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We study the optical properties of the solar gravitational lens (SGL) under the combined influence of
the static spherically symmetric gravitational field of the Sun—modeled within the first post-Newtonian
approximation of the general theory of relativity—and of the solar corona—modeled as a generic, steady-
state, spherically symmetric free electron plasma. For this, we consider the propagation of mono-
chromatic electromagnetic (EM) waves near the Sun and develop a Mie theory that accounts for the
refractive properties of the gravitational field of the Sun and that of the free electron plasma in the
extended Solar System. We establish a compact, closed-form solution to the boundary value problem,
which extends previously known results into the new regime where gravity and plasma are both present.
Relying on the wave-optical approach, we consider three different regions of practical importance for the
SGL, including the shadow region directly behind the Sun, the region of geometrical optics and the
interference region. We demonstrate that the presence of the solar plasma affects all characteristics of
an incident unpolarized light, including the direction of the EM wave propagation, its amplitude, and its
phase. We show that the presence of the solar plasma leads to a reduction of the light amplification of the
SGL and to a broadening of its point spread function. We also show that the wavelength-dependent
plasma effect is important at radio frequencies, where it drastically reduces both the amplification factor
of the SGL and also its angular resolution. However, for optical and shorter wavelengths, the plasma’s
contribution to the EM wave is negligibly small, leaving the plasma-free optical properties of the SGL

practically unaffected.
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I. INTRODUCTION

When an electromagnetic (EM) wave propagates
through a nonmagnetized free electron plasma occupying
a region that is much larger than the wavelength, there is a
complex interaction between the wave and the medium. As
a result, depending on the frequency of the EM wave, the
electron plasma frequency, and the electron elastic collision
frequency, the wave is transmitted, reflected, or absorbed
by the plasma medium [1,2]. Understanding this interaction
became important with the advent of Solar System explo-
ration, where EM waves are used for tracking and com-
municating with deep space probes. This is why, in part,
the effect of the solar plasma on the propagation of radio
waves was explored extensively [3—7]. It is now routinely
accounted for in any radio link analysis used either for
communication or for navigation [8], and especially for
precision radio science experiments [9—-11].

Plasma acts as a dispersive medium. Light rays passing
through plasma deviate from lightlike geodesics in a way
that depends on the frequency [12,13]. This effect plays a
significant role in geometric optics models of gravitational
microlensing [14,15]. The refraction of EM waves from a
distant background radio source by an interstellar plasma
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lens with a Gaussian profile of free electron column density
could lead to observable effects [14]. The relative motion of
the observer, the lens, and the source may modulate the
intensity of the background source. There are other effects,
including the formation of caustic surfaces, the possible
creation of multiple images of the background source, and
changes in its apparent sky position. The properties of
geodesics on a plasma background were investigated exten-
sively. Significant literature on general relativistic ray optics
in refractive media is available (for review, see Ref. [16]).

In the context of the optical properties of the solar
gravitational lens (SGL) [17,18], the effects of the solar
corona were investigated using a geometric optics approach
[19]. It was shown that in the immediate vicinity of the Sun,
the propagation of radio waves is significantly affected by
the solar plasma, which effectively pushes the focal area
of the SGL to larger heliocentric distances. At the same
time, one anticipates that the propagation of EM waves at
optical frequencies is not significantly affected by the solar
plasma. In Ref. [20], we show at the required level of
accuracy that the direction of travel of visible or near-IR
light is indeed unaffected by the plasma. However, the
plasma results in a phase shift that depends on the solar
impact parameter of an affected ray of light.
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In the present paper, we continue to investigate the
optical properties of the SGL using a wave theoretical
treatment initiated in Refs. [18,21]. Specifically, we study
light propagation on the background of the solar gravi-
tational monopole and also introduce effects of light
refraction in the solar corona. We consider the first
post-Newtonian approximation of the general theory of
relativity, presented in a harmonic gauge [22,23]. We use a
generic model for the electron number density in the solar
corona, used in Refs. [5,6,10,11] (using the geometric
optics approximation) and in Refs. [20,24] (using a wave
optical treatment), which extends the results of Ref. [25]
to the case of a free electron plasma distribution repre-
senting the solar corona and the interplanetary medium in
the Solar System. Here we take a further step and study
light propagation on the combined background of the
post-Newtonian monopole gravitational field and the solar
plasma distribution, thereby extending the results of our
earlier work on the SGL [18,20,21,25].

Our main objective here is to investigate the optical
properties of the SGL in the presence of the solar corona.
What is the effect of the refractive background in the
Solar System on the structure of the caustic formed by
the solar gravitational mass monopole? Specifically, what is
the plasma effect on light amplification, the point spread
function (PSF), and the resulting angular resolution of the
SGL? Are there plasma-induced optical aberrations? How
does the solar plasma affect the ultimate image quality?
These questions are important for our ongoing efforts to
study the application of the SGL for the direct high-
resolution imaging and spectroscopy of exoplanets [26,27].

This paper is organized as follows: In Sec. II A, we
discuss the solar plasma and present the model for the
electron number density distribution in the solar system.
Section II presents Maxwell’s field equations for the EM
field on the background of the solar gravitational monopole
and the solar plasma. In Sec. VIE, we discuss the optical
properties of the SGL in the presence of the solar plasma.
We also offer some practical considerations for the use of
this improved realistic model of the SGL for exoplanet
imaging. In Sec. VII, we discuss the results and their
importance to the exploration of exoplanets. To make the
main results more accessible, we have placed some material
in the Appendixes. Appendix A discusses the decomposition
of the Maxwell equations and their representation in terms of
Debye potentials. In Appendix B, we study light propagation
in weak and static gravity and steady-state plasma using
the geometric optics approximation. Section I of Appendix B
is devoted to a study of light’s path in weak and static gravity
in the presence of the extended solar plasma. In Sec. II of
Appendix B, we study the phase evolution of a plane wave
propagating in the vicinity of a massive body in the presence
of plasma. Appendix C discusses an approximate solution
for the radial equation that relies on the Wentzel-Kramers-
Brillouin (WKB) approximation.

II. EM WAVES IN A STATIC GRAVITATIONAL
FIELD IN THE PRESENCE OF PLASMA

We consider the propagation of monochromatic light
emitted by a distant source and received by a detector at the
focal area of the SGL. For the purposes of this paper, this
light is assumed to originate at a very large distance from
the Solar System. Thus, by the time it reaches the Solar
System, this light may be approximated as a plane wave
whose phase is logarithmically modified due to the pres-
ence of the solar gravity [21]. As this light reaches the Sun
and before it is detected by an imaging telescope, its
propagation is affected by the plasma of the solar corona.
Our current objective is to investigate the contribution of
this plasma to the optical properties of the SGL.

A. Modeling the solar atmosphere and
the interplanetary medium

For an EM wave of angular frequency w, propagating
through a free electron plasma, the dielectric permittivity of
the plasma is defined as [2]

2 2
e(r) = 1 - FmlbD)e ) op (1)
m,w 0]
where @2 = 4zn,e*/m,, e is the electron charge and m,
is its mass, while n, = n,(t,r) is the electron number
density. The quantity @, is known as the electron plasma
(or Langmuir) frequency. As far as magnetic permeability
goes, it is reasonable to assume that the solar plasma is
nonmagnetic, which is captured by setting y = 1.

The effects of the solar plasma are significant at
microwave frequencies, but light propagation at optical
and IR wavelengths remains almost unaffected [28,29].
Nonetheless, the level of sensitivity of the SGL, given its
extreme resolution and light amplification capabilities,
makes it obligatory to account for even such minute
effects.

To evaluate the plasma contribution, we need to know
the electron number density, as given by Eq. (1), along the
path of a light ray. Much of our knowledge about the solar
plasma comes from spacecraft tracking in the inner Solar
System [5-7,9-11]. In addition, distant spacecraft and
astronomical observations provide information about the
properties and extent of the interplanetary medium towards
interstellar space [30-32].

In the general case, the electron density shows temporal
variability, which we represent by decomposing n, into a
steady-state, spherically symmetric part 7, (r), plus a term,
én,(t,r), describing temporal and spatial fluctuations:

n,(t,r) = n,(r) + on,(t,r). (2)

The variability of the solar atmosphere, én,(7, r), has no
preferred timescale. Variations in the electron number
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density can be of a magnitude equal to that of the steady-
state term [33]. These variations are carried along by the
solar wind, at a typical speed of ~400 km/s; over integra-
tion times measured in the thousands of seconds, the spatial
scale of the fluctuations will therefore be comparable to the
solar radius.

For the heliocentric regions of interest in the context of
the SGL, 650-900 AU [26], the corresponding range of
the impact parameters is b ~ (1.1-1.3) R, where R is the
solar radius. This region, ~(0.1-0.3)R, from the solar
surface, is the most violent region of the solar corona,
characterized by significant fluctuations of the electron
content density.

Consequently, we may reasonably expect that the deflec-
tion of a light ray for a given impact parameter b due to
spatial and temporal fluctuations will be of the same order as
the deflection due to the mean solar atmosphere. This is
certainly the case for microwave frequencies [10,19].

As these deviations are unpredictable in nature, their
contributions must be treated as noise (e.g., as a stochastic
component to the convolution matrix that characterizes
how the SGL forms an image in the image plane; see
Ref. [26] for discussion.) In contrast, the steady-state
component of the solar corona is well understood, and
the magnitude of its contribution can be estimated. These
results can also be used to characterize the noise component
due to fluctuations, making it possible to understand the
extent to which such contributions will reduce the effective
resolution of the SGL, and to devise effective data analysis
strategies.

As a result, in the present paper, we focus on the
contribution of the steady-state, spherically symmetric
component of the electron plasma density and its effect
on the SGL. We therefore ignore any dependence on
heliographic latitude and any additional spatial and tem-
poral variations. The spherically symmetric, steady-state
plasma may be parametrized in the following generic form
(also shown in Figs. 1 and 2):

0, 0<r<Rg,
R\ i
)= () Rosr<r. @
l
ny, r>R,,

where f; > 1 (to match the properties of the solar wind at
large heliocentric distances, that behaves as o 1/7%) and R,
is the heliocentric distance to the termination shock, which
we take to be R, ~ 100 AU [30-32]. The termination
shock is an intermediate border situated before the helio-
pause, which is the last frontier of the solar wind. It is the
boundary at ~130 AU, where the solar wind fades and the
interstellar medium begins [34]. It is, of course, true (as
evidenced by, for instance, the findings of Voyagers 1 and
2) that the actual distance to the termination shock varies
with time and direction. However, as we find below, our

main results are not sensitive to the numerical value of R,
so long as it is of O(100 AU); contributions from the
plasma to the propagation of EM waves come mostly from
the region within a few solar radii from the solar surface.

Finally, n, is the electron number density in the
interstellar medium, which is assumed to be homogeneous.
The presence of this term is for completeness only. As it
does not influence the scattering of light, it may be safely
assumed to be that of a vacuum, namely ny, = 0. Note that
the model in Eq. (3) neglects the variability in the electron
number density within the heliosheath. Any variability, if it
exists, does not contribute an observable effect to the
scattering of light by the SGL.

The steady-state behavior is reasonably well known,
and we can use one of the several plasma models found in
the literature [5-7,11]. To be more specific, we make use
of the following steady-state, spherically symmetric
model of electron distribution (see Refs. [19,35] and
references therein):

16 6
i, (r) = [(2.99 x 108 <&> 4 1.5 % 108 <R—®)
r r
R 2
+3.44 x 10° (—O> ] cm™3. (4)
r

At a large distance from the source, the model replicates the
expected 1/ behavior of the solar wind. Other existing
models are somewhat different from Eq. (4). Such models
may account for the nonsphericity of the electron plasma
density and offer a slightly different distance power law (for
discussion, see Ref. [11]). These additional features of these
plasma models are not important for our purposes, as their
effects are below the detection accuracy. Also, any inho-
mogeneities of the plasma distribution in the interplanetary
medium are small, and thus, they are not expected to yield a
significant mechanism of refraction for light propagating
through the Solar System.

We emphasize that the model in Eq. (4) was developed
using the tracking data for interplanetary spacecraft, which
were conducted at multiple radio frequencies [5-7].
Astronomical observations conducted on the solar back-
ground at optical wavelengths also support this model
[3,36]. When studying light propagation in the immediate
vicinity of the solar photosphere, Eq. (4) may have to be
augmented by terms containing higher powers of (Rg/r).
However, even in extreme proximity to the Sun, the
electron number density would be at most 7,(r) < 6 X
108 ecm=3 [11,37].

The plasma frequency w? in Eq. (1), in the case of the
spherically symmetric plasma distribution model [Eq. (3)],
in the range of heliocentric distances, Ry < r < R, , has the
form

4re? Ro\ /i
2 _ N S
oy = o gi a,< r> . (5)
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This generic spherically symmetric model for the plasma
frequency in the extended solar corona allows us to study
the influence of solar plasma on the propagation of EM
waves throughout the Solar System in the range of helio-
centric distances given by Ry < r < R,. Clearly, the model
in Eq. (5) may be further extended, for instance, to include
known (nonrandom) effects due to nonsphericity, such as
dependence on the solar latitude. If needed, such effects
may be treated using the same approach as presented in
this paper.

B. Maxwell’s equations in three-dimensional form

We now focus on solving Maxwell’s equations on the
Solar System’s background set by gravity and plasma. We
rely heavily on Refs. [18,21,24] (that were inspired by
Refs. [38,39]), which the reader is advised to consult first.

Following Refs. [18,21], we begin with the generally
covariant form of Maxwell’s equations:

OF i+ 0iFy + Oy F;; = 0,

1 . 4z .
—— O (\/=gF™*) = ==, 6
75 k(v/=9F") o (6)
where g,,, is the metric tensor and g = detg,,, is its
determinant. We use a (3 4+ 1) decomposition [21] of the
generic interval (see Sec. 84 of Ref. [13]):

9oa 2
ds® = g,,,dx"dx" = («/g dx® + —dx“)
0 v 900
- Ka/;dx”dxﬂ , (7)

where the three-dimensional symmetric metric tensor k4 is
given as
JoaYop

Kaﬁ = _gaﬁ +—,

k = det k. (8)
Goo

Physical fields are defined as the 3-vectors E, D and the
antisymmetric 3-tensors B,; and H,; (see the problem in
Sec. 90 of Ref. [13]):

E, = Fo,, D = —5\/900F0a,
Bag = uF o5, HY = \/gooF*, )

where, following Ref. [13], we also introduce the per-
mittivity € and magnetic permeability p of the medium.
The quantities in Eq. (9) are not independent. Introducing
the 3-vector g = —g"*, we see that the following identities
exist:

D:e{\/i%EJr[ng]},

B:u£%£H+ng@. (10)

As a result, Eq. (6) yields the following three-
dimensional Maxwell equations:

1
curLE = — —Kao(\/EB),

div, B =0, 11
7 (11)

1 4
curl H = —9,(VAD) + —s,  div,D = 4zp, (12)
C

NG

where the differential operators curl, and div, are taken
with respect to the three-dimensional metric tensor k3 from
Eq. (8) [40] (also, see relevant details in Appendix A of
Ref. [21]).

To describe the optical properties of the SGL in the post-
Newtonian approximation, we use a static harmonic metric,
for which the line element may be given in spherical
coordinates (r,0, ¢) as [22,23]

ds? = u=?c*dr? — u?(dr* + r*(d6* + sin’0d¢?)),  (13)

where, to the accuracy sufficient to describe light propa-
gation in the Solar System, the quantity « has the form

N A3,
u=1+c2U+0(c™), U=G ple)dr ., (14)
[r—r/

with U being the Newtonian gravitational potential. Using
the metric (13), we may compute Eq. (8) and derive
Maxwell’s equations [Eqgs. (11) and (12)] in terms of the
physical components of the vector E and similar compo-
nents for H, D and B [40]. The fact that the chosen metric
is static simplifies the expressions for physical fields.
Indeed, with gy, = O (thus, g = 0) and 9yg,,, = 0, expres-
sions of Eq. (10) take the form

1
D= eE = euE = €D,
v/ 900
1
B= uH = puH = uB, (15)
V900

where we introduce the quantities D = ¥E and B = uH
that describe the EM field in static gravity in the vacuum.

We consider the propagation of an EM wave in the
vacuum, where no sources or currents exist, i.e., j*=
(p,j) = 0. Furthermore, as in Ref. [21], we focus our
discussion on the largest contribution to the gravitational
scattering of light, which, in the case of the Sun, is due to
the gravity field produced by a static monopole. In this
case, the Newtonian potential in Eq. (14) may be given by
c2U(r) = r,/2r+ O(r3,¢™*), where r, =2GM/c* is
the Schwarzschild radius of the source. Therefore, the
quantity u in Egs. (13) and (14) has the form

um:1+%+armﬂy (16)
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If needed, one can account for the contribution of
higher-order multipoles using the tools developed in
Refs. [20,41,42].

This allows us to present the vacuum form of Maxwell’s
equations [Egs. (11) and (12)] for the steady-state, spheri-
cally symmetric plasma distribution as (see Appendix A
for details)

,10B

curl D = —uu o+ O(G?), div(eu’D) = O(G?),
(17)
, 19D 2 o2 2
curl B = eu EE—’— O(G*), div(pu*B) = O(G*),

(18)

where the differential operators curl and div are now with
respect to the three-dimensional Euclidean flat metric.

Evaluating Eq. (4) at the shortest relevant heliocentric
distance, r = Ry, we see that the electron density given by
this model is of the order of 7,(r) < 4.54 x 10% cm=,
which implies that @, = \/4zn,e*/m, ~1.20 x 10° s71,
corresponding to a frequency of v, = w, /27 = 191 MHz.
For optical frequencies (v = c/A~ 300 THz) and for
r = Ry, we see that Eq. (1) may contribute at most at
the order of (w,/w)?~4.08 x 107!3, while for radio
frequencies (v ~ 10 GHz) this ratio is much higher:
(wp/w)? ~3.67 x 107*. At the same time, the effective
contribution of the gravitational monopole to the refraction
index from Eq. (16) is r,/r<4.25x107%(Ry/r).
Therefore, in our discussion below, we need to carry out
the necessary analysis up to terms that are linear with
respect to gravity and plasma contributions while neglect-
ing higher-order terms—an approach that is certainly
justified for optical wavelengths, but may need to be
augmented to include higher-order contributions, if dealing
with radio wavelengths (as was done, for instance, in
Refs. [43,44]). Nevertheless, our approach remains valid
even for lower frequencies, and may be used to provide
insight into the physical processes of the EM wave
interacting with extended solar corona given by a generic
model [Eq. (3)].

C. Representation of the EM field in terms
of Debye potentials

In the case of a static, spherically symmetric gravita-
tional field and steady-state, spherically symmetric plasma
distributions, solving the field equations (17) and (18) is
most straightforward. Following the derivation in Ref. [21]
(see Appendix E therein), we obtain the complete solution
of these equations in terms of the electric and magnetic
Debye potentials [38], ‘Il and "1. For details, see
Appendix A [see, for instance, derivations leading to
Eqgs. (A27)—(A32)]. The result is a system of equations

for the components of the monochromatic EM field with
the wave number' k = w/c:

b= Ll ]+ (o v 1))
- Lr/ﬂ } (19)

A 1 9*(r) ik O(r"I)
D9_€u2r 900 rsin0 op (20)

1 2 (retl) _ ik 9(r™I)
eu’rsin® 0rdgp r 08

R
g L/mﬁn} } (22)

D¢:

(21)

~ ik 9(rI) 1 9%(r™)

Bo=- rsing O¢ * uu*r 0rdd (23)
. k0(T) 1 8 -
P 00 " ulPrsing orog

where the electric and magnetic Debye potentials “IT and
"1 satisfy the wave equations (A33), given as

oo () ] -
(25)

(e~ ) ) 3] ot

(26)

Expressions (19)—(26) represent the solution of the
Mie problem in terms of Debye potentials [38,45], in
the presence of the gravitational field of a mass monopole
taken at the first post-Newtonian approximation of the
general theory of relativity [18,21] and a steady-state,

'When an EM wave is propagating in an electron plasma, its
frequency is given by the dispersion relation w?(k) = k*c? +
w? (k) [2]. That is, the plasma modifies the dispersion relation
and affects the group and phase velocities. Realizing that the
electron number density for the solar plasma is at most 72, (r) S
6 x 108 cm™ [11,37], using Eq. (1), we compute the largest
relevant value of w3 (k) that yields w?(k) = k*c*(1 +5.38 x
10713(A/1 ym)?). Therefore, throughout this paper we use
@ = k*c*(1 + O(10712)), signifying that at the optical and
near-IR wavelengths relevant to the SGL, A~ 1 um, the differ-
ence between the group and phase velocities can be neglected.
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spherically symmetric distribution of the free electron solar
plasma [Eq. (3)].

For the quantities € and u, given correspondingly by
Egs. (1) and (16), we can rewrite Eq. (25) as the time-
independent Schrodinger equation that describes the scat-
tering of light by a Coulomb potential and in the presence
of plasma:

(o2 5

=0(r2.r ). (27)

A similar equation may be obtained for "TI/,/uu from
Eq. (26), which, with ¢ = 1, takes the form

2 2 n
<A+k2<1 +ﬁ—wp(2r)> +r—§> { H] = 0(72, 1),
r 0] r VHu

(28)

Equations (27) and (28) are almost identical, except for
the last term in (27), which comes from e, introduced by
Eq. (1). To demonstrate that this difference is negligible, we
note that, as seen from Eq. (1) together with Eq. (3), in
addition to the purely Newtonian potential of a static
relativistic monopole that behaves as 1/r, Eq. (27) has
the plasma potential that contains several terms that decay
either as o« 72 or faster. Recognizing that @ = kc, and
using the plasma model (3) in the expression (1) for ¢, these
extra terms may be given as

kzw% +(wz)” wp | (@p)"
4a? M

47762 Ro )/ ﬁi(ﬁi+ 1) (Ro\?
me () {m (7) ) e
The two terms in the curly braces of Eq. (29) represent
the repulsive potentials due to plasma that, based on the
model in Eq. (3), vanish as 1/ or faster. The second
plasma term in this expression is dominated by a factor of
(kRg)~2, which, given the large value of the solar radius,
makes its contribution negligible, especially at optical
wavelengths (1~ 1 ym), for which (kRgy)? ~5.32 %
10732 [20]. Thus, the term « (w3)”/w* may be neglected.
Although the remaining terms are small, they may con-
tribute to the phase shifts of the scattered wave, and
therefore, they may affect the diffraction of light by the
Sun. Thus, we retain these terms for further analysis. As a
result, we introduce the steady-state, spherically symmetric
plasma potential, which to O((kRg)~?) is given as

(1)2 r ﬂ'e2 i
Vo) =2 =2 S (2) + 0l(kro) ),

c m,c?

(30)

Also, we note that the last term in Egs. (27) and (28),
representing the 1/7° tail of the gravitational potential, may
be discarded as insignificant (see relevant discussion in
Appendix C, and also in Appendix F of Ref. [21]).

As a result, and taking into account that magnetic
permeability u is constant, Egs. (27) and (28) take an
identical form:

<A+k2<1+2—:y>—vp(r)> E} o2, r3), (31

where the plasma potential V, is given by Eq. (30) and the
quantity IT represents either the electric Debye potential,
“I1/+/e, or its magnetic counterpart, "I1/,/u, namely

(r) = (%%) (32)

Therefore, the set of Eqs. (19)—-(24) with (31) and (32) is
greatly simplified, as now we need to solve only one
equation [Eq. (31)], which ultimately determines the Debye
potential for the entire problem.

III. SOLUTION FOR THE EM FIELD

A. Separating variables in the equation
for the Debye potential

Typically [38], in spherical polar coordinates, Eq. (31) is
solved by separating variables [20,21]:

nm 1

~ = R(NB(O)0(¢). (33)
with integration constants and coefficients that are deter-
mined by boundary conditions. Direct substitution into
Eq. (27) reveals that the functions R, ®, and @ must satisfy
the following ordinary differential equations:

d’R 2r a w2
PR (k2<1 *Tg> AT VPW)R - O(;)

(34)
b d(ine®® _ P \e—of,n, 2
sin6 o ( ind d9> + (a sin29>® - O<r9’r9 w2>’
(35)
2
‘{Z¢q§+ﬂq> O(r r2))2> (36)

The solution to Eq. (36) is given as usual [38]:

q)m(¢) = e*md — (Dm(¢> = dy cos(mqb) + b, Sin(m¢)’
(37)
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where f=m?, m is an integer and a, and b, are

integration constants.

Equation (35) is well known for spherical harmonics.
Single-valued solutions to this equation exist when a =
I(I+1) with (I > |m|, integer). With this condition, the
solution to Eq. (35) becomes

O (0) = P (cos 0). (38)

Now, we focus on the equation for the radial function
[Eq. (34)], where, because of Eq. (35), we have
a=7(¢+1). As a result, Eq. (34) takes the form

&R + <k2<1 +?) —f(f—jw— Vp(r)>R

darr r
2 w%,
:O rg,rg; . (39)

This equation describes light scattering that is dominated
by a spherical relativistic potential due to a gravitational
monopole (which is equivalent to an attractive Coulomb
potential discussed in quantum mechanics [46—48]).

To determine the solution to Eq. (39), similarly to
Ref. [20], we first separate the terms in the plasma potential
V.. [Eq. (30)], by isolating the 1/r* term and representing
the remaining terms as the short-range potential V. :

) + Vsr7 (40)

where x? and V., are given by

2 p2
, 4me Rg
H = 2 as,

: Zai<Rro)ﬂi+(9((kRO)‘2), (41)

i>2

sSY

4re?
m,c?

where 4 is the strength of the 1 /72 term in the plasma model
at r = RO.2 Using the values from the phenomenological
model [Eq. (4)], we can evaluate this term: y? ~ 5.89 x 1013,
Also, we note that the range of V.. is very short. In fact, as
we see from Fig. 1, this potential provides a negligible
contribution after r ~ 8R. Nevertheless, as it propagates
through the Solar System, light acquires the largest phase
shift as it travels through the range of validity of this potential.

Note that if the model in Eq. (30) were to have the term
x a;(Ry/r), this would imply the presence in Eq. (39) of
another Coulomb potential of the type 2u;/r, where

Note that following Ref. [20], we reuse the symbol y; do not
confuse it with magnetic permeability.

Distance from the Sun (r/Rg)

1 10 102 103 104 10°

¢
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=
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g

g -1l i
§ 10

s

=

1074k Y S Y E S VT RS ST | LI SRS RTTY H)
0.01 0.1 1 10 term. shock 1000
Distance from the Sun (AU)
FIG. 1. The electron number density model [Eq. (4)] (thick blue

line) given by Refs. [5-7]. The leftmost part of the curve, at short
heliocentric distances dominated by terms with higher powers of
(Rg/ 1), corresponds to the visible solar corona [29,36]. The thin
dotted line shows the contribution of the inverse square term,
which dominates beyond a few solar radii. The lightly shaded
region on the left represents the solar interior. The approximate
location of the termination shock is also marked, beyond which
the radial dependence disappears, leaving only an approximately
homogeneous interstellar background (not shown). Diagram
adapted from Ref. [20], with the horizontal axis extended beyond
the termination shock.

2u; = (4ne’Ry/m,c?)a;. The presence of such a term
may be easily accounted for by modifying the r, term in
Eq. (39) as r; — r,—u;, with all other calculations
unchanged. However, the current observations [5-11]
suggest that such a term must be absent in the model,
thus ay = | = 0.

The separation of the terms performed in the plasma
potential [Egs. (40) and (41)] allows us to appropriately
present the radial equation (39) as

’R 2 L(L+1
d L_|_ <k2<1+ﬁ) _#_

Verln) ) e

dr? r r

2
W
_ 2 b
= O(rg, rgw2>,

where the new index L for the plasma-modified centrifugal
potential is determined from

(42)

LIL+1)=2(+1)+ > (43)
Representing Eq. (43) equivalently as (L+1)*=(£43)* +
u? and requiring that when y — 0, the index L must behave
as L — 7, we find the solution to Eq. (43):

K (44)

V) 4

L=¢+
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When pu/¢ < 1, this solution behaves as

2 4

Il H 2u

L=¢ - O /€7
2o ey Tpesiy T OW/D)
2
~ K 43
~ 4 Ot ). (45)

For a typical region where the plasma potential [Eq. (3)]
is present, the value of # may be estimated using its relation
to the classical impact parameter, namely £ = kb > kRy =
4.37 x 10'3 at near optical wavelengths. Therefore, using
the result for 4> given above, we see that the ratio u/¢ <
1.75 x 1078 is indeed small while x?/# = O(1), justifying
the approximation in Eq. (45), as the order term is #? times
smaller than the leading term.

B. Eikonal solution for Debye potential

Equations similar to Eq. (31) are typical for many
problems of nuclear scattering. However, no exact sol-
ution is known for an arbitrary short-range potential V,
[Egs. (40) and (41)]. This has motivated the development
of various approximation tools [49,50]. One such approxi-
mation is known for the case of short-range potentials
that decay faster than 1/r%, where a small parameter is
introduced and the total solution to Eq. (31) is presented
as a series expansion with respect to this parameter.
This method is called the Born approximation (BA)
[51]. The method uses the radial Green’s function solution
to Eq. (39) (obtained while setting V,, = 0) to determine
each successive term in the expansion. The final solution
determines the cumulative phase shift for the EM wave as
it traverses the area where the short-range scattering
potential is present. Since this is a Born-type approxima-
tion for the phase shifts relative to the plasma-free wave,
the relevant approximation is referred to as the distorted
wave Born approximation (DWBA). It determines the
additional phase shift due to the short-range potential V..
[52,53]. However, it is known that for potentials that
behave as 1/r%, this approximation leads to divergent
results, as such potentials do not decay fast enough with
distance. This is precisely our situation, where the plasma
potential contains the 1/72 terms. Thus, neither the BA nor
the DWBA is particularly useful for our purposes.

To solve Eq. (31), we follow the approach presented in
Ref. [20], where we developed a method that relies on the
properties of the short-range plasma potential and the
eikonal (or high-energy) approximation. The region of
scattering of high-frequency EM waves on the plasma-
induced potential V, is bounded by the heliocentric
distance to the heliopause, R, from Eq. (3). We implement
the eikonal approximation [54-59]. In this approximation,
the short-range plasma potential contributes only a phase
shift to the EM wave, which can be directly calculated.
Here we extend the method introduced in Ref. [20] on the

curved spacetime induced by the solar gravitational mass
monopole.

1. Solution with short-range potential V. absent

No analytical solution is known to exist for Eq. (31) in
the general case when Vg, # 0. Therefore, we seek a
suitable approximation method. A number of methods were
developed to solve equations of this type in scattering
problems in quantum mechanics. At large incident ener-
gies, for a wavefront moving in the forward direction, a
very useful method is the eikonal approximation [54-59].
The eikonal approximation is valid when the following two
criteria are satisfied [59]: kb>1 and V. (r)/k* <1,
where k is the wave number and b is the impact parameter.
In our case, both of these conditions are fully satisfied.
The first condition yields kb = 4.37 x 10'3(A/1 um)
(b/Ry) > 1. Taking the short-range plasma potential
Vg, from Eq. (41), we evaluate the second condition as
Vo (r)/k* < Vo (R)/K* = 4.07 x 1073(1/1 um)? < 1.
Therefore, we may proceed.

To develop a solution to Eq. (31) using the eikonal
approximation, we first note that when the short-range
potential V.. is absent, Eq. (42) takes the form

d’R; 5 2r,\ L(L+1)
2T (k (1 +T> —T)RL =0. (46)

The solution to this equation is well known and is given
in terms of the Coulomb functions F(kr, kr) and
Gy (kr,. kr) [21,46-48,60] (the presence of these functions
is the main difference from the situation encountered in
Ref. [20], where a similar equation, but without the
Coulomb r,/r term, is solved in terms of the Riccati-
Bessel functions):

RY = cLFr(krg kr) +d Gy (kry, kr), (47)

where we use the superscript (2) to indicate that the solution
to Eq. (46) includes the inverse square term, 1/72, from the
plasma potential, which is represented by the index L from
Eq. (45) [20]. When the solution for R<L2> is known, we
combine results for ®(¢) and ©(0), given by Egs. (37) and
(38), to obtain the corresponding Debye potential, [T?) (r),
in the form

0 14

() =23 37 w R ()P (cos0)]

=0 m=—¢
x [a,, cos(me) + b,, sin(me)], (48)

where L = L(¢) is given by Eq. (45), and p,, a,,, and b,,
are arbitrary and as yet unknown constants to be deter-
mined later. This solution is well established and can be
studied with available analytical tools (e.g., Ref. [38]).
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Examining Eq. (31), we see that IT1®)(r) is a solution to
the following wave equation:

(A + k2 <1 + 2—?) - ’r‘—§> n®r) =0, (49)

which is the equation for the “free” Debye potential in the
presence of gravity and 1/r% plasma, I1(?) (r), and which is
yet “unperturbed” by the short-range plasma potential, V..

2. Eikonal wave function

We may now proceed with solving Eq. (31), given the
relevant form of V. [Eq. (41)], first representing this
equation as

<A + K <1 + 2—:9> —’:—j— Vsr(r)>l'[(r) = 0021,
(50)

To apply the eikonal approximation to solve Eq. (50), we
consider a trial solution in the form

(51)

where T1)(r) is the “free” Debye potential [Eq. (48)].
In other words, in the eikonal approximation, the Debye
potential IT() (r) becomes “distorted” in the presence of the
potential V., given in Eq. (41), by ¢, a slowly varying
function of r, such that

V2| < k|Vg|. (52)

When substituted into Eq. (50), the trial solution

[Eq. (51)] yields

{AH<2> (r) + <k2 <1 + 2:"> - ’:2) ) (r) }qﬁ(r)

+ I (r)Ag(r) + 2(VIIP (r) - Veh(r))
= Ve I (r)g(r) = O(rg. 7).

As TI®)(r) is the solution of the homogeneous equa-
tion (49), the first term in Eq. (53) is zero. Then, we neglect
the second term, T (r)A¢(r), because of Eq. (52). As a
result, from the last two terms we have

(53)

ler(r) + (’)(ré, r3).

(VInI® (r) - VIng(r)) = 5

(54)

As we discussed above, the plasma contribution is rather
small, and it is sufficient to keep the terms that are first
order in w?/w?. Thus, to formally solve Eq. (54), we may
present the solution for IT? (r) from Eq. (48) in series form
in terms of the small parameter x/¢, which enters there via

the index L, as shown by Eq. (45). Then, to solve Eq. (54),
it is sufficient to take only the zeroth-order term (i.e., with
u = 0) in TI®)(r). It is easier, however, to obtain such a
solution directly from Eq. (49) by setting u = 0, which
yields the well-known solution for the incident wave in the
presence of a gravitational monopole (see Eq. (23) in
Ref. [21]):
H(Z)(r) j:zk(7 rgInk(r—z) + O(I" w%/a)2> (55)
To compute the gradient of TT?)(r), following Ref. [21],
we represent the unperturbed trajectory of a ray of light as

wk/w?),

where k is the unit vector on the incident direction of the
light ray’s propagation path and r, represents the starting
point (see Fig. 2). Following Refs. [21,41,61], we define
b = [[k xry] xKk] to be the impact parameter of the
unperturbed trajectory of the light ray. The vector b is
directed from the origin of the coordinate system toward the
point of the closest approach of the unperturbed path of the
light ray to that origin.

With Eq. (56), we introduce the parameter 7 = 7(#) along
the path of the light ray (see details in Sec. 1 of
Appendix B):

r(1) =ry+ ke(t —1t9) + O(ry, (56)

=(k-r)=(k-ro) +c(r—19), (57)
which may be positive or negative. Note that 7 = zcosa,
with a being the angle between e, and K; 7 = z when the z
axis of the chosen Cartesian coordinate system is oriented
along the incident direction of the light ray. The new
parameter z allows us to rewrite Eq. (56) as
r(r) = b+ kt + O(r,, 0} /w?), (58)

with [[r(z)]| = r(r) = Vb? + 7 + O(r,, w3 /0?).
Using Eq. (58), the gradient of [T (r) from Eq. (55) may

be computed as
ry T
—Ip(14+2
()

VIn[I@(r) = ik <k (1 + @>
r

+O(r, 0}/ w?). (59)
As a result, Eq. (54) takes the form
; 9\ _ Ty 7)),
+ lk((k(l + r> b2b<1 + r>) Vln(j)(r))
1
= 5VSr(r) + (’)(rga)f)/a) , g,a)p/a) r73). (60)

As we want to identify the largest plasma contribution
to light propagation, we keep only linear terms with
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Termination shock

1000 AU,

FIG. 2. Schematic of the Solar System using an approximate log-square scale. Shading indicates the solar plasma density that is
traversed by an incident plane wave. The termination shock at ~100 AU is where the solar plasma collides with the interstellar medium,
the density of which is constant and does not contribute to the scattering of light. The spherical (r, 8, ¢) coordinate system (with ¢
suppressed) and the cylindrical z coordinate used in this paper are indicated. Diagram is adapted from Ref. [20], with the heliocentric

distance range extended beyond the termination shock.

respect to gravity and plasma. As a result, neglecting the
r,-dependent terms in Eq. (60), we may present Eq. (54) as

Lik(K V) In g = o Ve + Ol wb /o). (61)
We may now compute the eikonal phase due to the short-
range plasma potential V.. Using the representation of the
light ray’s path as r = (b, 7) given by Eq. (58), we observe
that (as was also shown in Ref. [21]) the gradient V may be
expressed in terms of the variables along the path as V =
V, +kd/dt + O(r,, 0} /w*), where V, is the gradient
along the direction of the impact parameter b, with 7 being
the parameter taken along the path. Thus, the differential
operator on the left side of Eq. (61) is the derivative along the
light ray’s path, namely (k - V) = d/dx.
As a result, for Eq. (61) we have
dlnp* 1

=+—
dr 2ik

Ve + O(ry, w%/a)z), (62)

the solutions of which are

$=(b,7) = exp{:F ZZkKOT Ver (b, r’)dr’}. (63)

We therefore have the following two particular eikonal
solutions of Eq. (50) for I(r):

M(r) = 0®(r) exp{+i&, (1)} + O(w}/w*). (64)

where we introduce the eikonal phase

E(r) = / Voo (b 7). (65)

2%k /.,

Given V. (r) from Eq. (41), we reduce the problem to
evaluating a single integral to determine the Debye

potentiual TI(r) from Eq. (51), which is a great simpli-
fication of the problem. Given the fact that b is constant,
and by taking the short-range plasma potential V (r)
from Eq. (41), we evaluate Eq. (65) as

£)(r) = 27te ROZ

m,c’k
i>2

(%) 100 - 0o
(66)

where we introduce the function Qg (7), which, with

7= (k-r)=Vr*—b? is given as
12 T
Qﬁ,-( ) 2Fl ﬂl’z’ b, (67)

with ,F[a, b, c, z] being the hypergeometric function [60].
For r = b, or equivalently, for 7 = 0, the function (67) is
well defined, taking the value of Q4 (0) = O for each ;. For
large values of r, and thus for large 7, for any given value of
i, the function Qj (7) rapidly approaches a limit:

lim 05 (5) = Jim 05 (V2= #7) = 0. (69

where O} Eﬂfﬁ_i]B[ Bi+1.4,
beta function [20]. For the values of f; used in the model in

Eq. (4) for the electron number density in the solar corona,
i = {2,6,16}, these values are

1], with B[x,y] being Euler’s

3z 429%

Q6 = E’ 16 — 4096 . (69)

Note that the quantities Q4 (r) [Eq. (67)] for p; > 2 are
always small, 0 < |Q/;i| < 1, and as functions of r, they
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reach their asymptotic values Q;. [Eq. (68)] quite rapidly,
typically after r ~ 3.2b. (Thus, they may be treated as being
constant for all the relevant distance ranges.)

Next, we place the source at a very large distance from
the Sun: |zg| = \/r} — b*> > R, (see Fig. 2). Then, from
the definition in Eq. (67) and the asymptotic behavior
given by Eq. (68), we have Qy (79) = —Qj . As aresult, we
express the total eikonal phase shift acquired by the wave
along its path through the Solar System [Eq. (66)] as

27e’Rg Ry \ /P!
 m,c%k Zai <7

&) =
(70)

Expression (70) is the total phase shift induced by the
short-range plasma potential along the entire path of the
EM wave as it propagates through the Solar System. One
may see that, as the light propagates from the source to the
point of closest approach to the Sun, it acquires the first part
of the phase shift—i.e., the term proportional to Q% in
Eq. (70). As it continues to propagate, the second term in
Eq. (70) kicks in, providing an additional contribution.

Substituting the solution that we obtained for the total
eikonal phase shift £,(r) of Eq. (70) in Eq. (64) results in
the desired solution for the Debye potential TI(r).
Effectively, this solution demonstrates that the phase of
the EM wave is modified by the short-range plasma
potential, as expected from the eikonal approximation.
Although Eq. (64) is the solution to Eq. (50), it still has
arbitrary constants yu., a,,, b,, present in Eq. (48). These
constants must be chosen to satisfy a particular boundary
value problem that we set out to solve: Obtaining the
solution for the EM field as it propagates through the Solar
System with the refractive medium given by Eq. (3).

C. Solution for the radial function R, (r)

At this point, we already have all the key components
needed to develop the solution for the Debye potentials
in the presence of a spherically symmetric gravitational
field produced by the solar monopole, and the spherically
symmetric solar plasma modeled by Eq. (3). As we
observed above, with the short-range plasma potential
[Eq, (41)], the equation for the radial function (39) takes
the form of Eq. (42). Solving this equation leads to a
solution for the Debye potential [Eq. (33)]. Following
Ref. [21], with the help of Eq. (33), a particular solution
for the Debye potential, II, is obtained by multiplying
together the functions given by Egs. (37) and (38) with R,
from Eq. (42); we then obtain a general solution to
Eq. (27). Specifically, by combining results for ®(¢)
and ©(#), given by Eqgs. (37) and (38), the solution for the
Debye potential takes the form

I
; = _Z Z ,ufRL (COS 9)] [am cos(m¢)
=0 m=-¢
@2
+ b,, sin(mg)] + O <r§, k2. r, w_L;) , (71)
where L = L(?) is given by Eq. (45) and ., a,,, b,, are
arbitrary and as yet unknown constants.

As we discussed earlier, no analytic solution to Eq. (42)
for R; in the case of an arbitrary form of the short-range
plasma potential V. is known. However, we may proceed
with solving Eq. (71) by relying on the eikonal approxi-
mation discussed in Sec. III B 2. For this, we notice that in
the plasma-free case (at the great heliocentric distances
beyond the termination shock), the entire plasma potential
V,, is absent, and thus L = Z. The solution to the Maxwell
field equations in this case is known and describes the
scattering of the EM waves by a gravitational monopole,
given in Ref. [21]. In that plasma-free case, to determine
the coefficients u, in Eq. (71), we choose R,(r) to be the
regular Coulomb wave function F,(kr,, kr), and we
require that the resulting EM field match the incident
Coulomb-modified plane EM wave.

As a result, in the vacuum, the solutions for the electric
and magnetic potentials of the incident wave, ‘1, and "I,
are found to be given in terms of a single potential I1(r, )
(see Ref. [21] for details):

To/Ve ) _ (cosd
(%/ﬁ) - (sin¢)n°(r’9)’
Eouz 1 2f+

=
P! >(0059) +O(r2).

where I1y(r, 0) ”’fFf(krg,kr)

(72)

In other words, the incident EM wave is not affected by
the solar plasma, thus its form is identical to that of the free
wave propagating in gravity, discussed in Ref. [21].

Considering the plasma, we notice that, for large r, the
potential V.. (r) in Eq. (42) can be neglected in comparison
to the Coulomb potential U.(r) = 2k*r,/r, and this
equation reduces to the Coulomb equation discussed in
Ref. [21] with the solution given by Eq. (72). The solution
of Eq. (42) that is regular at the origin can thus
be written asymptotically as a linear combination of the
regular and irregular Coulomb wave functions F; (kr,, kr)
and G (kr,, kr), respectively [49,50,62,63], which are
solutions of Eq. (42) in the absence of the potential
Ve (r). Asymptotically, at large values of the argument
(kr), these functions behave as [21]

L(L+1) =zL >

__+6L

F(kry,kr)~sin <k(r—|— ryIn2kr) +27kr >

(73)
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L(L+1 L
GL(krg,kr)~cos<k(r—|—rgln2kr)—l-i( * )—ﬂ——I-GL)

2kr 2
(74)

Since the Coulomb potential falls off more slowly than
the centrifugal potential [i.e., the L(L +1)/r* term in
Eq. (42)] at large distances, it dominates the asymptotic
behavior of the effective potential in every partial wave.
Hence, we look for a solution satisfying the following
boundary conditions [63]:

R (r) ~ nrttl, (75)

r—0

R, (r) ~ Fp(kry kr)+tané,Gy(kr,, kr)

L(L+1)
2kr

kr—oo

« sin (k(r +r,In2kr) +
L
—%+6L+5f>, (76)

where 7 is a normalization factor and F(kr,, kr) and
Gy (kr,, kr) are solutions of Eq. (42) in the absence of the
potential V.(r), which, as we discussed above, are regular
and irregular at the origin, respectively. The real quantities
6,(k) introduced by these equations are the phase shifts for
spherically symmetric scattering [64] due to the short-range
potential V,(r) [Eq. (41)] in the presence of the Coulomb
potential U (r) = 2k®r,/r in Eq. (42). We note that 5,(k)
fully describes the non-Coulombic part of the scattering
and vanishes when this short-range potential is not present.
We generalized these expressions to the case where the
additional plasma potential has a 1/72 term, which creates
an additional centrifugal potential in Eq. (42) that was
absorbed by the substitution £ — L.

We can satisfy the conditions of Egs. (75) and (76) by
choosing the function R; (r) as a linear combination of the
two solutions [Eq. (64)]. One way to do that is by relying on
the two solutions to Eq. (64) taken in the form of the
incoming and outgoing waves [65], which are given by the
functions Hj (kry, kr) and Hj (kr,, kr), correspondingly,
and to show explicit dependence on the eikonal phase shift,
&,(r), which can be captured in the following form:

1 . 4
R, (r) = % (Hf (kr,, kr)e™\") — H7 (kr,, kr)e= ("),

(77)
where the Coulomb-Hankel functions H(Li) are related to
the Coulomb functions by Hi (kr,. kr) = Gy (kr, kr) £
iF [ (kr,, kr) (for discussion, see Appendix A of Ref. [21]),

and their asymptotic behavior is given by (see Appendix F
of Ref. [21])

L(L+1)
2kr

o)) -

Clearly, using the approach demonstrated in Appendix C
and especially Eq. (C19), this expression may be extended
to include terms with higher powers of 1/kr. In addition,
&,(r) in Eq. (77) is the eikonal phase shift that is
accumulated by the EM wave starting from the point of
closest approach, r = b. The expression for the quantity is
obtained directly from Eq. (66) by setting z, =0 [or,
equivalently, from Eq. (70) by dropping the Qj terml],
which results in

o) =25 (%) 0,/ ()

b

Hi (kr,, kr)k ~ exp{ii(k(r + ryIn2kr) +

The form of the radial function R; from Eq. (77) captures
our expectation that, in the presence of a potential V()
from Eq. (41), the Coulomb-Hankel functions [which
represent the radial free-particle wave function solutions
of the homogeneous equation (46)], become “distorted” by
this short-range potential. Clearly, Eq. (77) satisfies the radial
equation (42). We can verify that R; in the form of Eq. (77)
also satisfies the asymptotic boundary conditions in
Egs. (75) and (76). Indeed, as the plasma potential exists
only for Ry < r <R, [which is evident from Eq. (3)],
the eikonal phase &, is zero for r < R, Therefore, as r — 0,
the index L — ¢ and the radial function (77) becomes
R (r) = Fy(kr,, kr), where the function F,(kr,, kr) obeys
the condition (75). Next, we consider another limit, when
r — oo. Using the asymptotic behavior of H7 from Eq. (78),
we see that, as r — oo, the radial function obeys the
asymptotic condition (76), taking the form where the phase
shift 6, is given by the eikonal phase &, introduced by
Eq. (65). As a result, we have established that the radial
function (77) represents a desirable solution to Eq. (42)
inside the termination shock boundary, 0 < r < R, and, of
course, it is a good choice for the radial function for the
region outside the Solar System, r > R,.

We may put the result [Eq. (77)] in the following
equivalent form:

R, (r) = cos éb(r)FL(krg, kr) + sin §b(r)GL(krg, kr),
(80)

which explicitly shows the phase shift, ,(r), induced by
the short-range plasma potential, clearly satisfying the
boundary condition (76) with the quantity &,(r) from
Eq. (79) being the anticipated phase shift 5,(k).

In conjunction with Eq. (80), Eq. (71) describes the
potential inside the termination shock, » < R, . Outside the
termination shock, r > R,, we model the solution for
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the Debye potential, as usual, as a combination of that of a
Coulomb-modified plane wave and a scattered wave. These
two solutions must be consistent on the boundary—that is,
at r = R,.

To match the potentials [Eq. (71)] inside the termination
shock with those of the incident and scattered waves
outside, the latter must be expressed in a similar form
but with arbitrary coefficients. Only the function
F(kr,, kr) may be used in the expression for the potential
inside the sphere (i.e., the termination shock boundary),
since G (kr,, kr) becomes infinite at the origin. On the
other hand, the scattered wave must vanish at infinity. The
Coulomb-Hankel functions H} (kr,, kr) impart precisely
this property. These functions are suitable as representa-
tions of scattered waves. For large values of the argument
kr, the result behaves as e*("+7"2k) " and the Debye
potential IT « e*(r+7yn2k7) /1 for large r. Thus, at large
distances from the sphere, the scattered wave is spherical
(with the In term in the phase due to the modification by the
Coulomb potential), with its center at the origin r = 0.
Accordingly, we use it in the expression for the scattered
wave, i.e., in the trial solution for the Debye potentials of
the scattered wave for r > R,.

Collecting results for the functions ®(¢) and ©(0),
given by Egs. (37) and (38), respectively, and R, (r) =
H} (kry, kr)e") from Eq. (64), to O(r2, r,w?/w?), we
obtain the Debye potential for the scattered wave:

¢
Ea Tgs

m=—

x [a}, cos(mep) + by, sin(me)], (81)

kr)ei<s(r) [P;m) (cos )]

\IE
Mg

(=}

where a,, a,,, and b), are arbitrary and as yet unknown
constants, and the relation between L and 7 is given
by Eq. (45).

Representing the potential inside the termination shock
via F,(kr, kr) is appropriate. The trial solution to Eq. (31)
for the electric and magnetic Debye potentials inside the
termination shock boundary (i.e., 0 < r < R,) relies on the
radial function R; (r) given by Eq. (80) and has the form

[Se]

¢
I, = EZ Z bo{cos&,(r)Fp(kry kr)

P m=r

+sin &, (r)Gy (kry, kr) Y [PV (cos 0)]
x la,, cos(me) + b,, sin(me)], (82)

where b,, a,,, and b, are arbitrary and yet unknown
constants.

The boundary (continuity) conditions mentioned in
Appendix A (see also the discussion in Ref. [38]), imposed
on the quantities (A34) at the termination shock boundary
r = R,, using the electron plasma distribution [Egs. (1)

and (3)] with ng = 0, and thus, with ¢(R,) = u(R,) =1,
are written in full as
r“’HO 0 [ril,
7l } ol ®
g ’”HO M B 2 ™I, (84)
or S Or | Jau ) ,_g’
rel_IO o renin
e } - M,_R’ ®)
rmrIO mHs mHln
[ 7 +\/ﬁuL [\/’u} - B9

We now make use of the symmetry of the geometry of
the problem [38] by applying the boundary conditions
[Eqgs. (83)—(86)]. We recall that we can use a single Debye
potential IT in Eqgs. (81) and (82) to represent electric and
magnetic fields [Eq. (32)]. We find that the constants a,,
and b,, for the electric Debye potentials are a; = 1, by = 0,
and a,, =b,, =0 for m >2. For the magnetic Debye
potentials, we obtain a; =0, b; =1, and a,, = b,, =
for m > 2. The values are identical for a), and b),.

As a result, the solutions for the electric and magnetic
potentials of the scattered wave [for the region r > R,,
where, based on the plasma model (3), ¢ = u = 1], “I1; and
"[1, may be given in terms of a single potential 1 (7, 0)
(see Ref. [21] for details), which, to O(rg), is given by

(on) = (g Jern o

where TI,(r,0) = “>°% | a,Hj (kr,, kr)e® )P (cos 6).

In a relevant scattering scenario, the EM wave and the
Sun are well separated initially, so the Debye potential
for the incident wave can be expected to have the same
form as for the pure plasma-free case that includes only
the Coulomb potential that is given by Eq. (72).
Therefore, the Debye potential for the inner region has

the form
TIL; ./ V€ cos
() = (e, 9
"M,/ yE)  \sing
with the potential I1;,, given, to O(r7, ryw/w?*), as

0) = %i bp{cos & (r)F (kry. kr)
=1
+sin &, (r)Gy (kr,, kr)}PE/,l)(cos 0). (89)

We thus expressed all the potentials in the series (71),
and any unknown constants can now be determined easily.
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If we now substitute the expressions (72), (87), (88), and
(89) into the boundary conditions (83)—(86), we obtain the
following linear relationships between the coefficients a,
and by:
Ey ,, 20+1 o)
— e F(kr, k
|:k2 f(f+ 1) L”( g, I‘)
e I X A CNPRR T
r=R,

By, 2041 .
EET i E (ke k
{W 6+ 1) ¢ (kry, kr)

T apH (kry k) ] bR (P, (O1)

r=R

*

where R;(r) is from Eq. (80) and ' = d/dr. From the
definition of the eikonal phase [Eq. (65)], we see that

1
fZ(R*) ESZ(rNr:R. = _ﬂvsr<r)|r:R,l =0. (92)
For the electron plasma distribution [Egs. (1) and (3)],
especially with the values taken from the phenomeno-
logical model (4), the value &, (R, ) is extremely small and
may be neglected. We now define, for convenience, a, and

P as

Ey. . 2041
a, = -1 elor ay
[ Y :
Ey. . 2041
b, = 0t o/, 93
) mwneh (93)

From Egs. (90) and (91), we have

Fy(R,) + asH'(R,)e®) = B,R} (R,),  (94)

Fs(R,)+ a,H[ (R,)e i&(R =p/R.(R,), (95)
where F,(R,)=F(kr,.kR,) and H} (R,)=H] (kr,.kR,),
with similar definitions for the derivatives of these func-
tions. Equations (94) and (95) may now be solved to
determine the two sets of coefficients a, and f,:

i FeARORL(R.) = FU(RIR,(R.)
a = R R = Ry (ROH (R OO
| F(R)HY(R.) - FL(ROH{ (R.)
Pe = Ry ROH] (R = R, (RH, (R.) &7

Taking into account the asymptotic behavior of all the
functions involved: namely, Eq. (78) for H; and Egs. (73)
and (74) for F; and G, we have the following solution for
the coefficients a, and f,:

pr= e, (98)

where 87 = =5 (L = ¢) + 6, — 6, + &}, with & = &,(R,,)
and &7 being the phase shift induced by the plasma to
the phase of the EM wave propagating through the
Solar System, as measured at the termination shock,
5, = 6,(R,).

As expected, when the plasma is absent, L = ¢ and
&, = 0, the total plasma phase shift vanishes, resulting in
0, = 0. However, in the case of scattering by the plasma,
& =¢&(R,) #0, and 6, is important. Also, for large
heliocentric distances along the incident direction, for
which 7> b, and certainly for the region outside the
termination shock, r > R,, the eikonal phase shift

ay = sinéy,

& =¢&,(R,), given by Eq. (79), together with Eq. (68), is
27re Ry Rg

& , 99

m,ck ; Qﬂ'< ) (99)

which, for any given b, is a constant value. In the case when
u/¢ < 1 and Eq. (45) is valid, the expression (98) for the
plasma-induced delay, to O(u*), takes the form (see
Ref. [20] for a similar discussion):

mu?

5r=-TH 1

O] —Op + é;

We can evaluate the contribution of the plasma to the
phase of the EM wave as the wave traverses the Solar
System. In the case of the electron number density model

[Eq. (4)] and from Eq. (98), the plasma phase shift 6} in
Eq. (100) is given as

R R 5 R 15
5 =0, —0p— 11270 —160¢ (f) — 116976 (76)

4+ (101)
with 775, g, and 714 having the form
71'27T€2Ro 2re’R
(04 5 - a k)
= 2 m,ck 2 s m,c’k 6
2me’R
Me = 7260‘1& (102)
m,c°k

where, to derive the expression for 7,, we used p? from
Eq. (41) and approximated Eq. (98) for the case of /¢ < 1
by using Eq. (45) with 0}, in the incident direction as
given by Eq. (68). Note that this approach results in the
additional factor of z/2 [which came from the first term in
Eq. (98)] that is characteristic to the eikonal approximation
(see discussion in Refs. [49,50]). To derive 7s and 76,
we used Eq. (99). The empirical model for the free electron
number density in the solar corona [Eq. (4)] results in the
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following values for the constants 7,, 76, and 76 in
Eq. (102):

p A
= 1.06(—— —303.87(——).
" (1 um>’ o (1 Mm>

1 ym

Beyond b ~3.65R, the contribution from the 5, term
rapidly becomes dominant. However, for small impact
parameters characteristic for imaging with the SGL, the
plasma phase shift is driven by the terms with larger powers
of Ry/b in the free electron number density model of the
solar corona [Eq. (4)].

Therefore, using the value for a, from Eq. (93), together
with a, from Eq. (98), we determine that the solution for
the scattered potential (87) for r > R, takes the form

(103)

_E 2/
0”2 01 + et sin Sy H (kry, kr)

X e’be; >(cos 0). (104)

Next, using the asymptotic behavior of H(LH from

Eq. (78) together with the expression for the phase shift
o7 [Eq. (98)], we notice that at large distances from the
Sun, the following relation exists: Hj (kr,, kr)e' ~
H} (kr,. kr)e + O(u?/2kr), which allows us to present
Eq. (104) as

E() u /1 2£+1
2k 7 Z’ 26 +1)

x (€% — I)P;l)(cos 0).

. (r,0) = e’} (kry, kr)

(105)

In the region outside the termination shock, r > R, we
may take the asymptotic form for the Coulomb-Hankel
function and present Eq. (105) as

0
EO u tk r+r,,ln2kr 2 + 1

26 (6 +1)

g (r.0) =

« ei2o,+45

)(e% — 1)P)(cos0).  (106)

As a result, using Egs. (72) and (105), we present the
Debye potential in the region outside the termination shock
boundary, r > R,, in the following form:

2041
f—i—l

)
Eouzlf 1

=1
. 1 s
x elor {Ff(krg, kr) + 5 (e* —1)H ]} (kr,, kr)}
l

X PE,I) (cos®).

. (r,0) =Ty(r,0) + T4 (

(107)

Similarly, substituting the value for b, from Eq. (93),
together with 8, from Eq. (98), we determine the solution
for the inner Debye potential (98) in the form

Eou 20 + 1
I 0) =1
1nr Z f_|_1

X ¢! (”f+5f’ {cos &, (r)F(kr,, kr)

+sin &, (r)Gy (kry, kr)}PY) (cos§).  (108)

As solar gravity is rather weak, we may use the
asymptotic expressions for F;, Gy, and Hy for r > R,
Therefore, the radial function R;(r) from Eq. (77) [or,
equivalently, from Eq. (80)] in the region of heliocentric

distances Ry < r < R,, may be given as

1

R (r) = % <Hz_(krg,kr)ei§h<r) - Hz(krg’kr)e—i.fh(r)>

. 1 .
o~ gi0e(r) {Ff(krg, kr) + % (e2i0r(r) — 1)

H;f(krg,kr)}, (109)

where ,(r) has the form given by Eq. (98) where the
eikonal phase at the termination shock &, = &,(R,) is
replaced with its original form [Eq. (66)] that depends on
the heliocentric distance, namely &, = &,(r), thus

3u(r) = =2(L =) + 0 — 0+ &(r).

5 (110)

Similarly to Eq. (100), in the case when u/¢f < 1 and

Eq. (45) is valid, expression (110), to order O(u*), takes the
form
7 u?
5(r) =— 22f+6L o+ &p(r). (111)

Thus, in the eikonal approximation, distance dependence
in the plasma delay comes from the terms in the short-
range plasma potential V.. for which i > 2. The term with
i = 2 [i.e., the first term in Eqgs. (100) and (111)] provides
no distance dependence. The physical interpretation of
this observation follows, in part, from Eq. (4). It can be
seen that near the solar surface, b 2 R, the potential is
dominated by terms containing higher powers of (Rg/r).
The inverse square term contributes an approximately
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uniform background potential that, at these small helio-
centric ranges, is several orders of magnitude smaller
compared to the other terms (see Fig. 1). This 1/7? term
becomes dominant only at greater distances from the Sun,
where V. is several orders of magnitude smaller than it is
near the solar surface.

As aresult, outside the Sun, we may present Eq. (108) in
the following equivalent form:

Hll’] r, 9 it l ei(or40,=84(r))
1, ..

X {Ff(krg, kr) + Z(eZUsf(r) - 1)H;(krg, kr)}
X P(fl)(cose). (112)
With the plasma model [Eq. (3)], the phase shift vanishes
inside the Sun, 6, =0, and Eq. (112) reduces to the
plasma-free solution [Eq. (72)]. As a result, the solution
for the Debye potential, I1(r, ) from Eq. (112), describing
the propagation of the EM wave in the Solar System on the
background of the static gravitational monopole and a

steady-state, spherically symmetric plasma distribution,
takes the form

Eouoo,_ 2/—’—1 i(o —5.(r
I, (r, 0) :F;Zlf lme( ¢ +0,=0,(r))
X Fy(krg, k ) Y (cos 0) +——z 1
20+1 . )
AV pilortde=8,(r)) (p2i0:(r) _ 1\ g\
e+ ¢ (e )H,
(1 wg
x (kry, kr)P,’(cos @) —l—(’)(r r _2>
Y w
(113)

Note that this solution is valid, in principle, even inside
the opaque Sun. Indeed, because of the plasma model
[Egs. (1) and (3)], the phase shift vanishes, 6, = 0, and
Eq. (112) reduces to the plasma-free solution [Eq. (72)].

The first term in Eq. (112) is the Debye potential of an EM
wave propagating in a vacuum, but modified by the plasma
in the Solar System. The second term represents the effect
of the solar plasma on the propagation of the EM waves
inside the termination shock, 0 < r < R, . Notice that, as the
distance increases, this term approaches the form of the
Debye potential II; for the scattered EM field given by
Eq. (106). Proper accounting for such a dependence makes it
possible to compare high-precision observations conducted
from different locations within the Solar System.

Thus, we have identified all the Debye potentials
involved in the Mie problem [45]—namely, the potential
I1, given by Eq. (72) representing the incident EM field, the
potential Il; from Eq. (106) describing the scattered

EM field outside the termination shock, r > R,, and the
potential II;, from Eq. (112) describing it inside the
termination shock, 0 < r <R,.

IV. GENERAL SOLUTION FOR THE EM FIELD
OUTSIDE THE TERMINATION SHOCK

To describe the scattering of light by the extended solar
corona, we use solutions for the Debye potential represent-
ing the scattered EM wave [Eq. (106)], and the EM wave
inside the termination shock boundary [Eq. (113)]. The
presence of the Sun itself is not yet captured. For this, we
need to set additional boundary conditions that describe the
interaction of the Sun with the incident radiation. Similarly
to Refs. [20,21], we apply the fully absorbing boundary
conditions that represent the physical size and the surface
properties of the Sun [24].

We begin with the area that lies outside the termination
shock where three regions are present, namely (i) the
shadow region, (ii) the geometric optics region, and (iii) the
interference region. Clearly, as far as imaging with the SGL
is concerned, the interference region is of most importance.
This is where the SGL focuses light coming from a distant
object, forming an image.

A. Fully absorbing boundary conditions

Boundary conditions representing the opaque Sun were
introduced in Ref. [39] and were used in Refs. [20,21].
Here we use these conditions again. Specifically, to set the
boundary conditions, we rely on the semiclassical analogy
between the partial momentum, #, and the impact param-
eter, b, that is given as £ = kb [47,48].

To set the boundary conditions, we require that rays
with impact parameters b < Rg = R + r, be completely
absorbed by the Sun [21]. Thus, the fully absorbing
boundary condition signifies that all the radiation intercepted
by the body of the Sun is fully absorbed by it, and no
reflection or coherent reemission occurs. All intercepted
radiation is transformed into some other forms of energy,
notably heat. Thus, we require that no scattered waves exist
with impact parameter b < Rg or, equivalently, for
¢ < kR,. Such formulation relies on the concept of the
semiclassical impact parameter b and its relationship with
the partial momentum, 7, as £ = kb. (A relevant discussion
on this relation between £ and b is on p. 29 of Ref. [64] with
reference to Ref. [66].) In terms of the boundary conditions,
this means that we need to subtract the scattered waves from
the incident wave for 7 < kRj, as was discussed in
Ref. [21]. Furthermore, as was shown in Ref. [24], the fully
absorbing boundary conditions introduce a fictitious EM
field that precisely compensates the incident field in the area
behind the Sun. This area has the shape of a rotational
hyperboloid that starts directly at the solar surface behind
the Sun and extends to the vertex of the hyperboloid at
20 = Ré/2rg ~547.8 AU.
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B. The Debye potential for the region outside
the termination shock

To implement the boundary conditions for the EM wave
outside the termination shock, we realize that the total EM
field in this region is given as the sum of the incident and
scattered waves, I = Il 4 Ilg, with these two potentials
given by Eqgs. (72) and (106), correspondingly. Also, using
the asymptotic behavior of H; from Eq. (78) and with the
help of expression (98) for the phase shift 67, we notice
that at large distances from the Sun we can write
Hj (kry kr)es ~ Hf (kr,, kr)e® 4+ O(u*/2kr)  [similar
to the terms used in the derivations of Eq. (109)].

Accordingly, we use Eq. (107), which represents the
Debye potential in the region r > R, and is given as

Eou& 2f+1
I1(r,0) = Iy(r,6) + 1. (r,0) —2—21“
=1

. |
X e {F,g(krg, kr) + % (e = 1)H} (kr,, kr)}
i

xPEp”(cosH). (114)

Next, relying on the representation of the regular
Coulomb function F, via incoming, H;, and outgoing,
H7, waves as F, = (H} — H;)/2i [discussed in Ref. [21]
and also by the expression given after Eq. (77)], we may
express the Debye potential (114) as

2/ + 1
H £—1
Zlk2 Z

x ' 2 ¥ HY (kr,, kr) — H; (kr,, kr)}

P (cos 0). (115)

This form of the combined Debye potential is convenient
for implementing the fully absorbing boundary conditions
discussed in Sec. IVA. Specifically, subtracting from
Eq. (115) the outgoing wave (i.e., ng) ) for the impact
parameters b < R}, or equivalently for £ € [1, kR%], we
have

20+1
f—f—l

21k2 Z o

x e'o {eZiﬁfH; (kry.kr)—Hy(kry kr) }Piﬂl) (cos®)

_W_Z f 1

x e'ore*® H (kr, kr)

2041

£(6+1)
PY (coso), (116)

or, equivalently, coming back to the form in Eq. (114),

2f+1
I(r,0) = y(r,0) + 2k2 Z 01

— DH} (kr,, kr)P;)(cos 0)

_W_Z f 1

x 't e* H (kr,, kr)P\) (cos 6).

X em/ (eZtéf

20+ 1
f—f—l

(117)

This is our main result, valid for all distances outside
the termination shock » > R, and all angles. It is a rather
complex expression. It requires the tools of numerical
analysis to fully explore its behavior and the resulting EM
field [64,66,67]. However, in most practically important
applications, we need to know the field in the forward
direction. Furthermore, our main interest is to study the
largest plasma impact on light propagation, which corre-
sponds to the smallest values of the impact parameter. In
this situation, we may simplify the result (117) by taking
into account the asymptotic behavior of the function
H} (kr,, kr), considering the field at large heliocentric
distances, such that kr > ¢, where ¢ is the order of the
Coulomb function (see p. 631 of Ref. [68]). For kr — oo,

and also for r> r. = \/£(¢ + 1)/k (see Refs. [20,21]),
such an expression is given in the form [Eq. (C19)]

. £(¢+1)
+ - cer+1b)
klrl_r)r:oH (krgy, kr) ~exp [1 (k(r +r,In2kr) + or
L+ o _at
uics T
+ O((kr)™, r2), (118)

which includes the contribution from the centrifugal poten-
tial in the radial equation (39) (see, e.g., Appendix C,
Appendix A in Ref. [25], or Ref. [67]). In fact, expression
(118) extends the argument of Eq. (78) to shorter distances,
closer to the turning point of the potential (see the relevant
discussion in Appendix F of Ref. [21]). By including the
extended centrifugal term in Eq. (118) [i.e., shown by the
terms with various powers of (£ + 1)/2kr], we can now
better describe the bending of the trajectory of a light ray
under the combined influence of gravity and plasma. [We
note that in Eq. (C19), we omit the amplitude factor a(?)
given by Eq. (154). Outside the Sun, the argument of this
factor is very small, resulting in a(¢) ~ 1. Also, one may
verify that any derivative of this term produces a con-
tribution to the amplitude of the EM wave that is 1/kr
times smaller compared to the leading terms, which is
negligible.]

As aresult, we may take the approximate behavior of H}
given by Eq. (118) and use it in Eq. (117) to present the
solution for the Debye potential outside the termination
shock, r > R,, in the following form:
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ik(r4-ryIn2kr)

ue
11(r.0) = (1) +f{ kzz
Ey o~ 2041 g, 400,
TP (e+1)°

£=kR},

=T11y(r,0) + I, (1, 6) + T1,(r. 0).

The first term in Eq. (119), Ty(r, ), is the Debye
potential, which represents the incident EM wave propa-
gating in the vacuum on the background of a post-
Newtonian gravity field produced by a gravitational mass
monopole. The solution for I1y(r, 8) is known and is given
by Eq. (72) in the form of an infinite series with respect to
partial momenta, #. For practical purposes, however, it is
convenient to use an exact expression for Il), which was
derived in Ref. [21] in the form

i_ul —cosd
k sin@
X <e”‘11F1[1 + ikry, 2, ikr(1 — cos 0)]

y(r,0) = —yy

— e P [1+ ikry. 2, 2ikr]>, (120)
where the constant for y is given by
w§ = Ef2mkr,/(1 — e7™7). (121)

Equation (120) gives the Debye potential of the plasma-
free wave in terms of the confluent hypergeometric
function. This solution is always finite and is valid for
any angle 6. It allows one to describe the EM field in the
interference region of the SGL, and thus to develop the
wave-optical treatment of the lens.

The EM field of the incident wave outside the interfer-
ence region is derived from Eq. (120) with the help of the
asymptotic expansion of the hypergeometric functions

Fi[l + ikry,2,ikr(1 —cos@)] and | Fy[l + ikr,,2,2ikr]
at large values of the argument k(r — z) > 1 (see Ref. [21]
for details). This approach allows one to compute the
asymptotic behavior of the Debye potential I, from
Eq. (120) as

Ho(r, 9) —_ u {eik(rcosé?—rglnkr(1—0056’))

0 -
k2rsin@

— pik(r+ryInkr(1—cosf))+2iog

1 )
_ E (1 —cos 9) (e—lk(r+ryln2kr)

2
_ eik(r+rgln2kr)+2io-0) +0 <lki> }’ (]22)

r—z

2f+1
ff—i—l

ldGERY)

2 2
g )(eizg; - I)P;l)(cos 9)} + O(ré, ry w—g)
®

2+ | [ee+n)?
2o+, )P(fl)(COS 9)

(119)

[

where we have introduced the constant oy = argl
(1 —ikr,), which for large values of kr, — co is given
as [21]

(1 = ikr,)

eZiUO —
O(1 + ikr,)

— o~ 2ikr, In(kr,/e)

A1+ O((kry)™).

(123)

The second term in Eq. (119), I.(r,@), is due to
the physical obscuration introduced by the Sun and was
derived by applying the fully absorbing boundary con-
ditions. This term is responsible for the geometric shadow
behind the Sun.

The third term in Eq. (119), I (r,0), quantifies the
contribution of the solar plasma to the scattering of the EM
as it moves through the Solar System, and evaluated at the
distance r > R,. Because of the plasma model [Egs. (1)
and (3)], the last sum in Eq. (119) formally extends only to
¢ = kR,, corresponding to the impact parameter equal
to the distance to the termination shock. As expected, for
r > R,, the phase shift 5, = 0, and the entire plasma-
scattered term vanishes.

With the solution for the Debye potential given by
Eq. (119), and with the help of Egs. (19)-(24) (also see
Ref. [21]), we may now compute the EM field in the
various regions involved. Given the smallness of the ratio
(wp/®)* (~107% for radio and ~ x 107!'" for optical
wavelengths), we may neglect the distance-dependent
effect of the solar plasma on the amplitude of the EM
wave. This is especially true at large heliocentric distances,
where the effect of the plasma, behaving as  1/r2, on the
amplitude of the EM wave is negligibly small. [If one
decides to account for the plasma effect on the amplitude of
the EM wave using Eqgs. (19)—(24), one would get terms
that are 1/(kr) times smaller than the leading terms in those
expressions. Thus, any derivatives of the plasma-dependent
terms present in the amplitude of these terms would provide
negligible contributions.] Thus, the plasma affects the delay
of the EM wave and is fully accounted for by the solution
for the Debye potentials. Therefore, we can set € = u = 1
in Egs. (19)—(24) and use the following expressions to
construct the EM field in the static, spherically symmetric
geometry (see details in Ref. [21]):
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<DAr> — <C?S¢)e—iwta(r’ 9)’
B, sin ¢

139 B cos ¢ it
<39> - (sin¢>e Bir.6),

ij{ﬁ — _Sin¢ —iwt
(3) - (22t

with the quantities «, f#, and y computed from the known
Debye potential, I, as

-3 2o o(C)):

(124)

(125)

2(r ik(r
pr.0) = %86581;) " fiirfg’ (126)
y(r,0) = 1 A(rI) ika(rl_[)' (127)

ulrsin@ Or r 00

This completes the solution for the Debye potentials
on the background of a spherically symmetric, static
gravitational field of the Sun and steady-state, spherically
symmetric solar plasma distribution. We will use
Eqgs. (124)-(127) to compute the relevant EM fields.

C. EM field in the shadow region

In the shadow behind the Sun (i.e., for impact parameters
b < RY), the EM field is represented by the Debye potential
of the shadow, Ilg,;,, which is given as

ik(r+r,In2kr) g kR 27 + 1

=0+ 1)

ue

I1 =1II T
sh(rvg) O(V,H)—i— r 2k2

[(e+1)2

2037 )P(fl)(cos 0)

w2
+ O (rg, Ty —g)

where Ily(r,0) is well represented by Eq. (122). As
discussed in Refs. [21,24], the potential (128) produces
no EM field. In other words, there is no light in the shadow.
Furthermore, as the solar boundary is rather diffuse, there is
expectation for the Poisson-Arago bright spot to be formed
in this region.

i(20,+4- (Zkr +

xe

(128)

D. EM field outside the shadow

In the region behind the Sun but outside the solar
shadow (i.e., for light rays with impact parameters
b > Ry), which includes both the geometric optics and
the interference regions (in the immediate vicinity of the
focal line), the EM field is derived from the Debye

potential given by the remaining terms in Eq. (119) to
the order of O(r2, r,w}/w?) as

uethrryn2kr) ik(r+ryIn2kr) . 20+ 1
I(r,0) = y(r,0) — 22 Z
r 2k* 4 ", c(C+1
o ei(zaf+f(§;'>+[fsz§'}]2)(ei25} - 1)P§1)(c0s 0).

where, for the geometric optics region, the potential
ITy(r, ) is well represented by Eq. (122), while for the
interference region, one must use the exact form of
ITy(r, 0) given by Eq. (120).

Expression (129) is our main result for the regions
outside the termination shock, » > R,, and also outside
the shadow region, i.e., b > Rg. It contains all the infor-
mation needed to describe the total EM field originating
from an incident Coulomb-modified plane wave that passes
through the region of the steady-state spherically symmet-
ric plasma of the extended solar corona, characterized by
an electron number density [Eq. (3)] that diminishes as 2
or faster.

To evaluate the total solution for the Debye potential
[Eq. (129)], we present it in the following compact form:

ueik(r+r_q In 2kr)

Mo (r,0) + Eof o (r,0) ————,

I(r,0) = .

(130)

where the plasma scattering amplitude f,(r,0) is given by

f (r 9 — i 2f—|—1 i(26, +ff]\t1+[ff+l])
2k

24k3 3
= kR*fl'ﬂ+

)
x (e% — I)P; (cos ) + O(r r %)

(131)

We note that because of the contribution from the
centrifugal potential in Eq. (118), the scattering amplitude
fo(r,0) is now also a function of the heliocentric distance
[20]. This is not the case in typical problems describing
nuclear and atomic scattering [47,48,51,69]. However, as
we observed in Refs. [20,21,25], when we are interested in
the trajectories of light rays, the presence of such depend-
ence and especially the o 1/r term in the phase of the
scattering amplitude [Eq. (131)] allows us to properly
describe the bending of the light rays in the presence of
gravity together with the contrition from the dispersive
medium introduced by the solar plasma.

As a result, the Debye potential for the plasma-scattered
wave outside the termination shock takes the form
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ueik(H—rq In 2kr)

:Eofp(”,e)f,

I1,(r,0) (132)

with the plasma scattering amplitude f,(r,6) given by
Eq. (131). We use these expressions to derive the compo-
nents of the EM field produced by this wave. For this, we
substitute Eqs. (132) and (131) in the expressions (125)-
(127) to derive the factors a(r, ), B(r,0), and y(6), which
to the order of O(rj, ry(w}/w?), (kr)=) are computed
to be

eik(r+rgln2kr) ©

. £(6+1) | [£(E+1)?
- E If—i—l 61(20/—}— 2%r +[24k3,3])
uk?r? 2
£=kR:,

a(r,0)=-E,

£(6+1)

26, _1\pWM 0 2 2_q
x (€% —1)P,’(cos@)] u*+ (u*—1) Py

MO ikr,
kr 222 ) (e +1)

(133)

plr.0) = T SN O e

ikr e £+ 1)
- 8P;1)(cosﬁ) L(C(€+1)
i (M
[£(¢+1)])? ir, P’ (cosO)

, 134

Hye %) T Ging (134)

y(r 9) :EO ueik(rJrryankr) © f—f—% , (2044081 (2/’:;”4,%)
ikr f:kRéf(f—i—l)

5" GPS)(COSQ) P;U(COSQ)
A C) ™ sinf

(1 (CG Ry )
(135)

This is an important result, as it allows us to describe
the EM field in all the regions of interest for the SGL,
namely the geometric optics region and the interference
region.

V. EM FIELD IN THE GEOMETRIC
OPTICS REGION

We continue our discussion by deriving the EM field in
the geometric optics region outside the termination shock,
which we call the exterior geometric optics region (as
opposed to the interior geometric optics region, which is
situated inside the termination shock). Specifically, we are
interested in the area behind the Sun located at heliocentric
distances r > R, that are reachable by the light rays whose
impact parameters are b > Rj. In addition, the exterior
geometric optics region is situated outside the focal region

of the SGL with angles @ satisfying the condition 6 >

\2r,/r [21].

We note that outside the Sun, the ratio rg/ r<4.25x
10°R,/r < 1 is very small. As a result, for r > R, we
may treat u(r) =1 and neglect the contribution from
derivatives of u(r) to the amplitude of the scattered EM
wave in Egs. (133)—(135). Nevertheless, we keep them
for the purposes of verification and internal consistency
checks.

A. Solution for the function «(r,0) and the radial
components of the EM field

We begin with the investigation of a(r,6) given by
Eq. (133). We first note that in the case of large partial
momenta £ and large angles 6, namely ¢ > kR% and
0> \/2r,/r, the last two terms in the curly braces in this
expression, behaving as o i/kr and ikr, /(£ + 1), are
very small compared to the two leading terms, and thus
they may be neglected. (A similar conclusion was reached
in Ref. [20].) As a result, we obtain the following
expression for a(r, 0):

IiO’; ik(r+ryIn2kr) Z <K+%>
£=kR},

a(r,0) =

(14 )
r r

x(ei25z-1)P<>(cos9)+0<r rw—%,(kr) >
(136)

To evaluate expression (136) in the region of geometric
optics, and thus, for 6 > /2r,/r, we use the asymptotic

representation for PEI)(COS 0) from Refs. [40,67,70], valid
when ¢ — oo:

(1) _ -7 i(£+1)0+iz —i(t+1)0-iz

P’ (cosf) = e!iH)0ti 4 o 2)0-i5

¢ (cos6) V27 sin0 )
+0(¢3) for0<6 < (137)

This approximation can be used to transform Eq. (136) as

1
a(r,0) = Eou ik(rr, In2kr) (£ +pV7
2R /4, V2xsin
Ty A e+ | [ee+D)?
(1 +7 (4k2 2 )>e HQort =+ 3)

% (eizﬁ; 1><e i(£0+5) + e—i(f&ﬂ—’))

+O<r§ —%,(kr) ) (138)
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We recognize that for large £ > kR%, we may replace
£+1->7¢and ¥ +% — . At this point, we may replace
the sum in Eq. (138) with an integral:

2
(r 6) EOM lk(r+r_q1n2kr) f\/?df (1 +ﬁ 4 )
¢=krzy V/2msin @ r 4k*r?
N ei(2af+572,.+%)( o2 _ 1)(l(C0+) 4 omilc0+)
(139)

and we evaluate this integral by the method of stationary
phase (see Refs. [21,39]). This method allows us to
evaluate integrals of the type

I = /A(f)efw<f)df, ¢ ER, (140)

where the amplitude A(?) is a slowly varying function of Z,
while ¢(¢) is a rapidly varying function of #. The integral
(140) may be replaced, to good approximation, with a
sum over the points of stationary phase, £, € {¢ .}, for
which dp/d¢ = 0. Defining ¢" = d’>¢/d¢?, we obtain the
integral

2r .
[~ A(Zy) | ———el@(Z0)+5) 141
Z ( 0) (p”(fo)e 4 ( )

Because the scattering term (e?%, — 1) in Eq. (139)
provides two contributions to the overall expression, each
with a different phase, we treat the integral (139) as the sum
of two integrals: one with the contribution from the plasma
phase shift 267, and one without it. To demonstrate our
approach, we begin with the plasma-free term in Eq. (139).

1. Evaluating the plasma-free term

For the term in Eq. (139) that does not contain the plasma
phase shift, 267, the relevant #-dependent part of the phase
is of the form [20]

0 - E l/ﬂ2 f4
goi(f)—:lz<f9+4>+20'f+2k YTER 3+(9(( r)™).

(142)

We recall that the Coulomb phase shift 6, has the form
[21,24,60]

¢

kr
6y =06y — arctanTg, oo = arg'(1 — ikr,),
=

(143)

where o, was evaluated in Ref. [21] to be

k
0y = —krglnj—%.

. (144)

We may replace the sum in Eq. (143) with an integral and,
for £ > kr, evaluate o, as [24]

oy = —kryIn?. (145)
This form agrees with the other known forms of 6, [71,72]
that are approximated for large 7.

The phase is stationary when d(p i /df 0, which,
together with Eq. (145), implies

kr 4 2
:1:0—2arctan7g+z (1 +6k2 5

) O((kr)~ ) (146)
For small angles, \/2r,/r < @~b/r, and large partial
momenta, £ ~ kR > krg, this equation can be rewritten in
the following form:

l 1 2k
o =F 9(1 - 802> + % + O(6°,r2) or, equivalently,

4 2k

s sin9+%+0(95,r§). (147)

Relying on the semiclassical approximation that connects

the partial momentum 7 to the impact parameter b,
¢ ~kb, (148)

for small angles @ (or large distances from the sphere,

Ro/r < b/r< 1), we see that the points of stationary

phase that must satisfy the equation are (see Ref. [21] for
details)

1 sin@  2r,
=F Il o). (149)
which describes hyperbolae that represent the geodesic
trajectories of light rays in the post-Newtonian gravitational
field of a mass monopole [21]. For an impact parameter that
satisfies the relation b > Ry, these trajectories are outside
the Sun, crossing from the geometric optics region behind
the Sun into the interference region (see Fig. 3).
Equation (147) yields two families of solutions for the
points of stationary phase:

2r, 1
A = kr(s1n9+——>+(’)(65,r!21) and

r sinf

2k
o 0@, ).

f(()z):i g

150
sin 6@ (150)

The “+” or “F” signs in Eq. (150) represent the families
of rays propagating on opposite sides from the Sun. Also,
two families of solutions represent two different waves.
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shadow

FIG. 3.
the region of interference (from Ref. [21]).

Thus, the family f(()l) represents the incident wave with the
rays whose trajectories are bent towards the Sun, obeying
the eikonal approximation of geometric optics. The family

f(()2> describes the scattered wave, with rays that meet those
of the incident wave beyond the point of their intersection
with the focal line. Note that the interference region is not
covered by the approximation (137). The description of the
interference region without plasma was given in Ref. [21].
In Sec. VI, we discuss the properties of the solution in the
interference region in the presence of solar plasma. As
discussed in Refs. [21,24], the presence of both of these
families of rays determines the structure of the three regions
relevant for the SGL—namely the shadow, the geometric
optics region, and the interference region. As a result, the
availability of these solutions helps us develop the solution
for Eq. (139).

We note that by extending the asymptotic expansion of
H} (kr,, kr) from Eq. (118) to the order of O((kr)=(2"+1))
(i.e., using the WKB approximation as was done in
Appendix C), the validity of the result (150) extends to
O(6?"*+1). This fact was first observed in Ref. [20] and used
to improve the solution by including the terms of higher
orders in 6.

The first family of solutions of Eq. (150), given by £\",
allows us to compute the phase for the points of stationary
phase (142) for the EM waves moving towards the inter-
ference region (a similar calculation was done in Ref. [20]):

4
— kryIn2kr+O(kro®, kr,0%).

1 1
(P[ﬁ] (fé)])) = i—f+kr<—§92+ﬂ9“> —kryInkr(1—cosf)
(151)

To calculate ¢”(¢) to O(6°) as in Eq. (151), we need to
include in the phase (p[io] (¢) [Eq. (142)] another term o £°,
which may be taken from Eq. (C19). This allows us to

compute ¢" (f(()l) ):

[0]

P91 £ 3 2kr

= (1455 O((kr)®) ) + 8.

dr kr( T Ty T Ok )>+ Z
(152)

region of |
geometric optics

focal line

region of interference

Three different regions of space associated with a monopole gravitational lens: the shadow, the region of geometric optics, and

or, after substituting fél), we have

d2¢?
d?

1/ 1 2
—(1+—92+394+ '

— g
r— kr 27 24

rsin’@
x <1+92+%94> +O<96,r—r994>). (153)

The remaining integral is easy to evaluate using the
method of stationary phase. Before we do that, we need to
bring in the amplitude factor for the asymptotic expansion
H} (kr, kr) given by Eq. (118). This factor, which we
denote by a(¢), is readily available from Eq. (C19) in the
following form:

£(+1)
422

[£(¢+ P

a(?) = ex Ve

+ O((kr)=®).

(154)

Note that, if included in the derivation of Eqs. (133)—(135),
this term would produce corrections that are of the order of
1/(kr) smaller compared to the leading terms, and that are
thus negligible. In the case # > 1, and specifically for f(()l),
it is computed to be

1

a(ty) =1+

7 r 5 r
2 g i) 6 " 94
6 +—9694+—r (1+49)+O<9 ’79 >

(155)

The fact that we did not use this term in Eq. (118) does not
affect the results of the calculations above. However, as we
demonstrate below, its presence is needed to offset some of
the terms that are present in the phase of Eq. (142). The
significance of this term is realized in the fact that, for the
method of stationary phase, it cancels out the contribution
of the € dependence in Eq. (153)—namely, using result
(155), we derive
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a(?y)

2 I
d —\/Zﬂkr{l— £ +ﬁ<—+92)

@' (%) rsin’0 = r \2

+(9(96,ﬁa4>}.
r

Now, using Eq. (156), we have the amplitude of the
integrand in Eq. (139), for £ > 1, for £, = ff)l), taking the
form

(156)

2r
All(p Z =
( 0)61( 0) (P”(fo)
_ oo <1+rg f% >a(f0) 2
V2zsind r 4k r? @" (%)

— 32,22 "y Ty
=(F 1)k*r‘u 51n9(1+r(1_cose)+(9<94,r6'4>>,
(157)

where the superscript [0] denotes the term with no plasma
contribution. We can drop the 1/(ikr) term in the paren-
theses of this expression, as it is 1/(kr) times smaller in
magnitude compared to the leading term.

As a result, the plasma-free part of the expression for
5al%(r,0) from Eq. (139) takes the form

0 1 . r
56{[i](}", 9) = —Eol/l 1511’19(1 +r(1—7(g:059)

+ 0O <H4’ E €4> ) ei(krcosé)—krg Inkr(1—cos6)) .
r

(158)

It is interesting that the phase of this expression is identical
to the phase obtained from the equation for geodesics.
The relevant results were obtained in Secs. 1 and 2 of
Appendix B, and are given by the expressions (B27) and
(B39) correspondingly, where one has to disregard the
plasma contribution. This result agrees with that obtained
in Ref. [21].

We note again that by improving the asymptotic
expansion of HJ (kr,, kr) in Eq. (118) [that, in a more
complete form, is given by Eq. (C19)] to a higher order
and extending the phase from Eq. (118) to O((kr)=("+1)
and the amplitude a(#) from Eq. (155) to O((kr)="), the
validity of Eq. (156) extends to O(6*"). If needed, this can
be achieved by following the derivations presented in
Appendix C.

Now we consider the second family of solutions in (150),
given by féz) (similar derivations were made in Ref. [24]),
which allows us to compute the stationary phase as

Qﬂf)(fo) = i%— kryIn2kr + kr,Inkr(1 — cos 6)

k
— 2kr,InL 4 O(kr 0°). (159)
e
Using this result, from Eq. (139) we compute the phase of
the corresponding solution (by combining the relativistic
phase and the /-dependent contribution):

(pf)(r, 0) = kr + krg1n2kr+(pf)(fo> +%
:k(r—l—rglnkr(l —cosf))

+ 200 + O(kr,6%). (160)

Now, using Eq. (152) and f((f) from Eq. (150), we compute
the second derivative of the phase with respect to :

1 sin?0 sin%0 2r
Vi Zn) = — ~ g
(%) kr = 2kr, 2krg<

2 \/47rkrg r
\/ = 1-—2 ).
o' (¢,) sin @ < rsin29> +0(&)

Also, from Eq. (154), a(?) is computed for f(()z) to be
a(?) =1+ O(r?). At this point, we may evaluate the
amplitude of the integrand in Eq. (139), for £ > 1, for

) +O(6°), thus

rsinZ@

(161)

£y = f(()z), which is given as

2
AV(20)a(ty)y | —~
( 0)“( 0) 90”(50)
fo\/fo r fz 277.'
:\/2:<1+_g4k202 Ao\ iz
7 sin 6 r r ¢" (%)
4K 52 r
=(F1)p—2(1-—2). 162
Sy sin*0 < rsin26> (162)

As a result, the plasma-free part of the expression for
8a% (r,0) from Eq. (139) for £ takes the form

2r\2 1
éa[ﬁ](r,ﬁ):Eo <Q> —

— eik(r-ﬁ-r_qlnkr(l—cos@)+2i00N(f)(,l)
r ) sin’0

(163)

We observe again that the phase of this expression is identical
to the phase of the radial wave obtained from the equation for
geodesics. The relevant results were obtained in Secs. 1 and 2
of Appendix B, and are given by Egs. (B29) and (B40)
correspondingly, where one has to disregard the plasma
contribution. This result agrees with that obtained in
Ref. [21]. Therefore, based on Eq. (163) we conclude that
to the order of O(rf,), there is no scattered wave in the radial
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direction which is consistent with the results reported
in Ref. [21].

The results (158) and (163) are the radial components of
the EM wave corresponding to the two families of the impact
parameters given by Eq. (150). We use these solutions to
determine the EM field in the geometric optics region.

2. Evaluating the term with plasma contribution

We now turn our attention to the term in Eq. (139) that
contains the contribution from the plasma-induced phase
shift. The relevant Z-dependent part of the phase is given as

2 4
By =+(c0+ %) +20,+ L+ 7
v:(?) ( Ta) T e T oaes

+26% + O((kr)™S), (164)

with the plasma contribution clearly shown. From the
definition in Egs. (99) and (100), this plasma phase shift

is given as
7R pi—1
Ty ()

4 R
25 — 4ze’Rg {
i>2

B 27ze2R<D a;f; 1 1] [(Ro\ /!
~ m%k Z ; { 5’5] (7)

(165)

The phase shift 26} relates to the semiclassical angle
of deflection of a light ray, 66,,, as 260, = d26;/d¢ [51].
This angle may be computed from Egs. (99) and (100) by
taking into account the semiclassical relation between the
partial momenta, #, and the impact parameter, b, given as
¢ = kb. As a result, the angle of light deflection by the
solar plasma is computed to be

d2s;,  4me? 7 (Ry)\?
2000 = Tdb = m.a? {“25 (7)
R-\7Fi
+ Zai(ﬂi - 10} <7®> }
i>2
2re? 1 1] /Re
208 o3 ()

Note that this expression [Eq. (166)] agrees with that
derived in Refs. [9,10] and used in a recent test of general
relativity using radio links with the Cassini spacecraft [73].
Here, we provide a rigorous wave-optical treatment of the
problem to establish the form of the refraction angle and the
entire EM field as it propagates through the Solar System.
In fact, following Ref. [20], using the phenomenological
model (4) in Eq. (166), we estimate the plasma deflection
angle, 60, as a function of the impact parameter and the
wavelength:

(166)

_ i3(Ro\' _13(Ro)\®
80, = 1662 x 1077 (=2 | +205x 1077 (=2
1242 x 10716 RoN* V(A 2,
b 1 ym

which suggests that for Sun-grazing rays (i.e., for the rays
with impact parameter b ~ R), the bending angle (167)
reaches the value of 50,(Rgy)=8.67x107"3(1/1um)?rad,
which is large for radio wavelengths, but negligible in
optical or IR bands. For typical observing situations with
reasonable Sun-Earth-probe separation angles [8,10,11],
expression (166) provides a good description. This, once
again, justifies the application of the eikonal approximation.

Examining Eq. (167) as a function of the impact
parameter, we see that the first two terms in this expression
diminish rather rapidly, with the quadratic term in Eq. (167)
becoming dominant after b ~ 8R . However, this value of b
corresponds to a focal region at the heliocentric distance of
7= b2/2rg ~3.5 x 10* AU, which is beyond any practical
interest as far as imaging with the SGL is concerned. For a
focal region at 600 AU < z < 1000 AU, knowledge of the
properties of the solar corona at small impact parameters
1.05Rs < b < 1.35R, is the most relevant.

Coming back to the phase [Eq. (164)], we see that this
phase is stationary when dqo[i /d¢ = 0, which, similarly to
Egs. (149) and (150), implies

(167)

2

kry ¢
+0- 2arctan7—|—kr 1+6k22

= O((kr)™, r%])

) + 260,

(168)

Similarly to Eq. (149), for small angles, 8 ~b/r, and
large partial momenta, ¢ ~ kR, > kr,, Eq. (168) could be
rewritten in the following form:

4 1 2kr
—=FO0(1--6*) =280, +—2+0O , 169
c=ro(1-4¢) 20,4 22 0@ R, (169
or, equivalently,

4 2kr,

o = F sin0 280, +—= I+ 0(6°,r2,863).  (170)

Equation (170) yields two families of solutions for the
points of stationary phase:

( 2r 1
£y =F kr(sinf £ 260, + 4
r sinf

+O(6°,r2, r,60,) and

2kr
g—l—@( ,rg,r59)

e
0 sin @

(171)
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where we have neglected the terms of the order of rga)]% Ja?
or, equivalently, the terms o r;60,,.

With the results given in Eq. (171), for the first family of
solutions, we may compute the needed expressions for the
value of the phase along the path of stationary phase:

o) 00y _ L7 Lp 1
ot (€, )—i4+kr< 50 +2494>
—kryInkr(1 —cos@) — kr,In2kr

+ 285 + O(6556,, 562, kr,0°), (172)

and for the second derivative of the phase along the same
path, similarly to Eq. (153), from Eq. (152) we have

d2 [p] 1 fZ 3f4
YL ( +

+ O((kr)‘6))

de*  kr 2k%r% 8k
2kr, d*25;
—ﬂg dﬂf , (173)

which, for the first family of solutions, 7 M) from Eq. (171)
yields

ngo[o] 1 1 5
/" l/p(l) = + =— (1 _92 _94
V(6 =4p s kr HPAARY!
2r 7
9 (146 +-0*
rsin’@ < TS >
r d?26%
60,2 ¢ Z, 174
so(ee))+ Y

Using Eq. (166), we estimate the magnitude of the
second term in this expression:

2re?

d?25; 2480, 1
N  kRg m,w?

de? kdb
1 1 1] /Ry \Fit!
X E ap;B |:§ﬁi +§,§} <TO) . (175)

Similarly to Ref. [20], we evaluate this quantity with the
empirical model in Eq. (4). We see that for the smallest
impact parameter b = R, this quantity takes the largest
value of d*(28%)/d¢? = 1.57 x 10726(2/(1 ym)>. For
optical wavelengths, even at the heliocentric distance of
r~6.5x 10° AU, this term is over 10* times smaller than
the 1/(kr) term in Eq. (174), representing a small correc-
tion to ¢ (Z,) that may be neglected for our purposes. This
is equivalent to treating the deflection angle 66, as
constant, which is consistent with the eikonal (or high-
energy) approximation [54-59].

As a result, the expression for the second derivative
of the phase from Eq. (174) takes a form equivalent to
Eq. (153):

0
(V) = !
0 /= dr?

1 1 5
=—(14+=6*+=—¢"
ooV kr ( + 2 + 24
0

2r 7
9 (1+62+_p*
T sin%0 ( LR )

r 66
00,20 562, —2 ) |.
vo(ooon )

The relevant, plasma-dependent part in the integral in
Eq. (139) is now easy to evaluate using the method of
stationary phase. Similarly to Eq. (157), we have the
amplitude of the plasma-dependent term in Eq. (139),
evaluated to be

(176)

AR (Eg)alto) |-

9" ()

r, % 2
1400 % )w o
V27 sin@ r 4k*r? (%) @" (%)

3 B 260, .
= (F 1) r7u /1 ﬂ:ﬁsm(@i 280,,)
r
1+—2L—+00",562) ).
X< +r(1—cos«9)+ ( p)>

where the superscript [p| denotes the term due to the plasma
phase shift. Using the expression relating the angle 6 with
the unperturbed direction of light propagation, sin@ ~ b/r,
we may evaluate the square-rooted expression:

_M<

(177)

260, o0,
l1£—==1+-
sin @ sin @

60.
+OB02) ~ 1 £ er +O(502).

(178)

Considering Eq. (166), we see that the largest value of the
bending angle, 66,, is reached at the smallest impact
parameters, b = Ry, limiting the size of this angle as
80,(Rg) < 8.65 x 10713(2/1 um)? rad, resulting in the size
of the ratio in Eq. (178) of r66,/b < 1.02 x 1077 (4/1 pm)?,
which is small for radio wavelengths (4 ~ 1 mm), but is
negligible for the optical band. Treating the impact parameter
as b = /2r,r [21,24] and taking 66,,(b) from Eq. (166)
together with empirical model (4), we see that for optical
wavelengths, the second term in Eq. (178) is always below
10~7 and never becomes significant. Therefore, we omit this
term from further consideration.

As a result, similarly to Eq. (158), we obtain the con-
tribution of the plasma-dependent term in Eq. (139) in the
form

[e] _ —1 g r
5af (r, 6) = Eou 1 Sln(e + 259p) (1 + m)
x ei(krcos O—kryInkr(1—cos 0)+257)

00
+o<e4,aeg,ﬁe4,’”bp).
r

(179)
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The phase of this expression is identical to the phase obtained
from the equation for geodesics. The relevant results were
obtained in Secs. 1 and 2 of Appendix B and are given by
expressions (B27) and (B39).

With the expressions (158) and (179) at hand, we may
now present the quantity a(r, 8) from Eq. (139) as

a(r,0) = ﬁa[ﬁ](r, 0) + 5a[j§](r, 0)
r
- E -1 1 g
o < + r(1 —cos9)>

d26%\ .
x (sin (9 + d—;) e?% — sin 9>

X ei(krcos O—kryInkr(l1—cos6))

+O(94,59§,ﬁe4,%>. (180)
r b
This expression indicates that the scattered wave—which is
governed by the expressions (133)—(135) that result from
the scattering amplitude (131), to first order in gravity
and plasma contributions, or up to terms of the order of
O(ry(wp/w)*)—may be given by the difference of two
waves: the wave that moves on the effective background
given by both gravity and plasma, and the one that moves
only on the gravitational background.

Similarly to Eq. (163), for the second family of solutions
from Eq. (171), we obtain éa[io](r, 0) ~ O(r}). Therefore,
there is no scattered wave in the radial direction:

(o]

as(r,0) = 6 (r,0) + 8" (r,0) ~ O(72).

(181)

Using the approach presented above, we may now
evaluate the scattering factors B(r,0) and y(r, ) needed
to determine the other components of the EM field.

B. Evaluating the function f(r,0)

To investigate the behavior f(r, 8) from Eq. (134), we
neglect terms of the order of o r,/kr* and obtain the
following expression for f(r, 0):

eik(r+r_,] In2kr)

1 , 2
(f + i) i(26f+t’(t’+l)+[t'(t’+l)] )

p(r,0) = E - % T ou3,3
( Pk g A0+ )
s 8P(]>(cos9) L[(C(+1)
e - {Fm O (1 (B
(1)
[£(¢ +1)]? P, (cos 0)
T8k * fsin@ ’ (182)

To evaluate the magnitude of the function f(r,6), we
need to establish the asymptotic behavior of P;l) (cosB)/
sin@ and OP'" (cos0)/00. For fixed 0 and £ — oo, this

behavior is given3 [66] as [this can be obtained directly
from Eq. (137)]

(1) 1
P,’(cos0) B 20 \: . 1 P2 3
sin (ﬂSil’l39> sm((f * 5)6 - Z) +0™),

(183)
(1) 30\ L
dP,’(cosf) (207 \: 1 P4 1
10 = (ﬂSiﬂQ) cos<<f+2>9 4> +0(¢72).
(184)

With these approximations, the function f(r, ) in the
region outside the geometric shadow (i.e., not on the optical
axis), takes the following form:

eik(rtryin2kr) & (£ 4 1y (20, AL e Ry

’9 = F 2kr 33
Pr0) =B 2 2+ 1)
(0]
. 273 \3 (¢ +1)
2i5% _ T
x (e 1){<7zsin6> <1 26772

) e-og
+ <”82i:36>isin<<f+%>€—%) }

For large £ > 1, the first term in the curly braces in Eq. (185)
dominates, so that this expression may be given as

(185)

pik(r+ryIn2kr)

(¢ +3) < 203 >
ikr f:kRéf(f+1) 7sinf

" (1 e+ [f(f+ 1)]2>
2k%r? 8k rt

p(r.0) = E,

. . £(+1) | [Le+D)2
x (20 — 1)61(2‘7f+T+24,(—3,3)

o{(c+3p-9)

To evaluate f(r, 0) from the expression (186), we again
use the method of stationary phase. For this, representing
Eq. (186) in the form of an integral over #, we have

(186)

3We note that, for any large Z, the formulas (183) and (184) are
insufficient in a region close to the forward direction (6 = 0) or
backward direction (6 = x). More precisely, Egs. (183) and (184)
hold for sin @ > 1/¢ (see discussion in Ref. [25].) Nevertheless,
these expressions are sufficient for our purposes, as in the region
of interest the latter condition is satisfied.
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eik(r+rg In2kr)

5(r.0) = —E Vede
r,0) =—
0 kr ¢=kry V2msin @

AN
< (1= 3= g ) € =)

. 2 4
i(20,+4+55) ( PG

X e 049y, (187)

As we have done with Eq. (139), we treat this integral as a
sum of two integrals: a plasma-free and a plasma-dependent
term. Expression (187) shows that the #-dependent parts of
the phase have a structure identical to Eqgs. (142) and (164).
Therefore, the same solutions for the points of stationary
phase apply. As a result, using Egs. (150) and (153) from
Eq. (187) for the part of the integral that does not depend on
the plasma phase shift, 67, and for the first family of
solutions (150), to the order of O(¢°, (r,/r)6*), we have

2w

All(£y)a () PN

_ WV (1 £} £y > (%) 2
T V2zsin0 21272 8kt ) YN o (40)

=/F lkru™! <cos€—ﬁ>.
r

As a result, similarly to Eq. (158), the expression for

56 (r,

0) takes the form

5ﬁ£2] (r’ 9) — _Eou—l (COS 09— r_;l) eik(rcos@—ry Inkr(1—cos 6))

+O<96,@92).
r

Next, using the #-dependent phase (164) with the plasma
phase shift included and the relevant expressions (172) and
(176), to the order of O(6°, 562, (r,/r)6% ré0,/b), we
have

(189)

2w
@" (%)

Voo (% _ & () o
V27 sinf 2622 8k4 )TN0

d2se\ r
— Tkru=! g+—2) -1,
JF Thru (( df) )

Al (Zo)a(?)

r

Thus, the plasma-dependent term in Eq. (187), namely
éﬂ[f](r, ), takes the form

d26; r
5ﬂ[f](r, 0) = Equ™! <cos< d;> - 7g>

% ei(k(r cos 0—r, In kr(1—cos 0))+26%)

r60),
+0(96 502, ﬁe )

: (191)

Using the expressions (189) and (191), we present the
integral (187) as

B(r.60) = 687 (r.0) + 5% (r. 6)

d2o’ o se
= Eou‘l{ <cos (6 + dff> - };g) 2%

00,
<cos9——> + 0(96 502, r-"a rbp> }
ik(rcos6—ryInkr(1-cos8)) (192)

X e

Now we turn our attention to the second family of
solutions in Eq. (150). Similarly to Eq. (162), we have

2
@"(%0)

VE 2 a 2

1 (%)
p— — — a —_—
V27 sin @ 2k 8k4r Y\ ()

= \/“ (193)

Al (Zo)a(?o)

+O(0*, r2),
29 !

which yields the following result for 5ﬂ[£](r, 0):

pi(k(r+ryInkr(l1—cos0))+200)

5p1(r.6) =
(194)

In an analogous manner, the second family of solutions
from Eq. (150) results in the plasma-dependent factor

6% (r, 0):

"y i(k(r+ry In kr(1—cos 0))+200+28%)

6% (r.0) = E, il

2rs1n2 >0

+O(96,@92>.
r

The phase of this expression is identical to the phase of
a radial wave obtained from the equation for geodesics.
The relevant results were obtained in Secs. 1 and 2 of
Appendix B and are given by Egs. (B29) and (B40).

Finally, using the expressions (194) and (195), we
present the integral (187) for the second family of solutions
(150) as

(195)
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— 540 2 _ "
B(r,0) = 6p. (r,0) + 6pL (r.0) = Ey 2rsingz%t9

( 125f—1+(9<96 502, L,

rod,
b

))ei<k<r+rgmkr<l—cose»ww. (196)

Thus, for the scattered wave, to accepted approximation, the plasma contribution affects only the phase of the wave and

not its amplitude or the direction of its propagation.

C. Evaluating the function y(r.0)

To determine the remaining components of the EM field (124), we need to evaluate the behavior of the function y(r, )

from Eq. (135) that is given in the following from:

ik(r4ryIn2kr) 7+ 1
rro) = B L
ikr ik (0 +1)
P;})(cos 0)

i(20,4+24E 0

(1)
» OP,’(cos0) n (
06 sin @

To evaluate this expression, we use the asymptotic
behavior of P( >(cos 0)/ sin@ and 8P >(cos 0)/06 given
by Eqgs. (183) and (184), correspondlngly, and rely on the
method of stationary phase. Similarly to Eq. (185), we drop
the second term in the curly braces in Eq. (197). The
remaining expression for y(r, 8), for large partial momenta,

¢ > 1, is now determined by evaluating the following
integral:
eik(r+rgln2kr) . \/?
}’(F’G)——Eoki/ B
r £=kry V2msin @

. 2, A o
X el<20’f+2k’+24k3r3)(e’2‘sf

_ 1)(ei(f0+§) — e—i(fﬁ%))‘

(198)

Clearly, this expression yields the same equation to
determine the points of stationary phase [Eqs. (142) and
(164)], and thus, all the relevant results obtained in Sec. VA.
Therefore, the #-dependent amplitude of Eq. (198), which is
independent on the plasma phase shift, A, is evaluated as

2r N 2n
A[O](?fﬂo)a(fo) (p//(fo):\/iﬂ—s%@a(fo) m

= +\/F lkru + O<95,—r" 92>.
r
(199)

Therefore, the plasma-independent part of the function
5y£](r, ) is given as

. r
6},5:)] (’,‘7 9) — _Eouez(krcosé)—kry Inkr(1—cos@)) +0 <95’ :92) .

(200)

L (C(+1)
<1—u2< 222

[f<f+1>12)
24133

(2% — 1)

W;LPP)) }

(197)

Similarly, we have the expression for the ampli
tude AP, which, with Eqs. (172) and (176), is evaluated
to be

o 2 Vb 2r
A[](f())a(f()) (p//(fo)_\/é;%n‘aa(fo) m

(201)

00,
_irkru+0<95 Q _rb >

Therefore, the plasma-dependent term in Eq. (198),
5y[f](r, 0), takes the form

Eouei(kr c0s O—kr In kr(1—cos 0)+257)

réf, r,
—L2 992,
b b 9’ r )

We may now use the expressions (200) and (202) to
present the integral (198) as

orE(r.0) =

+0 (96, 562 (202)

7(r.0) = 5/ (r.0) + 5/ (r.0)
— Eou(eiZ(i} _ l)eikrcose—kr_,, In kr(1—cos 6)

ré0
+(9(06,59§,, bp).

(203)

Now, for the second family of solutions [Eq. (150)],
we get the following results for the plasma-independent
term:

AV Ea(ce) |22 ff )|
—\/“ 219+(9(¢94 r2),  (204)
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which yields a result for 57[3(r, 0) that is identical to y(r.0) = 5},[30’ 0) + 6y[p](r, 0)

Eq. (194): -

00,
=Eo5 e .r9219< f—1+0<96 562, @e rb ))
5}/[;)](,.’ 9) = —E, Ty pi(k(r+rgInkr(1—cos 0))+200) rsimt3
2rsin? %6 % ei(k(r+r_qlnkr(l—cosG))-&-sz)‘ (207)
r
+ (9(96,7992)- (205) At this point, we have all the necessary ingredients to
present the ultimate solution for the scattered EM field in
The result for the plasma-dependent factor 5y[f] (r,0) is the eikonal approximation.
identical to Eq. (195), namely D. Solution for the EM field outside
. - the termination shock
5}’f (r.0) =E . gt (K(rtryInkr(1=cos ))+200+25) To determine the components of the EM field, we use the

05 «n2lp

2rsin”30 expressions that we obtained for the functions a(r,@),
n 0(96, ] 92>. (206)  A(r.0). and 7(r,0), which are given by Eqs. (180), (192),
r and (203), correspondingly, and substitute them into
Eq. (203). As a result, we establish the solution for the
As a result, using the expressions (205) and (206), we scattered EM field in the region outside the termination
present the integral (187) for the second family of solutions ~ shock boundary, which, to O(6°.663,(r,/r)0*,r2.rs6,/b)

[Eq. (150)] as follows: has the form

A

4 r d25}\ s cos ¢
"V —E.u(1 9 inl @+ 25, _ sin @ k(rcos 0—r,Inkr(1—cos 6))— (ut)’ 208
() =5t (i) (02 ) - 00) (G0 ) %

D *
( Aé‘) _ EOM_I <<COS(9:|:@> _E) eiZ(S; _ <COS€—E>) <COS¢> i(k(rcos @—r,Inkr(1—cos 6))— u)t)’ (209)
B dft r r sin ¢

Dy —sing
¢ —E u(ei25; _ 1) ei(k(rcos()—rglnkr(l—cos()))—mt)‘ (210)
0 cos ¢

Clearly, when plasma is absent, the entire EM field given by Eqgs. (208)—(210) vanishes. Note that the phases and the
amplitude factors of the terms above are consistent with those found with the equation of the geodesics both with and
without the presence of the plasma, as identified in Secs. 1 and 2 of Appendix B. In fact, the total scattered EM field given
by Egs. (208)—(210) is shown to be the difference of two waves propagating in different backgrounds: with and without the
plasma. The resulting EM field given above describes the total effect of the solar plasma on the incident EM wave. At the
same time, the EM field of the incident wave is produced by the Debye potential I1, from Eq. (122) and is given as [21]

A(0)
Dy . cos

< o > :Eou_l sm6<1 + ry )( ¢> k(rcos0—ryInkr(1—cos ))— a)t)’ (211)
B r(1 —cos®)/ \ sing
3(0)

< Aﬂo ) — E()u_l <COSH _&) (CF)S¢)ei(k(rcosa—rylnkr(l—cos@))—wt)’ (212)
B,(9> r) \ sing
A(0)
D -

< A‘i’) ) _ Eou( Sln¢) k(rcos O—ryInkr(1 cosH))—a)t). (213)
B;) cos ¢

Finally, in accord with Eq. (130), the total EM field is given by the sum of the incident and scattered EM waves given by
Egs. (211)—-(213) and Egs. (208)-(210), correspondingly Thus, computing the total field as D = D@ 4+ DP and
B = B(® + B, then up to terms of O(6°, 562, r,0*/r, 12,50, /b), the components of this field have the following form:
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D d25;, r cosgp . .

") = Eu~!si ¢ 1 z(krcosH—kr”lnkr(l—c056)+26,—wt)’
(7)== ) (st (g ) |
<D9> — Eou_l <COS <9 4 d25;> _ }"g) (COS ¢ > pilkrcos 0—kr,Inkr(1—cos 0)+26,~wt)

EG dt r sin ¢ ’

13 —sin
< ¢ ) —_ Eou ( ¢> i(kr cos 0—kr, In kr(1—cos 0)+25,— mt)

A

B, cos ¢

We recall that in the case when gravity is involved, there
are two waves that characterize the scattering process in the
region of geometric optics: the incident wave given by
Egs. (211)—(213) and the scattered wave, which was com-
puted in Ref. [21] [see Egs. (49) and (50) therein] and is
given as

A »(0
20) B Bf/,) K Ty <cos¢)
BO i o _p9 j ~ T09sin2? sin ¢

(217)

We may compute the total scattered EM field in the
geometric optics region behind the Sun. Similarly to
Egs. (214)—(216), we add the corresponding components
of the plasma-free field [Eq. (217)] and those that account
for the plasma-induced phase shift, given by Egs. (181),

(196), and (207). Computing D, = DY + D® and
B, = B_E;O) + B(Sp), we have

Dy _ 34) _E ry < cos ¢ >
By . -Dy . 02rsin? ¢ \ sin ¢
% ei(k(r+ry1nkr(l—cosé‘))+26f+2rro—wt)’
D,
< R ) =0(r}).
B, ]

Therefore, the total EM field behind a very large sphere,
A << Ry, embedded in the spherically symmetric plasma
distribution, has a structure similar to the incident EM
wave. However, its phase and propagation direction are
affected by the delay introduced by the plasma in the
Solar System. The EM field outside the termination shock
|

(218)

Eou

I1. 0) =
in(r, 2il% r

EO u /-1 2f+1
T2y Z 6+ 1)

2 1
Z fl f—i_ e("f+5f 0¢(1)) { 210¢(r H+(kr kr) — Hy (kr

2
l(6f+5/_5/(r))62i6/(r)H;(krg, kr)P, pY (cosB) + O( a)p)

(214)

(215)

(216)

[
takes a very simple form that depends on the plasma phase
shift, 6;. This phase shift, given by Eq. (101), is clearly
showing its dependence on the solar impact parameter.
Equations (214)—~(216) account for this contribution. The
resulting expression for the phase of the wave is well known
and corresponds to that described by the equation of geo-
desics, as derived in Secs. 1 and 2 of Appendix B, namely by
Eqgs. (B27) and (B39). Similarly, the phase of the expressions
in Eq. (218) is consistent with that of a radial geodesic as
given by Egs. (B29) and (B40) (also see Ref. [21] for
discussion). As such, they are consistent with the expres-
sions for the phase of the EM wave moving through the solar
plasma derived by other authors [9,10,44].

This completes the derivation for the EM field in the
region of geometric optics outside the termination shock.

E. Diffraction of light within the heliosphere

To establish the solution for the Debye potential inside
the termination shock, we need to implement the fully
absorbing boundary conditions, as we did in Sec. IV D. To
do this, we identically rewrite Eq. (112) using a represen-
tation of the Coulomb function F,(kr,, kr) via incoming
and outgoing waves, H/ (kr,, kr) and Hy (kr,, kr):

21/”4—1
fl lo‘,+5—5 r
I, (r.0) = 2k2 E (07+8,=6,(r))

X {ezjﬁf(’)H;f(krg, kr) — H;(krg, kr)}

2
X P )(cos6) + (’)(rg, ry a)_2> (219)
By removing from this expression the outgoing waves
corresponding to the impact parameters b < R or, equiv-
alently, for £ € [1, kR§], we implement the fully absorbing
boundary conditions that account for the physical properties
of the solar surface. The resulting expression has the form

o kr)}PS) (cos )

(220)

9’92
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This is the final solution for the EM field that travels in the vicinity of the Sun in the presence of solar gravity and solar
plasma. This solution may be given in the following equivalent form:

Eu & 2¢ 41
M. (r.6) = OMZ - 1 Lﬂ+ e(”f+5f 5 DF 4 (kr,, kr) (cos 9)

2f 1
___Z i/~ 1 + el(ﬂfJF(Sf—&/( NH} (kr,, kr)P <)(cos«9)

2ik% r

2
2

Eyu & 20+ 1
oty i”ﬂ‘17+e’<” +0:=3,(1)) (g2 )—1)H;(krg,kr)P§,)(cos9)+O(r r &) (221)
@

2ik% r (6 +1)

¢=kR}

The first term in Eq. (221) is the Debye potential of the pure gravity case derived in Ref. [21], modified by the presence of
plasma in the Solar System. The second term is responsible for the geometric shadow cast by the Sun. The third term
represents the impact of solar plasma on the propagation of the EM field outside the Sun, but within the distance to the

termination shock Ry <r <R,.

Expression (220) is our solution for the Debye potential, representing the EM field that travels through the Solar System
in the presence of the solar plasma. Reinstating the Coulomb function F(kr,, kr) and, similarly to Eq. (119), taking into
account the asymptotic behavior of the function H} (kr,, kr) given by Eq. (118), expression (221) representing the solution
for the Debye potential within the Solar System takes the form

EO u Zf + 1
I -1 z(o‘/-ﬁ-éf Se(r
in(r, Z 26 +1) 1)
pik(r+ryIin2kr) uk, RS 27 +1
NN T,
TR PAT (Y
o~ 2041 i06,18,-5,(r)+ 0L
£=kR? £(¢+1)

This is our main result for the Debye potential represent-
ing the EM field in the geometric optics region situated
inside the termination shock, 0 < r <R, (i.e., interior
geometric optics region). It describes the propagation of
monochromatic EM waves on the background of monopole
gravity and that of a generic steady-state spherically
symmetric plasma, for which the number density dimin-
ishes as =2 or faster. The first term in Eq. (222) is the
Debye potential of the incident wave modified by the
plasma as the wave propagates through the Solar System.
The second term is for the geometric shadow behind the
Sun (similar to that discussed in Refs. [24,25]), also
modified by the plasma. The third term represents the
ongoing scattering of the EM field as it propagates through
the spherically symmetric distribution of the extended solar
corona, given at a particular heliocentric position within the
Solar System, Ry <r < R,.

Note that because of the plasma model [Egs. (1) and
(3)], the last sum in Eq. (222) formally extends only to
¢ = kR,, corresponding to the impact parameter equal to
the distance to the termination shock. For r > R,, not
only does the vanishing phase shift, 6, = 0, essentially
eliminate this term, but this distance is also outside the

Ff(kr r)P

p! )(cos 0)

2
i(20,48,—8, (r)+ECEL AT

24373 )P;D (cos )

£+

2
W)(eZi‘sf(r) - I)P;l)(cos 9)} + (9<r r w_§>

(222)

boundary that characterizes the inner region, as for
r> R, we enter the domain of the scattered wave
discussed in Sec. V.

To discuss the diffraction of light in the Solar System, we
refer to the solution for the Debye potential IT given by
Eq. (222). Each term in Eq. (222) has the contribution of
the ongoing plasma phase shift given as 5, — §,(r), where
5% and 6,(r) are given by Eqgs. (98) and (110), correspond-
ingly, with eikonal phase shifts for the short-range plasma
potential &,(r) and &} given by Egs. (79) and (99),
respectively. To evaluate these terms, we derive the differ-
ential plasma-induced phase shift occurring as the wave
travels through the heliocentric ranges R <r <R,.
Defining

8, —6,(r) =& — &,(r) = 6&,(r), (223)
from Egs. (79) and (99) we compute
27re R R\ i~
88y (r) = m,c’k ; < >
x {0} — Qs (V1* =)} (224)
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As we can see, the differential phase shift 6&,(r) is independent of either L or # and is a function of the
heliocentric distance only. Thus, in all the terms of Eq. (222), we may move the factor expl[i(6; —6,(r))] =
exp[ié&,(r)] outside the summation over Z. With this, and using IIy(r,8) from Eq. (72), the Debye potential IT from

Eq. (222) takes the form

I, (r,0) = (") [Ho(r, 0) + e

> 2f 41
e
(6 +1)

¢=kR},

Clearly, 8&,(r) is significant only in the immediate
vicinity of the Sun, where r ~ R, but it falls off rapidly
for larger distances. Using the phenomenological model
[Eq. (4)], we estimate the magnitude of the differential
phase shift [Eq. (224)]. For this, with the help of Egs. (102)
and (103), expression (224) takes the form

56, (r) = {586 17( b> 08— 016(VE 1)

+303. 87<R ) (0 - Q6(\/H))}<L>.

1 ym
(226)

Examining this expression, we see that it reaches its
largest value for the smallest impact parameter of b ~ R,.
However, even for radio waves passing that close to the
Sun, the phase shift (226) results in a practically negligible
effect. Evaluating for A~ 1 cm, the delay introduced by
Eq. (226) at r = 10Ry is 6d, = 6&,(r)(4/2x) ~ 14 and
rapidly diminishes as r increases. In fact, at heliocentric
distances beyond r=~20R, even for such rather long
wavelengths, the differential phase shift introduced by
Eq. (226) is totally negligible.

As a result, we may set 6&,(r) = 0 in Eq. (225), making
it equivalent to the solution for the Debye potential given
|

eik(r+rg In2kr)

ik(r+r,In2kr) EO { Q 27+ 1

ro 22

z"(!+l) [(e+1))?
iQor+=grt 24133

) (e2i0e(r) — 1)P;1)(cos€)} + O<rq’ rqwgﬂ'
@

kR

2(6+1) | [E(e+1)?
77+ )e(2 R e )Pg)(cose)
=1

2
(225)

|
by Eq. (119). With this, all the results that we obtained
earlier in Sec. V for the region outside the termination
shock, r > R,, may be extended to cover also the ranges
within the termination shock, Ry < r < R,. Thus, we have
a complete solution for the EM field in the geometrical
optics and shadow regions of the Sun. We now turn our
attention to the region of most importance for the SGL: the
interference region.

VI. EM FIELD IN THE
INTERFERENCE REGION

We are interested in the area behind the Sun, reachable
by light rays with impact parameters b > Rg. The focal
region of the SGL begins where r > R, and 0 <6~
\/2r,/r. The EM field in this region is derived from the
Debye potential [Egs. (130) and (131)] and is given by the
factors a(r, @), p(r, ), and y(r, 0) from Egs. (133)—(135),
which we now calculate.

A. The function «(r,0) and
the radial components
of the EM field

We begin with the investigation of a(r,6), given by
Eq. (133) as

1 [2( f+]] e
alr0)=~Ey— oo > (*’” * 5) (ot SRR (e~ 1)P) (cos 6)
£=kRY
CE+1) i (¢€+1) ikr w2
X {u2+(u2— 1)74k2r2 +E(1 22,2 f(f—f—ql) + 0O rq,rq l;,(kr) . (227)

To evaluate expression (227) in the interference region and for 0 < 0 ~

\/2r,/ 1, we use the asymptotic representation for
P (cos 0) from Refs. [40,67,70], valid when £ — co:

+4

‘ J f+l ZSinlﬁ
05%91 2 27 )

PY (cos ) = (228)
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This approximation may be used to transform Eq. (227) as

pik(r+ryin2kr)

a(r,0) = —E uk*r? 005%9

a2 kr

x{u2+(u2—1)w+i<1+

1\2
> (ey) e
=kRg 2

RGNS 1 1
T )( 25, _ 1], (<f+2)2sin29>

(¢ +1) ikr,
2k2 2

f(f+1)}+0< —fﬁ(kr) ) (229)

At this point, we may replace the sum in Eq. (229) with an integral [accounting for the fact that # > 1 and keeping the
terms up to O(0)] to be evaluated with the method of stationary phase:

eik(r+r9 In 2kr)

a(r,0) = —E, w22

=kR},

X u2+(u2—1)i+i 1
4k2rr  kr

As before, we evaluate this integral treating plasma-
independent and plasma-dependent terms separately.

1. The plasma-independent part of «(r.0)

In evaluating the plasma-independent part, we see that
the Z-dependent phase in this expression is given as

Oy =2 +f2 & + O((kr)=)
PN =20t T s d
2 f4 s
= ~2kryInf + 5t e+ O((k)7). (231)

The phase is stationary when dgl% (£)/d¢ = 0, resulting
in
Ury & £
¢ kr 6KF
= 2+ 6k — 12k*Pr, = O((kr)72).

= O((kr)™)
(232)

We may now solve this equation for £2(r,), keeping only
the terms of the first power of r,. Requiring that in the
absence of gravity no rays would reach the focal area or
limrﬁofz(rg) — 0, we have only one solution, given as
2 =k2ryr 4+ O((kr)™) or ¢y =ky/2r,r. (233)
This solution represents the smallest partial momenta for
the light trajectories to reach a particular heliocentric
distance, r, on the focal line of the SGL. It is consistent
with the solution to the equation for geodesics (see Sec. 1 of
Appendix B), which yields the solution for the impact

/ T T (o625 1)1, (£0)
4

£? ikr,
“ai) = OBk te).

(230)

|
parameter of b = /2r,r. In addition, we also choose such
that £ is positive.
Solution (233) allows us to compute the stationary phase
[Eq. (231)] as
P (t0) = —kr,n 2kr + oy + g (234)

Using Eq. (231), we compute the relevant ¢, (¢) a
below:

d*p 1 % ~ 2kr
= <1 +W+ O((ki’) 4)) +72'g

ar*  kr
>l 2 (

.
- —_Z {14+ 2\
am wk\ T O(rg)>

235
2r (235)

The amplitude factor for the asymptotic expansion
H} (kry, kr) from Eq. (118), denoted by a(¢), which is
given by Eq. (154). This factor for £, from Eq. (233) is
computed to be

a(fy) = 1+-2L+0(2).

- (236)

Using results (235) and (236), we derive

a(to)y |- :M{1+ﬁ+0(r§)}. (237)

9" (%) 4r

Now, using Eq. (237), we have the amplitude of the
integrand in Eq. (230), for ¢ from Eq. (233), taking
the form
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27 £2

A[O]Mo)a(fo)

= K*2r rVrkr <1 +

where the superscript [0] denotes the term with no plasma
contribution. As before, we dropped the i/ (kr) terms inside
the parentheses, as these terms are very small compared to
the leading terms.

As a result, the plasma-free part of the expression for

5al%)(r, @) given by Eq. (230) takes the form

5ai r,0) = iE \/ 1/271’](}” e’ ] (ky/2r,r)

e'*r( +<9( ,(kr)™1)). (239)

2. Evaluating the plasma-dependent part of a(r,0)

For the plasma-dependent term in Eq. (230), the /-
dependent phase is given as

2 4
0] — * -5
PP(¢) = 20;+2k 24k33+25 + O((kr)™)
2 54
= —2kryInt 4ot s s 20 + O((kr)™).

(240)

Considering Eq. (240), we see that the points of sta-
tionary phase, where dq)f /d¢ =0, are given by the
equation

2kr, ¢ s
— g p—
2 —I—k PTER + 280, = O((kr)™®) or
f2 4
—2kry + =+ s + 280, = O((kr)” 5. (241)

6k’r

As we saw in Sec. VI A 1, the partial momenta for the
points of stationary phase are ¢ o k,/2r,r, which makes
the #* term in Eq. (241) of O(r). Thus, we may neglect the

term #*/6k3r? and solve the remaining quadratic equation
for ¢:

02+ 2krs0,¢ — 2k*r,r = O((kr)™2). (242)
If we require that, in the limit when plasma is absent or
when 660, — 0, the partial momenta are to coincide with
those obtained earlier, namely Eq. (233), then there is only

one solution of Eq. (242) (similar to that discussed in
Ref. [15]):

)2 2_ %o
ey~ - Vg

i % ikr, 27
— (1 0 J1(€0)a(ty) | ———
kr ( + 2k21’2) fg } 1( )a( 0) QOII(fo)

—2 4+ O(r%, (kr)™! )) Ji(ky/2r,r0),

(238)

(243)

2rg )
¢ =kr — + 0605 — 60, |.
r

Note that this solution correctly represents another sit-
uation where in the absence of gravity, the rays do not
reach the focal line—or, in other words, the focal line is
reached only by the ray with £ = 0, which is blocked by
the Sun.

As in this paper we only treat effects linear in plasma
contribution, the terms of O(562) must be neglected, which
brings Eq. (243) to the following form, valid for

/21,1 > 60

£~ kr<ﬁ 50 > O(562)
= k(\/2r,r — r80,) + O(562).

This expression represents the combined effects of
gravity and plasma on the light rays traveling towards
the focal area. From the left side of these two expres-
sions, we see that, as gravity works by bending light by
the angle of ,/2r,/r towards the focal line, plasma
“unbends” these rays by the amount of 66,,. Similarly, the
right side of these two expressions tells the same story
using the concept of the impact parameters. To reach the
focal line at the heliocentric distance r, rays must have
the impact parameter b = ,/2r,r. In the presence of
plasma, to reach the same distance r, the impact
parameter must be smaller by ré6,, consistent with
our description of the effect.

Although Eq. (243) ensures that ¢ is always positive for
any ./2r,/r and 60, Eq. (244), where the quadratic term

(244)

862 is neglected, suggests that # > 0 only if we require

\/ 21,/ 1 > 60, or, equivalently, /2r,r > ré6,,. This is the
result of our approximation, where we consider only terms
linear with respect to 60,,. We keep this observation in mind
and use Eq. (243) to guide us when interpreting the results.
We compute the stationary phase [Eq. (240)] for the

values of £ given by Eq. (244):
PP (£0) = —kr, In2kr + 60 + g 1255, (245)

Computing the second derivative of the phase [Eq. (240)],
(), with respect to £, we have
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delPl 1 2 2kr, d*28F

I 7 k -4 -9 b

a7 kr< g T OUk) )> IRV
(246)

where, similarly to Eq. (174), the last term could be
neglected. Now, using # from Eq. (244), we have

2 r 2r
(o] _ = ‘9 2 [“Tg
(p (fo) kr <1+2r+0(r9’59p r >>’
2 r 2r
= \/_;zkr<1 ay (’)(ré,é@%,ﬁﬁp\ /Tg)).

(247)

T 2
Bleo)ateon | o= fé{»ﬂ L)

_70 4 -
4k p? + kr

The amplitude factor a(#) from Eq. (154) is computed
to be

a(f) =1+2L+ 02, r,50,). (248)

2r
Using results (247) and (236), we derive

2n r 2r
m: Vﬂkr{1+4‘z‘+0<72,56%,59p y‘fj])}

(249)

)

(o)

As a result, using Eq. (249), we have that the amplitude
of the integrand in Eq. (230), for # from Eq. (244), takes
the form

i 2 ikr 21
14+-2 I8 T (£0)a(to) s |
< +2k2r2) 52 } 1( ) ( 0) (ﬂ”(fo)

= k22r r\/—< +——9+0<  (kr)™', 56, ﬁ))]l(k(\/ﬁgr—réep)e), (250)

where the superscript [p] denotes the term that includes the plasma contribution. As before, we dropped the i/(kr) terms in
the parentheses of this expression, as these terms are very small compared to the leading terms.
As a result, the plasma-dependent part of the expression for 6al” (r, 8) given by Eq. (230) takes the form

2 . - 2
8a (r,0) = —iEy /%, [27kr ei0] | (k(1/2r,r — ro6,)0)eikr+2;) (1 +0 <r§, (kr)=", 66,1 /%) > . (251)

Finally, the entire a(r,0) term from Eq. (230) may be given as

sa(r,0) = 6a%(r.0) + 6a®(r,0)

2 .
— _iEy\ | N e“’o{ L(k(\/2r,r — 180,)0)e

" 2 .
200 — J1(ky/2r,r0) + (’)<r§, (kr)~!, 69p\/$> }e”".

(252)
We can use the same approach to compute the remaining two scattering factors, f(r, 6) and y(r,0).
B. The function f(r,0) and the  components of the EM field
The f(r, ) function is given by Eq. (134) in the following form:
pik(rtryIn2kr) £+1 (e, LD ARy
’9: 2 (”*2 +z43,3> 126’f_1
pr.6) ikr 2L+ 1)¢ e =)
(0]
8P£})(cos 0) £ +1) [£(6+1)7? ir P (cos 0)
el I e e L g : 253
% { a0 “\oem T s ) Takr) T ine (253)

To evaluate the magnitude of the function f(r,8), we need to establish the asymptotic behavior of the Legendre

polynomials P,
fixed and £ goes to oo are [66]:

(1) (cos ) in the relevant regime. The asymptotic formulas for the Legendre polynomials if w = (£ + %)9 is
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(1) (1)
P! si(:?;e) _ %f(f + 1)(Jo(w) + J5(w)), w _ %f(f F 1) (Jo(w) = Jo(w)). (254)

For any large #, formulas (183) and (184) are insufficient in a region close to the forward direction (6 = 0) or backward
direction (f = x). In the forward region, they are complemented by the asymptotic formulas in Eq. (254). Similar formulas
may be used for the backward region. More precisely, the formulas (183) and (184) hold for sin@ > 1/¢, and those given
by Eq. (254) hold for # < 1. The overlapping domain is 1/# < sin @ < 1. For our discussion of the SGL, the expressions
in Eq. (254) are more appropriate as they describe the EM field at or near the optical axis where 6 =~ 0; however, when
needed, we use Eqs. (183) and (184) to describe the EM field at small but finite angles away from the SGL’s optical axis.

Using Eq. (254), we transform Eq. (253) as follows:

p(r.0) = E, .

eik(r+rg In2kr)
( 2

1 . £(£+1) | [£E+1))? -
f + _ 61(2”/+ 2kr + 24133 )(6125/ — 1)

£=kR}

fol(2)) -2 (ol(3)o) = (r+2)0)) (= (G ) 580

(255)

Now, we may replace the sum in Eq. (255) with an integral (accounting for the fact that # > 1 and keeping terms up to
the order of « 6):

ik(r4r,In2kr) oo ) P o
ﬂ(r, 9) = EOeTJ/ fdfel(26f+%+m)(et2éf _ 1)
Lkr £=kR},

x {JO(L”H) - % (Jo(£0) - J5(£0)) <u—2 ( 2:;; +5 ;;) - 2’;;) } (256)

We evaluate this integral with the method of stationary phase, treating plasma-independent and plasma-dependent terms
separately.

As the Z-dependent phase in Eq. (256) is the same as Eq. (230), corresponding results obtained in Secs. VIA 1 and VI A
2 are also applicable here. In fact, the same solutions for the points of stationary phase apply. As a result, using Egs. (233)
and (237) from Eq. (256) for the part of the integral that does not depend on the plasma phase shift, 57, we have

27 ir

1 Y , 2
L fo{fowoe) S —Jz(fo«9))<u Z(Zkgz +8k4°r4) —Zkrz)}awo) e

- krm{JO(kMG) + o(% rg> } (257)

As a result, the expression for 6ﬂ[f](r, ) in the interference region takes the form

8p(r,0) = —Eq/2nkr e ]y (k 2rgr9)e”<r<1 + O(r—’f’ r§>) (258)

Next, we evaluate the plasma-dependent term in Eq. (256). Using the expressions (244) and (249), from Eq. (256) we
have

AL (Zo)a(?o)

A[P](fo)a(fo)\/% - kr\/fkrg<l - \/%) {Jo(k(\/fr—ﬁ — 160,)0) + 0<r—rg : rg) } (259)

Thus, the term in Eq. (256) that depends on the contribution from the plasma-induced phase shift takes the form
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, 56 kriase r
86" (r.0) = Ey, [2nkr et <1 - zrp/r> Jo(k(y/2r,r — r80,)0)e!kr+27) (1 +0 <7" 5) ) : (260)
g

Using the expressions (258) and (260), we present the integral (256) as

P(r.0) = 66°(r.0) + 6pPI(r.6)

. 00 s 4
= Ey /271'krge”’0{ (l - 2 )Jo(k(\ /2r,r = r80,,)0)e*% — Jo(k+/2r,r0) + O(r—rg , rﬁ) }e’k’. (261)

2rg/r

C. The function y(r,0) and the ¢p components of the EM field
The ¢ components for the EM field is given by the factor y(r, 0), which, from Eq. (135), is given as

ik(r+r,In2kr) L Qe+1) | e+
e Ca G G e (g, _ )

y(r,0) =E - e
0 ikr ) (¢ +1)
P (cos0) PV (cos0) Lf+1) [+ DR\ ir
1—u? ). 262
x { 96 sino ( “ ( 26772 8k* 17 ) 2kr2> } (262)

Similarly to the discussion in the preceding Sec. VI B, we use Eqgs. (183) and (184) and transform Eq. (262) to the
integral, while also taking £ > 1:

ik(r4ryIn2kr)  roo . 2 A L
r0.0) = By [ caee e )
Ikr £=kR}

x {Jo(fe) - % (Jo(£0) + J,(£0)) (u‘2 (2/?2# +3 11;4#) - ;Z;) } (263)

We evaluate this integral with the method of stationary phase, again treating plasma-independent and plasma-dependent
terms separately. As a result, we have

P 2 4 ir T
Al (fo)a(fo)\/m = 50{10(509) - % (Jo(Z00) + J2(£00)) <“_2 <2li0r2 + 8;Or4> - 2ki2> }a(fo) %

— kry /Zﬂkrg{.lo(k 2r,10) + 0<r—rg r§> } (264)

Thus, the expression for éy[g(r, 0) in the interference region takes the form

5y0(r, ) = —Ey, [2mkr ']y (k 2rgr9)e”"<1 + O(r—rg, rﬁ)). (265)

We evaluate the plasma-dependent term in Eq. (263). Using the relevant expressions (244) and (249) from Eq. (263), we
have

A[P](fo)a(fo)\/;,,_z(—ﬂb; - kr\/fkr_[(l - \/%) {Jo(k(\/Z—r;? — 180,)0) + 0<r—rg : rg) } (266)

Thus, the term in Eq. (263) that depends on the contribution of the plasma-induced phase shift takes the form
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5P (r,0) = | /27kreivo <1 - \/(;";L/) o(k(y/2r,r — r86,,)0)e!tkr20%) <1 + O(F—r" 5)) (267)

Using the expressions (265) and (267), we present the integral (263) as

y(r,8) = 8y (r,0) + 5yPl(r,0)

= \/fkrgeiﬁo{ (1 - \/‘;6:_/> To(k(\/2rgr = 1860,)0)e™% — Jo(ky/2r,r0) + O({ )}e”"- (268)

D. The EM field in the interference region

Now we are ready to present the components of the EM field in the interference region in the presence of plasma. We do
that by using the expressions that we obtained for the functions a(r, @), #(r,0), and y(r, 8), which are given by Egs. (252),
(261), and (268), correspondingly, and substituting them into Eq. (124). As a result, we establish the solution for the
scattered EM field in the region outside the termination shock boundary, up to terms of O( r ,80,\/2r,/r, (kr)™! ,602%):

- . cos
) —iE, 2mkr e {J (k(\/2r,r — r80,)0)e™ — J,(ky/2r,r0) }e'kr=on ( ¢ ; 269
g sin ¢

A

Dp o 560 25e i(kr—ar) [ COSP
<I§ > = Eyy/27krge 0{ (1 - \/ﬁ)fo(k(w/z”g’”— r50,)0) e — Jo(k 2rgr¢9)}e (kr—a) < sin(b)’ (270)

D; ~ 0 - v [ —SIN
(éf) = on/2ﬂkrgewo{ (1 - \/%/J o(k(/2ryr —r80,)0)e™% — Jo(k 2rgr€)}e’<k’ w>( cos > (271)

¢

T

The EM field produced by the Debye potential I, the wave in the interference region in the absence of plasma, was
given in Ref. [21] in the following form:

ﬁ cos ¢
R = —iE, 1/271’]{}’ e ] (ky/2r,r@)e!kr=o0 [ . (272)
B£ sin ¢
A(0)
0 io r—o cos ¢
(B(O) > = Eyy/2mkr e’ Jy(ky/2r, r9) i(kr—ar) < singb ), (273)

0
A(0) .
D _
¢ io i(kr—w SIH¢
< A (0)> = Eo\/2nkr e Jo(ky/2r,r0)e'* f>< > (274)
B¢ cos ¢

The total field in accord with Eq. (130) is given by the sums of Eqs. (269)—(271) and Eqgs. (272)-(274) up to terms of the
order of O(6,502,r2,80,/2r,/r, (kr)™"):

prg

A /\(0) A
D DY 4 pr r A X cos

( A’) = < + ) = —iEg\|—2\/2mkr e ], ( 2r r— ré0 )9)6’(](”25/_“”)( ) ¢), (275)
B, B9 4 Be r sin ¢

A A0) | Ap

De) Dy’ + Dj < > er+28% cos ¢

0 = = Eg\/2nkr e (1 — k(\/2r,r — r80,)0) e kri20;=en { : 276
<B <I§((90>—|—1§§ 0 2r o/ T o(k( 0)0) sin ¢ (276)
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A A 0 A

D, D((p) + Dy ' 50

R = (0 R = Ej, /27rque’”0 1] ——
B, B()—I—Bf; ' \2ry/r

¢

The radial component of the EM field [Eq. (275)] is
negligibly small compared to the other two components,
which is consistent with the fact that while passing through
the solar plasma, the EM wave preserves its transverse
structure.

Expressions (275)—(277) describe the EM field in the
interference region of the SGL in the spherical coordinate
system. To study this field on the image plane, we need to
transform Eqs. (275)—-(277) to a cylindrical coordinate
system [21,39]. To do that, we follow the approach
demonstrated in Ref. [21], where instead of spherical
coordinates (r, 0, ¢), we introduce a cylindrical coordinate
system (p, ¢, z) more convenient for these purposes. In the
region r>>r,, this is done by defining R = ur =r+
ry/2+ O(r;) and introducing the coordinate transforma-
tions p = Rsinf, z = R cos 0, which, from Eq. (13), result
in the following line element:

ds* = u=2c?dr* — u*(dr* + r*(d6* + sin0d¢?))
= u2dr? — (dp* + p*dg* + nudz?) + O(r2).
(278)

As aresult, using Egs. (275)-(277), for a high-frequency
EM wave [i.e., neglecting terms « (kr)~'] and for r > r,,
we derive the field near the optical axis, which up to terms
of O(p*/z?), takes the form

R
<Ep ) = 27tkr eloo ( >
H,
x Jy (k\/Zr r( ng/r> )
(kr+25 —wt) COS¢> (280)
in ¢
<E¢ > = 27rkr eioo < )
H, 2rg/r
X J 2
(- ))
x eflhr+20-a) ( B Sm¢>, (281)
cos ¢

where r=+/z22+p*=2z(1+p*/2z*)=2z+0(p?*/z)) and
0 =p/z+ O(p?/z?). Note that these expressions were

) JO(k( \/Tqr - r59p)9)ei(kr+26;—w;) <

—sing

cos ¢

). (277)

|
obtained using the approximations in Eq. (254) and are
valid for forward scattering when 6 ~ 0, or when p < r,.

E. Plasma contribution to image formation

Using the result [Egs. (279)-(281)], we may now
compute the energy flux at the image region of the
SGL. The relevant components of the time-averaged
Poynting vector for the EM field in the image volume,
as a result, may be given in the following form (see
Ref. [21] for details):

Sz = LE% 47[2 Q <] - 59p >2

1 — =47, /7 ) /_2rg/z

P |2
XJ%(2ﬂ1< Tq—59p>>,

with S'p = S‘¢ =0 for any practical purposes. Also, we
recognize that the following convenient expression

1s valid:
p 2rg 5
ky/2r,r6 = 27:; —+ O0(p*/z).
Z

Therefore, the nonvanishing component of the amplification
vector g, S/|So|, where [So| = (¢/87)E3 is
the time-averaged Poynting vector of the wave propagating
in empty spacetime, takes the form

(282)

(283)

A 8 ?
He = 1 = e=4n°ry/2 ), /—2,,9/Z
p |2r 00
x J2 2254 /=2 1= D , (284
0( V2 ( \/2rg/z>> (284)

where the argument of the Bessel function to first order
in 66, is from Eq. (243), with 66, itself given by
Eq. (166).

At this point, it is instructive to reinstate the full
dependence of the critical partial momenta 7, from
Eq. (243) on the plasma deflection angle 66, and, by
repeating some of the plasma-related derivations given in
Secs. VI B and VI C, to present the result [Eq. (284)] in the
following more informative form:

_ 4z° 9 0 1 =~ 2r,
Fe = 1 i g Fhel3 205\ s ). (289)
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2\ 1

where Fog = (14 55)° = 52 > 0, with 80, = \/27, /2 =
2r,/b being the Einstein deflection angle due to the
gravitational monopole. This result, to first order, is valid
for any values of 60, and 66y and is very helpful to
understanding the impact of plasma on the optical proper-
ties of the SGL. While Eqs. (284) and (285) yield similar
results when 66, < 60, reinstating the dependence from
Eq. (243) on 66%/86% helps us to better understand the
behavior of the amplification factor f, at longer
wavelengths.

As we can see from Eq. (285), the plasma contribution to
the optical properties of the SGL is governed by the factor
Foq» Which, in the absence of plasma, is F,, = 1. For
estimation purposes, we rely on Eq. (167), which is the
result of evaluating the generic expression for the plasma
deflection angle 660, [Eq. (166)] for the values given by the
phenomenological model [Eq. (4)]. Then, by using
80, = 2r,/b =8.49 x 107%(Ry/b), we estimate the ratio
of the two deflection angles as

80, R\ 15 R\ 3
—2—=20780x1078(=2 241 x 1078 =2
s = {010 (B2) 240 (5

2
+2.85x 1071 <&> } <L) .
b 1 ym

Examining Eq. (286) as a function of the impact
parameter, we see that for Sun-grazing rays passing by
the Sun with impact parameter b ~ R, this ratio reaches its
largest value of 56,/50, = 1.02 x 1077(4/1 pm)?, which
may be quite significant for microwave and longer wave-
lengths [19]. For a wave with 1 ~ 3 mm passing that close
to the Sun, the plasma contribution approaches that due to
the gravitational bending, 66,,/66, ~ 0.92. As a result, the
factor F,, from Eq. (285) decreases to F; ~ 0.44, which,
as seen from Eq. (285), leads to reducing the light
amplification of the SGL to only fég ~0.19 compared
to its value for the plasma-free case and broadening the PSF
by a factor of F;l~228, thus reducing the angular
resolution of the SGL in this case by the same amount.
For the wavelength 1~3 cm, the ratio in Eq. (286)
increases to 660,/60, ~91.8, which reduces the light
amplification by a factor of F2, ~2.97 x 10~ compared
to the plasma-free case and degrades the resolution by a
factor of F5! ~ 184. Further increasing the wavelength to
A=~ 30 cm leads to an obliteration of the optical properties
of the SGL, where light amplification is reduced by a factor
of 2.97 x 10~ compared to the plasma-free case, with the
angular resolution degraded by a factor of 1.84 x 10°.

At the same time, one can clearly see from Eq. (286) that
for optical or IR bands, say for A ~ 1 pym or less, the ratio in
Eq. (286) is exceedingly small and may be neglected,
which results in 7, = 1 for waves in this part of the EM

(286)

spectrum. This conclusion opens the way for using the SGL
for imaging and spectroscopic applications of faint, distant
targets.

VII. DISCUSSION AND CONCLUSIONS

Conceptually, the direct imaging of exoplanets is quite
straightforward: we simply seek to detect photons from a
planet that moves on the background of its parent star.
Emissions from an exoplanet can generally be separated
into two sources: stellar emission reflected by the planet’s
surface or its atmosphere, and thermal emission, which may
be either intrinsic thermal emission or emission resulting
from heating by the parent star. The reflected light has a
spectrum that is broadly similar to that of the star, with
additional features arising from the planetary surface or
atmosphere. Therefore, for Sun-like stars, this reflected
emission generally peaks at or near optical wavelengths,
which are the focus of our present paper.

Although exoplanets are quite faint, it is the proximity of
the much brighter stellar source that presents the most
severe practical obstacle for direct observation. In the case
of the SGL, light from the parent star is typically focused
many tens of thousands of kilometers away from the focal
line that corresponds to the instantaneous position of the
exoplanet. Therefore, light contamination due to the parent
star is not a problem when imaging with the SGL [26].

We studied the propagation of a monochromatic EM
wave on the background of a spherically symmetric gravi-
tational field produced by a gravitational mass monopole
described in the first post-Newtonian approximation of the
general theory of relativity taken in the harmonic gauge
[23] and the solar corona represented by the free electron
plasma distribution described by a generic, spherically
symmetric power-law model for the electron number
density [Eq. (3)]. We used a generalized model for the
solar plasma, which covers the entire Solar System from the
solar photosphere to the termination shock (i.e., valid for
heliocentric distances of 0 < r < R,, first introduced in
Ref. [20]). We considered the linear combination of gravity
and plasma effects, neglecting interaction between the two.
This approximation is valid in the Solar System environ-
ment. Our results, within the required accuracy, do not
depend on the actual value of R,, and as such, deviations
from spherical symmetry by the termination shock boun-
dary bear no relevance.

In Sec. II, we solved Maxwell’s equations on the
background of the Solar System, which includes the static
gravitational field of the solar monopole and the presence
of solar plasma. We used the Mie approach to decompose
the Maxwell equations and to present the solution in terms
of Debye potentials. We were able to carry out the variable
decomposition of the set of the relevant Maxwell equa-
tions and reduce the entire problem to solving the radial
equation in the presence of an arbitrary power-law poten-
tial, representing the plasma.
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In Sec. III, we used the eikonal approximation, valid for
all the regions of interest, to solve for the radial function. We
established the solution for the EM wave in the exterior
region of the Solar System (i.e., the region beyond the
termination shock, r > R,), given by Eq. (82), and also in
the interior region (0 < r < R,), given by Eq. (81). We then
used the boundary (continuity) conditions (83)—(86) to
match these two solutions at the boundary represented by
the termination shock. We established a compact, closed
form solution to the boundary value problem in the form of
the Debye potentials representing the EM field outside and
inside the termination shock boundary, given by Egs. (107)
and (113), respectively. Next, we implemented fully absorb-
ing conditions representing the opaque Sun, thus establish-
ing solutions for every region of interest for imaging with the
SGL, both outside [Eq. (119)] and inside [Eq. (222)] the
termination shock. The resulting Debye potentials fully
capture the physics of the EM wave propagation in the
complex environment of the Solar System. These solutions
are new and extend previously known results into the regime
where gravity and plasma are both present.

In Sec. IV, we studied the general solution for the EM
field outside the termination shock. We derived the
expression for the Debye potential for the plasma-scattered
wave outside the termination shock [Eq. (132)]. This result
is then used to investigate the EM field in all the regions
behind the Sun, namely the region of the solar shadow, the
geometric optics region, and the interference region.

In Sec. V, we studied the EM field in the region of
geometric optics outside the termination shock. We dem-
onstrated that the presence of the solar plasma affects all
characteristics of the incident unpolarized light, including
the direction of the EM wave propagation, its amplitude,
and its phase. We observed that the combination of the
eikonal approximation and the method of stationary phase
results in an expression for the phase of the EM wave that is
identical to the one that is usually found by applying the
equation of geodesics. This similarly confirmed the validity
of our results. Our approach also allowed us to derive the
magnitude of the EM wave as it moves through the
refractive medium of the Solar System. We also studied
the EM field in the interior region of the Solar System and
investigated the EM field in the geometric optics region
inside the termination shock. We demonstrated that the
results obtained in the exterior region are directly appli-
cable for this region as well. We note that our solution for
this region may have immediate practical applications, as it
allows for proper accounting for the effect of solar plasma
on modern-day astronomical observations and the tracking
of interplanetary spacecraft.

In Sec. VI, we focused our attention on the interference
region and investigated the optical properties of the SGL.
We have shown that the presence of the solar plasma leads
to a reduction of the light amplification of the SGL and to a
broadening of its point-spread function. Although its
presence affects the optical properties of the SGL, its

contribution is negligible for optical and IR wavelengths.
On the other hand, plasma severely reduces both the light
amplification of the SGL and its resolution for wavelengths
longer than 4 2 1 cm. In general, the steady-state compo-
nent of the solar plasma uniformly pushes the gravitational
caustic [21] away from the Sun, but it does not introduce
additional optical aberrations, leaving the image quality
unaffected. Thus, although prospective observations will be
conducted through the most intense region of the solar
corona, the SGL may be used for the imaging of exoplanets
at optical and near IR wavelengths [17,21,74]. We have
shown that the signals received from those faint targets are
not affected by the refraction in the solar corona at the level
of any practical importance.

The steady-state, spherically symmetric component of the
solar plasma affects the optical properties of the SGL,
especially for microwave or longer wavelengths. It leads
to a defocusing, which should not affect the size or the
position of the caustic line, except for the distance to the
beginning of the focal line. Such plasma behavior does not
induce aberrations [75], leaving the PSF of the SGL
unchanged. What may cause aberrations are deviations from
spherical symmetry in the solar corona electron number
density [Eq. (3)]. In a conservative estimate, we consider the
upper limit of the index variations to be as large as the
steady-state component [9], and varying temporally.
Temporal variability in the plasma may introduce additional
aberrations. Unpredictable variations must be treated as
noise and accounted for with standard observational tech-
niques [28,29]. Short-term temporal variability in the plasma
may be accounted for by relying, for instance, on longer
integration times, which will be required to reduce the shot
noise contribution in any case. One may also rely on the
differential Doppler technique [10,73], which would allow
the plasma contribution to be greatly reduced, by more than
3 orders of magnitude. In addition to temporal variability of
the solar atmosphere, two further physical optics effects,
namely spectral broadening and angular broadening, may
come into play. However, discussion of these effects is
beyond the scope of the present paper.

In this paper, we relied on spherical symmetry to capture
the largest terms, representing the realistic field distribu-
tions in the Solar System. An almost identical approach
may be used to account for any nonsphericity that may be
present either in the gravitational field or in the plasma
distribution, or else would be introduced by imprecise
spacecraft navigation and trajectory determination. Thus,
the 1/r or 1/r* terms may be included by applying the
model that is already developed here. One would have to
redefine the r, and u* parameters in Eq. (42). Similar
analysis could be performed to account for higher-order
terms from the Schwarzschild solution, notably those o rz.
If quadrupole terms (i.e., terms in the potential that behave
as 1/r%) are present, one can use a spheroidal coordinate
system to solve the Maxwell equations. For higher-order
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nonsphericity, given that for the Solar System those terms
are very small, one may develop a perturbation approach
with respect to appropriately defined small parameters.

Concluding, we emphasize that the approach presented
here may be extended on a more general case of an
extended Sun [76-79] and an arbitrary model of the solar
plasma with a weak latitude dependence [5,7]. In addition,
the effect on the central caustic of the SGL due to outer
solar planets should be taken into account. Similarly to
microlensing searches for exoplanets (see Refs. [80,81] and
references therein), this effect may be important when
Jupiter, Saturn, or Neptune are very close the optical axis of
the SGL, thus providing an additional signal. Finally, one
has to evaluate the effect of the solar corona on the
photometric signal-to-noise ratio (SNR), where the coro-
na’s contribution could impact the integration time for
observations with the SGL. This work is ongoing and will
be reported elsewhere.
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APPENDIX A: REPRESENTING MAXWELL’S
EQUATIONS IN TERMS OF
DEBYE POTENTIALS

Following Ref. [38], in Ref. [21] we represented
Maxwell’s equations in terms of Debye potentials in the
plasma-free case, but in the presence of a static gravita-
tional monopole taken in the first post-Newtonian approxi-
mation of the general theory of relativity. In this Appendix,
we incorporate the contribution of the solar plasma into our
description.

To investigate the propagation of light in the vicinity of
the Sun, we consider the metric (13), together with Egs. (1)
and (3), and use the approach developed in Appendix E
of Ref. [21]. We consider the propagation of an EM wave
in the vacuum, where no sources or currents exist, i.e.,
7*=(p,j) =0. This allows us to present the vacuum form
of Maxwell’s equations [Eqs. (11) and (12)], presenting
them for the steady-state, spherically symmetric plasma
distribution as

10B

curl D = —pu? v +0(G?), div(eu’D) = O(G?),
(A1)
curl B = euzéa—lt) + 0O(G?), div(uu’B) = O(G?),

(A2)

where the differential operators curl and div are now with
respect to the three-dimensional Euclidean flat metric.

Assuming, as usual, the time dependence of the field
in the form exp(—iwt), where k= w/c, the time-
independent parts of the electric and magnetic vectors
satisfy Maxwell’s equations [Egs. (Al) and (A2)] for a
static and spherically symmetric gravitational field
and steady-state, spherically symmetric plasma in their
time-independent form:

cutl D = ikpu? B+ O(r7), div(euw’D)=0O(r3),

9 (A3)

curll B=—ikeuw?D+O(r3), div(uu’B)=0O(r;),

(A4)
where u = 1+ r,/2r + O(r2, r=) as given by Eq. (16). In
spherical polar coordinates, Maxwell’s field equations
[Egs. (A3) and (A4)], to O(r2, r,w3/w?), become

N 1 0 N 0, a
: 2 — — inéB,) —— (rB A
ikeu D r? sin«9<86(rsme ») 8(]5( 9)>’ (A3)

A

. N 1 OB, 0 A
—lk€u2D9 = rsing <8¢ - 5 (}" slnHB(/,), (Aé)
oA 1[0 .. OB,
—ikeu?Dy = . (ar(ng) =50 >, (A7)
. 1 0 A J , A
. 2 _ . s —_
ikuu’B, = g <86 (rsin@D,) 90 (rD9)>, (A8)
, . 1 (oD, 0,6 . .
lkﬂl/lzB(.) = ~sind < a¢ - E (r S 9D4,)> s (Ag)
, . 1/0, .. 0D,
ikuu*B, = . (E(ﬂ)g) ~ 50 ) (A10)

where (13,, 156,, 15¢), (E’,, 39, 34,) are the physical compo-
nents of the EM field (D, B) in the presence of the metric
[Eq. (13)], with u from Eq. (16). For details, see Secs. 84
and 90 in Ref. [13], and also Sec. IT A and Appendixes A
and E in Ref. [21].

We represent the solution of equations (A5)—(A10) as a
superposition of two linearly independent fields (‘D,“B)
and ("D,™B), such that

‘D,=D,, °B,=0, (A11)

"D, =0, "B =B,. (A12)
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With B, = °B, = 0, Eqgs. (A6) and (A7) become

 er 10, .
ikeu**Dy = —E(r By). (A13)
o e 10, .
ikeu Dy = —;E(r By). (A14)
Substituting these relationships into Eqgs. (A9) and
(A10), we obtain
o[t o 5 R ik 0°D,
_ B = ———
or [euzé‘r( >] K (r°By) sinf 0¢p °
(A15)
o1 o, . . oD
r’B K uu? (r'By) = ik—". Al16
ar [euzar( "5)} i (rBy) a0 (A16)

From div(uu**B) = 0 given by Eq. (A4), and relying on
the spherical symmetry of e and g, and using B, = 0 from
Eq. (Al1), we have

0B,
g

which ensures that the remaining equation (A8) is satisfied.
Indeed, after substitution from Egs. (A13) and (A14),
Eq. (A8) becomes

0
sin @°By) +

26" =0, (A17)

1
72 sin @

1 1 0 0 . 5‘B,/)
" ikrZsin _28_[ <88(Sm‘989) o )]

0)2
=0(3, %),

which is satisfied because of Eq. (A17). Strictly similar
considerations apply to the complementary case with
"D, = 0, as shown in Eq. (A12).

The solution with vanishing radial magnetic field is
called the electric wave (or transverse magnetic wave),
and that with vanishing radial electric field is called the
magnetic wave (or transverse electric wave). We show that
they may each be derived from a scalar potential, “IT and
"1, respectively. These are known as the Debye potentials.

It follows from Eq. (A8), since °B, = 0, that eb¢ and D,
may be represented in terms of a gradient of a scalar:

<§H(rs1nafp¢) —%( eD0)>

(A18)

A 1 oU A 10U
‘D, = — ‘D Al19
¢ rsin0dg’ o =vag AP
If we now set
1 0 »

then we have, from Eq. (A19),

A 1 &*(r) ~ 1 9(r)

O culr 0ro0 ¢ eulrsing Ordgp
(A21)

It can be seen that Eqgs. (A13) and (A14) are satisfied by

K0T ik (e

By =50 rsing ¢ (A22)

If we substitute both equations from (A22) into Eq. (AS),
we obtain

o | 8 [ () 1 82(re)
br= eur?sind {% (sm& a0 ) Y op* |
(A23)

Substitution from Eqs. (A22) and (A23) into Egs. (A15)
and (A16) gives two equations, the first of which
expresses the vanishing of the ¢ derivative, and the
second the vanishing of the 6 derivative of the same
expression on the left-hand side. These equations may,
therefore, be satisfied by equating this expression to zero,
which gives

D[Lo 1o (e
eu’ or |eu* Or r2sin 6 06 00

1 0*(r) >
T %o op? - euku () = (’)<r§, ¢ a)12>
(A24)

Defining ' = 9/9r, this equation may be rewritten as

10 o | a1 1 o (. o[ a1

za< or [w D +r2smeae<““%e MD
1 02 II

r2sin20 9¢p* L/Eu}

(o))

which is the wave equation for the quantity “II/+/eu, in the
form

(s () ] -o(0)

The equation for "1/ /uu is identical to Eq. (A26), with e
and p swapped.

+

(A25)
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In a similar way, we may consider the magnetic wave,
and find that this wave can be derived from a potential "TI
that satisfies the same differential equation (A24) [or
Eq. (A26)] as 1. The complete solution of Maxwell’s
|

R o1
D, =D, +"D, = 5—{7

field equations in terms of the electric and magnetic Debye
potentials, “IT and "1, is obtained by adding the two fields
(see similar derivations in Appendix E of Ref. [21] and
Appendix A of Ref. [20]). This gives

} + pk*u? (rI0)

iz 20 (o))

cu?r? sin 6 [ (Sma )> * Sirllgaz(fg;;n)] ’ (A27)
Dy =Dy +"Dy = eizraza(r%q;) rsii]:le(?(g;m ’ (A28)
D¢ - eb'/’ + mAD‘/' - euzrlsinea;(rgg) B %5%";“) ' (A29)
B, =B, +"B, —% %a(g";n)] + ek2u? ()

=i L + (o) ) [
_ m [680 (sm@a(g;H)) +sir11 982((9;2 q, (A30)
By =By +"B; = l;]f 8(89 ) yuzrlsinéaza(:;qrﬁl)’ (A32)

where the potentials “IT and "1 both satisfy the following wave equations, valid to (’)(ré, rga)f, J@?):

@t = vau( ) )| =00 (ke - i (}) ) [7“} —0. (A®)

Also, for convenience, we give three different but equiv-
alent forms for the radial components for the EM field.

Finally, for the components D, l3¢ and By, l?,/, to be
continuous over a spherical surface at the termination
shock, r=R,, it is evidently sufficient that the four
quantities

A(reIl) A(r™I)
or or

e(rl), u(r™l), (A34)

shall also be continuous over this surface. Thus, our
boundary conditions also split into independent conditions
on ‘Il and "1. Our diffraction problem is thus reduced to
the problem of finding two mutually independent solutions

|
of the equations (A24) [or, equivalently, Eq. (A33)] with
prescribed boundary conditions.

APPENDIX B: LIGHT PROPAGATION IN WEAK
AND STATIC GRAVITY AND PLASMA

1. Light paths in weak and static gravity
in the presence of plasma

To investigate the propagation of light in the vicinity of
the Sun, we consider the metric (13) with u given by
Eq. (16). To account for the presence of plasma with a
refractive index n = /eu, following Ref. [12], we rescale
the speed of light as ¢ — ¢/n = ¢/ /en, which leads to the
following modification of Eq. (13):
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ds* = n~'u=2c?df? — nu*(dr* + r*(d0* + sin’0dg?)),
(B1)

where, for nonmagnetic media, the static index of refraction
n* = e(r) from Eq. (1), together with the electron number
density for the steady-state part of the solar corona from

Egs. (3) and (5), is given as

2 4 2 R B
nzzl—%, with @? = e Za,- <TO) . (B2)

e i

In the refractive medium of the solar plasma and in the
weak gravitational field of the Sun, we may represent the
trajectory of a light ray as a linear superposition of two
perturbations: one introduced by gravity and the other one
due to plasma. Thus, to first order in G and w?/w?, the
trajectory of a light ray may be given as

2
x%(t) = x§ + k%c(t—to) +x&(1) +x5(1) + O(Gz, G%) ’
(B3)

where k¢ is the unit vector in the unperturbed direction of
the light ray’s propagation, while xg&(¢) and x%(z) are the
post-Newtonian and plasma terms, correspondingly. We
define the four-dimensional wave vector in curved space-
time as usual:

K" =

dx"  dx° dx®

7 :d_l( W) = K°(1,x%), (B4)
where 1 is the parameter along the ray’s path and x* =
dx®/dx° is the unit vector in that direction, i.e., kK .k¢ = —1.
From Eq. (B3), we see that the unit vector x* may be
represented as k% =k"+k&(1) +k%(t) + O(G?,Gw? | ?),
where k&(t) = dx%/dx" is the post-Newtonian pertur-
bation and k%(r) = dx%/dx" is that due to plasma. The
wave vector obeys the geodesic equation: dK™/dA+
IMK™K' = 0, which, for temporal and spatial components,
yields

dK° A 1 w2
W—Q,KOK <C 28€U—W86w12)> = O(Gz,Gw—g),
(B5)
ke [ 1
d/1 +2K K <C 28€U—W3€a)%)
1
+ ((K°)? = K.K¢) <c‘28“U - Wamg)
) O
=0(6%.G6"%). (B6)

Equation (B5) is an integral of motion due to energy
conservation [as the metric (13) is independent of time].
Indeed, we can present it as

dK® ) : 1
W - KOK <2C 28€U - 20)286‘0)12))
d dx® > >
=— — OlG:LG=2)=0(G*G=2).
di <900 dzl) + < a)2> < a)2>

(B7)

Therefore, in the static field energy is conserved, and we
have the following integral of motion:

dx’ 2 5 0
good—ﬂzconst—k(’)(G ’GF> =X

2
=ct=k2A+x%(2)+x%(2) +O(GZ,G%> , (BS8)

where x2 (1) is the post-Newtonian correction and x9(4) is
that due to plasma. We recall that the wave vector K™ is a
null vector, which, to first order in G and @3 /@?, and with
K=k + O(G, 0 /a?), yields the relation K, K™ =
0 = (k°)*(1 + ypkk” + O(G, w3 /w?)). Then, Eq. (B6)
becomes

dK*
dA

0)2
_ 0<G2,Gw_§>.

We can now represent Eq. (B9) in terms of derivatives
with respect to time x°. First, we have

1
+ 2(k%)? (k*k¢ — y*k, k*) (c‘zﬁeU — m@wé)

(B9)

5 d2x*  dK° dx®

K"
N dx®% " dr dx®

= (K9

(B10)

Substituting Eq. (B10) into Eq. (B9) and using Eq. (B5), we
have

dzxa age ae " -2 1 2
m+2(k k¢ —y*k, k)| ¢ 8€U—m6€wp

1 ?
= —2k?k¢ <C_286U - m 860)123> + O <G2, Gw—g) .

(B11)

Remember that for light ds®> = 0. Then, from the fact that
rays of light move along light cones, the following
expression is valid: g,,,(dx™/dx)(dx"/dx") =0 =1+
kké + O(G, w% /w*), which for Eq. (B11) yields
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d?x
dx"? -

1
—2(}’a€ + 2kak€) (C_zan — m&wé)

0)2
+O<G2,Gw—§>.

To continue, we examine the unperturbed part of
Eq. (B3), representing it as

(B12)

x2(1) = x§ + k(1 = 1y) + O(G, 0%/ ?)

= [k x [xo x k]]* + k*((k - xo) + ¢(t = 15))
+ O(G, w3/ w?). (B13)
Following Refs. [21,41,61], we define b*=Db =

[k x x0] x k] + O(G, w%/w?) to be the impact parameter
of the unperturbed trajectory of the light ray. The vector b is
directed from the origin of the coordinate system toward the
point of closest approach of the unperturbed path of the
light ray to that origin. We also introduce the parameter
7=1(1) as

=(k-x)=(k-xq) + c(t—19). (B14)
Clearly, when the coordinate system is oriented along the
incident direction of the light ray, then z = (k - x) = z.

These quantities allow us to rewrite Eq. (B13) as

w2
X{I(T) — b(1+k(17+0 G,fp ,
wZ

>
= \/b2+12+(9<G,—§>. (B15)
)
The following relations hold:
b2 2
r+f=—+0<G,w—§>,
r—t 0]
b2 2
ro + 170 = —l—O(G,w—g), and
o — 79 w
_ 2
r+r :”0 TO+O(G’CU_1;> (B16)
ro + 7o r—rt w

They are useful for presenting the results of integration of
the light ray equations in different forms.

Limiting our discussion to the monopole given by
Eq. (16), we have ¢20°U=—(r,/2r*)0°r+O(G*,r™).
We recall that 0% = 6“\/T€x€ = —x%/r. Then,
20U = (r,/2r*)x* + O(r2,r*). In a similar manner,
from Eq. (B2), for the plasma-related term, we obtain
n,(r) = > aBi(Ro/r)P(x*/r?). As aresult, Eq. (B12)
takes the form

d?x” b* — k%t 27‘[6 5 b*— k%t
dx®? =y (b* +1 )?/2 > Za,/} Ro (b2 + 12)1+%/1;

2
—i-O(r r w_§>
w

Using Eq. (B14), we make the substitution d/dx" = d/dx,
which leads to the following equation:

(B17)

dzx”’ -, b* — k%t 277.'6 Z ﬂ /} b* — k%t
dr? TP 2)P e 2P ® (b + )
2
+(’)<r r ‘”2> (B18)
g [

We integrate Eq. (B18) from —oo to 7 to get the following
result:

da
i_ka_r

b” T
+1
dr <m (m >)
2me? R\ [ k*(b*)P
+ 0 Zai (7) {(bz + 12)%
b 1 1 3 27\
A F = 1+=p. - |
+ﬂl b (2 1|:23 +2ﬁk’27 b2:| b) _oo}
2
+(’)<rg,rgw—§)

Following Ref. [20], we define the function Qj (7) as

(B19)

T

2
0p,(7) =, 1[2 zﬁ“ : TL}, (B20)

which is a smooth and finite function for all values of = with
the following relevant limits:

limQy (z) =0,

7—0

im0, ()= Q;. im0}, =0.

pi—0

(B21)

For f;, typically present in solar corona models [i.e., given
in Eq. (4)], the quantity O} has the following values:

* —EN * :zz
03 =3~ 15708, 03 =5 ~0.7854,
3 kY4
* =—~ 0. 1 x :—N .4
0; 6 0.5891, 03 0 0.4909,
. 4297 . 64357
6= 300e ¥ 03290, Qfy= 2 03085, (B22)

Using the new function (B20), we can improve the form
of Egs. (B19) as
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dx* k* b~ T
— = k%= - 1
dr ’Q(Wuﬁbz (W+ ))
2me? R Bi ka(bz)zﬂ, . w2
e’ Z“i (7) {m ﬂ: (Qﬂ,+z(f) +Qia) p + O\ ) (B23)

From Eq. (B23), and with the help of Eqgs. (B14) and (B15), we have the following expression for the wave vector x*
from (B4):

dx® r r (k - x)
a_ "7 _ pa 1_79 _ib(l 1 A
T e < r> b? < L >

2 2 R pi b Bi b* 2
N 7z€2 Zai (f) {ka <_> +ﬁi?(Q/3,+2(\/ 2 —b?) + Q§i+2)} + O(rq, rg—§>. (B24)

S

m, r

We may now integrate Eq. (B23) from 7; to 7 to obtain

@ = ks, [[(Emr (1) o

x%(r) = T—7r —t 5 | = T
2ne? R\Fi [7f k*(b2)P be , w2
a2 (2) [Grrm 05 @ G ro(3nE). @2

which, to the order of O(rZ, r,w3/w?), results in

Vb? b“
(e = k=, (e = i e LR atT)
To+\/b2+1'
2

2R R i~ b” ’
S a(p) (e o+ ag ([ o +-woa) p 820

1

or, equivalently, substituting 7 and r from Egs. (B14) and (B15), we have

r+(k-x) b*
a _ o _ — (11
x*(t) = x5 + k%c(t — 1) r(k r0+(k-xo)+b2
2

+ ;f Do @)ﬂi_l{k“@m((k %)) = 05, (k- %0)))

4

(1 (- x) = ro — (k- xO»)

b . 2
+ﬁiﬁ </ Q[)’i+2(f/)drl +(k-(x- XO))QB[+2)} + (’)<rq, rq%> (B27)

Therefore, the trajectory of a light ray in a static weak gravitational field with a refractive medium [Egs. (1) and (3)] is
described by Eq. (B26), while the direction of its wave vector ¥* = dx*/dx" is given by Eq. (B24).
For a radial light ray given by k* = x{/ry = nj and b = 0, we integrate Eq. (B17) with b = 0 to obtain

dx® r, 2me? R\ i >
E_ng{l—f—l-mwz ' a,~<70> }—l—(’)(r;,rgw—g), (B28)

" a1 o r 2me’Rg a; R\ #i-! R\ P! w?
x*(t) = x§ + n(c(t —to) — rglnr—O - e Zﬁi —1 { (T) - (”_o) }) + O<rg, rg—g) (B29)
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2. Geometric optics approximation for the wave
propagation in the vicinity of a massive body

In geometric optics, the phase ¢ is a scalar function, a
solution to the eikonal equation [13,22,41,82]
9" 0,0y = 0. (B30)
We use this equation to determine the phase evolution in the
presence of plasma and gravity. For this, we use the metric
Gmn [Eq. (B1)], with the plasma index of refraction n given
by Eq. (B2).
Given the wave vector K,, = 0,,¢, and its tangent K" =

dx"/d) = g" 0, where A is an affine parameter, we note
that Eq. (B30) states that K™ is null (g,,, K" K" = 0), thus

dk,,
dA

1
= EamglekKl. (B31)
Equation (B30) can be solved by assuming an unperturbed
solution that is a plane wave:

0(1.X) = @ + / k™ + (1. %) + 0 (£, %)

2

@
+0(r.ry— ),

®

where ¢, is an integration constant and, to Newtonian
order, k" = (k°, k%) = ko(1,k), where ky = w/c, is a
constant null vector of the unperturbed light ray trajectory,
Ynk™K" = O(ry, 03 /w?*). Also, ¢¢ is the post-Newtonian
perturbation of the eikonal, and ¢ (7, X) is the perturbation
due to plasma. The wave vector K™ (¢, x) then also admits a
series expansion in the form

(B32)

m

dx
K" (t,x) = DT g"0,p = k™ + kE(1,X)

2
+ k2 (1,X) + (’)(rf/, ry %) , (B33)
where kg (1, x) =y"0,¢0s(t,x) and  kJ(t,x) =

Y™ 0,¢(t.x) are the first-order perturbations of the
wave vector due to post-Newtonian gravity and plasma,
correspondingly.

Substituting Eq. (B32) into Eq. (B30) and defining
At = g™ —y™" with g,,, from Egs. (B1) and (B2), we
obtain an ordinary differential equation to determine the
perturbations ¢ and ¢,:

dos  do, 1 K3 2ren,
We | Wo_ _pn g — 0 (o
di di 2 c? 2

m,
2
2 o
+0O(rs,r,—
9T 2 )

)

(B34)

where dog/dA+de,/dA= K, 0" ¢. Similarly to Eq. (B3),
to Newtonian order, we represent the light ray’s
trajectory as

@2
{x"} = {x% = ct,x(t) = xg + ke(t —15)} + O(rg,w—];)),

(B35)
and by substituting a monopole potential characterized

by the Schwarzschild radius r,, for U and n, from Eq. (3),
we obtain

des  do, k(z)rq 2”ezk(z) B
< S £ R/
A A ot keli—1)] | ma? Z“ °
1 w?
X +0O(r2r,—2).
X0 + k(i — 1) < g w2>
(B36)

The representation of the trajectory given by Eq. (B35)
allows us to express the Newtonian part of the wave
vector K™, as given by Eq. (B33), as K™ = dx"/d) =
K°(1,k) 4+ O(r,, w%/w?), where k° is immediately derived
to have the form k%= cdt/di+ O(r, w}/w*) and
|k| = 1. Keeping in mind that K is constant and using
Eq. (B14), we establish an important relationship:

cdt w2 cdt @2
dﬂ:F_FO(rg’a)_g) :k—o‘i‘O(l’g’w—g)
dr @3
:k_o—i_O(rgqa)_g)s

which we use together with Eqgs. (B15) and (B16) to
integrate Eq. (B36).

As aresult, in the body’s proper reference frame [23,78],
we obtain the following expression for the phase evolu-
tion of an EM wave that propagates on the background
of a gravitating monopole and plasma to the order of

(’)(rg, rga)f,/a)z):

(B37)

o(1.X) = go + ko{f —(k-x)—r,ln [ﬂ]

To—f—\/m
27we*R R\ fi-1
ey () enw - enton |
(B38)

or, equivalently,
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2Ry (% )ﬂ' <Qﬁ,<<k-x))—Qﬂ,.«k-xO)»}+0(rg,rg‘”—i) (B39)

For a radial light ray with k* = x/rq = nf [similarly to Eq. (B29)], from Eq. (B36) accurate to O(r, r o3 /w?*), we have

o(t, ) _¢0+k0{c(z—z0) —(r—ro) =1, 1ni—2”ezR®Zﬁ i [(Ro>ﬂ B (,:_(?),;,._1]}. (B40)

[

It is worth pointing out that the results obtained here for R = e*")[ay(r) + k~'a;(r) + - -+ + k"a,(r) + - ].
the phase of an EM wave [Eqgs. (B38) and (B40)] are
consistent with those obtained in the preceding section

obtained for the geodesic trajectory of a light ray . . .
[Eqs. (B27) and (B29)]. Technically, however, it is more convenient to search for a

solution to Eq. (C1) in an exponential form:

(C2)

APPENDIX C: SOLUTION FOR THE RADIAL

EQUATION IN THE WKB APPROXIMATION R = exp { / ' i(ka_ (1) + ao(t) + k' ()
Here we focus on the equation for the radial function, R, B
given by Eq. (46) with a = (£ + 1): +o k(1) + - -)dt] . (C3)

d’*R a
a2 <k2 (1 +Tg) +r_§_ﬁ>R =0.  (Cl)  Defining ' = d/dr, with the help of a substitution of
R'/R = w, for the function w we obtain the following
When the functional dependence of V., [Eq. (40)]  equation:

falls off faster than r~2, this term represents an additional
short—'range pot@ntial. No exact solgtion exists for such an wawr+2(1+ ﬂ + r_;l _
equation, especially with the generic form of n, [Eq. (3)], r
and thus, a)f7 in Eq. (1). Nevertheless, following an
approach presented in Refs. [21,39], we explore an  Using this substitution, up to the terms k=3, we have
approximate solution to Eq. (42) using the method of
stationary phase (i.e., the Wentzel-Kramers-Brillouin, or ~ w = i(ka_;(r) + ao(r) + k7 a; () + k7 2a5(r) + k3 a5(r)
WKB approximation [83]). As we are interested in the 4 5 .
case when k is rather large (for optical wavelengths KT ay(r) +k7as(r) + oo 4 K (r) 4 ).

=0. (C4)

\N| Q

k=2m/2=0628x10°m™"), we are looking for an (C5)
asymptotic solution as k — co. In fact, we are looking
for a solution in the form Substituting Eq. (C5) into Eq. (C4), we obtain
|
e[1+ 2 2,0 + iy () = 20 ()]
+ / 2 -2 1
iy (r) = ag(r) =2, (r)an (r) +-5 =

+ ki) (r) = 2a_;(r)as(r) = 2a0(r)a; (1))

(r) = ai(r) = 2a_; (r)as(r) = 2ap(r)as(r)]

(r) =2a_;(r)ay(r) = 2a¢(r)as(r) — 20, (r)ay (r)]
+ kT iy (r) = a3(r) = 2a_ (r)as(r) = 2a(r)ay(r) = 2a,(r)as(r)] = O(k=, rg). (Co6)

g

Now, if we equate the terms with respect to the same powers of k, we get
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2r

@) = 1+ 22, i () =2 (ao(r) =0, () = @3(r) = 2a s (e (r) + 5 = 5 =0,

i (r) = 204 (s (1) = 2a0(P)n(r) =0, ids(r) = (1) = 24 (Pas(r) = 2a0()as(r) = O,

iy () = 203 (P)as(r) = 2a0(r)as (1) - 2a1<r>a2<> 0,

i, (r) = @3(r) = 20y (r)as(r) = 2a0(r)as (1) = 2 (r)as (1) = 0. ()

These equations, to the order of (Q(k‘s, ré), may be solved as

a_l(r):i-<1+rg>, ao(r) = —i -2, al(r)::Fa<1—’;g>, az(r):iaS<l—3rg>,

r 2r
3a 16r a? 3r 3a 95r a? 5r
S Y ) B A N S Y ) G IR |
a(r) {4# ( 3r > 84 < r )] a(r) ’[ 2r < 12r> o < r >
15a 107r To? 101~ @ 5r
SN DO ') B (F 7 I (F B s
as(r) { 4r° < 10r > + 4r° < 14r ) 167° ( r )] (C8)

Note that the + signs in these expressions are not independent; they all come from the solution for a_;(r) in Eq. (C8).
Substituting solutions (C8) into Eq. (C3) and keeping the integration bounds for brevity, we have

S_l(r):/’a_l(?)d?:j:/ <1+ >dr_i(r+rgln2kr)|;0, (C9)
ro )
So(r) / #Bdi =i | Lar=il9| (C10)
r)= ao(7)dr = —i —dr =i—
0 o ry 27 2r|,
= [(wmar—=5 [ G (1-2) =22 (1-2)] i)
r)= dr=F = | Z(l-=)=x—(1-=
! o T2, 7077 2\ T2
r dr 3r . a 2r \ |
Sy(r) = [U a(F)dF = 12[0 = (1 Tg> = —lm(l _Tg> . (C12)
r r(3a 16r a? 3r a 4r a? or r
ol 7 ~::|: _— 1— 9 —_—— 1_— — JR— 1__(/ —_— 1__(]
$3(r) [0 a(F)dr [0 (474< 37 > 8~4< F ))dr i <4r3 < r ) 24r3< 4r>> .
(C13)
r r( 3a 95r o’ 5r 3a 19r a? 4r r
= Mdi=i | [—= (1=22) +— (122 Jar=i[ = (1-—2) - (1-22) )| .
s = [[aoar =i [ (=55 (1352 s (1=57) Jor=o(55 (- 57) =5 (=)
(C14)
r r( 15a 107r To? 101r o 5r
= Adi=+ [ (- (1-—2) + = (1-—2) - (1-22) a7
S5(r) [G as(r)dr /ro < 47 ( 107 > T4 < 147 ) 167° < F ))dr
3a 214r Ta? 5057 o’ 25r r
=4 1- 7 - 1- g 1-=1 Cl15
(4r ( 15r ) 207° ( 84r > * 8070 ( 6r )) " ( )

As we see, for i > 1, the functions S; from Eq. (C11) to Eq. (C15) have factors of the type (1 — f3r,/r) in their structure,
where f is some constant. Clearly, outside the Sun, the ratio r, /r is very small; it reaches its maximum value at the solar

radius, and then it diminishes as r,/r = 2.45 x 107 x Ry /r. As for any practical application r > R, this ratio may be
neglected, and factors (1 — fr,/r) may be treated as being equal to 1 in all of such occurrences present in S;, i > 1.
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2

We now obtain two approximate solutions for the partial radial function R,, which is given, to O((kr)™,r2), as

g

Ry(r) = coexp{i(kS_; (r) + So(r) + k'S (r) + k7285 (r) + k3S3(r) 4+ k™*S4(r) + k7>S5(r))}

+ dyexp{—i(kS_

1(r) 4 So(r) + k7181 (r) + k7285(r) + k7385(r) + k7*84(r) + k785(r)) },

(C16)

where ¢, and d, are arbitrary constants. Substituting Eqs. (C9)—(C15) into Eq. (C16), we obtain the following solution

for Ry:
uR,(r) = exp m D e (At
{Cfexp[ (k r+r,In2kr) f(ilj;l) _’/ﬂii;;;) [fgi;rg)]z +3'i£:5;:1) _7[?/2((?;{‘5’;;)}2 + [fgg;;rls)r)]
+dyexp Hk rtryn2kn)  ACED A0 [f(zj;rl;]z e+ 1) _7[f2<§k5+r§>]2 . Véﬁ,f”]ﬂ }
ot (C17)

where ¢, and d, now account for all the integration
constants relevant to the point ry in Egs. (C9)-(C15).

As we discussed in Ref. [21], omission of the r, / r term
in Eq. (C1) leads to the appearance of an “uncompensated”
term r,/4kr* = (1/8x)(r,A/r*) in the exponent of Eq. (C17).
This term is extremely small; it decays fast as r increases,
and thus, it may be neglected in the solution for the radial
function. A similar point was made in Ref. [84], suggesting
that one can neglect the =3 terms in Eq. (C1) [the same, of
course, is true for Eq. (46)] and reduce the problem to the case
of the equation for the radial function being the Schroédinger
equation describing scattering in a Coulomb potential.

Expression (C17) is used in Sec. V A, where we apply the
method of the stationary phase to develop expressions
containing the scattering amplitude. As we saw previously
(e.g., Refs. [21,25]), the solution for the points of the
stationary phase leads to a solution for # of the form
¢ ~ krsin 6. This observation allows us to somewhat sim-
plify the expressions (C17). Indeed, any term for which the
exponent of ¢ in the numerator is less than the exponent of
(kr) in the denominator is extremely small compared to the
|

(C+1)
4k 2

[£(¢ + 1)}2]
8k4r*

uR,(r) = exp [

|
other terms. Indeed, the first and last terms in the amplitude
are of orders #?/(kr)?> and #*/(kr)*, correspondingly.
However, the second term is of order #2/(kr)*, which is
1/(kr)? times smaller than the first term and 1/£° times
smaller than the third term. Thus, the second term may be
neglected. On the same grounds, we may neglect three terms
in the phase of expression (C17). In addition, similarly to
Ref. [21], we may further improve the asymptotic expression
for R, from Eq. (C17) by accounting for the Coulomb phase
shifts, which can be done by simply redefining the constants
cy and d, yet again [21] as

(%)
Cp —> CpECXPpP|1 Gf—7 ,

4
d, — dyexp {—z <a,,ﬂ - %)} .

As a result of the simplifications and rescaling of the
constants discussed above, the expression for the asymp-
totic behavior of the partial radial function R, takes the
following form:

(C18)

. £+1) [+ [£@+1))P nt
) {C"ﬂ =P [l <k(r ryln2k) o TR 0I5 00T Tﬂ
2 3 T
+dsexp [—i (k(r + r,In2kr) + f(ikt ) [f(Zjl;grz)] [Lﬂg/;;rls)] +o0,— ;)] } +O((kr)™0,r2).  (C19)

In Ref. [21], the asymptotic behavior of the Coulomb
function was obtained for very large distances from the
turning point for » > r; the solution (C19) improves it

[
further by extending the argument of these functions to
shorter distances, closer to the turning point (as was done in
Ref. [20] for Riccati-Bessel functions in the flat spacetime.)
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