condition (76) with the quantity ξbðrÞ from
Eq. (79) being the anticipated phase shift δlðkÞ.
In conjunction with Eq. (80), Eq. (71) describes the

potential inside the termination shock, r < R⋆. Outside the
termination shock, r > R⋆, we model the solution for

SLAVA G. TURYSHEV and VIKTOR T. TOTH PHYS. REV. D 99, 024044 (2019)

024044-12



the Debye potential, as usual, as a combination of that of a
Coulomb-modified plane wave and a scattered wave. These
two solutions must be consistent on the boundary—that is,
at r ¼ R⋆.
To match the potentials [Eq. (71)] inside the termination

shock with those of the incident and scattered waves
outside, the latter must be expressed in a similar form
but with arbitrary coefficients. Only the function
Flðkrg; krÞ may be used in the expression for the potential
inside the sphere (i.e., the termination shock boundary),
since Glðkrg; krÞ becomes infinite at the origin. On the
other hand, the scattered wave must vanish at infinity. The
Coulomb-Hankel functions Hþ

L ðkrg; krÞ impart precisely
this property. These functions are suitable as representa-
tions of scattered waves. For large values of the argument
kr, the result behaves as eikðrþrg ln 2krÞ, and the Debye
potential Π ∝ eikðrþrg ln 2krÞ=r for large r. Thus, at large
distances from the sphere, the scattered wave is spherical
(with the ln term in the phase due to the modification by the
Coulomb potential), with its center at the origin r ¼ 0.
Accordingly, we use it in the expression for the scattered
wave, i.e., in the trial solution for the Debye potentials of
the scattered wave for r > R⋆.
Collecting results for the functions ΦðϕÞ and ΘðθÞ,

given by Eqs. (37) and (38), respectively, and RLðrÞ ¼
Hþ

L ðkrg; krÞeiξbðrÞ from Eq. (64), to Oðr2g; rgω2
p=ω2Þ, we

obtain the Debye potential for the scattered wave:

Πs ¼ u
r

X∞
l¼0

Xl
m¼−l

alH
þ
L ðkrg; krÞeiξbðrÞ½PðmÞ

l ðcos θÞ�

× ½a0m cosðmϕÞ þ b0m sinðmϕÞ�; ð81Þ

where al, a0m, and b0m are arbitrary and as yet unknown
constants, and the relation between L and l is given
by Eq. (45).
Representing the potential inside the termination shock

via Flðkrg; krÞ is appropriate. The trial solution to Eq. (31)
for the electric and magnetic Debye potentials inside the
termination shock boundary (i.e., 0 ≤ r ≤ R⋆) relies on the
radial function RLðrÞ given by Eq. (80) and has the form

Πin ¼ u
r

X∞
l¼0

Xl
m¼−l

blfcos ξbðrÞFLðkrg; krÞ

þ sin ξbðrÞGLðkrg; krÞg½PðmÞ
l ðcos θÞ�

× ½am cosðmϕÞ þ bm sinðmϕÞ�; ð82Þ

where bl, am, and bm are arbitrary and yet unknown
constants.
The boundary (continuity) conditions mentioned in

Appendix A (see also the discussion in Ref. [38]), imposed
on the quantities (A34) at the termination shock boundary
r ¼ R⋆, using the electron plasma distribution [Eqs. (1)

and (3)] with n0 ¼ 0, and thus, with ϵðR⋆Þ ¼ μðR⋆Þ ¼ 1,
are written in full as

∂
∂r
�
reΠ0

u
þ reΠsffiffiffi

ϵ
p

u

�
r¼R⋆

¼ ∂
∂r
�
reΠinffiffiffi

ϵ
p

u

�
r¼R⋆

; ð83Þ

∂
∂r
�
rmΠ0

u
þ rmΠsffiffiffi

μ
p

u

�
r¼R⋆

¼ ∂
∂r
�
rmΠinffiffiffi

μ
p

u

�
r¼R⋆

; ð84Þ

�
reΠ0

u
þ reΠsffiffiffi

ϵ
p

u

�
r¼R⋆

¼
�
reΠinffiffiffi

ϵ
p

u

�
r¼R⋆

; ð85Þ

�
rmΠ0

u
þ

mΠsffiffiffi
μ

p
u

�
r¼R⋆

¼
�
rmΠinffiffiffi

μ
p

u

�
r¼R⋆

: ð86Þ

We now make use of the symmetry of the geometry of
the problem [38] by applying the boundary conditions
[Eqs. (83)–(86)]. We recall that we can use a single Debye
potential Π in Eqs. (81) and (82) to represent electric and
magnetic fields [Eq. (32)]. We find that the constants am
and bm for the electric Debye potentials are a1 ¼ 1, b1 ¼ 0,
and am ¼ bm ¼ 0 for m ≥ 2. For the magnetic Debye
potentials, we obtain a1 ¼ 0, b1 ¼ 1, and am ¼ bm ¼ 0
for m ≥ 2. The values are identical for a0m and b0m.
As a result, the solutions for the electric and magnetic

potentials of the scattered wave [for the region r > R⋆,
where, based on the plasma model (3), ϵ ¼ μ≡ 1], eΠs and
mΠs, may be given in terms of a single potential Πsðr; θÞ
(see Ref. [21] for details), which, to Oðr2gÞ, is given by

� eΠs
mΠs

�
¼
�
cosϕ

sinϕ

�
Πsðr; θÞ; ð87Þ

where Πsðr; θÞ ¼ u
r

P∞
l¼1 alH

þ
L ðkrg; krÞeiξbðrÞPð1Þ

l ðcos θÞ.
In a relevant scattering scenario, the EM wave and the

Sun are well separated initially, so the Debye potential
for the incident wave can be expected to have the same
form as for the pure plasma-free case that includes only
the Coulomb potential that is given by Eq. (72).
Therefore, the Debye potential for the inner region has
the form

� eΠin=
ffiffiffi
ϵ

p
mΠin=

ffiffiffi
μ

p
�

¼
�
cosϕ

sinϕ

�
Πinðr; θÞ; ð88Þ

with the potential Πin given, to Oðr2g; rgω2
p=ω2Þ, as

Πinðr; θÞ ¼
u
r

X∞
l¼1

blfcos ξbðrÞFLðkrg; krÞ

þ sin ξbðrÞGLðkrg; krÞgPð1Þ
l ðcos θÞ: ð89Þ

We thus expressed all the potentials in the series (71),
and any unknown constants can now be determined easily.
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If we now substitute the expressions (72), (87), (88), and
(89) into the boundary conditions (83)–(86), we obtain the
following linear relationships between the coefficients al
and bl:�
E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlF0

lðkrg; krÞ

þ alðHþ
L ðkrg; krÞeiξbðrÞÞ0

�
r¼R⋆

¼ blR0
LðrÞr¼R⋆ ; ð90Þ

�
E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlFlðkrg; krÞ

þ alH
þ
L ðkrg; krÞeiξbðrÞ

�
r¼R⋆

¼ blRLðrÞr¼R⋆ ; ð91Þ

where RLðrÞ is from Eq. (80) and 0 ¼ d=dr. From the
definition of the eikonal phase [Eq. (65)], we see that

ξ0bðR⋆Þ≡ ξ0bðrÞjr¼R⋆ ¼ −
1

2k
VsrðrÞjr¼R⋆ ¼ 0: ð92Þ

For the electron plasma distribution [Eqs. (1) and (3)],
especially with the values taken from the phenomeno-
logical model (4), the value ξ0bðR⋆Þ is extremely small and
may be neglected. We now define, for convenience, αl and
βl as

al ¼ E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlαl;

bl ¼ E0

k2
il−1

2lþ 1

lðlþ 1Þ e
iσlβl: ð93Þ

From Eqs. (90) and (91), we have

F0
lðR⋆Þ þ αlH

þ
L
0ðR⋆ÞeiξbðR⋆Þ ¼ βlR0

LðR⋆Þ; ð94Þ

FlðR⋆Þ þ αlH
þ
L ðR⋆ÞeiξbðR⋆Þ ¼ βlRLðR⋆Þ; ð95Þ

where FlðR⋆Þ¼Flðkrg;kR⋆Þ andHþ
L ðR⋆Þ¼Hþ

L ðkrg;kR⋆Þ,
with similar definitions for the derivatives of these func-
tions. Equations (94) and (95) may now be solved to
determine the two sets of coefficients αl and βl:

αl ¼ e−iξbðR⋆Þ FlðR⋆ÞR0
LðR⋆Þ − F0

lðR⋆ÞRLðR⋆Þ
RLðR⋆ÞHþ

L
0ðR⋆Þ − R0

LðR⋆ÞHþ
L ðR⋆Þ

; ð96Þ

βl ¼ FlðR⋆ÞHþ0
LðR⋆Þ − F0

lðR⋆ÞHþ
L ðR⋆Þ

RLðR⋆ÞHþ
L
0ðR⋆Þ − R0

LðR⋆ÞHþ
L ðR⋆Þ

: ð97Þ

Taking into account the asymptotic behavior of all the
functions involved: namely, Eq. (78) for Hþ

L and Eqs. (73)
and (74) for FL and GL, we have the following solution for
the coefficients αl and βl:

αl ¼ sin δ⋆l; βl ¼ eiδ
⋆
l ; ð98Þ

where δ⋆l ¼ − π
2
ðL − lÞ þ σL − σl þ ξ⋆b, with ξ⋆b ¼ ξbðR⋆Þ

and δ�l being the phase shift induced by the plasma to
the phase of the EM wave propagating through the
Solar System, as measured at the termination shock,
δ�l ¼ δlðR⋆Þ.
As expected, when the plasma is absent, L ¼ l and

ξb ¼ 0, the total plasma phase shift vanishes, resulting in
δl ¼ 0. However, in the case of scattering by the plasma,
ξ�b ¼ ξbðR⋆Þ ≠ 0, and δl is important. Also, for large
heliocentric distances along the incident direction, for
which r ≫ b, and certainly for the region outside the
termination shock, r > R⋆, the eikonal phase shift
ξ⋆b ¼ ξbðR⋆Þ, given by Eq. (79), together with Eq. (68), is

ξ⋆b ≈ −
2πe2R⊙

mec2k

X
i>2

αiQ⋆
βi

�
R⊙

b

�
βi−1

; ð99Þ

which, for any given b, is a constant value. In the case when
μ=l ≪ 1 and Eq. (45) is valid, the expression (98) for the
plasma-induced delay, to Oðμ4Þ, takes the form (see
Ref. [20] for a similar discussion):

δ⋆l ¼ −
π

2

μ2

2l
þ σL − σl þ ξ⋆b: ð100Þ

We can evaluate the contribution of the plasma to the
phase of the EM wave as the wave traverses the Solar
System. In the case of the electron number density model
[Eq. (4)] and from Eq. (98), the plasma phase shift δ�l in
Eq. (100) is given as

δ�l ¼ σL − σl − η2
R⊙

b
− η6Q⋆

6

�
R⊙

b

�
5

− η16Q⋆
16

�
R⊙

b

�
15

þ � � � ; ð101Þ

with η2, η6, and η16 having the form

η2 ¼
π

2

2πe2R⊙

mec2k
α2; η6 ¼

2πe2R⊙

mec2k
α6;

η16 ¼
2πe2R⊙

mec2k
α16; ð102Þ

where, to derive the expression for η2, we used μ2 from
Eq. (41) and approximated Eq. (98) for the case of μ=l ≪ 1
by using Eq. (45) with Q⋆

βi
in the incident direction as

given by Eq. (68). Note that this approach results in the
additional factor of π=2 [which came from the first term in
Eq. (98)] that is characteristic to the eikonal approximation
(see discussion in Refs. [49,50]). To derive η6 and η16,
we used Eq. (99). The empirical model for the free electron
number density in the solar corona [Eq. (4)] results in the
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following values for the constants η2, η6, and η16 in
Eq. (102):

η2 ¼ 1.06

�
λ

1 μm

�
; η6 ¼ 303.87

�
λ

1 μm

�
;

η16 ¼ 586.17

�
λ

1 μm

�
: ð103Þ

Beyond b ≃ 3.65R⊙, the contribution from the η2 term
rapidly becomes dominant. However, for small impact
parameters characteristic for imaging with the SGL, the
plasma phase shift is driven by the terms with larger powers
of R⊙=b in the free electron number density model of the
solar corona [Eq. (4)].
Therefore, using the value for al from Eq. (93), together

with αl from Eq. (98), we determine that the solution for
the scattered potential (87) for r > R⋆ takes the form

Πsðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσl sin δ⋆lHþ

L ðkrg; krÞ

× eiξ
⋆
bPð1Þ

l ðcos θÞ: ð104Þ

Next, using the asymptotic behavior of HðþÞ
L from

Eq. (78) together with the expression for the phase shift
δ⋆l [Eq. (98)], we notice that at large distances from the
Sun, the following relation exists: Hþ

L ðkrg; krÞeiξ
⋆
b ≈

Hþ
l ðkrg; krÞeiδ

�
l þOðμ2=2krÞ, which allows us to present

Eq. (104) as

Πsðr; θÞ ¼
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlHþ

l ðkrg; krÞ

× ðe2iδ⋆l − 1ÞPð1Þ
l ðcos θÞ: ð105Þ

In the region outside the termination shock, r > R⋆, we
may take the asymptotic form for the Coulomb-Hankel
function and present Eq. (105) as

Πsðr; θÞ ¼ −
E0

2k2
u
r
eikðrþrg ln 2krÞ

X∞
l¼1

2lþ 1

lðlþ 1Þ
× eið2σlþ

lðlþ1Þ
2kr Þðe2iδ⋆l − 1ÞPð1Þ

l ðcos θÞ: ð106Þ

As a result, using Eqs. (72) and (105), we present the
Debye potential in the region outside the termination shock
boundary, r > R⋆, in the following form:

Πoutðr;θÞ ¼Π0ðr;θÞþΠsðr;θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ

× eiσl
�
Flðkrg;krÞþ

1

2i
ðe2iδ⋆l − 1ÞHþ

l ðkrg;krÞ
�

×Pð1Þ
l ðcosθÞ: ð107Þ

Similarly, substituting the value for bl from Eq. (93),
together with βl from Eq. (98), we determine the solution
for the inner Debye potential (98) in the form

Πinðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ
× eiðσlþδlÞfcos ξbðrÞFLðkrg; krÞ
þ sin ξbðrÞGLðkrg; krÞgPð1Þ

l ðcos θÞ: ð108Þ

As solar gravity is rather weak, we may use the
asymptotic expressions for FL, GL, and H�

L for r ≥ R⊙.
Therefore, the radial function RLðrÞ from Eq. (77) [or,
equivalently, from Eq. (80)] in the region of heliocentric
distances R⊙ ≤ r ≤ R⋆, may be given as

RLðrÞ ¼
1

2i

�
Hþ

L ðkrg; krÞeiξbðrÞ −H−
Lðkrg; krÞe−iξbðrÞ

�

≃ e−iδlðrÞ
�
Flðkrg; krÞ þ

1

2i
ðe2iδlðrÞ − 1Þ

×Hþ
l ðkrg; krÞ

�
; ð109Þ

where δlðrÞ has the form given by Eq. (98) where the
eikonal phase at the termination shock ξb ¼ ξbðR⋆Þ is
replaced with its original form [Eq. (66)] that depends on
the heliocentric distance, namely ξb ¼ ξbðrÞ, thus

δlðrÞ ¼ −
π

2
ðL − lÞ þ σL − σl þ ξbðrÞ: ð110Þ

Similarly to Eq. (100), in the case when μ=l ≪ 1 and
Eq. (45) is valid, expression (110), to orderOðμ4Þ, takes the
form

δlðrÞ ¼ −
π

2

μ2

2l
þ σL − σl þ ξbðrÞ: ð111Þ

Thus, in the eikonal approximation, distance dependence
in the plasma delay comes from the terms in the short-
range plasma potential Vsr for which i > 2. The term with
i ¼ 2 [i.e., the first term in Eqs. (100) and (111)] provides
no distance dependence. The physical interpretation of
this observation follows, in part, from Eq. (4). It can be
seen that near the solar surface, b≳ R⊙, the potential is
dominated by terms containing higher powers of ðR⊙=rÞ.
The inverse square term contributes an approximately
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uniform background potential that, at these small helio-
centric ranges, is several orders of magnitude smaller
compared to the other terms (see Fig. 1). This 1=r2 term
becomes dominant only at greater distances from the Sun,
where Vsr is several orders of magnitude smaller than it is
near the solar surface.
As a result, outside the Sun, we may present Eq. (108) in

the following equivalent form:

Πinðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞ

×

�
Flðkrg; krÞ þ

1

2i
ðe2iδlðrÞ − 1ÞHþ

l ðkrg; krÞ
�

× Pð1Þ
l ðcos θÞ: ð112Þ

With the plasma model [Eq. (3)], the phase shift vanishes
inside the Sun, δl ¼ 0, and Eq. (112) reduces to the
plasma-free solution [Eq. (72)]. As a result, the solution
for the Debye potential, Πðr; θÞ from Eq. (112), describing
the propagation of the EM wave in the Solar System on the
background of the static gravitational monopole and a
steady-state, spherically symmetric plasma distribution,
takes the form

Πinðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞ

× Flðkrg; krÞPð1Þ
l ðcos θÞ þ E0

2ik2
u
r

X∞
l¼1

il−1

×
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞðe2iδlðrÞ − 1ÞHðþÞ

l

× ðkrg; krÞPð1Þ
l ðcos θÞ þO

�
r2g; rg

ω2
p

ω2

�
:

ð113Þ
Note that this solution is valid, in principle, even inside

the opaque Sun. Indeed, because of the plasma model
[Eqs. (1) and (3)], the phase shift vanishes, δl ¼ 0, and
Eq. (112) reduces to the plasma-free solution [Eq. (72)].
The first term in Eq. (112) is the Debye potential of an EM

wave propagating in a vacuum, but modified by the plasma
in the Solar System. The second term represents the effect
of the solar plasma on the propagation of the EM waves
inside the termination shock, 0 < r ≤ R⋆. Notice that, as the
distance increases, this term approaches the form of the
Debye potential Πs for the scattered EM field given by
Eq. (106). Proper accounting for such a dependence makes it
possible to compare high-precision observations conducted
from different locations within the Solar System.
Thus, we have identified all the Debye potentials

involved in the Mie problem [45]—namely, the potential
Π0 given by Eq. (72) representing the incident EM field, the
potential Πs from Eq. (106) describing the scattered

EM field outside the termination shock, r > R⋆, and the
potential Πin from Eq. (112) describing it inside the
termination shock, 0 < r ≤ R⋆.

IV. GENERAL SOLUTION FOR THE EM FIELD
OUTSIDE THE TERMINATION SHOCK

To describe the scattering of light by the extended solar
corona, we use solutions for the Debye potential represent-
ing the scattered EM wave [Eq. (106)], and the EM wave
inside the termination shock boundary [Eq. (113)]. The
presence of the Sun itself is not yet captured. For this, we
need to set additional boundary conditions that describe the
interaction of the Sun with the incident radiation. Similarly
to Refs. [20,21], we apply the fully absorbing boundary
conditions that represent the physical size and the surface
properties of the Sun [24].
We begin with the area that lies outside the termination

shock where three regions are present, namely (i) the
shadow region, (ii) the geometric optics region, and (iii) the
interference region. Clearly, as far as imaging with the SGL
is concerned, the interference region is of most importance.
This is where the SGL focuses light coming from a distant
object, forming an image.

A. Fully absorbing boundary conditions

Boundary conditions representing the opaque Sun were
introduced in Ref. [39] and were used in Refs. [20,21].
Here we use these conditions again. Specifically, to set the
boundary conditions, we rely on the semiclassical analogy
between the partial momentum, l, and the impact param-
eter, b, that is given as l ¼ kb [47,48].
To set the boundary conditions, we require that rays

with impact parameters b ≤ R⋆
⊙ ¼ R⊙ þ rg be completely

absorbed by the Sun [21]. Thus, the fully absorbing
boundary condition signifies that all the radiation intercepted
by the body of the Sun is fully absorbed by it, and no
reflection or coherent reemission occurs. All intercepted
radiation is transformed into some other forms of energy,
notably heat. Thus, we require that no scattered waves exist
with impact parameter b ≪ R⋆

⊙ or, equivalently, for
l ≤ kR⋆

⊙. Such formulation relies on the concept of the
semiclassical impact parameter b and its relationship with
the partial momentum, l, as l ¼ kb. (A relevant discussion
on this relation between l and b is on p. 29 of Ref. [64] with
reference to Ref. [66].) In terms of the boundary conditions,
this means that we need to subtract the scattered waves from
the incident wave for l ≤ kR⋆

⊙, as was discussed in
Ref. [21]. Furthermore, as was shown in Ref. [24], the fully
absorbing boundary conditions introduce a fictitious EM
field that precisely compensates the incident field in the area
behind the Sun. This area has the shape of a rotational
hyperboloid that starts directly at the solar surface behind
the Sun and extends to the vertex of the hyperboloid at
z0 ¼ R2

⊙=2rg ≃ 547.8 AU.
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B. The Debye potential for the region outside
the termination shock

To implement the boundary conditions for the EM wave
outside the termination shock, we realize that the total EM
field in this region is given as the sum of the incident and
scattered waves, Π ¼ Π0 þ Πs, with these two potentials
given by Eqs. (72) and (106), correspondingly. Also, using
the asymptotic behavior of Hþ

L from Eq. (78) and with the
help of expression (98) for the phase shift δ⋆l, we notice
that at large distances from the Sun we can write
Hþ

L ðkrg; krÞeiξ
⋆
b ≈Hþ

l ðkrg; krÞeiδ
�
l þOðμ2=2krÞ [similar

to the terms used in the derivations of Eq. (109)].
Accordingly, we use Eq. (107), which represents the

Debye potential in the region r > R⋆ and is given as

Πðr;θÞ ¼ Π0ðr;θÞ þΠsðr;θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ

× eiσl
�
Flðkrg; krÞ þ

1

2i
ðe2iδ⋆l − 1ÞHþ

l ðkrg; krÞ
�

×Pð1Þ
l ðcosθÞ: ð114Þ

Next, relying on the representation of the regular
Coulomb function Fl via incoming, Hþ

l , and outgoing,
H−

l , waves as Fl ¼ ðHþ
l −H−

l Þ=2i [discussed in Ref. [21]
and also by the expression given after Eq. (77)], we may
express the Debye potential (114) as

Πðr; θÞ ¼ E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ
× eiσl

n
e2iδ

⋆
lHþ

l ðkrg; krÞ −H−
l ðkrg; krÞ

o
× Pð1Þ

l ðcos θÞ: ð115Þ

This form of the combined Debye potential is convenient
for implementing the fully absorbing boundary conditions
discussed in Sec. IVA. Specifically, subtracting from
Eq. (115) the outgoing wave (i.e., ∝ HðþÞ

l ) for the impact
parameters b ≤ R⋆

⊙, or equivalently for l ∈ ½1; kR⋆
⊙�, we

have

Πðr;θÞ¼ E0

2ik2
u
r

X∞
l¼1

il−1
2lþ1

lðlþ1Þ
×eiσl

n
e2iδlHþ

l ðkrg;krÞ−H−
l ðkrg;krÞ

o
Pð1Þ
l ðcosθÞ

−
E0

2ik2
u
r

XkR⋆
⊙

l¼1

il−1
2lþ1

lðlþ1Þ
×eiσle2iδ

⋆
lHþ

l ðkrg;krÞPð1Þ
l ðcosθÞ; ð116Þ

or, equivalently, coming back to the form in Eq. (114),

Πðr; θÞ ¼ Π0ðr; θÞ þ
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ
× eiσlðe2iδ⋆l − 1ÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ

−
E0

2ik2
u
r

XkR⋆
⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ
× eiσle2iδ

⋆
lHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ: ð117Þ

This is our main result, valid for all distances outside
the termination shock r > R⋆ and all angles. It is a rather
complex expression. It requires the tools of numerical
analysis to fully explore its behavior and the resulting EM
field [64,66,67]. However, in most practically important
applications, we need to know the field in the forward
direction. Furthermore, our main interest is to study the
largest plasma impact on light propagation, which corre-
sponds to the smallest values of the impact parameter. In
this situation, we may simplify the result (117) by taking
into account the asymptotic behavior of the function
Hþ

l ðkrg; krÞ, considering the field at large heliocentric
distances, such that kr ≫ l, where l is the order of the
Coulomb function (see p. 631 of Ref. [68]). For kr → ∞,
and also for r ≫ rt ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp
=k (see Refs. [20,21]),

such an expression is given in the form [Eq. (C19)]

lim
kr→∞

Hþ
l ðkrg; krÞ ∼ exp

�
i

�
kðrþ rg ln 2krÞ þ

lðlþ 1Þ
2kr

þ ½lðlþ 1Þ�2
24k3r3

þ σl −
πl
2

��
þOððkrÞ−5; r2gÞ; ð118Þ

which includes the contribution from the centrifugal poten-
tial in the radial equation (39) (see, e.g., Appendix C,
Appendix A in Ref. [25], or Ref. [67]). In fact, expression
(118) extends the argument of Eq. (78) to shorter distances,
closer to the turning point of the potential (see the relevant
discussion in Appendix F of Ref. [21]). By including the
extended centrifugal term in Eq. (118) [i.e., shown by the
terms with various powers of lðlþ 1Þ=2kr], we can now
better describe the bending of the trajectory of a light ray
under the combined influence of gravity and plasma. [We
note that in Eq. (C19), we omit the amplitude factor aðlÞ
given by Eq. (154). Outside the Sun, the argument of this
factor is very small, resulting in aðlÞ ≈ 1. Also, one may
verify that any derivative of this term produces a con-
tribution to the amplitude of the EM wave that is 1=kr
times smaller compared to the leading terms, which is
negligible.]
As a result, we may take the approximate behavior ofHþ

l
given by Eq. (118) and use it in Eq. (117) to present the
solution for the Debye potential outside the termination
shock, r > R⋆, in the following form:

DIFFRACTION OF LIGHT BY THE GRAVITATIONAL … PHYS. REV. D 99, 024044 (2019)

024044-17



Πðr; θÞ ¼ Π0ðr; θÞ þ
ueikðrþrg ln 2krÞ

r

(
E0

2k2
XkR⋆

⊙

l¼1

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

ÞPð1Þ
l ðcos θÞ

−
E0

2k2
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þðei2δ⋆l − 1ÞPð1Þ
l ðcos θÞ

)
þO

�
r2g; rg

ω2
p

ω2

�

¼ Π0ðr; θÞ þ Πbcðr; θÞ þ Πpðr; θÞ: ð119Þ

The first term in Eq. (119), Π0ðr; θÞ, is the Debye
potential, which represents the incident EM wave propa-
gating in the vacuum on the background of a post-
Newtonian gravity field produced by a gravitational mass
monopole. The solution for Π0ðr; θÞ is known and is given
by Eq. (72) in the form of an infinite series with respect to
partial momenta, l. For practical purposes, however, it is
convenient to use an exact expression for Π0, which was
derived in Ref. [21] in the form

Π0ðr; θÞ ¼ −ψ0

iu
k
1 − cos θ
sin θ

×
	
eikz1F1½1þ ikrg; 2; ikrð1 − cos θÞ�

− e−ikr1F1½1þ ikrg; 2; 2ikr�


; ð120Þ

where the constant for ψ0 is given by

ψ2
0 ¼ E2

02πkrg=ð1 − e−2πkrgÞ: ð121Þ

Equation (120) gives the Debye potential of the plasma-
free wave in terms of the confluent hypergeometric
function. This solution is always finite and is valid for
any angle θ. It allows one to describe the EM field in the
interference region of the SGL, and thus to develop the
wave-optical treatment of the lens.
The EM field of the incident wave outside the interfer-

ence region is derived from Eq. (120) with the help of the
asymptotic expansion of the hypergeometric functions

1F1½1þ ikrg; 2; ikrð1 − cos θÞ� and 1F1½1þ ikrg; 2; 2ikr�
at large values of the argument kðr − zÞ ≫ 1 (see Ref. [21]
for details). This approach allows one to compute the
asymptotic behavior of the Debye potential Π0 from
Eq. (120) as

Π0ðr;θÞ¼E0

u
k2rsinθ

�
eikðrcosθ−rg lnkrð1−cosθÞÞ

−eikðrþrg lnkrð1−cosθÞÞþ2iσ0

−
1

2
ð1−cosθÞðe−ikðrþrg ln2krÞ

−eikðrþrg ln2krÞþ2iσ0ÞþO
�
ikr2g
r− z

��
; ð122Þ

where we have introduced the constant σ0 ¼ argΓ
ð1 − ikrgÞ, which for large values of krg → ∞ is given
as [21]

e2iσ0 ¼ Γð1 − ikrgÞ
Γð1þ ikrgÞ

¼ e−2ikrg lnðkrg=eÞ−i
π
2ð1þOððkrgÞ−1ÞÞ:

ð123Þ

The second term in Eq. (119), Πbcðr; θÞ, is due to
the physical obscuration introduced by the Sun and was
derived by applying the fully absorbing boundary con-
ditions. This term is responsible for the geometric shadow
behind the Sun.
The third term in Eq. (119), Πpðr; θÞ, quantifies the

contribution of the solar plasma to the scattering of the EM
as it moves through the Solar System, and evaluated at the
distance r > R⋆. Because of the plasma model [Eqs. (1)
and (3)], the last sum in Eq. (119) formally extends only to
l ¼ kR⋆, corresponding to the impact parameter equal
to the distance to the termination shock. As expected, for
r > R⋆, the phase shift δl ¼ 0, and the entire plasma-
scattered term vanishes.
With the solution for the Debye potential given by

Eq. (119), and with the help of Eqs. (19)–(24) (also see
Ref. [21]), we may now compute the EM field in the
various regions involved. Given the smallness of the ratio
ðωp=ωÞ2 (∼10−2 for radio and ∼ × 10−11 for optical
wavelengths), we may neglect the distance-dependent
effect of the solar plasma on the amplitude of the EM
wave. This is especially true at large heliocentric distances,
where the effect of the plasma, behaving as ∝ 1=r2, on the
amplitude of the EM wave is negligibly small. [If one
decides to account for the plasma effect on the amplitude of
the EM wave using Eqs. (19)–(24), one would get terms
that are 1=ðkrÞ times smaller than the leading terms in those
expressions. Thus, any derivatives of the plasma-dependent
terms present in the amplitude of these terms would provide
negligible contributions.] Thus, the plasma affects the delay
of the EM wave and is fully accounted for by the solution
for the Debye potentials. Therefore, we can set ϵ ¼ μ ¼ 1
in Eqs. (19)–(24) and use the following expressions to
construct the EM field in the static, spherically symmetric
geometry (see details in Ref. [21]):
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�
D̂r

B̂r

�
¼
�
cosϕ

sinϕ

�
e−iωtαðr; θÞ;

�
D̂θ

B̂θ

�
¼
�
cosϕ

sinϕ

�
e−iωtβðr; θÞ;

�
D̂ϕ

B̂ϕ

�
¼
�− sinϕ

cosϕ

�
e−iωtγðr; θÞ; ð124Þ

with the quantities α, β, and γ computed from the known
Debye potential, Π, as

αðr; θÞ ¼ 1

u

� ∂2

∂r2
�
rΠ
u

�
þ k2u4

�
rΠ
u

��
þO

��
1

u

�00�
;

ð125Þ

βðr; θÞ ¼ 1

u2r
∂2ðrΠÞ
∂r∂θ þ ikðrΠÞ

r sin θ
; ð126Þ

γðr; θÞ ¼ 1

u2r sin θ
∂ðrΠÞ
∂r þ ik

r
∂ðrΠÞ
∂θ : ð127Þ

This completes the solution for the Debye potentials
on the background of a spherically symmetric, static
gravitational field of the Sun and steady-state, spherically
symmetric solar plasma distribution. We will use
Eqs. (124)–(127) to compute the relevant EM fields.

C. EM field in the shadow region

In the shadow behind the Sun (i.e., for impact parameters
b ≤ R⋆

⊙), the EM field is represented by the Debye potential
of the shadow, Πsh, which is given as

Πshðr; θÞ ¼ Π0ðr; θÞ þ
ueikðrþrg ln 2krÞ

r
E0

2k2
XkR⋆

⊙

l¼1

2lþ 1

lðlþ 1Þ

× eið2σlþ
lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
ÞPð1Þ

l ðcos θÞ

þO
�
r2g; rg

ω2
p

ω2

�
; ð128Þ

where Π0ðr; θÞ is well represented by Eq. (122). As
discussed in Refs. [21,24], the potential (128) produces
no EM field. In other words, there is no light in the shadow.
Furthermore, as the solar boundary is rather diffuse, there is
expectation for the Poisson-Arago bright spot to be formed
in this region.

D. EM field outside the shadow

In the region behind the Sun but outside the solar
shadow (i.e., for light rays with impact parameters
b > R⊙), which includes both the geometric optics and
the interference regions (in the immediate vicinity of the
focal line), the EM field is derived from the Debye

potential given by the remaining terms in Eq. (119) to
the order of Oðr2g; rgω2

p=ω2Þ as

Πðr; θÞ ¼ Π0ðr; θÞ −
ueikðrþrg ln 2krÞ

r
E0

2k2
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ

× eið2σlþ
lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þðei2δ⋆l − 1ÞPð1Þ

l ðcos θÞ;
ð129Þ

where, for the geometric optics region, the potential
Π0ðr; θÞ is well represented by Eq. (122), while for the
interference region, one must use the exact form of
Π0ðr; θÞ given by Eq. (120).
Expression (129) is our main result for the regions

outside the termination shock, r > R⋆, and also outside
the shadow region, i.e., b ≥ R⋆

⊙. It contains all the infor-
mation needed to describe the total EM field originating
from an incident Coulomb-modified plane wave that passes
through the region of the steady-state spherically symmet-
ric plasma of the extended solar corona, characterized by
an electron number density [Eq. (3)] that diminishes as r−2

or faster.
To evaluate the total solution for the Debye potential

[Eq. (129)], we present it in the following compact form:

Πðr; θÞ ¼ Π0ðr; θÞ þ E0fpðr; θÞ
ueikðrþrg ln 2krÞ

r
; ð130Þ

where the plasma scattering amplitude fpðr; θÞ is given by

fpðr; θÞ ¼ −
1

2k2
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þ

× ðei2δ⋆l − 1ÞPð1Þ
l ðcos θÞ þO

�
r2g; rg

ω2
p

ω2

�
:

ð131Þ

We note that because of the contribution from the
centrifugal potential in Eq. (118), the scattering amplitude
fpðr; θÞ is now also a function of the heliocentric distance
[20]. This is not the case in typical problems describing
nuclear and atomic scattering [47,48,51,69]. However, as
we observed in Refs. [20,21,25], when we are interested in
the trajectories of light rays, the presence of such depend-
ence and especially the ∝ 1=r term in the phase of the
scattering amplitude [Eq. (131)] allows us to properly
describe the bending of the light rays in the presence of
gravity together with the contrition from the dispersive
medium introduced by the solar plasma.
As a result, the Debye potential for the plasma-scattered

wave outside the termination shock takes the form
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Πpðr; θÞ ¼ E0fpðr; θÞ
ueikðrþrg ln 2krÞ

r
; ð132Þ

with the plasma scattering amplitude fpðr; θÞ given by
Eq. (131). We use these expressions to derive the compo-
nents of the EM field produced by this wave. For this, we
substitute Eqs. (132) and (131) in the expressions (125)–
(127) to derive the factors αðr; θÞ, βðr; θÞ, and γðθÞ, which
to the order of Oðr2g; rgðω2

p=ω2Þ; ðkrÞ−5Þ are computed
to be

αðr;θÞ¼−E0

eikðrþrg ln2krÞ

uk2r2
X∞

l¼kR⋆
⊙

�
lþ1

2

�
eið2σlþ

lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þ

× ðei2δ�l −1ÞPð1Þ
l ðcosθÞ

�
u2þðu2−1Þlðlþ1Þ

4k2r2

þ i
kr

�
1þlðlþ1Þ

2k2r2

�
−

ikrg
lðlþ1Þ

�
; ð133Þ

βðr;θÞ¼E0

ueikðrþrg ln2krÞ

ikr

X∞
l¼kR⋆

⊙

lþ 1
2

lðlþ1Þe
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þ

× ðei2δ�l −1Þ
�∂Pð1Þ

l ðcosθÞ
∂θ

�
1−u−2

�
lðlþ1Þ
2k2r2

þ½lðlþ1Þ�2
8k4r4

�
þ irg
2kr2

�
þPð1Þ

l ðcosθÞ
sinθ

�
; ð134Þ

γðr;θÞ¼E0

ueikðrþrg ln2krÞ

ikr

X∞
l¼kR⋆

⊙

lþ 1
2

lðlþ1Þe
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þ

× ðei2δ�l −1Þ
�∂Pð1Þ

l ðcosθÞ
∂θ þPð1Þ

l ðcosθÞ
sinθ

×

�
1−u−2

�
lðlþ1Þ
2k2r2

þ½lðlþ1Þ�2
8k4r4

�
þ irg
2kr2

��
:

ð135Þ

This is an important result, as it allows us to describe
the EM field in all the regions of interest for the SGL,
namely the geometric optics region and the interference
region.

V. EM FIELD IN THE GEOMETRIC
OPTICS REGION

We continue our discussion by deriving the EM field in
the geometric optics region outside the termination shock,
which we call the exterior geometric optics region (as
opposed to the interior geometric optics region, which is
situated inside the termination shock). Specifically, we are
interested in the area behind the Sun located at heliocentric
distances r > R⋆ that are reachable by the light rays whose
impact parameters are b > R⋆

⊙. In addition, the exterior
geometric optics region is situated outside the focal region

of the SGL with angles θ satisfying the condition θ ≫ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
[21].

We note that outside the Sun, the ratio rg=r ≤ 4.25 ×
10−6R⊙=r ≪ 1 is very small. As a result, for r > R⋆ we
may treat uðrÞ ¼ 1 and neglect the contribution from
derivatives of uðrÞ to the amplitude of the scattered EM
wave in Eqs. (133)–(135). Nevertheless, we keep them
for the purposes of verification and internal consistency
checks.

A. Solution for the function αðr;θÞ and the radial
components of the EM field

We begin with the investigation of αðr; θÞ given by
Eq. (133). We first note that in the case of large partial
momenta l and large angles θ, namely l ≥ kR⋆

⊙ and
θ ≫

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, the last two terms in the curly braces in this

expression, behaving as ∝ i=kr and ikrg=lðlþ 1Þ, are
very small compared to the two leading terms, and thus
they may be neglected. (A similar conclusion was reached
in Ref. [20].) As a result, we obtain the following
expression for αðr; θÞ:

αðr;θÞ ¼ −
E0u
k2r2

eikðrþrg ln2krÞ
X∞

l¼kR⋆
⊙

�
lþ 1

2

�

×

�
1þ rg

r
lðlþ 1Þ
4k2r2

�
eið2σlþ

lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þ

× ðei2δ�l − 1ÞPð1Þ
l ðcosθÞ þO

�
r2g; rg

ω2
p

ω2
; ðkrÞ−5

�
:

ð136Þ

To evaluate expression (136) in the region of geometric
optics, and thus, for θ ≫

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, we use the asymptotic

representation for Pð1Þ
l ðcos θÞ from Refs. [40,67,70], valid

when l → ∞:

Pð1Þ
l ðcos θÞ ¼ −lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πl sin θ
p ðeiðlþ1

2
Þθþiπ

4 þ e−iðlþ1
2
Þθ−iπ

4Þ

þOðl−3
2Þ for 0 < θ < π: ð137Þ

This approximation can be used to transform Eq. (136) as

αðr; θÞ ¼ E0u
k2r2

eikðrþrg ln 2krÞ
X∞

l¼kR⋆
⊙

ðlþ 1
2
Þ ffiffiffi

l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p

×

�
1þ rg

r
lðlþ 1Þ
4k2r2

�
eið2σlþ

lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þ

× ðei2δ�l − 1Þðeiðlθþπ
4
Þ þ e−iðlθþπ

4
ÞÞ

þO
�
r2g; rg

ω2
p

ω2
; ðkrÞ−5

�
: ð138Þ
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We recognize that for large l ≥ kR⋆
⊙, we may replace

lþ 1 → l and lþ 1
2
→ l. At this point, we may replace

the sum in Eq. (138) with an integral:

αðr;θÞ ¼ E0u
k2r2

eikðrþrg ln2krÞ
Z

∞

l¼kR⋆
⊙

l
ffiffiffi
l

p
dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sinθ
p

�
1þ rg

r
l2

4k2r2

�

× eið2σlþ
l2
2krþ l4

24k3r3
Þðei2δ�l − 1Þðeiðlθþπ

4
Þ þ e−iðlθþπ

4
ÞÞ;

ð139Þ

and we evaluate this integral by the method of stationary
phase (see Refs. [21,39]). This method allows us to
evaluate integrals of the type

I ¼
Z

AðlÞeiφðlÞdl; l ∈ R; ð140Þ

where the amplitude AðlÞ is a slowly varying function of l,
while φðlÞ is a rapidly varying function of l. The integral
(140) may be replaced, to good approximation, with a
sum over the points of stationary phase, l0 ∈ fl1;2;…g, for
which dφ=dl ¼ 0. Defining φ00 ¼ d2φ=dl2, we obtain the
integral

I ≃
X

l0∈fl1;2;…g
Aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
eiðφðl0Þþπ

4
Þ: ð141Þ

Because the scattering term ðei2δ�l − 1Þ in Eq. (139)
provides two contributions to the overall expression, each
with a different phase, we treat the integral (139) as the sum
of two integrals: one with the contribution from the plasma
phase shift 2δ⋆l, and one without it. To demonstrate our
approach, we begin with the plasma-free term in Eq. (139).

1. Evaluating the plasma-free term

For the term in Eq. (139) that does not contain the plasma
phase shift, 2δ⋆l, the relevant l-dependent part of the phase
is of the form [20]

φ½0�
� ðlÞ¼�

�
lθþπ

4

�
þ2σlþ

l2

2kr
þ l4

24k3r3
þOððkrÞ−5Þ:

ð142Þ

We recall that the Coulomb phase shift σl has the form
[21,24,60]

σl ¼ σ0 −
Xl
j¼1

arctan
krg
j

; σ0 ¼ argΓð1 − ikrgÞ;

ð143Þ

where σ0 was evaluated in Ref. [21] to be

σ0 ¼ −krg ln
krg
e

−
π

4
: ð144Þ

We may replace the sum in Eq. (143) with an integral and,
for l ≫ krg, evaluate σl as [24]

σl ¼ −krg lnl: ð145Þ

This form agrees with the other known forms of σl [71,72]
that are approximated for large l.
The phase is stationary when dφ½0�

� =dl ¼ 0, which,
together with Eq. (145), implies

�θ− 2arctan
krg
l

þ l
kr

�
1þ l2

6k2r2

�
¼OððkrÞ−5Þ: ð146Þ

For small angles,
ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
≪ θ ≃ b=r, and large partial

momenta, l ≃ kR⊙ ≫ krg, this equation can be rewritten in
the following form:

l
kr

¼∓ θ

�
1 −

1

6
θ2
�
þ 2krg

l
þOðθ5; r2gÞ or; equivalently;

l
kr

¼∓ sin θ þ 2krg
l

þOðθ5; r2gÞ: ð147Þ

Relying on the semiclassical approximation that connects
the partial momentum l to the impact parameter b,

l ≃ kb; ð148Þ

for small angles θ (or large distances from the sphere,
R⊙=r < b=r ≪ 1), we see that the points of stationary
phase that must satisfy the equation are (see Ref. [21] for
details)

1

r
¼∓ sin θ

b
þ 2rg

b2
þOðθ5; r2gÞ; ð149Þ

which describes hyperbolae that represent the geodesic
trajectories of light rays in the post-Newtonian gravitational
field of a mass monopole [21]. For an impact parameter that
satisfies the relation b ≥ R⋆

⊙, these trajectories are outside
the Sun, crossing from the geometric optics region behind
the Sun into the interference region (see Fig. 3).
Equation (147) yields two families of solutions for the

points of stationary phase:

lð1Þ
0 ¼∓ kr

�
sin θ þ 2rg

r
1

sin θ

�
þOðθ5; r2gÞ and

lð2Þ
0 ¼ � 2krg

sin θ
þOðθ5; r2gÞ: ð150Þ

The “�” or “∓” signs in Eq. (150) represent the families
of rays propagating on opposite sides from the Sun. Also,
two families of solutions represent two different waves.
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Thus, the family lð1Þ
0 represents the incident wave with the

rays whose trajectories are bent towards the Sun, obeying
the eikonal approximation of geometric optics. The family

lð2Þ
0 describes the scattered wave, with rays that meet those

of the incident wave beyond the point of their intersection
with the focal line. Note that the interference region is not
covered by the approximation (137). The description of the
interference region without plasma was given in Ref. [21].
In Sec. VI, we discuss the properties of the solution in the
interference region in the presence of solar plasma. As
discussed in Refs. [21,24], the presence of both of these
families of rays determines the structure of the three regions
relevant for the SGL—namely the shadow, the geometric
optics region, and the interference region. As a result, the
availability of these solutions helps us develop the solution
for Eq. (139).
We note that by extending the asymptotic expansion of

Hþ
l ðkrg; krÞ from Eq. (118) to the order of OððkrÞ−ð2nþ1ÞÞ

(i.e., using the WKB approximation as was done in
Appendix C), the validity of the result (150) extends to
Oðθ2nþ1Þ. This fact was first observed in Ref. [20] and used
to improve the solution by including the terms of higher
orders in θ.
The first family of solutions of Eq. (150), given by lð1Þ

0 ,
allows us to compute the phase for the points of stationary
phase (142) for the EM waves moving towards the inter-
ference region (a similar calculation was done in Ref. [20]):

φ½0�
� ðlð1Þ

0 Þ¼�π

4
þkr

�
−
1

2
θ2þ 1

24
θ4
�
−krg lnkrð1−cosθÞ

−krg ln2krþOðkrθ6;krgθ4Þ: ð151Þ

To calculate φ00ðlÞ to Oðθ6Þ as in Eq. (151), we need to

include in the phase φ½0�
� ðlÞ [Eq. (142)] another term ∝ l6,

which may be taken from Eq. (C19). This allows us to

compute φ00ðlð1Þ
0 Þ:

d2φ½0�
�

dl2
¼ 1

kr

�
1þ l2

2k2r2
þ 3l4

8k4r4
þOððkrÞ−6Þ

�
þ 2krg

l2
;

ð152Þ

or, after substituting lð1Þ
0 , we have

φ00ðlð1Þ
0 Þ≡d2φ½0�

�
dl2

����
l¼lð1Þ

0

¼ 1

kr

�
1þ 1

2
θ2þ 5

24
θ4þ 2rg

rsin2θ

×

�
1þ θ2þ 7

6
θ4
�
þO

�
θ6;

rg
r
θ4
��

: ð153Þ

The remaining integral is easy to evaluate using the
method of stationary phase. Before we do that, we need to
bring in the amplitude factor for the asymptotic expansion
Hþ

l ðkrg; krÞ given by Eq. (118). This factor, which we
denote by aðlÞ, is readily available from Eq. (C19) in the
following form:

aðlÞ ¼ exp

�
lðlþ 1Þ
4k2r2

þ ½lðlþ 1Þ�2
8k4r4

�
þOððkrÞ−6Þ:

ð154Þ

Note that, if included in the derivation of Eqs. (133)–(135),
this term would produce corrections that are of the order of
1=ðkrÞ smaller compared to the leading terms, and that are

thus negligible. In the case l ≫ 1, and specifically for lð1Þ
0 ,

it is computed to be

aðlð1Þ
0 Þ¼ 1þ1

4
θ2þ 7

96
θ4þ rg

r

�
1þ5

4
θ2
�
þO

�
θ6;

rg
r
θ4
�
:

ð155Þ

The fact that we did not use this term in Eq. (118) does not
affect the results of the calculations above. However, as we
demonstrate below, its presence is needed to offset some of
the terms that are present in the phase of Eq. (142). The
significance of this term is realized in the fact that, for the
method of stationary phase, it cancels out the contribution
of the θ dependence in Eq. (153)—namely, using result
(155), we derive

FIG. 3. Three different regions of space associated with a monopole gravitational lens: the shadow, the region of geometric optics, and
the region of interference (from Ref. [21]).
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aðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffiffiffiffiffiffi
2πkr

p �
1 −

rg
rsin2θ

þ rg
r

�
1

2
þ θ2

�

þO
�
θ6;

rg
r
θ4
��

: ð156Þ

Now, using Eq. (156), we have the amplitude of the
integrand in Eq. (139), for l ≫ 1, for l0 ¼ lð1Þ

0 , taking the
form

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ l0

ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinθ

p
�
1þ rg

r
l2
0

4k2r2

�
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ð∓ 1Þ32k2r2u−2 sinθ
�
1þ rg

rð1−cosθÞþO
�
θ4;

rg
r
θ4
��

;

ð157Þ

where the superscript [0] denotes the term with no plasma
contribution. We can drop the 1=ðikrÞ term in the paren-
theses of this expression, as it is 1=ðkrÞ times smaller in
magnitude compared to the leading term.
As a result, the plasma-free part of the expression for

δα½0�ðr; θÞ from Eq. (139) takes the form

δα½0�� ðr; θÞ ¼ −E0u−1 sin θ

�
1þ rg

rð1 − cos θÞ

þO
�
θ4;

rg
r
θ4
��

eiðkr cos θ−krg ln krð1−cos θÞÞ:

ð158Þ

It is interesting that the phase of this expression is identical
to the phase obtained from the equation for geodesics.
The relevant results were obtained in Secs. 1 and 2 of
Appendix B, and are given by the expressions (B27) and
(B39) correspondingly, where one has to disregard the
plasma contribution. This result agrees with that obtained
in Ref. [21].
We note again that by improving the asymptotic

expansion of Hþ
l ðkrg; krÞ in Eq. (118) [that, in a more

complete form, is given by Eq. (C19)] to a higher order
and extending the phase from Eq. (118) to OððkrÞ−ð2nþ1ÞÞ
and the amplitude aðlÞ from Eq. (155) to OððkrÞ−2nÞ, the
validity of Eq. (156) extends toOðθ2nÞ. If needed, this can
be achieved by following the derivations presented in
Appendix C.
Now we consider the second family of solutions in (150),

given by lð2Þ
0 (similar derivations were made in Ref. [24]),

which allows us to compute the stationary phase as

φð2Þ
� ðl0Þ ¼ � π

4
− krg ln 2krþ krg ln krð1 − cos θÞ

− 2krg ln
krg
e

þOðkrgθ2Þ: ð159Þ

Using this result, from Eq. (139) we compute the phase of
the corresponding solution (by combining the relativistic
phase and the l-dependent contribution):

φð2Þ
� ðr; θÞ ¼ krþ krg ln 2krþ φð2Þ

� ðl0Þ þ
π

4

¼ kðrþ rg ln krð1 − cos θÞÞ
þ 2σ0 þOðkrgθ2Þ: ð160Þ

Now, using Eq. (152) and lð2Þ
0 from Eq. (150), we compute

the second derivative of the phase with respect to l:

φ00
�ðl0Þ ¼

1

kr
þ sin2θ

2krg
≃
sin2θ
2krg

�
1þ 2rg

rsin2θ

�
þOðθ5Þ; thus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4πkrg

p
sinθ

�
1−

rg
rsin2θ

�
þOðθ5Þ: ð161Þ

Also, from Eq. (154), aðlÞ is computed for lð2Þ
0 to be

aðlÞ ¼ 1þOðr2gÞ. At this point, we may evaluate the
amplitude of the integrand in Eq. (139), for l ≫ 1, for

l0 ¼ lð2Þ
0 , which is given as

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ l0

ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1þ rg

r
l2
0

4k2r2

�
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ ð∓ 1Þ32 4k
2r2g

sin3θ

�
1 −

rg
rsin2θ

�
: ð162Þ

As a result, the plasma-free part of the expression for

δα½0�ðr; θÞ from Eq. (139) for lð1Þ
0 takes the form

δα½0�� ðr;θÞ¼E0

�
2rg
r

�
2 1

sin3θ
eikðrþrg lnkrð1−cosθÞþ2iσ0 ∼Oðr2gÞ:

ð163Þ

We observe again that the phase of this expression is identical
to the phase of the radial wave obtained from the equation for
geodesics. The relevant results were obtained in Secs. 1 and 2
of Appendix B, and are given by Eqs. (B29) and (B40)
correspondingly, where one has to disregard the plasma
contribution. This result agrees with that obtained in
Ref. [21]. Therefore, based on Eq. (163) we conclude that
to the order of Oðr2gÞ, there is no scattered wave in the radial
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direction which is consistent with the results reported
in Ref. [21].
The results (158) and (163) are the radial components of

the EMwave corresponding to the two families of the impact
parameters given by Eq. (150). We use these solutions to
determine the EM field in the geometric optics region.

2. Evaluating the term with plasma contribution

We now turn our attention to the term in Eq. (139) that
contains the contribution from the plasma-induced phase
shift. The relevant l-dependent part of the phase is given as

φ½p�
� ðlÞ ¼ �

�
lθ þ π

4

�
þ 2σl þ

l2

2kr
þ l4

24k3r3

þ 2δ⋆l þOððkrÞ−5Þ; ð164Þ

with the plasma contribution clearly shown. From the
definition in Eqs. (99) and (100), this plasma phase shift
is given as

2δ�l ¼ −
4πe2R⊙

mec2k

�
α2

π

2

R⊙

b
þ
X
i>2

αiQ⋆
βi

�
R⊙

b

�
βi−1
�

≡ −
2πe2R⊙

mec2k

X
i

αiβi
βi − 1

B

�
1

2
βi þ

1

2
;
1

2

��
R⊙

b

�
βi−1

:

ð165Þ

The phase shift 2δ�l relates to the semiclassical angle
of deflection of a light ray, δθp, as 2δθp ¼ d2δ�l=dl [51].
This angle may be computed from Eqs. (99) and (100) by
taking into account the semiclassical relation between the
partial momenta, l, and the impact parameter, b, given as
l ¼ kb. As a result, the angle of light deflection by the
solar plasma is computed to be

2δθp ¼ d2δ�l
kdb

¼ 4πe2

meω
2

�
α2

π

2

�
R⊙

b

�
2

þ
X
i>2

αiðβi − 1ÞQ⋆
βi

�
R⊙

b

�
βi
�

≡ 2πe2

meω
2

X
i

αiβiB

�
1

2
βi þ

1

2
;
1

2

��
R⊙

b

�
βi
: ð166Þ

Note that this expression [Eq. (166)] agrees with that
derived in Refs. [9,10] and used in a recent test of general
relativity using radio links with the Cassini spacecraft [73].
Here, we provide a rigorous wave-optical treatment of the
problem to establish the form of the refraction angle and the
entire EM field as it propagates through the Solar System.
In fact, following Ref. [20], using the phenomenological
model (4) in Eq. (166), we estimate the plasma deflection
angle, δθp, as a function of the impact parameter and the
wavelength:

δθp ¼
�
6.62 × 10−13

�
R⊙

b

�
16

þ 2.05 × 10−13
�
R⊙

b

�
6

þ 2.42 × 10−16
�
R⊙

b

�
2
��

λ

1 μm

�
2

; ð167Þ

which suggests that for Sun-grazing rays (i.e., for the rays
with impact parameter b ≃ R⊙), the bending angle (167)
reaches the value of δθpðR⊙Þ¼8.67×10−13ðλ=1μmÞ2 rad,
which is large for radio wavelengths, but negligible in
optical or IR bands. For typical observing situations with
reasonable Sun-Earth-probe separation angles [8,10,11],
expression (166) provides a good description. This, once
again, justifies the application of the eikonal approximation.
Examining Eq. (167) as a function of the impact

parameter, we see that the first two terms in this expression
diminish rather rapidly, with the quadratic term in Eq. (167)
becoming dominant after b ≃ 8R⊙. However, this value of b
corresponds to a focal region at the heliocentric distance of
z ¼ b2=2rg ∼ 3.5 × 104 AU, which is beyond any practical
interest as far as imaging with the SGL is concerned. For a
focal region at 600 AU≲ z≲ 1000 AU, knowledge of the
properties of the solar corona at small impact parameters
1.05R⊙ ≲ b≲ 1.35R⊙ is the most relevant.
Coming back to the phase [Eq. (164)], we see that this

phase is stationary when dφ½p�
� =dl ¼ 0, which, similarly to

Eqs. (149) and (150), implies

� θ − 2 arctan
krg
l

þ l
kr

�
1þ l2

6k2r2

�
þ 2δθp

¼ OððkrÞ−5; r2gÞ: ð168Þ

Similarly to Eq. (149), for small angles, θ ≃ b=r, and
large partial momenta, l ≃ kR⊙ ≫ krg, Eq. (168) could be
rewritten in the following form:

l
kr

¼∓ θ

�
1 −

1

6
θ2
�
− 2δθp þ

2krg
l

þOðθ5; r2gÞ; ð169Þ

or, equivalently,

l
kr

¼∓ sin θ − 2δθp þ
2krg
l

þOðθ5; r2g; δθ3pÞ: ð170Þ

Equation (170) yields two families of solutions for the
points of stationary phase:

lð1Þ
0 ¼∓ kr

�
sin θ � 2δθp þ

2rg
r

1

sin θ

�
þOðθ5; r2g; rgδθpÞ and

lð2Þ
0 ¼ � 2krg

sin θ
þOðθ5; r2g; rgδθpÞ; ð171Þ
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where we have neglected the terms of the order of rgω2
p=ω2

or, equivalently, the terms ∝ rgδθp.
With the results given in Eq. (171), for the first family of

solutions, we may compute the needed expressions for the
value of the phase along the path of stationary phase:

φ½p�
� ðlð1Þ

0 Þ ¼ � π

4
þ kr

�
−
1

2
θ2 þ 1

24
θ4
�

− krg ln krð1 − cos θÞ − krg ln 2kr

þ 2δ⋆l þOðθ5δθp; δθ2p; krgθ2Þ; ð172Þ

and for the second derivative of the phase along the same
path, similarly to Eq. (153), from Eq. (152) we have

d2φ½p�
�

dl2
¼ 1

kr

�
1þ l2

2k2r2
þ 3l4

8k4r4
þOððkrÞ−6Þ

�

þ 2krg
l2

þ d22δ⋆l
dl2

; ð173Þ

which, for the first family of solutions, lð1Þ, from Eq. (171)
yields

φ00ðlð1Þ
0 Þ≡ d2φ½0�

�
dl2

����
l¼lð1Þ

0

¼ 1

kr

�
1þ 1

2
θ2 þ 5

24
θ4

þ 2rg
rsin2θ

�
1þ θ2 þ 7

6
θ4
�

þO
�
θ6;

rg
r
θ4
��

þ d22δ⋆l
dl2

: ð174Þ

Using Eq. (166), we estimate the magnitude of the
second term in this expression:

d22δ⋆l
dl2

¼ 2dδθp
kdb

¼ −
1

kR⊙

2πe2

meω
2

×
X
i

αiβ
2
i B

�
1

2
βi þ

1

2
;
1

2

��
R⊙

b

�
βiþ1

: ð175Þ

Similarly to Ref. [20], we evaluate this quantity with the
empirical model in Eq. (4). We see that for the smallest
impact parameter b ¼ R⊙, this quantity takes the largest
value of d2ð2δ⋆lÞ=dl2 ¼ 1.57 × 10−26ðλ=ð1 μmÞ3. For
optical wavelengths, even at the heliocentric distance of
r ≃ 6.5 × 103 AU, this term is over 104 times smaller than
the 1=ðkrÞ term in Eq. (174), representing a small correc-
tion to φ00ðl0Þ that may be neglected for our purposes. This
is equivalent to treating the deflection angle δθp as
constant, which is consistent with the eikonal (or high-
energy) approximation [54–59].
As a result, the expression for the second derivative

of the phase from Eq. (174) takes a form equivalent to
Eq. (153):

φ00ðlð1Þ
0 Þ≡ d2φ½0�

�
dl2

����
l¼lð1Þ

0

¼ 1

kr

�
1þ 1

2
θ2 þ 5

24
θ4

þ 2rg
rsin2θ

�
1þ θ2 þ 7

6
θ4
�

þO
�
θ6;

rg
r
θ4; δθ2p;

δθp
kb

��
: ð176Þ

The relevant, plasma-dependent part in the integral in
Eq. (139) is now easy to evaluate using the method of
stationary phase. Similarly to Eq. (157), we have the
amplitude of the plasma-dependent term in Eq. (139),
evaluated to be

A½p�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ l0

ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1þ rg

r
l2
0

4k2r2

�
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ ð∓ 1Þ32k2r2u−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2δθp

sin θ

r
sinðθ � 2δθpÞ

×

�
1þ rg

rð1 − cos θÞ þOðθ4; δθ2pÞ
�
; ð177Þ

where the superscript ½p� denotes the term due to the plasma
phase shift. Using the expression relating the angle θ with
the unperturbed direction of light propagation, sin θ ≃ b=r,
we may evaluate the square-rooted expression:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2δθp

sin θ

r
¼ 1� δθp

sin θ
þOðδθ2pÞ ≃ 1� rδθp

b
þOðδθ2pÞ:

ð178Þ
Considering Eq. (166), we see that the largest value of the
bending angle, δθp, is reached at the smallest impact
parameters, b ¼ R⊙, limiting the size of this angle as
δθpðR⊙Þ ≤ 8.65 × 10−13ðλ=1 μmÞ2 rad, resulting in the size
of the ratio in Eq. (178) of rδθp=b≲ 1.02 × 10−7ðλ=1 μmÞ2,
which is small for radio wavelengths (λ ∼ 1 mm), but is
negligible for the optical band. Treating the impact parameter
as b ¼ ffiffiffiffiffiffiffiffiffi

2rgr
p

[21,24] and taking δθpðbÞ from Eq. (166)
together with empirical model (4), we see that for optical
wavelengths, the second term in Eq. (178) is always below
10−7 and never becomes significant. Therefore, we omit this
term from further consideration.
As a result, similarly to Eq. (158), we obtain the con-

tribution of the plasma-dependent term in Eq. (139) in the
form

δα½p�� ðr; θÞ ¼ E0u−1 sinðθ � 2δθpÞ
�
1þ rg

rð1 − cos θÞ
�

× eiðkr cos θ−krg ln krð1−cos θÞþ2δ�lÞ

þO
�
θ4; δθ2p;

rg
r
θ4;

rδθp
b

�
: ð179Þ
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The phase of this expression is identical to the phase obtained
from the equation for geodesics. The relevant results were
obtained in Secs. 1 and 2 of Appendix B and are given by
expressions (B27) and (B39).
With the expressions (158) and (179) at hand, we may

now present the quantity αðr; θÞ from Eq. (139) as

αðr; θÞ ¼ δα½0�� ðr; θÞ þ δα½p�� ðr; θÞ

¼ E0u−1
�
1þ rg

rð1 − cos θÞ
�

×

�
sin

�
θ � d2δ⋆l

dl

�
ei2δ

�
l − sin θ

�
× eiðkr cos θ−krg ln krð1−cos θÞÞ

þO
�
θ4; δθ2p;

rg
r
θ4;

rδθp
b

�
: ð180Þ

This expression indicates that the scattered wave—which is
governed by the expressions (133)–(135) that result from
the scattering amplitude (131), to first order in gravity
and plasma contributions, or up to terms of the order of
Oðrgðωp=ωÞ2Þ—may be given by the difference of two
waves: the wave that moves on the effective background
given by both gravity and plasma, and the one that moves
only on the gravitational background.
Similarly to Eq. (163), for the second family of solutions

from Eq. (171), we obtain δα½0�� ðr; θÞ ∼Oðr2gÞ. Therefore,
there is no scattered wave in the radial direction:

αsðr; θÞ ¼ δα½0�� ðr; θÞ þ δα½p�� ðr; θÞ ∼Oðr2gÞ: ð181Þ

Using the approach presented above, we may now
evaluate the scattering factors βðr; θÞ and γðr; θÞ needed
to determine the other components of the EM field.

B. Evaluating the function βðr;θÞ
To investigate the behavior βðr; θÞ from Eq. (134), we

neglect terms of the order of ∝ rg=kr2 and obtain the
following expression for βðr; θÞ:

βðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

ðlþ 1
2
Þ

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þ

× ðei2δ�l − 1Þ
�∂Pð1Þ

l ðcos θÞ
∂θ

�
1 − u−2

�
lðlþ 1Þ
2k2r2

−
½lðlþ 1Þ�2

8k4r4

��
þ Pð1Þ

l ðcos θÞ
sin θ

�
: ð182Þ

To evaluate the magnitude of the function βðr; θÞ, we
need to establish the asymptotic behavior of Pð1Þ

l ðcos θÞ=
sin θ and ∂Pð1Þ

l ðcos θÞ=∂θ. For fixed θ and l → ∞, this

behavior is given3 [66] as [this can be obtained directly
from Eq. (137)]

Pð1Þ
l ðcos θÞ
sin θ

¼
�

2l
πsin3θ

�1
2

sin

��
lþ 1

2

�
θ −

π

4

�
þOðl−3

2Þ;

ð183Þ

dPð1Þ
l ðcosθÞ
dθ

¼
�

2l3

π sinθ

�1
2

cos

��
lþ1

2

�
θ−

π

4

�
þOðl−1

2Þ:

ð184Þ

With these approximations, the function βðr; θÞ in the
region outside the geometric shadow (i.e., not on the optical
axis), takes the following form:

βðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

ðlþ 1
2
Þ

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þ

× ðe2iδ�l − 1Þ
��

2l3

π sin θ

�1
2

�
1 −

lðlþ 1Þ
2k2r2

−
½lðlþ 1Þ�2

8k4r4

�
cos

��
lþ 1

2

�
θ −

π

4

�

þ
�

2l
πsin3θ

�1
2

sin

��
lþ 1

2

�
θ −

π

4

��
: ð185Þ

For largel ≫ 1, the first term in the curly braces in Eq. (185)
dominates, so that this expression may be given as

βðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

ðlþ 1
2
Þ

lðlþ 1Þ
�

2l3

π sin θ

�1
2

×

�
1 −

lðlþ 1Þ
2k2r2

−
½lðlþ 1Þ�2

8k4r4

�

× ðe2iδ�l − 1Þeið2σlþlðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þ

× cos

��
lþ 1

2

�
θ −

π

4

�
: ð186Þ

To evaluate βðr; θÞ from the expression (186), we again
use the method of stationary phase. For this, representing
Eq. (186) in the form of an integral over l, we have

3We note that, for any large l, the formulas (183) and (184) are
insufficient in a region close to the forward direction (θ ¼ 0) or
backward direction (θ ¼ π). More precisely, Eqs. (183) and (184)
hold for sin θ ≫ 1=l (see discussion in Ref. [25].) Nevertheless,
these expressions are sufficient for our purposes, as in the region
of interest the latter condition is satisfied.
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βðr; θÞ ¼ −E0

eikðrþrg ln 2krÞ

kr

Z
∞

l¼kR⋆
⊙

ffiffiffi
l

p
dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π sin θ
p

×

�
1 −

l2

2k2r2
−

l4

8k4r4

�
ðe2iδ�l − 1Þ

× eið2σlþ
l2
2krþ l4

24k3r3
Þðeiðlθþπ

4
Þ − e−iðlθþπ

4
ÞÞ: ð187Þ

As we have done with Eq. (139), we treat this integral as a
sum of two integrals: a plasma-free and a plasma-dependent
term. Expression (187) shows that the l-dependent parts of
the phase have a structure identical to Eqs. (142) and (164).
Therefore, the same solutions for the points of stationary
phase apply. As a result, using Eqs. (150) and (153) from
Eq. (187) for the part of the integral that does not depend on
the plasma phase shift, δ⋆l, and for the first family of
solutions (150), to the order of Oðθ6; ðrg=rÞθ2Þ, we have

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2
0

2k2r2
−

l4
0

8k4r4

�
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffiffiffiffiffiffi∓ 1

p
kru−1

�
cos θ −

rg
r

�
: ð188Þ

As a result, similarly to Eq. (158), the expression for

δβ½0�� ðr; θÞ takes the form

δβ½0�� ðr; θÞ ¼ −E0u−1
�
cos θ −

rg
r

�
eikðr cos θ−rg ln krð1−cos θÞÞ

þO
�
θ6;

rg
r
θ2
�
: ð189Þ

Next, using the l-dependent phase (164) with the plasma
phase shift included and the relevant expressions (172) and
(176), to the order of Oðθ6; δθ2p; ðrg=rÞθ2; rδθp=bÞ, we
have

A½p�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2
0

2k2r2
−

l4
0

8k4r4

�
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffiffiffiffiffiffi∓ 1

p
kru−1

�
cos

�
θ � d2δ⋆l

dl

�
−
rg
r

�
: ð190Þ

Thus, the plasma-dependent term in Eq. (187), namely

δβ½p�� ðr; θÞ, takes the form

δβ½p�� ðr; θÞ ¼ E0u−1
�
cos

�
θ � d2δ⋆l

dl

�
−
rg
r

�
× eiðkðr cos θ−rg ln krð1−cos θÞÞþ2δ⋆lÞ

þO
�
θ6; δθ2p;

rg
r
θ2;

rδθp
b

�
: ð191Þ

Using the expressions (189) and (191), we present the
integral (187) as

βðr; θÞ ¼ δβ½0�� ðr; θÞ þ δβ½p�� ðr; θÞ

¼ E0u−1
��

cos

�
θ � d2δ⋆l

dl

�
−
rg
r

�
ei2δ

⋆
l

−
�
cos θ −

rg
r

�
þO

�
θ6; δθ2p;

rg
r
θ2;

rδθp
b

��
× eikðr cos θ−rg ln krð1−cos θÞÞ: ð192Þ

Now we turn our attention to the second family of
solutions in Eq. (150). Similarly to Eq. (162), we have

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffi
l

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p
�
1 −

l2

2k2r2
−

l4

8k4r4

�
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffiffiffiffiffi
�1

p krg
2sin2 1

2
θ
þOðθ4; r2gÞ; ð193Þ

which yields the following result for δβ½0�� ðr; θÞ:

δβ½0�� ðr; θÞ ¼ −E0

rg
2rsin2 1

2
θ
eiðkðrþrg ln krð1−cos θÞÞþ2σ0Þ

þO
�
θ6;

rg
r
θ2
�
: ð194Þ

In an analogous manner, the second family of solutions
from Eq. (150) results in the plasma-dependent factor

δβ½p�� ðr; θÞ:

δβ½p�� ðr; θÞ ¼ E0

rg
2rsin2 1

2
θ
eiðkðrþrg ln krð1−cos θÞÞþ2σ0þ2δ⋆lÞ

þO
�
θ6;

rg
r
θ2
�
: ð195Þ

The phase of this expression is identical to the phase of
a radial wave obtained from the equation for geodesics.
The relevant results were obtained in Secs. 1 and 2 of
Appendix B and are given by Eqs. (B29) and (B40).
Finally, using the expressions (194) and (195), we

present the integral (187) for the second family of solutions
(150) as
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βðr; θÞ ¼ δβ½0�� ðr; θÞ þ δβ½p�� ðr; θÞ ¼ E0

rg
2rsin2 1

2
θ

�
ei2δ

⋆
l − 1þO

�
θ6; δθ2p;

rg
r
θ2;

rδθp
b

��
eiðkðrþrg ln krð1−cos θÞÞþ2σ0Þ: ð196Þ

Thus, for the scattered wave, to accepted approximation, the plasma contribution affects only the phase of the wave and
not its amplitude or the direction of its propagation.

C. Evaluating the function γðr;θÞ
To determine the remaining components of the EM field (124), we need to evaluate the behavior of the function γðr; θÞ

from Eq. (135) that is given in the following from:

γðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

ðlþ 1
2
Þ

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þðei2δ�l − 1Þ

×

�∂Pð1Þ
l ðcos θÞ
∂θ þ Pð1Þ

l ðcos θÞ
sin θ

�
1 − u−2

�
lðlþ 1Þ
2k2r2

−
½lðlþ 1Þ�2

8k4r4

���
: ð197Þ

To evaluate this expression, we use the asymptotic
behavior of Pð1Þ

l ðcos θÞ= sin θ and ∂Pð1Þ
l ðcos θÞ=∂θ given

by Eqs. (183) and (184), correspondingly, and rely on the
method of stationary phase. Similarly to Eq. (185), we drop
the second term in the curly braces in Eq. (197). The
remaining expression for γðr; θÞ, for large partial momenta,
l ≫ 1, is now determined by evaluating the following
integral:

γðr; θÞ ¼ −E0

eikðrþrg ln 2krÞ

kr

Z
∞

l¼kR⋆
⊙

ffiffiffi
l

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p

× eið2σlþ
l2
2krþ l4

24k3r3
Þðei2δ�l − 1Þðeiðlθþπ

4
Þ − e−iðlθþπ

4
ÞÞ:

ð198Þ

Clearly, this expression yields the same equation to
determine the points of stationary phase [Eqs. (142) and
(164)], and thus, all the relevant results obtained in Sec. VA.
Therefore, the l-dependent amplitude of Eq. (198), which is
independent on the plasma phase shift, A½0�, is evaluated as

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p aðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ �
ffiffiffiffiffiffiffiffi∓ 1

p
kruþO

�
θ5;

rg
r
θ2
�
:

ð199Þ

Therefore, the plasma-independent part of the function

δγ½0�� ðr; θÞ is given as

δγ½0�� ðr; θÞ ¼ −E0ueiðkr cos θ−krg ln krð1−cos θÞÞ þO
�
θ5;

rg
r
θ2
�
:

ð200Þ

Similarly, we have the expression for the ampli
tude A½p�, which, with Eqs. (172) and (176), is evaluated
to be

A½p�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sin θ

p aðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ �
ffiffiffiffiffiffiffiffi∓ 1

p
kruþO

�
θ5;

rg
r
θ2;

rδθp
b

�
: ð201Þ

Therefore, the plasma-dependent term in Eq. (198),

δγ½p�� ðr; θÞ, takes the form

δγ½p�� ðr; θÞ ¼ E0ueiðkr cos θ−krg ln krð1−cos θÞþ2δ⋆lÞ

þO
�
θ6; δθ2p;

rδθp
b

;
rg
r
θ2
�
: ð202Þ

We may now use the expressions (200) and (202) to
present the integral (198) as

γðr; θÞ ¼ δγ½0�� ðr; θÞ þ δγ½p�� ðr; θÞ
¼ E0uðei2δ�l − 1Þeikr cos θ−krg ln krð1−cos θÞ

þO
�
θ6; δθ2p;

rδθp
b

�
: ð203Þ

Now, for the second family of solutions [Eq. (150)],
we get the following results for the plasma-independent
term:

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffi
l0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinθ

p aðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼
ffiffiffiffiffiffiffi
�1

p krg
2sin2 1

2
θ
þOðθ4;r2gÞ; ð204Þ
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which yields a result for δγ½0�� ðr; θÞ that is identical to
Eq. (194):

δγ½0�� ðr; θÞ ¼ −E0

rg
2rsin2 1

2
θ
eiðkðrþrg ln krð1−cos θÞÞþ2σ0Þ

þO
�
θ6;

rg
r
θ2
�
: ð205Þ

The result for the plasma-dependent factor δγ½p�� ðr; θÞ is
identical to Eq. (195), namely

δγ½p�� ðr; θÞ ¼ E0

rg
2rsin2 1

2
θ
eiðkðrþrg ln krð1−cos θÞÞþ2σ0þ2δ⋆lÞ

þO
�
θ6;

rg
r
θ2
�
: ð206Þ

As a result, using the expressions (205) and (206), we
present the integral (187) for the second family of solutions
[Eq. (150)] as follows:

γðr;θÞ ¼ δγ½0�� ðr;θÞþ δγ½p�� ðr;θÞ

¼E0

rg
2rsin2 1

2
θ

�
ei2δ

⋆
l − 1þO

�
θ6;δθ2p;

rg
r
θ2;

rδθp
b

��

× eiðkðrþrg lnkrð1−cosθÞÞþ2σ0Þ: ð207Þ

At this point, we have all the necessary ingredients to
present the ultimate solution for the scattered EM field in
the eikonal approximation.

D. Solution for the EM field outside
the termination shock

To determine the components of the EM field, we use the
expressions that we obtained for the functions αðr; θÞ,
βðr; θÞ, and γðr; θÞ, which are given by Eqs. (180), (192),
and (203), correspondingly, and substitute them into
Eq. (203). As a result, we establish the solution for the
scattered EM field in the region outside the termination
shock boundary, which, to Oðθ5;δθ2p;ðrg=rÞθ4;r2g;rδθp=bÞ
has the form

�
D̂p

r

B̂p
r

�
¼ E0u−1

�
1þ rg

rð1 − cos θÞ
��

sin

�
θ � d2δ⋆l

dl

�
ei2δ

�
l − sin θ

��
cosϕ

sinϕ

�
eiðkðr cos θ−rg ln krð1−cos θÞÞ−ωtÞ; ð208Þ

�
D̂p

θ

B̂p
θ

�
¼ E0u−1

��
cos

�
θ � d2δ⋆l

dl

�
−
rg
r

�
ei2δ

�
l −
�
cos θ −

rg
r

���
cosϕ

sinϕ

�
eiðkðr cos θ−rg ln krð1−cos θÞÞ−ωtÞ; ð209Þ

� D̂p
ϕ

B̂p
ϕ

�
¼ E0uðei2δ�l − 1Þ

�− sinϕ

cosϕ

�
eiðkðr cos θ−rg ln krð1−cos θÞÞ−ωtÞ: ð210Þ

Clearly, when plasma is absent, the entire EM field given by Eqs. (208)–(210) vanishes. Note that the phases and the
amplitude factors of the terms above are consistent with those found with the equation of the geodesics both with and
without the presence of the plasma, as identified in Secs. 1 and 2 of Appendix B. In fact, the total scattered EM field given
by Eqs. (208)–(210) is shown to be the difference of two waves propagating in different backgrounds: with and without the
plasma. The resulting EM field given above describes the total effect of the solar plasma on the incident EM wave. At the
same time, the EM field of the incident wave is produced by the Debye potential Π0 from Eq. (122) and is given as [21]

�
D̂ð0Þ

r

B̂ð0Þ
r

�
¼ E0u−1 sin θ

�
1þ rg

rð1 − cos θÞ
��

cosϕ

sinϕ

�
eiðkðr cos θ−rg ln krð1−cos θÞÞ−ωtÞ; ð211Þ

�
D̂ð0Þ

θ

B̂ð0Þ
θ

�
¼ E0u−1

�
cos θ −

rg
r

��
cosϕ

sinϕ

�
eiðkðr cos θ−rg ln krð1−cos θÞÞ−ωtÞ; ð212Þ

� D̂ð0Þ
ϕ

B̂ð0Þ
ϕ

�
¼ E0u

�− sinϕ

cosϕ

�
eiðkðr cos θ−rg ln krð1−cos θÞÞ−ωtÞ: ð213Þ

Finally, in accord with Eq. (130), the total EM field is given by the sum of the incident and scattered EM waves given by
Eqs. (211)–(213) and Eqs. (208)–(210), correspondingly. Thus, computing the total field as D ¼ Dð0Þ þ Dp and
B ¼ Bð0Þ þBp, then up to terms of Oðθ5; δθ2p; rgθ4=r; r2g; rδθp=bÞ, the components of this field have the following form:
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�
D̂r

B̂r

�
¼ E0u−1 sin

�
θ � d2δ⋆l

dl

��
1þ rg

rð1 − cos θÞ
��

cosϕ

sinϕ

�
eiðkr cos θ−krg ln krð1−cos θÞþ2δ�l−ωtÞ; ð214Þ

�
D̂θ

B̂θ

�
¼ E0u−1

�
cos

�
θ � d2δ⋆l

dl

�
−
rg
r

��
cosϕ

sinϕ

�
eiðkr cos θ−krg ln krð1−cos θÞþ2δ�l−ωtÞ; ð215Þ

�
D̂ϕ

B̂ϕ

�
¼ E0u

�− sinϕ

cosϕ

�
eiðkr cos θ−krg ln krð1−cos θÞþ2δ�l−ωtÞ: ð216Þ

We recall that in the case when gravity is involved, there
are two waves that characterize the scattering process in the
region of geometric optics: the incident wave given by
Eqs. (211)–(213) and the scattered wave, which was com-
puted in Ref. [21] [see Eqs. (49) and (50) therein] and is
given as 
D̂ð0Þ

θ

B̂ð0Þ
θ

!
s

¼
 

B̂ð0Þ
ϕ

−D̂ð0Þ
ϕ

!
s

¼ E0

rg
2rsin2 θ

2

�
cosϕ

sinϕ

�

× eiðkðrþrg ln krð1−cos θÞÞþ2σ0−ωtÞ; 
D̂ð0Þ

r

B̂ð0Þ
r

!
s

¼ Oðr2gÞ: ð217Þ

We may compute the total scattered EM field in the
geometric optics region behind the Sun. Similarly to
Eqs. (214)–(216), we add the corresponding components
of the plasma-free field [Eq. (217)] and those that account
for the plasma-induced phase shift, given by Eqs. (181),

(196), and (207). Computing Ds ¼ Dð0Þ
s þ DðpÞ

s and

Bs ¼ Bð0Þ
s þ BðpÞ

s , we have 
D̂θ

B̂θ

!
s

¼
 

B̂ϕ

−D̂ϕ

!
s

¼ E0

rg
2rsin2 θ

2

�
cosϕ

sinϕ

�

× eiðkðrþrg ln krð1−cos θÞÞþ2δ⋆lþ2σ0−ωtÞ; 
D̂r

B̂r

!
s

¼ Oðr2gÞ: ð218Þ

Therefore, the total EM field behind a very large sphere,
λ ≪ R⊙, embedded in the spherically symmetric plasma
distribution, has a structure similar to the incident EM
wave. However, its phase and propagation direction are
affected by the delay introduced by the plasma in the
Solar System. The EM field outside the termination shock

takes a very simple form that depends on the plasma phase
shift, δ�l. This phase shift, given by Eq. (101), is clearly
showing its dependence on the solar impact parameter.
Equations (214)–(216) account for this contribution. The
resulting expression for the phase of the wave is well known
and corresponds to that described by the equation of geo-
desics, as derived in Secs. 1 and 2 of Appendix B, namely by
Eqs. (B27) and (B39). Similarly, the phase of the expressions
in Eq. (218) is consistent with that of a radial geodesic as
given by Eqs. (B29) and (B40) (also see Ref. [21] for
discussion). As such, they are consistent with the expres-
sions for the phase of the EMwave moving through the solar
plasma derived by other authors [9,10,44].
This completes the derivation for the EM field in the

region of geometric optics outside the termination shock.

E. Diffraction of light within the heliosphere

To establish the solution for the Debye potential inside
the termination shock, we need to implement the fully
absorbing boundary conditions, as we did in Sec. IV D. To
do this, we identically rewrite Eq. (112) using a represen-
tation of the Coulomb function Flðkrg; krÞ via incoming
and outgoing waves, Hþ

l ðkrg; krÞ and H−
l ðkrg; krÞ:

Πinðr; θÞ ¼
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞ

×

�
e2iδlðrÞHþ

l ðkrg; krÞ −H−
l ðkrg; krÞ

�

× Pð1Þ
l ðcos θÞ þO

�
r2g; rg

ω2
p

ω2

�
: ð219Þ

By removing from this expression the outgoing waves
corresponding to the impact parameters b ≤ R⋆

⊙ or, equiv-
alently, for l ∈ ½1; kR⋆

⊙�, we implement the fully absorbing
boundary conditions that account for the physical properties
of the solar surface. The resulting expression has the form

Πinðr; θÞ ¼
E0

2ik2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞfe2iδlðrÞHþ

l ðkrg; krÞ −H−
l ðkrg; krÞgPð1Þ

l ðcos θÞ

−
E0

2ik2
u
r

XkR⋆
⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞe2iδlðrÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ þO

�
r2g; rg

ω2
p

ω2

�
: ð220Þ

SLAVA G. TURYSHEV and VIKTOR T. TOTH PHYS. REV. D 99, 024044 (2019)

024044-30



This is the final solution for the EM field that travels in the vicinity of the Sun in the presence of solar gravity and solar
plasma. This solution may be given in the following equivalent form:

Πinðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞFlðkrg; krÞPð1Þ

l ðcos θÞ

−
E0

2ik2
u
r

XkR⋆
⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ

þ E0

2ik2
u
r

X∞
l¼kR⋆

⊙

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞðe2iδlðrÞ − 1ÞHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ þO

�
r2g; rg

ω2
p

ω2

�
: ð221Þ

The first term in Eq. (221) is the Debye potential of the pure gravity case derived in Ref. [21], modified by the presence of
plasma in the Solar System. The second term is responsible for the geometric shadow cast by the Sun. The third term
represents the impact of solar plasma on the propagation of the EM field outside the Sun, but within the distance to the
termination shock R⋆

⊙ ≤ r ≤ R⋆.
Expression (220) is our solution for the Debye potential, representing the EM field that travels through the Solar System

in the presence of the solar plasma. Reinstating the Coulomb function Flðkrg; krÞ and, similarly to Eq. (119), taking into
account the asymptotic behavior of the functionHþ

l ðkrg; krÞ given by Eq. (118), expression (221) representing the solution
for the Debye potential within the Solar System takes the form

Πinðr; θÞ ¼
E0

k2
u
r

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iðσlþδl−δlðrÞÞFlðkrg; krÞPð1Þ

l ðcos θÞ

þ eikðrþrg ln 2krÞ

r
uE0

2k2

�XkR⋆
⊙

l¼1

2lþ 1

lðlþ 1Þ e
ið2σlþδl−δlðrÞþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

ÞPð1Þ
l ðcos θÞ

−
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ e
ið2σlþδl−δlðrÞþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þðe2iδlðrÞ − 1ÞPð1Þ
l ðcos θÞ

�
þO

�
r2g; rg

ω2
p

ω2

�
: ð222Þ

This is our main result for the Debye potential represent-
ing the EM field in the geometric optics region situated
inside the termination shock, 0 < r ≤ R⋆ (i.e., interior
geometric optics region). It describes the propagation of
monochromatic EM waves on the background of monopole
gravity and that of a generic steady-state spherically
symmetric plasma, for which the number density dimin-
ishes as r−2 or faster. The first term in Eq. (222) is the
Debye potential of the incident wave modified by the
plasma as the wave propagates through the Solar System.
The second term is for the geometric shadow behind the
Sun (similar to that discussed in Refs. [24,25]), also
modified by the plasma. The third term represents the
ongoing scattering of the EM field as it propagates through
the spherically symmetric distribution of the extended solar
corona, given at a particular heliocentric position within the
Solar System, R⋆

⊙ ≤ r ≤ R⋆.
Note that because of the plasma model [Eqs. (1) and

(3)], the last sum in Eq. (222) formally extends only to
l ¼ kR⋆, corresponding to the impact parameter equal to
the distance to the termination shock. For r > R⋆, not
only does the vanishing phase shift, δl ¼ 0, essentially
eliminate this term, but this distance is also outside the

boundary that characterizes the inner region, as for
r > R⋆ we enter the domain of the scattered wave
discussed in Sec. V.
To discuss the diffraction of light in the Solar System, we

refer to the solution for the Debye potential Π given by
Eq. (222). Each term in Eq. (222) has the contribution of
the ongoing plasma phase shift given as δ�l − δlðrÞ, where
δ�l and δlðrÞ are given by Eqs. (98) and (110), correspond-
ingly, with eikonal phase shifts for the short-range plasma
potential ξbðrÞ and ξ⋆b given by Eqs. (79) and (99),
respectively. To evaluate these terms, we derive the differ-
ential plasma-induced phase shift occurring as the wave
travels through the heliocentric ranges R⋆

⊙ ≤ r ≤ R⋆.
Defining

δ�l − δlðrÞ ¼ ξ⋆b − ξbðrÞ≡ δξbðrÞ; ð223Þ
from Eqs. (79) and (99) we compute

δξbðrÞ ¼ −
2πe2R⊙

mec2k

X
i>2

αi

�
R⊙

b

�
βi−1

× fQ⋆
βi
−Qβið

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
Þg: ð224Þ
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As we can see, the differential phase shift δξbðrÞ is independent of either L or l and is a function of the
heliocentric distance only. Thus, in all the terms of Eq. (222), we may move the factor exp½iðδ�l − δlðrÞÞ�≡
exp½iδξbðrÞ� outside the summation over l. With this, and using Π0ðr; θÞ from Eq. (72), the Debye potential Π from
Eq. (222) takes the form

Πinðr; θÞ ¼ eiδξbðrÞ
�
Π0ðr; θÞ þ

ueikðrþrg ln 2krÞ

r
E0

2k2

�XkR⋆
⊙

l¼1

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

ÞPð1Þ
l ðcos θÞ

−
X∞

l¼kR⋆
⊙

2lþ 1

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þðe2iδlðrÞ − 1ÞPð1Þ
l ðcos θÞ

�
þO

�
r2g; rg

ω2
p

ω2

��
: ð225Þ

Clearly, δξbðrÞ is significant only in the immediate
vicinity of the Sun, where r ≃ R⊙, but it falls off rapidly
for larger distances. Using the phenomenological model
[Eq. (4)], we estimate the magnitude of the differential
phase shift [Eq. (224)]. For this, with the help of Eqs. (102)
and (103), expression (224) takes the form

δξbðrÞ ¼ −
�
586.17

�
R⊙

b

�
15

ðQ⋆
16 −Q16ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
ÞÞ

þ 303.87

�
R⊙

b

�
5

ðQ⋆
6 −Q6ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
ÞÞ
��

λ

1 μm

�
:

ð226Þ

Examining this expression, we see that it reaches its
largest value for the smallest impact parameter of b ≃ R⊙.
However, even for radio waves passing that close to the
Sun, the phase shift (226) results in a practically negligible
effect. Evaluating for λ ≃ 1 cm, the delay introduced by
Eq. (226) at r ¼ 10R⊙ is δdb ¼ δξbðrÞðλ=2πÞ ≃ 1λ and
rapidly diminishes as r increases. In fact, at heliocentric
distances beyond r ≃ 20R⊙, even for such rather long
wavelengths, the differential phase shift introduced by
Eq. (226) is totally negligible.
As a result, we may set δξbðrÞ ¼ 0 in Eq. (225), making

it equivalent to the solution for the Debye potential given

by Eq. (119). With this, all the results that we obtained
earlier in Sec. V for the region outside the termination
shock, r > R⋆, may be extended to cover also the ranges
within the termination shock, R⊙ ≤ r ≤ R⋆. Thus, we have
a complete solution for the EM field in the geometrical
optics and shadow regions of the Sun. We now turn our
attention to the region of most importance for the SGL: the
interference region.

VI. EM FIELD IN THE
INTERFERENCE REGION

We are interested in the area behind the Sun, reachable
by light rays with impact parameters b > R⋆

⊙. The focal
region of the SGL begins where r > R⋆ and 0 ≤ θ ≃ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
. The EM field in this region is derived from the

Debye potential [Eqs. (130) and (131)] and is given by the
factors αðr; θÞ, βðr; θÞ, and γðr; θÞ from Eqs. (133)–(135),
which we now calculate.

A. The function αðr;θÞ and
the radial components

of the EM field

We begin with the investigation of αðr; θÞ, given by
Eq. (133) as

αðr; θÞ ¼ −E0

eikðrþrg ln 2krÞ

uk2r2
X∞

l¼kR⋆
⊙

�
lþ 1

2

�
eið2σlþ

lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þðei2δ�l − 1ÞPð1Þ

l ðcos θÞ

×

�
u2 þ ðu2 − 1Þlðlþ 1Þ

4k2r2
þ i
kr

�
1þ lðlþ 1Þ

2k2r2

�
−

ikrg
lðlþ 1Þ

�
þO

�
r2g; rg

ω2
p

ω2
; ðkrÞ−5

�
: ð227Þ

To evaluate expression (227) in the interference region and for 0 ≤ θ ≃
ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, we use the asymptotic representation for

Pð1Þ
l ðcos θÞ from Refs. [40,67,70], valid when l → ∞:

Pð1Þ
l ðcos θÞ ¼ lþ 1

2

cos 1
2
θ
J1

��
lþ 1

2

�
2 sin

1

2
θ

�
: ð228Þ
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This approximation may be used to transform Eq. (227) as

αðr; θÞ ¼ −E0

eikðrþrg ln 2krÞ

uk2r2 cos 1
2
θ

X∞
l¼kR⋆

⊙

�
lþ 1

2

�
2

eið2σlþ
lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þðei2δ�l − 1ÞJ1

��
lþ 1

2

�
2 sin

1

2
θ

�

×

�
u2 þ ðu2 − 1Þlðlþ 1Þ

4k2r2
þ i
kr

�
1þ lðlþ 1Þ

2k2r2

�
−

ikrg
lðlþ 1Þ

�
þO

�
r2g; rg

ω2
p

ω2
; ðkrÞ−5

�
: ð229Þ

At this point, we may replace the sum in Eq. (229) with an integral [accounting for the fact that l ≫ 1 and keeping the
terms up to OðθÞ] to be evaluated with the method of stationary phase:

αðr; θÞ ¼ −E0

eikðrþrg ln 2krÞ

uk2r2

Z
∞

l¼kR⋆
⊙

l2dleið2σlþ
l2
2krþ l4

24k3r3
Þðei2δ�l − 1ÞJ1ðlθÞ

×

�
u2 þ ðu2 − 1Þ l2

4k2r2
þ i
kr

�
1þ l2

2k2r2

�
−
ikrg
l2

�
þO

�
r2g; rg

ω2
p

ω2
; ðkrÞ−5; θ2

�
: ð230Þ

As before, we evaluate this integral treating plasma-
independent and plasma-dependent terms separately.

1. The plasma-independent part of αðr;θÞ
In evaluating the plasma-independent part, we see that

the l-dependent phase in this expression is given as

φ½0�ðlÞ ¼ 2σl þ
l2

2kr
þ l4

24k3r3
þOððkrÞ−5Þ

¼ −2krg lnlþ l2

2kr
þ l4

24k3r3
þOððkrÞ−5Þ: ð231Þ

The phase is stationary when dφ½0�ðlÞ=dl ¼ 0, resulting
in

−
2krg
l

þ l
kr

þ l3

6k3r3
¼ OððkrÞ−5Þ

⇒ l4 þ 6k2r2l2 − 12k4r3rg ¼ OððkrÞ−2Þ: ð232Þ

We may now solve this equation for l2ðrgÞ, keeping only
the terms of the first power of rg. Requiring that in the
absence of gravity no rays would reach the focal area or
limrg→0l2ðrgÞ → 0, we have only one solution, given as

l2 ¼ k22rgrþOððkrÞ−1Þ or l0 ¼ k
ffiffiffiffiffiffiffiffiffi
2rgr

p
: ð233Þ

This solution represents the smallest partial momenta for
the light trajectories to reach a particular heliocentric
distance, r, on the focal line of the SGL. It is consistent
with the solution to the equation for geodesics (see Sec. 1 of
Appendix B), which yields the solution for the impact

parameter of b ¼ ffiffiffiffiffiffiffiffiffi
2rgr

p
. In addition, we also choose such

that l is positive.
Solution (233) allows us to compute the stationary phase

[Eq. (231)] as

φ½0�ðl0Þ ¼ −krg ln 2krþ σ0 þ
π

2
: ð234Þ

Using Eq. (231), we compute the relevant φ00
�ðlÞ as

below:

d2φ½0�

dl2
¼ 1

kr

�
1þ l2

2k2r2
þOððkrÞ−4Þ

�
þ 2krg

l2
⇒

d2φ½0�

dl2
¼ 2

kr

�
1þ rg

2r
þOðr2gÞ

�
: ð235Þ

The amplitude factor for the asymptotic expansion
Hþ

l ðkrg; krÞ from Eq. (118), denoted by aðlÞ, which is
given by Eq. (154). This factor for l0 from Eq. (233) is
computed to be

aðl0Þ ¼ 1þ rg
2r

þOðr2gÞ: ð236Þ

Using results (235) and (236), we derive

aðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffiffiffiffi
πkr

p �
1þ rg

4r
þOðr2gÞ

�
: ð237Þ

Now, using Eq. (237), we have the amplitude of the
integrand in Eq. (230), for l from Eq. (233), taking
the form
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A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π
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�
u2 þ ðu2 − 1Þ l2

0

4k2r2
þ i
kr

�
1þ l2

0

2k2r2

�
−
ikrg
l2
0

�
J1ðlθÞaðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ k22rgr
ffiffiffiffiffiffiffiffi
πkr

p �
1þ 5rg

4r
þOðr2g; ðkrÞ−1Þ

�
J1ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ; ð238Þ

where the superscript [0] denotes the term with no plasma
contribution. As before, we dropped the i=ðkrÞ terms inside
the parentheses, as these terms are very small compared to
the leading terms.
As a result, the plasma-free part of the expression for

δα½0�ðr; θÞ given by Eq. (230) takes the form

δα½0�� ðr; θÞ ¼ iE0

ffiffiffiffiffiffiffi
2rg
r

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J1ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ

× eikrð1þOðr2g; ðkrÞ−1ÞÞ: ð239Þ

2. Evaluating the plasma-dependent part of αðr;θÞ
For the plasma-dependent term in Eq. (230), the l-

dependent phase is given as

φ½p�ðlÞ ¼ 2σl þ
l2

2kr
þ l4

24k3r3
þ 2δ⋆l þOððkrÞ−5Þ

¼ −2krg lnlþ l2

2kr
þ l4

24k3r3
þ 2δ⋆l þOððkrÞ−5Þ:

ð240Þ

Considering Eq. (240), we see that the points of sta-
tionary phase, where dφ½p�

l =dl ¼ 0, are given by the
equation

−
2krg
l

þ l
kr

þ l3

6k3r3
þ 2δθp ¼ OððkrÞ−5Þ or

−2krg þ
l2

kr
þ l4

6k3r3
þ 2δθpl ¼ OððkrÞ−5Þ: ð241Þ

As we saw in Sec. VI A 1, the partial momenta for the
points of stationary phase are l ∝ k

ffiffiffiffiffiffiffiffiffi
2rgr

p
, which makes

the l4 term in Eq. (241) ofOðr2gÞ. Thus, we may neglect the
term l4=6k3r3 and solve the remaining quadratic equation
for l:

l2 þ 2krδθpl − 2k2rgr ¼ OððkrÞ−2Þ: ð242Þ

If we require that, in the limit when plasma is absent or
when δθp → 0, the partial momenta are to coincide with
those obtained earlier, namely Eq. (233), then there is only
one solution of Eq. (242) (similar to that discussed in
Ref. [15]):

l ¼ kr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rg
r

þ δθ2p

r
− δθp

�
: ð243Þ

Note that this solution correctly represents another sit-
uation where in the absence of gravity, the rays do not
reach the focal line—or, in other words, the focal line is
reached only by the ray with l ¼ 0, which is blocked by
the Sun.
As in this paper we only treat effects linear in plasma

contribution, the terms ofOðδθ2pÞmust be neglected, which
brings Eq. (243) to the following form, valid forffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
> δθp:

l ≃ kr

� ffiffiffiffiffiffiffi
2rg
r

r
− δθp

�
þOðδθ2pÞ

¼ kð ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞ þOðδθ2pÞ: ð244Þ

This expression represents the combined effects of
gravity and plasma on the light rays traveling towards
the focal area. From the left side of these two expres-
sions, we see that, as gravity works by bending light by
the angle of

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
towards the focal line, plasma

“unbends” these rays by the amount of δθp. Similarly, the
right side of these two expressions tells the same story
using the concept of the impact parameters. To reach the
focal line at the heliocentric distance r, rays must have
the impact parameter b ¼ ffiffiffiffiffiffiffiffiffi

2rgr
p

. In the presence of
plasma, to reach the same distance r, the impact
parameter must be smaller by rδθp, consistent with
our description of the effect.
Although Eq. (243) ensures that l is always positive for

any
ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
and δθp, Eq. (244), where the quadratic term

δθ2p is neglected, suggests that l > 0 only if we requireffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
> δθp or, equivalently,

ffiffiffiffiffiffiffiffiffi
2rgr

p
≥ rδθp. This is the

result of our approximation, where we consider only terms
linear with respect to δθp. We keep this observation in mind
and use Eq. (243) to guide us when interpreting the results.
We compute the stationary phase [Eq. (240)] for the

values of l given by Eq. (244):

φ½p�ðl0Þ ¼ −krg ln 2krþ σ0 þ
π

2
þ 2δ⋆l: ð245Þ

Computing the second derivative of the phase [Eq. (240)],
φðlÞ, with respect to l, we have
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d2φ½p�

dl2
¼ 1

kr

�
1þ l2

2k2r2
þOððkrÞ−4Þ

�
þ 2krg

l2
þ d22δ⋆b

dl2
;

ð246Þ

where, similarly to Eq. (174), the last term could be
neglected. Now, using l from Eq. (244), we have

φ½p�00ðl0Þ ¼
2

kr

�
1þ rg

2r
þO

�
r2g; δθp

ffiffiffiffiffiffiffi
2rg
r

r ��
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffiffiffiffi
πkr

p �
1 −

rg
4r

þO
�
r2g; δθ2p; δθp

ffiffiffiffiffiffiffi
2rg
r

r ��
:

ð247Þ

The amplitude factor aðlÞ from Eq. (154) is computed
to be

aðlÞ ¼ 1þ rg
2r

þOðr2g; rgδθpÞ: ð248Þ

Using results (247) and (236), we derive

aðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼

ffiffiffiffiffiffiffiffi
πkr

p �
1þ rg

4r
þO

�
r2g;δθ2p;δθp

ffiffiffiffiffiffiffi
2rg
r

r ��
:

ð249Þ

As a result, using Eq. (249), we have that the amplitude
of the integrand in Eq. (230), for l from Eq. (244), takes
the form

A½p�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼ l2

0

�
u2 þ ðu2 − 1Þ l2

0

4k2r2
þ i
kr

�
1þ l2

0

2k2r2

�
−
ikrg
l2
0

�
J1ðlθÞaðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ k22rgr
ffiffiffiffiffiffiffiffi
πkr

p �
1þ 5

4

rg
r
þO

�
r2g; ðkrÞ−1; δθp

ffiffiffiffiffiffiffi
2rg
r

r ��
J1ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞ; ð250Þ

where the superscript ½p� denotes the term that includes the plasma contribution. As before, we dropped the i=ðkrÞ terms in
the parentheses of this expression, as these terms are very small compared to the leading terms.
As a result, the plasma-dependent part of the expression for δα½0�ðr; θÞ given by Eq. (230) takes the form

δα½p�� ðr; θÞ ¼ −iE0

ffiffiffiffiffiffiffi
2rg
r

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J1ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞeiðkrþ2δ⋆lÞ

�
1þO

�
r2g; ðkrÞ−1; δθp

ffiffiffiffiffiffiffi
2rg
r

r ��
: ð251Þ

Finally, the entire αðr; θÞ term from Eq. (230) may be given as

δαðr; θÞ ¼ δα½0�� ðr; θÞ þ δα½p�� ðr; θÞ

¼ −iE0

ffiffiffiffiffiffiffi
2rg
r

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
�
J1ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞei2δ⋆l − J1ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ þO

�
r2g; ðkrÞ−1; δθp

ffiffiffiffiffiffiffi
2rg
r

r ��
eikr:

ð252Þ

We can use the same approach to compute the remaining two scattering factors, βðr; θÞ and γðr; θÞ.

B. The function βðr;θÞ and the θ components of the EM field

The βðr; θÞ function is given by Eq. (134) in the following form:

βðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

lþ 1
2

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þðei2δ�l − 1Þ

×

�∂Pð1Þ
l ðcos θÞ
∂θ

�
1 − u−2

�
lðlþ 1Þ
2k2r2

þ ½lðlþ 1Þ�2
8k4r4

�
þ irg
2kr2

�
þ Pð1Þ

l ðcos θÞ
sin θ

�
: ð253Þ

To evaluate the magnitude of the function βðr; θÞ, we need to establish the asymptotic behavior of the Legendre

polynomials Pð1Þ
l ðcos θÞ in the relevant regime. The asymptotic formulas for the Legendre polynomials if w ¼ ðlþ 1

2
Þθ is

fixed and l goes to ∞ are [66]:
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Pð1Þ
l ðcos θÞ
sin θ

¼ 1

2
lðlþ 1ÞðJ0ðwÞ þ J2ðwÞÞ;

dPð1Þ
l ðcos θÞ
dθ

¼ 1

2
lðlþ 1ÞðJ0ðwÞ − J2ðwÞÞ: ð254Þ

For any large l, formulas (183) and (184) are insufficient in a region close to the forward direction ðθ ¼ 0) or backward
direction (θ ¼ π). In the forward region, they are complemented by the asymptotic formulas in Eq. (254). Similar formulas
may be used for the backward region. More precisely, the formulas (183) and (184) hold for sin θ ≫ 1=l, and those given
by Eq. (254) hold for θ ≪ 1. The overlapping domain is 1=l ≪ sin θ ≪ 1. For our discussion of the SGL, the expressions
in Eq. (254) are more appropriate as they describe the EM field at or near the optical axis where θ ≈ 0; however, when
needed, we use Eqs. (183) and (184) to describe the EM field at small but finite angles away from the SGL’s optical axis.
Using Eq. (254), we transform Eq. (253) as follows:

βðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

�
lþ 1

2

�
eið2σlþ

lðlþ1Þ
2kr þ½lðlþ1Þ�2

24k3r3
Þðei2δ�l − 1Þ

×

�
J0

��
lþ 1

2

�
θ

�
−
1

2

�
J0

��
lþ 1

2

�
θ

�
− J2

��
lþ 1

2

�
θ

���
u−2
�
lðlþ 1Þ
2k2r2

þ ½lðlþ 1Þ�2
8k4r4

�
−

irg
2kr2

��
:

ð255Þ

Now, we may replace the sum in Eq. (255) with an integral (accounting for the fact that l ≫ 1 and keeping terms up to
the order of ∝ θ):

βðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

Z
∞

l¼kR⋆
⊙

ldleið2σlþ
l2
2krþ l4

24k3r3
Þðei2δ�l − 1Þ

×

�
J0ðlθÞ −

1

2
ðJ0ðlθÞ − J2ðlθÞÞ

�
u−2
�

l2

2k2r2
þ l4

8k4r4

�
−

irg
2kr2

��
: ð256Þ

We evaluate this integral with the method of stationary phase, treating plasma-independent and plasma-dependent terms
separately.
As the l-dependent phase in Eq. (256) is the same as Eq. (230), corresponding results obtained in Secs. VI A 1 and VI A

2 are also applicable here. In fact, the same solutions for the points of stationary phase apply. As a result, using Eqs. (233)
and (237) from Eq. (256) for the part of the integral that does not depend on the plasma phase shift, δ⋆l, we have

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼ l0

�
J0ðl0θÞ −

1

2
ðJ0ðl0θÞ − J2ðl0θÞÞ

�
u−2
�

l2
0

2k2r2
þ l4

0

8k4r4

�
−

irg
2kr2

��
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ kr
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q �
J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ þO

�
rg
r
; r2g

��
: ð257Þ

As a result, the expression for δβ½0�� ðr; θÞ in the interference region takes the form

δβ½0�ðr; θÞ ¼ −E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞeikr

�
1þO

�
rg
r
; r2g

��
: ð258Þ

Next, we evaluate the plasma-dependent term in Eq. (256). Using the expressions (244) and (249), from Eq. (256) we
have

A½p�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼ kr

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q �
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p ��
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞ þO

�
rg
r
; r2g

��
: ð259Þ

Thus, the term in Eq. (256) that depends on the contribution from the plasma-induced phase shift takes the form
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δβ½p�� ðr; θÞ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
�
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞeiðkrþ2δ⋆lÞ

�
1þO

�
rg
r
; r2g

��
: ð260Þ

Using the expressions (258) and (260), we present the integral (256) as

βðr; θÞ ¼ δβ½0�ðr; θÞ þ δβ½p�ðr; θÞ

¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
��

1 −
δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞei2δ⋆l − J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ þO

�
rg
r
; r2g

��
eikr: ð261Þ

C. The function γðr;θÞ and the ϕ components of the EM field

The ϕ components for the EM field is given by the factor γðr; θÞ, which, from Eq. (135), is given as

γðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

X∞
l¼kR⋆

⊙

lþ 1
2

lðlþ 1Þ e
ið2σlþlðlþ1Þ

2kr þ½lðlþ1Þ�2
24k3r3

Þðei2δ�l − 1Þ

×

�∂Pð1Þ
l ðcos θÞ
∂θ þ Pð1Þ

l ðcos θÞ
sin θ

�
1 − u−2

�
lðlþ 1Þ
2k2r2

þ ½lðlþ 1Þ�2
8k4r4

�
þ irg
2kr2

��
: ð262Þ

Similarly to the discussion in the preceding Sec. VI B, we use Eqs. (183) and (184) and transform Eq. (262) to the
integral, while also taking l ≫ 1:

γðr; θÞ ¼ E0

eikðrþrg ln 2krÞ

ikr

Z
∞

l¼kR⋆
⊙

ldleið2σlþ
l2
2krþ l4

24k3r3
Þðei2δ�l − 1Þ

×

�
J0ðlθÞ −

1

2
ðJ0ðlθÞ þ J2ðlθÞÞ

�
u−2
�

l2

2k2r2
þ l4

8k4r4

�
−

irg
2kr2

��
: ð263Þ

We evaluate this integral with the method of stationary phase, again treating plasma-independent and plasma-dependent
terms separately. As a result, we have

A½0�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼ l0

�
J0ðl0θÞ −

1

2
ðJ0ðl0θÞ þ J2ðl0θÞÞ

�
u−2
�

l2
0

2k2r2
þ l4

0

8k4r4

�
−

irg
2kr2

��
aðl0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s

¼ kr
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q �
J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ þO

�
rg
r
; r2g

��
: ð264Þ

Thus, the expression for δγ½0�� ðr; θÞ in the interference region takes the form

δγ½0�ðr; θÞ ¼ −E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞeikr

�
1þO

�
rg
r
; r2g

��
: ð265Þ

We evaluate the plasma-dependent term in Eq. (263). Using the relevant expressions (244) and (249) from Eq. (263), we
have

A½p�ðl0Þaðl0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

φ00ðl0Þ

s
¼ kr

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q �
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p ��
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞ þO

�
rg
r
; r2g

��
: ð266Þ

Thus, the term in Eq. (263) that depends on the contribution of the plasma-induced phase shift takes the form
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δγ½p�� ðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
�
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞeiðkrþ2δ⋆lÞ

�
1þO

�
rg
r
; r2g

��
: ð267Þ

Using the expressions (265) and (267), we present the integral (263) as

γðr; θÞ ¼ δγ½0�ðr; θÞ þ δγ½p�ðr; θÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
��

1 −
δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞei2δ⋆l − J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ þO

�
rg
r
; r2g

��
eikr: ð268Þ

D. The EM field in the interference region

Now we are ready to present the components of the EM field in the interference region in the presence of plasma. We do
that by using the expressions that we obtained for the functions αðr; θÞ, βðr; θÞ, and γðr; θÞ, which are given by Eqs. (252),
(261), and (268), correspondingly, and substituting them into Eq. (124). As a result, we establish the solution for the
scattered EM field in the region outside the termination shock boundary, up to terms of Oðr2g; δθp

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
; ðkrÞ−1; δθ2pÞ:

�
D̂p

r

B̂p
r

�
¼ −iE0

ffiffiffiffiffiffiffi
2rg
r

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0fJ1ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞei2δ⋆l − J1ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞgeiðkr−ωtÞ

�
cosϕ

sinϕ

�
; ð269Þ

�
D̂p

θ

B̂p
θ

�
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
��

1 −
δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞei2δ⋆l − J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ
�
eiðkr−ωtÞ

�
cosϕ

sinϕ

�
; ð270Þ

� D̂p
ϕ

B̂p
ϕ

�
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
��

1 −
δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞei2δ⋆l − J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞ
�
eiðkr−ωtÞ

�− sinϕ

cosϕ

�
: ð271Þ

The EM field produced by the Debye potential Π0, the wave in the interference region in the absence of plasma, was
given in Ref. [21] in the following form:

�
D̂ð0Þ

r

B̂ð0Þ
r

�
¼ −iE0

ffiffiffiffiffiffiffi
2rg
r

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J1ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞeiðkr−ωtÞ

�
cosϕ

sinϕ

�
; ð272Þ

�
D̂ð0Þ

θ

B̂ð0Þ
θ

�
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞeiðkr−ωtÞ

�
cosϕ

sinϕ

�
; ð273Þ

� D̂ð0Þ
ϕ

B̂ð0Þ
ϕ

�
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J0ðk

ffiffiffiffiffiffiffiffiffi
2rgr

p
θÞeiðkr−ωtÞ

�− sinϕ

cosϕ

�
: ð274Þ

The total field in accord with Eq. (130) is given by the sums of Eqs. (269)–(271) and Eqs. (272)–(274) up to terms of the
order of Oðθ2; δθ2p; r2g; δθp

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
; ðkrÞ−1Þ:

�
D̂r

B̂r

�
¼
�
D̂ð0Þ

r þ D̂p
r

B̂ð0Þ
r þ B̂p

r

�
¼ −iE0

ffiffiffiffiffiffiffi
2rg
r

r ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J1ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞeiðkrþ2δ⋆l−ωtÞ

�
cosϕ

sinϕ

�
; ð275Þ

�
D̂θ

B̂θ

�
¼
 
D̂ð0Þ

θ þ D̂p
θ

B̂ð0Þ
θ þ B̂p

θ

!
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
�
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞeiðkrþ2δ⋆l−ωtÞ

�
cosϕ

sinϕ

�
; ð276Þ
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�
D̂ϕ

B̂ϕ

�
¼
 
D̂ð0Þ

ϕ þ D̂p
ϕ

B̂ð0Þ
ϕ þ B̂p

ϕ

!
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0
�
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p �
J0ðkð

ffiffiffiffiffiffiffiffiffi
2rgr

p
− rδθpÞθÞeiðkrþ2δ⋆l−ωtÞ

�− sinϕ

cosϕ

�
: ð277Þ

The radial component of the EM field [Eq. (275)] is
negligibly small compared to the other two components,
which is consistent with the fact that while passing through
the solar plasma, the EM wave preserves its transverse
structure.
Expressions (275)–(277) describe the EM field in the

interference region of the SGL in the spherical coordinate
system. To study this field on the image plane, we need to
transform Eqs. (275)–(277) to a cylindrical coordinate
system [21,39]. To do that, we follow the approach
demonstrated in Ref. [21], where instead of spherical
coordinates ðr; θ;ϕÞ, we introduce a cylindrical coordinate
system ðρ;ϕ; zÞ more convenient for these purposes. In the
region r ≫ rg, this is done by defining R ¼ ur ¼ rþ
rg=2þOðr2gÞ and introducing the coordinate transforma-
tions ρ ¼ R sin θ, z ¼ R cos θ, which, from Eq. (13), result
in the following line element:

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ
¼ u−2c2dt2 − ðdρ2 þ ρ2dϕ2 þ nu2dz2Þ þOðr2gÞ:

ð278Þ
As a result, using Eqs. (275)–(277), for a high-frequency

EM wave [i.e., neglecting terms ∝ ðkrÞ−1] and for r ≫ rg,
we derive the field near the optical axis, which up to terms
of Oðρ2=z2Þ, takes the form

�
Ez

Hz

�
¼ O

�
ρ

z

�
; ð279Þ

�
Eρ

Hρ

�
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0

 
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
!

× J0

 
k
ffiffiffiffiffiffiffiffiffi
2rgr

p  
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
!
θ

!

× eiðkrþ2δ⋆l−ωtÞ
�
cosϕ

sinϕ

�
; ð280Þ

�
Eϕ

Hϕ

�
¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0

 
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
!

× J0

 
k
ffiffiffiffiffiffiffiffiffi
2rgr

p  
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
!
θ

!

× eiðkrþ2δ⋆l−ωtÞ
�− sinϕ

cosϕ

�
; ð281Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þρ2

p
¼ zð1þρ2=2z2Þ¼ zþOðρ2=zÞ) and

θ ¼ ρ=zþOðρ2=z2Þ. Note that these expressions were

obtained using the approximations in Eq. (254) and are
valid for forward scattering when θ ≈ 0, or when ρ ≤ rg.

E. Plasma contribution to image formation

Using the result [Eqs. (279)–(281)], we may now
compute the energy flux at the image region of the
SGL. The relevant components of the time-averaged
Poynting vector for the EM field in the image volume,
as a result, may be given in the following form (see
Ref. [21] for details):

S̄z ¼
c
8π

E2
0

4π2

1 − e−4π
2rg=λ

rg
λ

�
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=z

p �
2

× J20

�
2π

ρ

λ

� ffiffiffiffiffiffiffi
2rg
z

r
− δθp

��
; ð282Þ

with S̄ρ ¼ S̄ϕ ¼ 0 for any practical purposes. Also, we
recognize that the following convenient expression
is valid:

k
ffiffiffiffiffiffiffiffiffi
2rgr

p
θ ¼ 2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r
þOðρ2=zÞ: ð283Þ

Therefore, the nonvanishing component of the amplification
vector μ, defined as μ ¼ S̄=jS̄0j, where jS̄0j ¼ ðc=8πÞE2

0 is
the time-averaged Poynting vector of the wave propagating
in empty spacetime, takes the form

μ̄z ¼
4π2

1 − e−4π
2rg=λ

rg
λ

 
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=z

p
!

2

× J20

 
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r  
1 −

δθpffiffiffiffiffiffiffiffiffiffiffi
2rg=z

p
!!

; ð284Þ

where the argument of the Bessel function to first order
in δθp is from Eq. (243), with δθp itself given by
Eq. (166).
At this point, it is instructive to reinstate the full

dependence of the critical partial momenta l0 from
Eq. (243) on the plasma deflection angle δθp and, by
repeating some of the plasma-related derivations given in
Secs. VI B and VI C, to present the result [Eq. (284)] in the
following more informative form:

μ̄z ¼
4π2

1 − e−4π
2rg=λ

rg
λ
F 2

pgJ20

�
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r
Fpg

�
; ð285Þ
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where Fpg ¼
	
1þ δθ2p

δθ2g


1
2 − δθp

δθg
≥ 0; with δθg ¼ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z
p ¼

2rg=b being the Einstein deflection angle due to the
gravitational monopole. This result, to first order, is valid
for any values of δθp and δθg and is very helpful to
understanding the impact of plasma on the optical proper-
ties of the SGL. While Eqs. (284) and (285) yield similar
results when δθp ≪ δθg, reinstating the dependence from
Eq. (243) on δθ2p=δθ2g helps us to better understand the
behavior of the amplification factor μ̄z at longer
wavelengths.
As we can see from Eq. (285), the plasma contribution to

the optical properties of the SGL is governed by the factor
Fpg, which, in the absence of plasma, is Fpg ¼ 1. For
estimation purposes, we rely on Eq. (167), which is the
result of evaluating the generic expression for the plasma
deflection angle δθp [Eq. (166)] for the values given by the
phenomenological model [Eq. (4)]. Then, by using
δθg ¼ 2rg=b ¼ 8.49 × 10−6ðR⊙=bÞ, we estimate the ratio
of the two deflection angles as

δθp
δθg

¼
�
7.80 × 10−8

�
R⊙

b

�
15

þ 2.41 × 10−8
�
R⊙

b

�
5

þ 2.85 × 10−11
�
R⊙

b

���
λ

1 μm

�
2

: ð286Þ

Examining Eq. (286) as a function of the impact
parameter, we see that for Sun-grazing rays passing by
the Sun with impact parameter b ≃ R⊙, this ratio reaches its
largest value of δθp=δθg ¼ 1.02 × 10−7ðλ=1 μmÞ2, which
may be quite significant for microwave and longer wave-
lengths [19]. For a wave with λ ≃ 3 mm passing that close
to the Sun, the plasma contribution approaches that due to
the gravitational bending, δθp=δθg ∼ 0.92. As a result, the
factor Fpg from Eq. (285) decreases to Fpg ∼ 0.44, which,
as seen from Eq. (285), leads to reducing the light
amplification of the SGL to only F 2

pg ∼ 0.19 compared
to its value for the plasma-free case and broadening the PSF
by a factor of F−1

pg ∼ 2.28, thus reducing the angular
resolution of the SGL in this case by the same amount.
For the wavelength λ ≃ 3 cm, the ratio in Eq. (286)
increases to δθp=δθg ∼ 91.8, which reduces the light
amplification by a factor of F 2

pg ∼ 2.97 × 10−5 compared
to the plasma-free case and degrades the resolution by a
factor of F−1

pg ∼ 184. Further increasing the wavelength to
λ ≃ 30 cm leads to an obliteration of the optical properties
of the SGL, where light amplification is reduced by a factor
of 2.97 × 10−9 compared to the plasma-free case, with the
angular resolution degraded by a factor of 1.84 × 105.
At the same time, one can clearly see from Eq. (286) that

for optical or IR bands, say for λ ≃ 1 μm or less, the ratio in
Eq. (286) is exceedingly small and may be neglected,
which results in Fpg ¼ 1 for waves in this part of the EM

spectrum. This conclusion opens the way for using the SGL
for imaging and spectroscopic applications of faint, distant
targets.

VII. DISCUSSION AND CONCLUSIONS

Conceptually, the direct imaging of exoplanets is quite
straightforward: we simply seek to detect photons from a
planet that moves on the background of its parent star.
Emissions from an exoplanet can generally be separated
into two sources: stellar emission reflected by the planet’s
surface or its atmosphere, and thermal emission, which may
be either intrinsic thermal emission or emission resulting
from heating by the parent star. The reflected light has a
spectrum that is broadly similar to that of the star, with
additional features arising from the planetary surface or
atmosphere. Therefore, for Sun-like stars, this reflected
emission generally peaks at or near optical wavelengths,
which are the focus of our present paper.
Although exoplanets are quite faint, it is the proximity of

the much brighter stellar source that presents the most
severe practical obstacle for direct observation. In the case
of the SGL, light from the parent star is typically focused
many tens of thousands of kilometers away from the focal
line that corresponds to the instantaneous position of the
exoplanet. Therefore, light contamination due to the parent
star is not a problem when imaging with the SGL [26].
We studied the propagation of a monochromatic EM

wave on the background of a spherically symmetric gravi-
tational field produced by a gravitational mass monopole
described in the first post-Newtonian approximation of the
general theory of relativity taken in the harmonic gauge
[23] and the solar corona represented by the free electron
plasma distribution described by a generic, spherically
symmetric power-law model for the electron number
density [Eq. (3)]. We used a generalized model for the
solar plasma, which covers the entire Solar System from the
solar photosphere to the termination shock (i.e., valid for
heliocentric distances of 0 ≤ r ≤ R⋆, first introduced in
Ref. [20]). We considered the linear combination of gravity
and plasma effects, neglecting interaction between the two.
This approximation is valid in the Solar System environ-
ment. Our results, within the required accuracy, do not
depend on the actual value of R⋆, and as such, deviations
from spherical symmetry by the termination shock boun-
dary bear no relevance.
In Sec. II, we solved Maxwell’s equations on the

background of the Solar System, which includes the static
gravitational field of the solar monopole and the presence
of solar plasma. We used the Mie approach to decompose
the Maxwell equations and to present the solution in terms
of Debye potentials. We were able to carry out the variable
decomposition of the set of the relevant Maxwell equa-
tions and reduce the entire problem to solving the radial
equation in the presence of an arbitrary power-law poten-
tial, representing the plasma.
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In Sec. III, we used the eikonal approximation, valid for
all the regions of interest, to solve for the radial function. We
established the solution for the EM wave in the exterior
region of the Solar System (i.e., the region beyond the
termination shock, r > R⋆), given by Eq. (82), and also in
the interior region (0 ≤ r ≤ R⋆), given by Eq. (81). We then
used the boundary (continuity) conditions (83)–(86) to
match these two solutions at the boundary represented by
the termination shock. We established a compact, closed
form solution to the boundary value problem in the form of
the Debye potentials representing the EM field outside and
inside the termination shock boundary, given by Eqs. (107)
and (113), respectively. Next, we implemented fully absorb-
ing conditions representing the opaque Sun, thus establish-
ing solutions for every region of interest for imaging with the
SGL, both outside [Eq. (119)] and inside [Eq. (222)] the
termination shock. The resulting Debye potentials fully
capture the physics of the EM wave propagation in the
complex environment of the Solar System. These solutions
are new and extend previously known results into the regime
where gravity and plasma are both present.
In Sec. IV, we studied the general solution for the EM

field outside the termination shock. We derived the
expression for the Debye potential for the plasma-scattered
wave outside the termination shock [Eq. (132)]. This result
is then used to investigate the EM field in all the regions
behind the Sun, namely the region of the solar shadow, the
geometric optics region, and the interference region.
In Sec. V, we studied the EM field in the region of

geometric optics outside the termination shock. We dem-
onstrated that the presence of the solar plasma affects all
characteristics of the incident unpolarized light, including
the direction of the EM wave propagation, its amplitude,
and its phase. We observed that the combination of the
eikonal approximation and the method of stationary phase
results in an expression for the phase of the EMwave that is
identical to the one that is usually found by applying the
equation of geodesics. This similarly confirmed the validity
of our results. Our approach also allowed us to derive the
magnitude of the EM wave as it moves through the
refractive medium of the Solar System. We also studied
the EM field in the interior region of the Solar System and
investigated the EM field in the geometric optics region
inside the termination shock. We demonstrated that the
results obtained in the exterior region are directly appli-
cable for this region as well. We note that our solution for
this region may have immediate practical applications, as it
allows for proper accounting for the effect of solar plasma
on modern-day astronomical observations and the tracking
of interplanetary spacecraft.
In Sec. VI, we focused our attention on the interference

region and investigated the optical properties of the SGL.
We have shown that the presence of the solar plasma leads
to a reduction of the light amplification of the SGL and to a
broadening of its point-spread function. Although its
presence affects the optical properties of the SGL, its

contribution is negligible for optical and IR wavelengths.
On the other hand, plasma severely reduces both the light
amplification of the SGL and its resolution for wavelengths
longer than λ≳ 1 cm. In general, the steady-state compo-
nent of the solar plasma uniformly pushes the gravitational
caustic [21] away from the Sun, but it does not introduce
additional optical aberrations, leaving the image quality
unaffected. Thus, although prospective observations will be
conducted through the most intense region of the solar
corona, the SGL may be used for the imaging of exoplanets
at optical and near IR wavelengths [17,21,74]. We have
shown that the signals received from those faint targets are
not affected by the refraction in the solar corona at the level
of any practical importance.
The steady-state, spherically symmetric component of the

solar plasma affects the optical properties of the SGL,
especially for microwave or longer wavelengths. It leads
to a defocusing, which should not affect the size or the
position of the caustic line, except for the distance to the
beginning of the focal line. Such plasma behavior does not
induce aberrations [75], leaving the PSF of the SGL
unchanged. What may cause aberrations are deviations from
spherical symmetry in the solar corona electron number
density [Eq. (3)]. In a conservative estimate, we consider the
upper limit of the index variations to be as large as the
steady-state component [9], and varying temporally.
Temporal variability in the plasma may introduce additional
aberrations. Unpredictable variations must be treated as
noise and accounted for with standard observational tech-
niques [28,29]. Short-term temporal variability in the plasma
may be accounted for by relying, for instance, on longer
integration times, which will be required to reduce the shot
noise contribution in any case. One may also rely on the
differential Doppler technique [10,73], which would allow
the plasma contribution to be greatly reduced, by more than
3 orders of magnitude. In addition to temporal variability of
the solar atmosphere, two further physical optics effects,
namely spectral broadening and angular broadening, may
come into play. However, discussion of these effects is
beyond the scope of the present paper.
In this paper, we relied on spherical symmetry to capture

the largest terms, representing the realistic field distribu-
tions in the Solar System. An almost identical approach
may be used to account for any nonsphericity that may be
present either in the gravitational field or in the plasma
distribution, or else would be introduced by imprecise
spacecraft navigation and trajectory determination. Thus,
the 1=r or 1=r2 terms may be included by applying the
model that is already developed here. One would have to
redefine the rg and μ2 parameters in Eq. (42). Similar
analysis could be performed to account for higher-order
terms from the Schwarzschild solution, notably those ∝ r2g.
If quadrupole terms (i.e., terms in the potential that behave
as 1=r3) are present, one can use a spheroidal coordinate
system to solve the Maxwell equations. For higher-order
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nonsphericity, given that for the Solar System those terms
are very small, one may develop a perturbation approach
with respect to appropriately defined small parameters.
Concluding, we emphasize that the approach presented

here may be extended on a more general case of an
extended Sun [76–79] and an arbitrary model of the solar
plasma with a weak latitude dependence [5,7]. In addition,
the effect on the central caustic of the SGL due to outer
solar planets should be taken into account. Similarly to
microlensing searches for exoplanets (see Refs. [80,81] and
references therein), this effect may be important when
Jupiter, Saturn, or Neptune are very close the optical axis of
the SGL, thus providing an additional signal. Finally, one
has to evaluate the effect of the solar corona on the
photometric signal-to-noise ratio (SNR), where the coro-
na’s contribution could impact the integration time for
observations with the SGL. This work is ongoing and will
be reported elsewhere.
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APPENDIX A: REPRESENTING MAXWELL’S
EQUATIONS IN TERMS OF

DEBYE POTENTIALS

Following Ref. [38], in Ref. [21] we represented
Maxwell’s equations in terms of Debye potentials in the
plasma-free case, but in the presence of a static gravita-
tional monopole taken in the first post-Newtonian approxi-
mation of the general theory of relativity. In this Appendix,
we incorporate the contribution of the solar plasma into our
description.
To investigate the propagation of light in the vicinity of

the Sun, we consider the metric (13), together with Eqs. (1)
and (3), and use the approach developed in Appendix E
of Ref. [21]. We consider the propagation of an EM wave
in the vacuum, where no sources or currents exist, i.e.,
jk≡ðρ;jÞ¼0. This allows us to present the vacuum form
of Maxwell’s equations [Eqs. (11) and (12)], presenting
them for the steady-state, spherically symmetric plasma
distribution as

curlD ¼ −μu2
1

c
∂B
∂t þOðG2Þ; divðϵu2DÞ ¼ OðG2Þ;

ðA1Þ

curlB ¼ ϵu2
1

c
∂D
∂t þOðG2Þ; divðμu2BÞ ¼ OðG2Þ;

ðA2Þ

where the differential operators curl and div are now with
respect to the three-dimensional Euclidean flat metric.
Assuming, as usual, the time dependence of the field

in the form expð−iωtÞ, where k ¼ ω=c, the time-
independent parts of the electric and magnetic vectors
satisfy Maxwell’s equations [Eqs. (A1) and (A2)] for a
static and spherically symmetric gravitational field
and steady-state, spherically symmetric plasma in their
time-independent form:

curlD¼ ikμu2BþOðr2gÞ; divðϵu2DÞ¼Oðr2gÞ; ðA3Þ

curlB¼−ikϵu2DþOðr2gÞ; divðμu2BÞ¼Oðr2gÞ; ðA4Þ

where u ¼ 1þ rg=2rþOðr2g; r−3Þ as given by Eq. (16). In
spherical polar coordinates, Maxwell’s field equations
[Eqs. (A3) and (A4)], to Oðr2g; rgω2

p=ω2Þ, become

−ikϵu2D̂r ¼
1

r2 sin θ

� ∂
∂θ ðr sin θB̂ϕÞ −

∂
∂ϕ ðrB̂θÞ

�
; ðA5Þ

−ikϵu2D̂θ ¼
1

r sin θ

�∂B̂r

∂ϕ −
∂
∂r ðr sin θB̂ϕÞ; ðA6Þ

−ikϵu2D̂ϕ ¼ 1

r

� ∂
∂r ðrB̂θÞ −

∂B̂r

∂θ
�
; ðA7Þ

ikμu2B̂r ¼
1

r2 sin θ

� ∂
∂θ ðr sin θD̂ϕÞ −

∂
∂ϕ ðrD̂θÞ

�
; ðA8Þ

ikμu2B̂θ ¼
1

r sin θ

�∂D̂r

∂ϕ −
∂
∂r ðr sin θD̂ϕÞ

�
; ðA9Þ

ikμu2B̂ϕ ¼ 1

r

� ∂
∂r ðrD̂θÞ −

∂D̂r

∂θ
�
; ðA10Þ

where ðD̂r; D̂θ; D̂ϕÞ, ðB̂r; B̂θ; B̂ϕÞ are the physical compo-
nents of the EM field ðD;BÞ in the presence of the metric
[Eq. (13)], with u from Eq. (16). For details, see Secs. 84
and 90 in Ref. [13], and also Sec. II A and Appendixes A
and E in Ref. [21].
We represent the solution of equations (A5)–(A10) as a

superposition of two linearly independent fields ðeD; eBÞ
and ðmD; mBÞ, such that

eD̂r ¼ D̂r;
eB̂r ¼ 0; ðA11Þ

mD̂r ¼ 0; mB̂r ¼ B̂r: ðA12Þ
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With B̂r ¼ eB̂r ¼ 0, Eqs. (A6) and (A7) become

ikϵu2 ˆeDθ ¼
1

r
∂
∂r ðr ˆeBϕÞ; ðA13Þ

ikϵu2 ˆeDϕ ¼ −
1

r
∂
∂r ðr ˆeBθÞ: ðA14Þ

Substituting these relationships into Eqs. (A9) and
(A10), we obtain

∂
∂r
�
1

ϵu2
∂
∂rðr ˆeBθÞ

�
þk2μu2ðr ˆeBθÞ¼−

ik
sinθ

∂eD̂r

∂ϕ ;

ðA15Þ
∂
∂r
�
1

ϵu2
∂
∂r ðr ˆeBϕÞ

�
þ k2μu2ðr ˆeBϕÞ ¼ ik

∂eD̂r

∂θ : ðA16Þ

From divðμu2eBÞ ¼ 0 given by Eq. (A4), and relying on
the spherical symmetry of ϵ and μ, and using eB̂r ¼ 0 from
Eq. (A11), we have

∂
∂θ ðsin θ ˆeBθÞ þ

∂ ˆeBϕ

∂ϕ ¼ 0; ðA17Þ

which ensures that the remaining equation (A8) is satisfied.
Indeed, after substitution from Eqs. (A13) and (A14),
Eq. (A8) becomes

1

r2 sin θ

� ∂
∂θ ðr sin θ ˆeDϕÞ −

∂
∂ϕ ðr ˆeDθÞ

�

¼ −
1

ikr2 sin θ
1

ϵu2
∂
∂r
�
r

� ∂
∂θ ðsin θ ˆeBθÞ þ

∂ ˆeBϕ

∂ϕ
��

¼ O
�
r2g; rg

ω2
p

ω2

�
; ðA18Þ

which is satisfied because of Eq. (A17). Strictly similar
considerations apply to the complementary case with
mD̂r ¼ 0, as shown in Eq. (A12).
The solution with vanishing radial magnetic field is

called the electric wave (or transverse magnetic wave),
and that with vanishing radial electric field is called the
magnetic wave (or transverse electric wave). We show that
they may each be derived from a scalar potential, eΠ and
mΠ, respectively. These are known as the Debye potentials.
It follows from Eq. (A8), since ˆeBr ¼ 0, that ˆeDϕ and ˆeDθ

may be represented in terms of a gradient of a scalar:

ˆeDϕ ¼ 1

r sin θ
∂U
∂ϕ ; ˆeDθ ¼

1

r
∂U
∂θ : ðA19Þ

If we now set

U ¼ 1

ϵu2
∂
∂r ðr

eΠÞ; ðA20Þ

then we have, from Eq. (A19),

eD̂θ ¼
1

ϵu2r
∂2ðreΠÞ
∂r∂θ ; ˆeDϕ ¼ 1

ϵu2r sin θ
∂2ðreΠÞ
∂r∂ϕ :

ðA21Þ

It can be seen that Eqs. (A13) and (A14) are satisfied by

ˆeBϕ ¼ ik
r
∂ðreΠÞ
∂θ ; ˆeBθ ¼ −

ik
r sin θ

∂ðreΠÞ
∂ϕ : ðA22Þ

If we substitute both equations from (A22) into Eq. (A5),
we obtain

eD̂r ¼ −
1

ϵu2r2 sin θ

� ∂
∂θ
�
sin θ

∂ðreΠÞ
∂θ

�
þ 1

sin θ
∂2ðreΠÞ
∂ϕ2

�
:

ðA23Þ

Substitution from Eqs. (A22) and (A23) into Eqs. (A15)
and (A16) gives two equations, the first of which
expresses the vanishing of the ϕ derivative, and the
second the vanishing of the θ derivative of the same
expression on the left-hand side. These equations may,
therefore, be satisfied by equating this expression to zero,
which gives

ϵu2
∂
∂r
�
1

ϵu2
∂ðreΠÞ
∂r

�
þ 1

r2 sin θ
∂
∂θ
�
sin θ

∂ðreΠÞ
∂θ

�

þ 1

r2sin2θ
∂2ðreΠÞ
∂ϕ2

þ ϵμk2u4ðreΠÞ ¼ O
�
r2g; rg

ω2
p

ω2

�
:

ðA24Þ

Defining 0 ¼ ∂=∂r, this equation may be rewritten as

1

r2
∂
∂r
�
r2

∂
∂r
� eΠffiffiffi

ϵ
p

u

��
þ 1

r2 sin θ
∂
∂θ
�
sin θ

∂
∂θ
� eΠffiffiffi

ϵ
p

u

��

þ 1

r2sin2θ
∂2

∂ϕ2

� eΠffiffiffi
ϵ

p
u

�

þ
�
ϵμk2u4 −

ffiffiffi
ϵ

p
u

�
1ffiffiffi
ϵ

p
u

�00�� eΠffiffiffi
ϵ

p
u

�
¼ 0; ðA25Þ

which is the wave equation for the quantity eΠ=
ffiffiffi
ϵ

p
u, in the

form

�
Δþ ϵμk2u4 −

ffiffiffi
ϵ

p
u

�
1ffiffiffi
ϵ

p
u

�00�� eΠffiffiffi
ϵ

p
u

�
¼ O

�
r2g; rg

ω2
p

ω2

�
:

ðA26Þ

The equation for mΠ= ffiffiffi
μ

p
u is identical to Eq. (A26), with ϵ

and μ swapped.
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In a similar way, we may consider the magnetic wave,
and find that this wave can be derived from a potential mΠ
that satisfies the same differential equation (A24) [or
Eq. (A26)] as eΠ. The complete solution of Maxwell’s

field equations in terms of the electric and magnetic Debye
potentials, eΠ and mΠ, is obtained by adding the two fields
(see similar derivations in Appendix E of Ref. [21] and
Appendix A of Ref. [20]). This gives

D̂r ¼ eD̂r þ mD̂r ¼
∂
∂r
�
1

ϵu2
∂ðreΠÞ
∂r

�
þ μk2u2ðreΠÞ

¼ 1ffiffiffi
ϵ

p
u

� ∂2

∂r2
�
reΠffiffiffi
ϵ

p
u

�
þ
�
ϵμk2u4 −

ffiffiffi
ϵ

p
u

�
1ffiffiffi
ϵ

p
u

�00�� reΠffiffiffi
ϵ

p
u

��

¼ −
1

ϵu2r2 sin θ

� ∂
∂θ
�
sin θ

∂ðreΠÞ
∂θ

�
þ 1

sin θ
∂2ðreΠÞ
∂ϕ2

�
; ðA27Þ

D̂θ ¼ eD̂θ þ mD̂θ ¼
1

ϵu2r
∂2ðreΠÞ
∂r∂θ þ ik

r sin θ
∂ðrmΠÞ
∂ϕ ; ðA28Þ

D̂ϕ ¼ ˆeDϕ þ ˆmDϕ ¼ 1

ϵu2r sin θ
∂2ðreΠÞ
∂r∂ϕ −

ik
r
∂ðrmΠÞ
∂θ ; ðA29Þ

B̂r ¼ eB̂r þ mB̂r ¼
∂
∂r
�
1

μu2
∂ðrmΠÞ
∂r

�
þ ϵk2u2ðrmΠÞ

¼ 1ffiffiffi
μ

p
u

� ∂2

∂r2
�
rmΠffiffiffi
μ

p
u

�
þ
�
ϵμk2u4 −

ffiffiffi
μ

p
u

�
1ffiffiffi
μ

p
u

�00��rmuΠffiffiffi
μ

p
u

��

¼ −
1

μu2r2 sin θ

� ∂
∂θ
�
sin θ

∂ðrmΠÞ
∂θ

�
þ 1

sin θ
∂2ðrmΠÞ
∂ϕ2

�
; ðA30Þ

B̂θ ¼ eB̂θ þ mB̂θ ¼ −
ik

r sin θ
∂ðreΠÞ
∂ϕ þ 1

μu2r
∂2ðrmΠÞ
∂r∂θ ; ðA31Þ

B̂ϕ ¼ ˆeBϕ þ ˆmBϕ ¼ ik
r
∂ðreΠÞ
∂θ þ 1

μu2r sin θ
∂2ðrmΠÞ
∂r∂ϕ ; ðA32Þ

where the potentials eΠ and mΠ both satisfy the following wave equations, valid to Oðr2g; rgω2
p=ω2Þ:

ðΔþ ϵμk2u4 −
ffiffiffi
ϵ

p
u

�
1ffiffiffi
ϵ

p
u

�00�� eΠffiffiffi
ϵ

p
u

�
¼ 0;

�
Δþ ϵμk2u4 −

ffiffiffi
μ

p
u

�
1ffiffiffi
μ

p
u

�00�� mΠffiffiffi
μ

p
u

�
¼ 0: ðA33Þ

Also, for convenience, we give three different but equiv-
alent forms for the radial components for the EM field.
Finally, for the components D̂θ, D̂ϕ and B̂θ, B̂ϕ to be

continuous over a spherical surface at the termination
shock, r ¼ R⋆, it is evidently sufficient that the four
quantities

ϵðreΠÞ; μðrmΠÞ; ∂ðreΠÞ
∂r ;

∂ðrmΠÞ
∂r ; ðA34Þ

shall also be continuous over this surface. Thus, our
boundary conditions also split into independent conditions
on eΠ and mΠ. Our diffraction problem is thus reduced to
the problem of finding two mutually independent solutions

of the equations (A24) [or, equivalently, Eq. (A33)] with
prescribed boundary conditions.

APPENDIX B: LIGHT PROPAGATION IN WEAK
AND STATIC GRAVITY AND PLASMA

1. Light paths in weak and static gravity
in the presence of plasma

To investigate the propagation of light in the vicinity of
the Sun, we consider the metric (13) with u given by
Eq. (16). To account for the presence of plasma with a
refractive index n ¼ ffiffiffiffiffi

ϵμ
p

, following Ref. [12], we rescale
the speed of light as c → c=n ¼ c=

ffiffiffiffiffi
ϵμ

p
, which leads to the

following modification of Eq. (13):
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ds2 ¼ n−1u−2c2dt2 − nu2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ;
ðB1Þ

where, for nonmagnetic media, the static index of refraction
n2 ¼ ϵðrÞ from Eq. (1), together with the electron number
density for the steady-state part of the solar corona from
Eqs. (3) and (5), is given as

n2 ¼ 1 −
ω2
p

ω2
; with ω2

p ¼ 4πe2

me

X
i

αi

�
R⊙

r

�
βi
: ðB2Þ

In the refractive medium of the solar plasma and in the
weak gravitational field of the Sun, we may represent the
trajectory of a light ray as a linear superposition of two
perturbations: one introduced by gravity and the other one
due to plasma. Thus, to first order in G and ω2

p=ω2, the
trajectory of a light ray may be given as

xαðtÞ ¼ xα0 þ kαcðt− t0Þ þ xαGðtÞ þ xαpðtÞ þO
�
G2;G

ω2
p

ω2

�
;

ðB3Þ

where kα is the unit vector in the unperturbed direction of
the light ray’s propagation, while xαGðtÞ and xαpðtÞ are the
post-Newtonian and plasma terms, correspondingly. We
define the four-dimensional wave vector in curved space-
time as usual:

Km ¼ dxm

dλ
¼ dx0

dλ

�
1;
dxα

dx0

�
¼ K0ð1; καÞ; ðB4Þ

where λ is the parameter along the ray’s path and κα ¼
dxα=dx0 is the unit vector in that direction, i.e., κϵκϵ ¼ −1.
From Eq. (B3), we see that the unit vector κα may be
represented as κα¼kαþkαGðtÞþkαpðtÞþOðG2;Gω2

p=ω2Þ,
where kαGðtÞ ¼ dxαG=dx0 is the post-Newtonian pertur-
bation and kαpðtÞ ¼ dxαp=dx0 is that due to plasma. The
wave vector obeys the geodesic equation: dKm=dλþ
Γm
klK

mKl ¼ 0, which, for temporal and spatial components,
yields

dK0

dλ
− 2K0Kϵ

�
c−2∂ϵU −

1

4ω2
∂ϵω

2
p

�
¼ O

�
G2; G

ω2
p

ω2

�
;

ðB5Þ

dKα

dλ
þ 2KαKϵ

�
c−2∂ϵU −

1

4ω2
∂ϵω

2
p

�

þ ððK0Þ2 − KϵKϵÞ
�
c−2∂αU −

1

4ω2
∂αω2

p

�

¼ O
�
G2; G

ω2
p

ω2

�
: ðB6Þ

Equation (B5) is an integral of motion due to energy
conservation [as the metric (13) is independent of time].
Indeed, we can present it as

dK0

dλ
− K0Kϵ

�
2c−2∂ϵU −

1

2ω2
∂ϵω

2
p

�

¼ d
dλ

�
g00

dx0

dλ

�
þO

�
G2; G

ω2
p

ω2

�
¼ O

�
G2; G

ω2
p

ω2

�
:

ðB7Þ

Therefore, in the static field energy is conserved, and we
have the following integral of motion:

g00
dx0

dλ
¼ constþO

�
G2;G

ω2
p

ω2

�
⇒x0

¼ct¼k0λþx0GðλÞþx0pðλÞþO
�
G2;G

ω2
p

ω2

�
; ðB8Þ

where x0GðλÞ is the post-Newtonian correction and x0pðλÞ is
that due to plasma. We recall that the wave vector Km is a
null vector, which, to first order in G and ω2

p=ω2, and with
K0 ¼ k0 þOðG;ω2

p=ω2Þ, yields the relation KmKm ¼
0 ¼ ðk0Þ2ð1þ γϵβkϵkβ þOðG;ω2

p=ω2ÞÞ. Then, Eq. (B6)
becomes

dKα

dλ
þ 2ðk0Þ2ðkαkϵ − γαϵkμkμÞ

�
c−2∂ϵU −

1

4ω2
∂ϵω

2
p

�

¼ O
�
G2; G

ω2
p

ω2

�
: ðB9Þ

We can now represent Eq. (B9) in terms of derivatives
with respect to time x0. First, we have

dKα

dλ
¼ ðK0Þ2 d

2xα

dx02
þ dK0

dλ
dxα

dx0
: ðB10Þ

Substituting Eq. (B10) into Eq. (B9) and using Eq. (B5), we
have

d2xα

dx02
þ 2ðkαkϵ − γαϵkμkμÞ

�
c−2∂ϵU −

1

4ω2
∂ϵω

2
p

�

¼ −2kαkϵ
�
c−2∂ϵU −

1

4ω2
∂ϵω

2
p

�
þO

�
G2; G

ω2
p

ω2

�
:

ðB11Þ

Remember that for light ds2 ¼ 0. Then, from the fact that
rays of light move along light cones, the following
expression is valid: gmnðdxm=dx0Þðdxn=dx0Þ ¼ 0 ¼ 1þ
kϵkϵ þOðG;ω2

p=ω2Þ, which for Eq. (B11) yields
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d2xα

dx02
¼ −2ðγαϵ þ 2kαkϵÞ

�
c−2∂ϵU −

1

4ω2
∂ϵω

2
p

�

þO
�
G2; G

ω2
p

ω2

�
: ðB12Þ

To continue, we examine the unperturbed part of
Eq. (B3), representing it as

xαðtÞ ¼ xα0 þ kαcðt − t0Þ þOðG;ω2
p=ω2Þ

¼ ½k × ½x0 × k��α þ kαððk · x0Þ þ cðt − t0ÞÞ
þOðG;ω2

p=ω2Þ: ðB13Þ

Following Refs. [21,41,61], we define bα ≡ b ¼
½½k × x0� × k� þOðG;ω2

p=ω2Þ to be the impact parameter
of the unperturbed trajectory of the light ray. The vector b is
directed from the origin of the coordinate system toward the
point of closest approach of the unperturbed path of the
light ray to that origin. We also introduce the parameter
τ ¼ τðtÞ as

τ ¼ ðk · xÞ ¼ ðk · x0Þ þ cðt − t0Þ: ðB14Þ

Clearly, when the coordinate system is oriented along the
incident direction of the light ray, then τ ¼ ðk · xÞ≡ z.
These quantities allow us to rewrite Eq. (B13) as

xαðτÞ ¼ bα þ kατ þO
�
G;

ω2
p

ω2

�
;

rðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þO

�
G;

ω2
p

ω2

�
: ðB15Þ

The following relations hold:

rþ τ ¼ b2

r − τ
þO

�
G;

ω2
p

ω2

�
;

r0 þ τ0 ¼
b2

r0 − τ0
þO

�
G;

ω2
p

ω2

�
; and

rþ τ

r0 þ τ0
¼ r0 − τ0

r − τ
þO

�
G;

ω2
p

ω2

�
: ðB16Þ

They are useful for presenting the results of integration of
the light ray equations in different forms.
Limiting our discussion to the monopole given by

Eq. (16), we have c−2∂αU¼−ðrg=2r2Þ∂αrþOðG2;r−4Þ.
We recall that ∂αr ¼ ∂α

ffiffiffiffiffiffiffiffiffiffiffiffi
−xϵxϵ

p ¼ −xα=r. Then,
c−2∂αU ¼ ðrg=2r3Þxα þOðr2g; r−4Þ. In a similar manner,
from Eq. (B2), for the plasma-related term, we obtain
∂αneðrÞ ¼

P
kαkβkðR⊙=rÞβkðxα=r2Þ. As a result, Eq. (B12)

takes the form

d2xα

dx02
¼ −rg

bα − kατ

ðb2 þ τ2Þ3=2 þ
2πe2

meω
2

X
i

αiβiR
βi
⊙

bα − kατ

ðb2 þ τ2Þ1þ1
2
βi

þO
�
r2g; rg

ω2
p

ω2

�
: ðB17Þ

Using Eq. (B14), we make the substitution d=dx0 ¼ d=dτ,
which leads to the following equation:

d2xα

dτ2
¼ −rg

bα − kατ

ðb2 þ τ2Þ3=2 þ
2πe2

meω
2

X
i

αiβiR
βi
⊙

bα − kατ

ðb2 þ τ2Þ1þ1
2
βi

þO
�
r2g; rg

ω2
p

ω2

�
: ðB18Þ

We integrate Eq. (B18) from−∞ to τ to get the following
result:

dxα

dτ
¼ kα − rg

�
kαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ bα

b2

�
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ 1

��

þ 2πe2

meω
2

X
i

αi

�
R⊙

b

�
βi
�

kαðb2Þ12βi
ðb2 þ τ2Þ12βi

þ βi
bα

b

�
2F1

�
1

2
; 1þ 1

2
βk;

3

2
;−

τ2

b2

�
τ

b

�����τ
−∞

�

þO
�
r2g; rg

ω2
p

ω2

�
: ðB19Þ

Following Ref. [20], we define the function QβiðτÞ as

QβiðτÞ ¼ 2F1

�
1

2
;
1

2
βi;

3

2
;−

τ2

b2

�
τ

b
; ðB20Þ

which is a smooth and finite function for all values of τ with
the following relevant limits:

lim
τ→0

QβiðτÞ ¼ 0; lim
τ→∞

QβiðτÞ ¼ Q⋆
βi
; lim

βi→∞
Q⋆

βi
¼ 0:

ðB21Þ

For βi, typically present in solar corona models [i.e., given
in Eq. (4)], the quantity Q⋆

βi
has the following values:

Q⋆
2 ¼

π

2
≈ 1.5708; Q⋆

4 ¼
π

4
≈ 0.7854;

Q⋆
6 ¼

3π

16
≈ 0.5891; Q⋆

8 ¼
5π

32
≈ 0.4909;

Q⋆
16¼

429π

4096
≈ 0.3290; Q⋆

18¼
6435π

65536
≈ 0.3085: ðB22Þ

Using the new function (B20), we can improve the form
of Eqs. (B19) as
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dxα

dτ
¼ kα − rg

�
kαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ bα

b2

�
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ2
p þ 1

��

þ 2πe2

meω
2

X
i

αi

�
R⊙

b

�
βi
�

kαðb2Þ12βi
ðb2 þ τ2Þ12βi þ βi

bα

b
ðQβiþ2ðτÞ þQ⋆

βiþ2Þ
�
þO

�
r2g; rg

ω2
p

ω2

�
: ðB23Þ

From Eq. (B23), and with the help of Eqs. (B14) and (B15), we have the following expression for the wave vector κα

from (B4):

κα ¼ dxα

dτ
¼ kα

�
1 −

rg
r

�
−
rg
b2

bα
�
1þ ðk · xÞ

r

�

þ 2πe2

meω
2

X
i

αi

�
R⊙

b

�
βi
�
kα
�
b
r

�
βi þ βi

bα

b
ðQβiþ2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
Þ þQ⋆

βiþ2Þ
�
þO

�
r2g; rg

ω2
p

ω2

�
: ðB24Þ

We may now integrate Eq. (B23) from τ0 to τ to obtain

xαðτÞ ¼ bα þ kατ − rg

Z
τ

τ0

�
kαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ02
p þ bα

b2

�
τ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ τ02
p þ 1

��
dτ0

þ 2πe2

meω
2

X
i

αi

�
R⊙

b

�
βi
Z

τ

τ0

�
kαðb2Þ12βi

ðb2 þ τ02Þ12βi þ βi
bα

b
ðQβiþ2ðτ0Þ þQ⋆

βiþ2Þ
�
dτ0 þO

�
r2g; rg

ω2
p

ω2

�
; ðB25Þ

which, to the order of Oðr2g; rgω2
p=ω2Þ, results in

xαðτÞ ¼ bα þ kατ − rg

�
kα ln

τ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

τ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p þ bα

b2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p
þ τ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

q
− τ0Þ

�

þ 2πe2R⊙

meω
2

X
i

αi

�
R⊙

b

�
βi−1
�
kαðQβiðτÞ −Qβiðτ0ÞÞ þ βi

bα

b2

�Z
τ

τ0

Qβiþ2ðτ0Þdτ0 þ ðτ − τ0ÞQ⋆
βiþ2

��
; ðB26Þ

or, equivalently, substituting τ and r from Eqs. (B14) and (B15), we have

xαðtÞ ¼ xα0 þ kαcðt − t0Þ − rg

�
kα ln

rþ ðk · xÞ
r0 þ ðk · x0Þ

þ bα

b2
ðrþ ðk · xÞ − r0 − ðk · x0ÞÞ

�

þ 2πe2R⊙

meω
2

X
i

αi

�
R⊙

b

�
βi−1
�
kαðQβiððk · xÞÞ −Qβiððk · x0ÞÞÞ

þ βi
bα

b2

�Z
τ

τ0

Qβiþ2ðτ0Þdτ0 þ ðk · ðx − x0ÞÞQ⋆
βiþ2

��
þO

�
r2g; rg

ω2
p

ω2

�
: ðB27Þ

Therefore, the trajectory of a light ray in a static weak gravitational field with a refractive medium [Eqs. (1) and (3)] is
described by Eq. (B26), while the direction of its wave vector κα ¼ dxα=dx0 is given by Eq. (B24).
For a radial light ray given by kα ¼ xα0=r0 ¼ nα0 and b ¼ 0, we integrate Eq. (B17) with b ¼ 0 to obtain

dxα

dτ
¼ nα0

�
1 −

rg
r
þ 2πe2

meω
2

X
i

αi

�
R⊙

r

�
βi
�
þO

�
r2g; rg

ω2
p

ω2

�
; ðB28Þ

xαðtÞ ¼ xα0 þ nα0ðcðt − t0Þ − rg ln
r
r0

−
2πe2R⊙

meω
2

X
i

αi
βi − 1

��
R⊙

r

�
βi−1

−
�
R⊙

r0

�
βi−1
��

þO
�
r2g; rg

ω2
p

ω2

�
: ðB29Þ
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2. Geometric optics approximation for the wave
propagation in the vicinity of a massive body

In geometric optics, the phase φ is a scalar function, a
solution to the eikonal equation [13,22,41,82]

gmn∂mφ∂nφ ¼ 0: ðB30Þ

We use this equation to determine the phase evolution in the
presence of plasma and gravity. For this, we use the metric
gmn [Eq. (B1)], with the plasma index of refraction n given
by Eq. (B2).
Given the wave vector Km ¼ ∂mφ, and its tangent Km ¼

dxm=dλ ¼ gmn∂nφ where λ is an affine parameter, we note
that Eq. (B30) states that Km is null (gmnKmKn ¼ 0), thus

dKm

dλ
¼ 1

2
∂mgklKkKl: ðB31Þ

Equation (B30) can be solved by assuming an unperturbed
solution that is a plane wave:

φðt;xÞ ¼ φ0 þ
Z

kmdxm þ φGðt;xÞ þ φpðt;xÞ

þO
�
r2g; rg

ω2
p

ω2

�
; ðB32Þ

where φ0 is an integration constant and, to Newtonian
order, km ¼ ðk0; kαÞ ¼ k0ð1;kÞ, where k0 ¼ ω=c, is a
constant null vector of the unperturbed light ray trajectory,
γmnkmkn ¼ Oðrg;ω2

p=ω2Þ. Also, φG is the post-Newtonian
perturbation of the eikonal, and φpðt;xÞ is the perturbation
due to plasma. The wave vector Kmðt;xÞ then also admits a
series expansion in the form

Kmðt;xÞ ¼ dxm

dλ
¼ gmn∂nφ ¼ km þ kmG ðt;xÞ

þ kmp ðt;xÞ þO
�
r2g; rg

ω2
p

ω2

�
; ðB33Þ

where kmG ðt;xÞ ¼ γmn∂nφGðt;xÞ and kmp ðt;xÞ ¼
γmn∂nφpðt;xÞ are the first-order perturbations of the
wave vector due to post-Newtonian gravity and plasma,
correspondingly.
Substituting Eq. (B32) into Eq. (B30) and defining

hmn ¼ gmn − γmn with gmn from Eqs. (B1) and (B2), we
obtain an ordinary differential equation to determine the
perturbations φG and φp:

dφG

dλ
þ dφp

dλ
¼ −

1

2
hmnkmkn ¼ −

k20
c2

�
2U −

2πe2ne
meω

2

�

þO
�
r2g; rg

ω2
p

ω2

�
; ðB34Þ

where dφG=dλþdφp=dλ¼Km∂mφ. Similarly to Eq. (B3),
to Newtonian order, we represent the light ray’s
trajectory as

fxmg ¼ fx0 ¼ ct;xðtÞ ¼ x0 þ kcðt − t0Þg þO
�
rg;

ω2
p

ω2

�
;

ðB35Þ

and by substituting a monopole potential characterized
by the Schwarzschild radius rg for U and ne from Eq. (3),
we obtain

dφG

dλ
þ dφp

dλ
¼ −

k20rg
jx0 þ kcðt − t0Þj

þ 2πe2k20
meω

2

X
i

αiR
βi
⊙

×
1

jx0 þ kcðt − t0Þjβi
þO

�
r2g; rg

ω2
p

ω2

�
:

ðB36Þ

The representation of the trajectory given by Eq. (B35)
allows us to express the Newtonian part of the wave
vector Km, as given by Eq. (B33), as Km ¼ dxm=dλ ¼
k0ð1;kÞ þOðrg;ω2

p=ω2Þ, where k0 is immediately derived
to have the form k0 ¼ cdt=dλþOðrg;ω2

p=ω2Þ and
jkj ¼ 1. Keeping in mind that km is constant and using
Eq. (B14), we establish an important relationship:

dλ ¼ cdt
k0

þO
�
rg;

ω2
p

ω2

�
¼ cdt

k0
þO

�
rg;

ω2
p

ω2

�

¼ dτ
k0

þO
�
rg;

ω2
p

ω2

�
; ðB37Þ

which we use together with Eqs. (B15) and (B16) to
integrate Eq. (B36).
As a result, in the body’s proper reference frame [23,78],

we obtain the following expression for the phase evolu-
tion of an EM wave that propagates on the background
of a gravitating monopole and plasma to the order of
Oðr2g; rgω2

p=ω2Þ:

φðt;xÞ ¼ φ0 þ k0

�
τ − ðk · xÞ − rg ln

�
τ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ2

p

τ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ τ20

p �

þ 2πe2R⊙

meω
2

X
i

αi

�
R⊙

b

�
βi−1ðQβiðτÞ −Qβiðτ0ÞÞ

�
;

ðB38Þ

or, equivalently,
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φðt;xÞ ¼ φ0 þ k0

�
cðt − t0Þ − k · ðx − x0Þ − rg ln

�
rþ ðk · xÞ
r0 þ ðk · x0Þ

�

þ 2πe2R⊙

meω
2

X
i

αi

�
R⊙

b

�
βi−1ðQβiððk · xÞÞ −Qβiððk · x0ÞÞÞ

�
þO

�
r2g; rg

ω2
p

ω2

�
: ðB39Þ

For a radial light ray with kα ¼ xα0=r0 ¼ nα0 [similarly to Eq. (B29)], from Eq. (B36) accurate toOðr2g; rgω2
p=ω2Þ, we have

φðt;xÞ ¼ φ0 þ k0

�
cðt − t0Þ − ðr − r0Þ − rg ln

r
r0

−
2πe2R⊙

meω
2

X
i

αi
βi − 1

��
R⊙

r

�
βi−1

−
�
R⊙

r0

�
βi−1
��

: ðB40Þ

It is worth pointing out that the results obtained here for
the phase of an EM wave [Eqs. (B38) and (B40)] are
consistent with those obtained in the preceding section
obtained for the geodesic trajectory of a light ray
[Eqs. (B27) and (B29)].

APPENDIX C: SOLUTION FOR THE RADIAL
EQUATION IN THE WKB APPROXIMATION

Here we focus on the equation for the radial function, R,
given by Eq. (46) with α ¼ lðlþ 1Þ:

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
þ rg
r3

−
α

r2

�
R ¼ 0: ðC1Þ

When the functional dependence of Vsr [Eq. (40)]
falls off faster than r−2, this term represents an additional
short-range potential. No exact solution exists for such an
equation, especially with the generic form of ne [Eq. (3)],
and thus, ω2

p in Eq. (1). Nevertheless, following an
approach presented in Refs. [21,39], we explore an
approximate solution to Eq. (42) using the method of
stationary phase (i.e., the Wentzel-Kramers-Brillouin, or
WKB approximation [83]). As we are interested in the
case when k is rather large (for optical wavelengths
k ¼ 2π=λ ¼ 6.28 × 106 m−1), we are looking for an
asymptotic solution as k → ∞. In fact, we are looking
for a solution in the form

R ¼ eikSðrÞ½a0ðrÞ þ k−1a1ðrÞ þ � � � þ k−nanðrÞ þ � � ��:
ðC2Þ

Technically, however, it is more convenient to search for a
solution to Eq. (C1) in an exponential form:

R ¼ exp

�Z
r

r0

iðkα−1ðtÞ þ α0ðtÞ þ k−1α1ðtÞ

þ � � � þ k−nαnðtÞ þ � � �Þdt
�
: ðC3Þ

Defining 0 ¼ d=dr, with the help of a substitution of
R0=R ¼ w, for the function w we obtain the following
equation:

w0 þ w2 þ k2
�
1þ 2rg

r

�
þ rg
r3

−
α

r2
¼ 0: ðC4Þ

Using this substitution, up to the terms ∝ k−5, we have

w ¼ iðkα−1ðrÞ þ α0ðrÞ þ k−1α1ðrÞ þ k−2α3ðrÞ þ k−3α3ðrÞ
þ k−4α4ðrÞ þ k−5α5ðrÞ þ � � � þ k−nαnðrÞ þ � � �Þ:

ðC5Þ

Substituting Eq. (C5) into Eq. (C4), we obtain

k2
�
1þ 2rg

r
− α2−1ðrÞ

�
þ k½iα0−1ðrÞ − 2α−1ðrÞα0ðrÞ�

þ iα00ðrÞ − α20ðrÞ − 2α−1ðrÞα1ðrÞ þ
rg
r3

−
α

r2

þ k−1½iα01ðrÞ − 2α−1ðrÞα2ðrÞ − 2α0ðrÞα1ðrÞ�
þ k−2½iα02ðrÞ − α21ðrÞ − 2α−1ðrÞα3ðrÞ − 2α0ðrÞα2ðrÞ�
þ k−3½iα03ðrÞ − 2α−1ðrÞα4ðrÞ − 2α0ðrÞα3ðrÞ − 2α1ðrÞα2ðrÞ�
þ k−4½iα04ðrÞ − α22ðrÞ − 2α−1ðrÞα5ðrÞ − 2α0ðrÞα4ðrÞ − 2α1ðrÞα3ðrÞ� ¼ Oðk−5; r2gÞ: ðC6Þ

Now, if we equate the terms with respect to the same powers of k, we get
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α2−1ðrÞ ¼ 1þ 2rg
r

; iα0−1ðrÞ − 2α−1ðrÞα0ðrÞ ¼ 0; iα00ðrÞ − α20ðrÞ − 2α−1ðrÞα1ðrÞ þ
rg
r3

−
α

r2
¼ 0;

iα01ðrÞ − 2α−1ðrÞα2ðrÞ − 2α0ðrÞα1ðrÞ ¼ 0; iα02ðrÞ − α21ðrÞ − 2α−1ðrÞα3ðrÞ − 2α0ðrÞα2ðrÞ ¼ 0;

iα03ðrÞ − 2α−1ðrÞα4ðrÞ − 2α0ðrÞα3ðrÞ − 2α1ðrÞα2ðrÞ ¼ 0;

iα04ðrÞ − α22ðrÞ − 2α−1ðrÞα5ðrÞ − 2α0ðrÞα4ðrÞ − 2α1ðrÞα3ðrÞ ¼ 0: ðC7Þ

These equations, to the order of Oðk−5; r2gÞ, may be solved as

α−1ðrÞ ¼ �
�
1þ rg

r

�
; α0ðrÞ ¼ −i

rg
2r2

; α1ðrÞ ¼∓ α

2r2

�
1 −

rg
r

�
; α2ðrÞ ¼ i

α

2r3

�
1 −

3rg
r

�
;

α3ðrÞ ¼ �
�
3α

4r4

�
1 −

16rg
3r

�
−

α2

8r4

�
1 −

3rg
r

��
; α4ðrÞ ¼ i

�
−
3α

2r5

�
1 −

95rg
12r

�
þ α2

2r5

�
1 −

5rg
r

��
;

α5ðrÞ ¼ �
�
−
15α

4r6

�
1 −

107rg
10r

�
þ 7α2

4r6

�
1 −

101rg
14r

�
−

α3

16r6

�
1 −

5rg
r

��
;…: ðC8Þ

Note that the � signs in these expressions are not independent; they all come from the solution for α−1ðrÞ in Eq. (C8).
Substituting solutions (C8) into Eq. (C3) and keeping the integration bounds for brevity, we have

S−1ðrÞ ¼
Z

r

r0

α−1ðr̃Þdr̃ ¼ �
Z

r

r0

�
1þ rg

r̃

�
dr̃ ¼ �ðrþ rg ln 2krÞjrr0 ; ðC9Þ

S0ðrÞ ¼
Z

r

r0

α0ðr̃Þdr̃ ¼ −i
Z

r

r0

rg
2r̃2

dr̃ ¼ i
rg
2r

����r
r0

; ðC10Þ

S1ðrÞ ¼
Z

r

r0

α1ðr̃Þdr̃ ¼∓ α

2

Z
r

r0

dr̃
r̃2

�
1 −

rg
r̃

�
¼ � α

2r

�
1 −

rg
2r

�����r
r0

; ðC11Þ

S2ðrÞ ¼
Z

r

r0

α2ðr̃Þdr̃ ¼ i
α

2

Z
r

r0

dr̃
r̃3

�
1 −

3rg
r̃

�
¼ −i

α

4r2

�
1 −

2rg
r

�����r
r0

; ðC12Þ

S3ðrÞ ¼
Z

r

r0

α3ðr̃Þdr̃ ¼ �
Z

r

r0

�
3α

4r̃4

�
1 −

16rg
3r̃

�
−

α2

8r̃4

�
1 −

3rg
r̃

��
dr̃ ¼∓

�
α

4r3

�
1 −

4rg
r

�
−

α2

24r3

�
1 −

9rg
4r

������r
r0

;

ðC13Þ

S4ðrÞ ¼
Z

r

r0

α4ðr̃Þdr̃ ¼ i
Z

r

r0

�
−
3α

2r̃5

�
1 −

95rg
12r̃

�
þ α2

2r̃5

�
1 −

5rg
r̃

��
dr̃ ¼ i

�
3α

8r4

�
1 −

19rg
3r

�
−

α2

8r4

�
1 −

4rg
r

������r
r0

;

ðC14Þ

S5ðrÞ ¼
Z

r

r0

α5ðr̃Þdr̃ ¼ �
Z

r

r0

�
−
15α

4r̃6

�
1 −

107rg
10r̃

�
þ 7α2

4r̃6

�
1 −

101rg
14r̃

�
−

α3

16r̃6

�
1 −

5rg
r̃

��
dr̃

¼ �
�
3α

4r5

�
1 −

214rg
15r

�
−

7α2

20r5

�
1 −

505rg
84r

�
þ α3

80r5

�
1 −

25rg
6r

������r
r0

: ðC15Þ

As we see, for i ≥ 1, the functions Si from Eq. (C11) to Eq. (C15) have factors of the type (1 − βrg=r) in their structure,
where β is some constant. Clearly, outside the Sun, the ratio rg=r is very small; it reaches its maximum value at the solar
radius, and then it diminishes as rg=r ¼ 2.45 × 10−6 × R⊙=r. As for any practical application r ≫ R⊙, this ratio may be
neglected, and factors (1 − βrg=r) may be treated as being equal to 1 in all of such occurrences present in Si, i ≥ 1.
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We now obtain two approximate solutions for the partial radial function Rl, which is given, to OððkrÞ−6; r2gÞ, as

RlðrÞ ¼ cl expfiðkS−1ðrÞ þ S0ðrÞ þ k−1S1ðrÞ þ k−2S2ðrÞ þ k−3S3ðrÞ þ k−4S4ðrÞ þ k−5S5ðrÞÞg
þ dl expf−iðkS−1ðrÞ þ S0ðrÞ þ k−1S1ðrÞ þ k−2S2ðrÞ þ k−3S3ðrÞ þ k−4S4ðrÞ þ k−5S5ðrÞÞg; ðC16Þ

where cl and dl are arbitrary constants. Substituting Eqs. (C9)–(C15) into Eq. (C16), we obtain the following solution
for Rl:

uRlðrÞ ¼ exp

�
lðlþ 1Þ
4k2r2

−
3lðlþ 1Þ
8k4r4

þ½lðlþ 1Þ�2
8k4r4

�

×

�
cl exp

�
i

�
kðrþ rg ln2krÞþ

lðlþ 1Þ
2kr

−
lðlþ 1Þ
4k3r3

þ½lðlþ 1Þ�2
24k3r3

þ 3lðlþ 1Þ
4k5r5

−
7½lðlþ 1Þ�2

20k5r5
þ½lðlþ 1Þ�3

80k5r5

��

þdl exp

�
−i
�
kðrþ rg ln2krÞþ

lðlþ 1Þ
2kr

−
lðlþ 1Þ
4k3r3

þ½lðlþ 1Þ�2
24k3r3

þ 3lðlþ 1Þ
4k5r5

−
7½lðlþ 1Þ�2

20k5r5
þ½lðlþ 1Þ�3

80k5r5

���
þOððkrÞ−6; r2gÞ; ðC17Þ

where cl and dl now account for all the integration
constants relevant to the point r0 in Eqs. (C9)–(C15).
As we discussed in Ref. [21], omission of the rg=r3 term

in Eq. (C1) leads to the appearance of an “uncompensated”
term rg=4kr2¼ð1=8πÞðrgλ=r2Þ in the exponent ofEq. (C17).
This term is extremely small; it decays fast as r increases,
and thus, it may be neglected in the solution for the radial
function. A similar point was made in Ref. [84], suggesting
that one can neglect the r−3 terms in Eq. (C1) [the same, of
course, is true for Eq. (46)] and reduce the problem to the case
of the equation for the radial function being the Schrödinger
equation describing scattering in a Coulomb potential.
Expression (C17) is used in Sec. VA, where we apply the

method of the stationary phase to develop expressions
containing the scattering amplitude. As we saw previously
(e.g., Refs. [21,25]), the solution for the points of the
stationary phase leads to a solution for l of the form
l ≃ kr sin θ. This observation allows us to somewhat sim-
plify the expressions (C17). Indeed, any term for which the
exponent of l in the numerator is less than the exponent of
ðkrÞ in the denominator is extremely small compared to the

other terms. Indeed, the first and last terms in the amplitude
are of orders l2=ðkrÞ2 and l4=ðkrÞ4, correspondingly.
However, the second term is of order l2=ðkrÞ4, which is
1=ðkrÞ2 times smaller than the first term and 1=l2 times
smaller than the third term. Thus, the second term may be
neglected. On the same grounds, we may neglect three terms
in the phase of expression (C17). In addition, similarly to
Ref. [21], we may further improve the asymptotic expression
for Rl from Eq. (C17) by accounting for the Coulomb phase
shifts, which can be done by simply redefining the constants
cl and dl yet again [21] as

cl → cl exp

�
i

�
σl −

πl
2

��
;

dl → dl exp

�
−i
�
σl −

πl
2

��
: ðC18Þ

As a result of the simplifications and rescaling of the
constants discussed above, the expression for the asymp-
totic behavior of the partial radial function Rl takes the
following form:

uRlðrÞ ¼ exp

�
lðlþ 1Þ
4k2r2

þ ½lðlþ 1Þ�2
8k4r4

�

×

�
cl exp

�
i

�
kðrþ rg ln2krÞ þ

lðlþ 1Þ
2kr

þ ½lðlþ 1Þ�2
24k3r3

þ ½lðlþ 1Þ�3
80k5r5

þ σl −
πl
2

��

þ dl exp

�
−i
�
kðrþ rg ln2krÞ þ

lðlþ 1Þ
2kr

þ ½lðlþ 1Þ�2
24k3r3

þ ½lðlþ 1Þ�3
80k5r5

þ σl −
πl
2

���
þOððkrÞ−6; r2gÞ: ðC19Þ

In Ref. [21], the asymptotic behavior of the Coulomb
function was obtained for very large distances from the
turning point for r ≫ rt; the solution (C19) improves it

further by extending the argument of these functions to
shorter distances, closer to the turning point (as was done in
Ref. [20] for Riccati-Bessel functions in the flat spacetime.)
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