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We study almost universal spacetimes—spacetimes forwhich the field equations of any generalized gravity
with the Lagrangian constructed from the metric, the Riemann tensor and its covariant derivatives of arbitrary
order reduce to one single differential equation and one algebraic condition for the Ricci scalar.We prove that
all d-dimensional Kundt spacetimes ofWeyl type III and traceless Ricci type N are almost universal. Explicit
examples ofWeyl type II almost universal Kundtmetrics are also given. The considerable simplification of the
field equations of higher-order gravity theories for almost universal spacetimes is then employed to study new
Weyl type II, III, and N vacuum solutions to quadratic gravity in arbitrary dimension and six-dimensional
conformal gravity. Necessary conditions for almost universal metrics are also studied.
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I. INTRODUCTION

In effective field theories, the Einstein equations are
modified by adding further terms to the Einstein–Hilbert
action, leading to the Lagrangian of the form

L ¼ G−1ðR − 2ΛÞ þ fðg;R;∇R;…Þ: ð1Þ
The resulting field equations are, in most cases, consid-
erably more complicated than the Einstein equations, and
therefore very few exact solutions to modified gravities are
known. Nevertheless, there exists a class of spacetimes, the
so-called universal spacetimes [1–3], for which all but one
vacuum field equations of any theory of the form (1) are
identically satisfied. The remaining field equation reduces
to an algebraic constraint Λ ¼ FðIi; αiÞ relating a cosmo-
logical constant Λ with constant curvature invariants Ii and
constant parameters αi of the theory. Thus, with an
appropriate choice of Λ, universal spacetimes are exact
vacuum solutions to any theory of the form (1).
Recently, it has been shown that for certain non-Einstein

(and thus nonuniversal) spacetimes, field equations of any
theory of the form (1) are also dramatically simplified. This
has been observed in the case of AdS waves and pp-waves
[4,5] and for Kerr-Schild-Kundt metrics with an (A)dS
background [6]. A closely related result in string theory,
showing that gravitational waves in AdS do not receive any
α0 corrections, has been obtained in [7]. All these space-
times are of Weyl type N in the algebraic classification of
tensors [8] (see also [9] for a recent review).

In this paper, we set out to investigate these “almost
universal” spacetimes in a much more general context. By
studying necessary and sufficient conditions for “almost
universality,” we arrive at examples of Weyl type II, III,
and N almost universal spacetimes. To make a connection
with the Kerr-Schild approach of [6], we also study almost
universal Kerr-Schild spacetimes; however, instead of
(A)dS, we are able to use any type II, III, and N universal
Kundt spacetime as a background metric. These results are
also employed to construct new vacuum solutions to
quadratic and cubic theories of gravity.
Let us proceed by introducing two classes of almost

universal spacetimes, TN and TNS spacetimes (TNS ⊂ TN).
Definition 1: (Almost universal spacetimes). Almost

universal spacetimes (or equivalently TN spacetimes1)
are spacetimes, for which there exists a null vector l such
that for every symmetric rank-2 tensor Eab constructed
polynomially from a metric, the Riemann tensor and its
covariant derivatives of an arbitrary order there exist a
constant λ and a function ϕ such that

Eab ¼ λgab þ ϕlalb: ð2Þ
A TN spacetime is called TNS if in addition the last term
in (2) reduces to

ϕlalb ¼
XN
n¼0

an□nSab; ð3Þ

where Sab is the traceless Ricci tensor and ai are constants.
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1TN(traceless type N)—all rank-2 tensors constructed from the
Riemann tensor and its covariant derivatives of an arbitrary order
are of traceless type N [i.e., of the form (2)].
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Note that for TN spacetimes, tracelessness of Sab guar-
antees □nSab ∝ lalb and for TNS spacetimes, there are no
terms involving the Weyl tensor present in (3), cf. (C9).
It follows directly from the definition of TN spacetimes

that all but two vacuum field equations of any theory of the
form (1) hold identically. Furthermore, one of these two
equations, the equation corresponding to the λ term in (2),
reduces, similarly as in the case of universal spacetimes, to an
algebraic equation Λ ¼ FðIi; αiÞ [see, e.g., Eqs. (40) and
(49)]. Thus, the vacuum field equations lead only to one
differential equation corresponding to the ϕ term in (2).
Obviously, if the null radiation term is allowed, this equation
can be omitted.
Let us nowbriefly summarize selected results of this paper.
The main result of Sec. III that focuses on necessary

conditions for TN spacetimes reads
Proposition 2: (Necessary conditions for non-Einstein

TN spacetimes). Non-Einstein TN spacetimes are neces-
sarily CSI Kundt spacetimes ofWeyl type II or more special.
CSI are spacetimes with constant curvature invariants.
This Proposition holds in an arbitrary dimension. In the

case of four dimensions, we arrive at a more general result
including also Einstein TN spacetimes.
In Sec. IV, we focus on sufficient conditions for TN and

TNS spacetimes, proving the following main results
Proposition 3: (Sufficient conditions for TN space-

times). All d-dimensional Kundt spacetimes of Weyl type
III or N and traceless Ricci type N2 are TN.
We also show that certain classes of Weyl type II Kundt

spacetimes are TN.
To study sufficient conditions for TNS spacetimes,we first

generalize previous results of [2,10] for type III universal
spacetimes
Proposition 4: (Necessary and sufficient conditions for

Weyl type III universal Kundt spacetimes). AWeyl type III
Kundt spacetime is universal if and only if it is Einstein and

F0≡Ca
cdeCbcde¼ 0; F2≡Cpqrs

;aCpqrs;b¼ 0: ð4Þ

For type III TNS spacetimes we then obtain
Proposition 5: (Sufficient conditions for Weyl type III

TNS spacetimes). Kundt spacetimes of Weyl type III and
traceless Ricci type N obeying F0 ¼ 0 ¼ F2 are TNS.
Furthermore, in Sec. IV we also study the Kerr–Schild

transformation of universal Kundt background spacetimes
and show that under appropriate additional conditions, the
resulting spacetime is TN.
Section V illustrates how vacuum field equations sim-

plify for TN spacetimes of Weyl types II, III, and N for
specific higher-order gravities, such as quadratic and six-
dimensional conformal gravities.

In the Appendix A, we extend some of the results
obtained in Secs. III and IV for TN spacetimes to a more
general class of T-III spacetimes for which also most of the
vacuum field equations of any theory of the form (1) are
identically satisfied. Thus this class of spacetimes may be
also useful for constructing vacuum solutions of general-
ized gravities. Appendix B contains technical results on the
Kerr–Schild transformation of the Einstein Kundt space-
times employed in Sec. IV D. In Appendix C, we present
the metric variations of all independent curvature invariants
in the Fulling–King–Wybourne–Cummins (FKWC) basis
[11] up to order 6 for TN spacetimes of Weyl type III to
provide examples of possible field equations for these
spacetimes. Finally, in Appendix D, we extend Sec. V by
providing explicit Weyl type III solutions to quadratic
gravity constructed by the Kerr–Schild transformation of
Weyl type III universal spacetimes.

II. PRELIMINARIES

In this paper, we employ the algebraic classification of
tensors [8] (see [9] for review) and the higher-dimensional
version of theGeroch–Held–Penrose (GHP) formalism [12].
Wework in a null frame in d dimensions consisting of null

vectors l and n and d − 2 spacelike vectors mðiÞ obeying

lala¼ nana¼ 0; lana¼ 1; mðiÞamðjÞ
a ¼ δij; ð5Þ

where a; b ∈ f0;…; d − 1g and i; j ∈ f2;…; d − 1g.
Covariant derivatives along the frame vectors are denoted as

D≡ la∇a; △≡ na∇a; δi ≡mðiÞa∇a: ð6Þ
For the frame vector l, we define Ricci rotation

coefficients

κi ¼ la;bma
ðiÞl

b; ð7Þ
τi ¼ la;bma

ðiÞn
b; ð8Þ

ρij ¼ la;bma
ðiÞm

b
ðjÞ; ð9Þ

where ρij is the so-called optical matrix. The vector field l
is geodetic iff κi ¼ 0. Kundt spacetimes are defined as
spacetimes for which there exists a geodetic null vector
with vanishing optical matrix ρij.
A quantity q has a boost weight (b.w.) b if it transforms

according to

q̂ ¼ λbq ð10Þ
under boosts

l̂ ¼ λl; n̂ ¼ λ−1n; m̂ðiÞ ¼ mðiÞ: ð11Þ
Components of tensors in the null frame have distinct

integer boost weights. Boost order of a tensor is the
maximum b.w. of its nonvanishing components. In an

2Throughout this paper, by traceless Ricci type N we mean a
Ricci tensor of the form (2).
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adapted null frame for algebraically special tensors, the
highest b.w. tensor components vanish. In particular, the
traceless Ricci tensor Sab in general admits components
of b.w. −2;…;2 while for Sab of type N, only the
b.w. −2 component ω0 is nontrivial

Sab ¼ ω0lalb: ð12Þ
Similarly, in general the Weyl tensor admits components of
b.w. −2;…; 2 while for a Weyl type II tensor, only
components of b.w. 0 (Φ, ΦA

ij, Φij, Φijkl), −1 (Ψ0
i, Ψ0

ijk)
and −2 (Ω0

ij) can be nonvanishing. For Weyl type III/N,
components of b.w. ð−1;−2Þ=ð−2Þ can be nonvanishing,
respectively (see [9]).
Let us go back to the traceless Ricci tensor Sab of

type N. While (in the adapted frame) Sab admits only the
b.w. −2 component, in general its covariant derivatives
possess also non-trivial components of b.w. > −2.
However, for certain Kundt spacetimes, it can be shown
that b.w. > −2 components vanish also for arbitrary
covariant derivatives of Sab, ∇ðIÞS, i.e., boost order does
not change with a covariant differentiation. Similarly, in
these spacetimes, covariant derivatives of the Weyl tensor
do not increase boost order. This is the key step for proving
universality or the TN property. If one knows that e.g.
∇ðIÞC admits only b.w. ≤ −2 components then it immedi-
ately follows that all rank-2 tensors quadratic in∇ðIÞC or of
higher order vanish identically (rank-2 tensors admit
components of b.w. ≥ −2 only). This subsequently leads
to a considerable simplification of the analysis of nontrivial
rank-2 tensors constructed from the curvature.
For proving that boost order of a tensor in certain Kundt

spacetimes does not increase with a covariant differentia-
tion (see Sec. IV), we need to define the notion of balanced
tensors introduced in [13] and [2].
Definition 6: (k-balanced tensors). In a frame parallelly

propagated along a null geodetic affinely parameterized
vector field l, a tensor T is said to be k-balanced, k ∈ N0, if
its boost weight b part3 TðbÞ satisfies TðbÞ ¼ 0 for b ≥ −k
andD−b−kTðbÞ ¼ 0 for b < −k. If T is 0-balanced, we say it
is balanced.
A straightforward extension of Lemma A.7 of [14] to

arbitrary k then reads
Lemma 1: In a degenerate Kundt spacetime, a covariant

derivative of a k-balanced tensor is again a k-balanced tensor.

III. NECESSARY CONDITIONS FOR
ALMOST UNIVERSAL SPACETIMES

In this brief section on necessary conditions for TN
spacetimes, we give a proof of Proposition 2 for non-
Einstein spacetimes and discuss possible extensions to
Einstein spacetimes in various special cases.

First, let us prove the following:
Lemma 2: TN spacetimes are CSI.
Proof.—Let us assume that a spacetime possesses a

nonconstant curvature invariant I constructed polynomially
from the Riemann tensor and its covariant derivatives of
arbitrary order. I can be expressed as a trace of a rank-2
tensor Eab. Since the trace of Eab is nonconstant then EðabÞ
is not of the form (2) or more special and the spacetime is
not TN. Thus TN ⊂ CSI. □

Now let us present a proof of Proposition 2.
Proof of Proposition 2.—TN spacetimes are CSI thanks

to Lemma 2.
Geodeticity of l: The contracted Bianchi identities

Rab
;b ¼ 0 for the Ricci tensor of the form (2) imply

la
;blb ∝ la and thus l is geodetic [i.e., κi ¼ 0 (7)].
l is a Kundt vector field: For the traceless part of the

Ricci tensor, Sab, of type N [i.e., of the form (12)], the b.w.
0 component of □Sab reads

ð□SabÞlanb ¼ −ω0ρijρij; ð13Þ
where ρij is the optical matrix (9). Tensor □Sab is traceless
and thus for TN spacetimes, all its b.w. 0 components have
to vanish, which implies

ρij ¼ 0 ð14Þ
and therefore l is a Kundt null congruence.
TN spacetimes are of Weyl type II or more special: Now,

taking into account the vanishing of κi and ρij, the higher
dimensional Newman–Penrose (NP) equations (NP1) and
(NP3) of [12] imply that the Weyl tensor components Ωij

and Ψijk vanish and thus the Weyl tensor is of type II or
more special. □

Note that, from the proof of Proposition 2, it follows that
already TN2 spacetimes4 are necessarily Kundt and alge-
braically special.
Remark 1: (Necessary conditions for Einstein Weyl

type N and III TN spacetimes). So far, we have discussed
non-Einstein TN spacetimes. It has been shown in
Lemma 4.8 of [2] that Weyl type N CSI Einstein spacetimes
are Kundt. Thus taking into account Lemma 2, it follows
that Einstein TN spacetimes of Weyl type N are necessarily
CSI Kundt spacetimes. The same results hold also for
Einstein TN spacetimes of Weyl type III under some
additional genericity assumptions (see Sec. 5.2 of [2]).

A. Necessary conditions in four and five dimensions

In four dimensions, more general results can be obtained.
First, let us study necessary conditions for algebraically

special TN spacetimes. In the four dimensional NP

3In other words, TðbÞ is obtained by setting all components of
T with b.w. not equal to b to zero.

4TNk spacetimes are defined similarly as TN spacetimes,
however, only derivatives of the Riemann tensor up to kth order
are considered.
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notation and in an appropriately chosen frame, the Weyl
and Ricci tensors admit Ψ2, Ψ3, Ψ4 and Φ22 components,
respectively.
For TN0, Ψ2 is constant. The Bianchi equations (7.32a),

(7.32b), (7.32e) and (7.32h) from [15] then give

κ ¼ σ ¼ ρ ¼ τ ¼ 0; ð15Þ
respectively, and thus
Lemma 3: In four dimensions, genuine Weyl type II

and D TN0 spacetimes are recurrent Kundt spacetimes.
Combining the results of Proposition 2, Remark 1 (in

four dimensions, the genericity assumptions for type III
always hold) and Lemma 3, we arrive at a result that applies
to both Einstein and non-Einstein spacetimes
Proposition 7: (Necessary conditions for TN space-

times in 4d). In four dimensions, algebraically special TN
spacetimes are necessarily Kundt.
In contrast, in five dimensions, it can be shown using the

same arguments as for the nonexistence of genuine type II
or D universal spacetimes in five dimensions (see Sec. 4 of
[3]) that
Proposition 8: (Nonexistence of 5d TN Weyl type II

spacetimes). In five dimensions, genuine Weyl type II and
D TN0 spacetimes do not exist.

IV. SUFFICIENT CONDITIONS FOR ALMOST
UNIVERSAL SPACETIMES

In this section, we prove that various classes of Weyl
types II, III, and N Kundt spacetimes are TN and in some
cases even TNS. We also show that TN and TNS space-
times can be constructed using an appropriate Kerr-Schild
transformation with a Weyl type II, III, or N universal
Kundt background.

A. Sufficiency for Weyl type III/N TN spacetimes

First, let us prove that Kundt spacetimes of Weyl type III
or N and traceless Ricci type N are TN (Proposition 3). We
use a similar approach as in the proof of Theorem 1.3 of [2].
Proof of Proposition 3.—Note that by Proposition 3.1 of

[16], for Kundt spacetimes of Weyl type III/N and traceless
Ricci type N, the Ricci and Weyl tensors are necessarily
aligned.
By Proposition A.8 of [14], for Kundt spacetimes of

Weyl type III/N and traceless Ricci type N, all covariant
derivatives of the Riemann tensor ∇ðkÞR are of aligned type
III (i.e., all nonvanishing components of ∇ðkÞR have
negative boost weight). It immediately follows that all
rank-2 tensors at least quadratic in∇ðkÞR (with k ≥ 0) are of
the form (2). Thus, it remains to show that the same result
holds also for rank-2 tensors linear in ∇ðkÞR.
For the Weyl and Ricci type N Kundt spacetimes, it has

been shown that ∇ðkÞR (k > 0) are of boost order at most
−2 (see Proposition A.2 of [17]) and thus all rank-2 tensors
linear in ∇ðkÞR are of the form (2).

Weyl type III case needs a more detailed discussion.
Note that Sab of the form (12) is 1-balanced which follows
from the primed version of Eq. (2.50) of [12] (see also
Sec. 2.7 therein),

þω0 ¼ Dω0 ¼ 0; ð16Þ

and therefore from Lemma A.7 of [14] (cf. also Lemma 1),
∇ðkÞSab is 1-balanced as well. Thus, boost order of ∇ðkÞSab
is at most −2.
In order for the contraction of ∇ðkÞR to result in a rank-2

tensor, k has to be even. We will show that all rank-2
tensors linear in ∇ðkÞR are of the form (2) using math-
ematical induction.
First, consider the k ¼ 2 case. A change of the order of

covariant derivatives in ∇ð2ÞR,

½∇;∇�R ¼
X
σ

R � R; ð17Þ

will result only in additional terms of b.w. −2 in contrac-
tions of the right-hand side of (17) due to the tracelessness
of the left-hand side of (17). Employing the Bianchi
identity (Rab½cd;e� ¼ 0) and changing the order of covariant
derivatives if needed, any rank-2 tensor linear in ∇ð2ÞR is
either zero or of type N.
Concerning k > 2, we proceed by induction. Assume

that any change of the order of covariant derivatives in
rank-2 tensors linear in ∇ðnÞR produces only additional
terms of b.w. −2 and that any rank-2 contraction of∇ðnÞR is
of type N. Now, we prove that the same holds also
for ∇ðnþ2ÞR.
To prove the first property, it is sufficient to prove that

any rank-2 contraction of Q≡ ð∇J½∇;∇�∇IRÞ is of boost
order −2. Here, I, J is a pair of arbitrary multi-indices
satisfying jIj þ jJj ¼ n. Applying the Ricci identity on
∇IR and employing the Leibniz rule, one obtains

∇J½∇;∇�∇IR ¼
X
σ

∇JðR �∇IRÞ

¼
X
σ

X
K⊂J

� jJj
jKj

�
∇KR �∇JnK∇IR: ð18Þ

Note that all terms with jKj > 0 and jIj2 þ jJnKj2 > 0 are
of boost order at most ð−2Þ, while the jKj ¼ 0 terms and
jIj2 þ jJnKj2 ¼ 0 terms correspond to R �∇ðnÞR. Our
induction assumption implies that rank-2 contractions of
all these terms lead to a type N tensor and hence a rank-2
tensor linear in ∇ðnþ2ÞR is of type N. Using this result
together with the Bianchi identity and noting again that Sab
is 1-balanced, the second property of ∇ðnþ2ÞR follows.
Therefore, both properties hold for all ∇ðkÞR, k even. As a
consequence, the terms linear in ∇ðkÞR contribute with b.w.
−2 terms. □
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B. Sufficiency for Weyl type III/N TNS spacetimes

In the previous section, we have shown that Kundt
spacetimes of Weyl type III or N and traceless Ricci type
N are TN. Now, we prove that some of these spacetimes are
also TNS. While for Weyl type N, TN ⇔ TNS (cf. [4]), for
Weyl type III TN spacetimes, the Weyl tensor and its
derivatives in general contribute to b.w. −2 components
of a rank-2 tensor Eab (see Appendix C). It turns out
(cf., Proposition 5) that Weyl type N and III TNS spacetimes
can be obtained from universal spacetimes by relaxing
the Einstein condition and allowing for type N traceless
Ricci tensor.
For this reason, we generalize sufficient conditions for

Weyl type III universal spacetimes (Proposition 4). It can be
seen that the proof of universality of four-dimensional type
III Einstein spacetimes with vanishing F2 given in Sec. 5.2
of [10] can be straightforwardly generalized to arbitrary
dimension, provided also F0 ¼ 0 (which is in four dimen-
sions automatically satisfied) and thus Weyl type III
Einstein Kundt spacetimes obeying F0 ¼ 0 ¼ F2 are uni-
versal (Proposition 4). This generalizes the sufficient part of
the Proposition 1.7 of [10] to arbitrary dimension and
theorem 1.4 of [2] from the recurrent case (τi ¼ 0) to a
more general case F2 ¼ 0. Indeed, it can bee seen from an
expression for F2 for Weyl type III Kundt spacetimes,

F2 ¼ −4fτiτið2Ψ0
jΨ0

j −Ψ0
jklΨ0

jklÞ
− 2τiτj½2Ψ0

kilΨ0
ljk −Ψ0

iklΨ0
jkl

þ 4ðΨ0
kΨ0

ijk þ Ψ0
iΨ0

jÞ�glalb; ð19Þ

that τi ¼ 0 implies F2 ¼ 0, while F2 ¼ 0 allows for non-
vanishing τi (cf. [10]). Examples of Weyl type III universal
spacetimes with τi ≠ 0 can be constructed using a warp
product

ds̄2 ¼ 1

−λz2
ðds̃2 þ dz2Þ; λ < 0; ð20Þ

where ds̃2 is a Ricci flat Weyl type III universal Kundt
spacetime. Since the Weyl type [18] and the Kundt property
(see Eq. (B3) of [18]) are preserved under (20) and F̃0 ¼
0 ¼ F̃2 implies F̄0 ¼ 0 ¼ F̄2 (see Eq. (23) of [18]), the
resulting spacetime is again a Weyl type III Einstein
universal Kundt spacetime with R̄ ¼ dðd − 1Þλ:
Proposition 9: A warp product (20), where ds̃2 is a

Ricci flat Weyl type III universal Kundt spacetime is a Weyl
type III universal Kundt spacetime.
In general, the resulting spacetime has a nonvanishing τi,

i.e., it is not recurrent (cf. also Appendix D 2).
Let us proceed with proving that Weyl type III traceless

Ricci type N Kundt spacetimes obeying F0 ¼ 0 ¼ F2 are
TNS (Proposition 5).
Proof of Proposition 5.—By Proposition A.8 of [14], all

tensors∇ðkÞR are of aligned type III. Furthermore, since Sab

is 1-balanced (cf. proof of Proposition 3) all derivatives
of the Ricci tensor are of boost order ≤ −2. By counting
boost weights, one can see that all mixed invariants
(i.e., invariants constructed from both ∇ðkÞS and ∇ðlÞC,
k; l ≥ 0) vanish and thus it is sufficient to consider rank-2
tensors Eab constructed purely from the Weyl tensor and its
derivatives (at most quadratic in ∇ðlÞC) and purely from the
Ricci tensor and its derivatives (linear in ∇ðkÞS).
First, let us prove by the mathematical induction that all

rank-2 tensors constructed from the Ricci tensor and its
derivatives have the form (2), (3) (cf. [4]).
Obviously, the Ricci tensor of traceless type N has

the form (2), (3). All rank-2 tensors constructed from the
second derivatives of the Ricci tensor (□Rab, Rc

a;cb, Rc
a;bc,

Re
e;ab) either vanish or can be cast into the form (2), (3)

using commutator

½∇c;∇d�Pe1e2…ek ¼ −
Xk
i¼1

Rf
eicdPe1…ei−1feiþ1…ek ð21Þ

and the contracted Bianchi identity ∇cRc
a ¼ 1

2
R;a ¼ 0.

Now, assuming that all rank-2 tensors constructed from
the kth derivative of the Ricci tensor have the form (2), (3),
we show that this also holds for all rank-2 tensors
constructed from the (kþ 2)th derivative of the Ricci
tensor. Rank-2 tensors constructed from the (kþ 2)th
derivative of the Ricci tensor can have free indices in three
positions

1. R••;… ð22Þ

2. R•:;…•… ð23Þ

3. R::;…•…•… ð24Þ

where free indices are indicated by •. In the case 1., one can
use commutator (21) to reshuffle covariant derivatives and
arrive at the form (2), (3). The remaining part arising from
the right-hand side of commutator (21) contains only kth
derivatives of the Ricci tensor and thus have the form (2),
(3) by our assumption. In the cases 2., 3., we can again
reshuffle indices to obtain (kþ 1)th derivative of the
contracted Bianchi identity, i.e., Rc

:;c… ¼ 0, with the
remaining part arising from the right hand side of commu-
tator (21) containing again only kth derivatives of the Ricci
tensor and thus having the form (2), (3) by our assumption.
Now, let us proceed with terms constructed from the

Weyl tensor and its derivatives. In [10], it has been shown
that for four-dimensional Weyl type III, Einstein Kundt
spacetimes obeying F2 ¼ 0, all rank-2 tensors of the form
∇ðkÞC ⊗ ∇ðlÞC vanish. This proof can be straightforwardly
generalized to the case of higher dimensions by adding an
additional assumption F0 ¼ 0 which holds identically in
four dimensions. Moreover, it is not affected by the
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presence of b.w. –2 terms in the Ricci tensor, thus it can be
also straightforwardly generalized to the traceless Ricci
type N case and therefore terms ∇ðlÞC ⊗ ∇ðmÞC will not
contribute to rank-2 tensors (cf., Proposition 5.9 of [10]).
Hence, only terms linear in ∇ðkÞC can contribute to a
rank-2 tensor. Employing the Bianchi

∇bCabcd ¼
d − 3

d − 2
ð∇dSac −∇cSadÞ ð25Þ

and Ricci identities, one arrives at

∇d∇bCabcd ¼
d − 3

d − 2
□Sac −

ðd − 3Þ
ðd − 2Þðd − 1ÞRSac; ð26Þ

being of the TNS form (2), (3).
Using the mathematical induction, one can show that all

rank-2 tensors linear in the Weyl tensor have the TNS form
(2), (3). We assume that all rank-2 tensors constructed from
kth derivative of the Weyl tensor have the form (2), (3).
Then using commutator (21), all rank-2 tensors constructed
from ðkþ 2Þth derivative of the Weyl tensor can be cast
into the formCc

…;c…, which using (25) and results from the
previous paragraph have the desired form, and additional
terms containing kth derivative of the Weyl tensor that have
the TNS form (2), (3) by our starting assumption. □

C. Sufficiency for certain Weyl type II TN spacetimes

Proposition 3 addressing sufficient conditions for Weyl
type III and N TN spacetimes does not include all TN
spacetimes—as we will show in this section Weyl type II
TN spacetimes also exist.
First, let us observe that one can constructWeyl type II TN

spacetimes from Weyl type III and N TN spacetimes by
taking a direct product with maximally symmetric spaces. A
simple generalization of proof of Proposition 6.2 of [3] leads
to a generalization of this Proposition to TN spacetimes
Proposition 10: Let M¼M0×M1×���×MN−1, where

M0 is a Lorentzian manifold and M1…MN−1 are nonflat
Riemannianmaximally symmetric spaces. Let all blocksMα,
α ¼ 0…N − 1, be of the same dimension and with the same
value of the Ricci scalar Rα. IfM0 is a TNWeyl type III or N
spacetime then M is a type II TN spacetime.
Now,we proceedwithmoregeneral type II TNspacetimes.
Remark 2: It is straightforward to generalize

Proposition 7.1 of [3] for spacetimes with the Ricci tensor
of the form (2) leading to the following slightly more
general result: for type II Kundt spacetimes with the Ricci
tensor of the form (2) admitting a parallelly propagated null
frame along an mWAND l, all covariant derivatives of the
Riemann tensor ∇ðkÞR, k ≥ 1, are at most of boost order −2
providing the following three conditions hold:

(i) b.w. –1 components of the Weyl tensor vanish,
(ii) for b.w. –2 components of the Weyl tensor,

Ω0
ij, DΩ0

ij ¼ 0,
(iii) the boost order of ∇1C is at most −2.

Let us consider higher-dimensional generalizations
of the Khlebnikov-Ghanam-Thompson (KGT) metric
[19–21] consisting of N 2-blocks/3-blocks introduced in
[3] in the context of universal spacetimes

ds2 ¼ 2dudvþ ðλ̃v2 þHðu; xα; yαÞÞdu2

þ 1

jλ̃j
XN−1

α¼1

ðdx2α þ s2ðxαÞdy2αÞ; ð27Þ

with sðxαÞ ¼ sinðxαÞ for λ̃ > 0, sðxαÞ ¼ sinhðxαÞ for λ̃ < 0,
and

ds2 ¼ 2dudvþHðu; z; xα; yα; zαÞdu2 þ 2
2v
z
dudz

−
2

λ̃z2
dz2 −

2

λ̃

XN−1

α¼1

½dx2α þ sh2αðdy2α þ s2αdz2αÞ�; ð28Þ

with λ̃ < 0, sα ¼ sinðyαÞ, and shα ¼ sinhðxαÞ, respectively.
Both these metrics obey all three conditions given

in Remark 2 and the Ricci tensor is of the form (2) with
ϕ ¼ − 1

2
□H and ϕ ∝ □H − 2λ̃zH;z, respectively.

By Remark 2, all nonvanishing rank-2 tensors con-
structed from ∇ðkÞR, k ≥ 0, containing at least one term
with k ≥ 1 are at most of boost order −2. Rank-2 tensors
constructed from ∇ðkÞR, k ¼ 0, are of the form (2) (see
Sec. 7.2 of [3]). We can conclude with
Proposition 11: Weyl type II metrics (27) and (28)

are TN.

D. Kerr-Schild transformations
of universal spacetimes are TN

To make a connection with the Kerr-Schild approach of
[6,7], let us study TN and TNS spacetimes generated from
universal spacetimes by the Kerr-Schild transformation.
Results of this subsection in part overlap with those of
subsection IV B. However, they apply also to Weyl type II.
For some applications, the Kerr-Schild formulation of the
results may be also more practical.
Let us consider spacetimes

g ¼ gUK þ 2Hl ⊗ l; DH ¼ 0; ð29Þ

where gUK are universal Kundt spacetimes and l is the
Kundt null direction of the background spacetime gUK.
Note that gUK spacetimes are necessarily Einstein, alge-
braically special and degenerate Kundt. Thus they admit a
metric of the form [22,23],

ds2 ¼ 2du½drþHðu; r; xÞduþWαðu; r; xÞdxα�
þ gαβðu; xÞdxαdxβ; ð30Þ

where α; β ¼ 2…n − 1 with
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Wαðu; r; xÞ ¼ rWð1Þ
α ðu; xÞ þWð0Þ

α ðu; xÞ;
Hðu; r; xÞ ¼ r2Hð2Þðu; xÞ þ rHð1Þðu; xÞ þHð0Þðu; xÞ:

ð31Þ

Kundt null direction is l ¼ du and thus the Kerr-Schild
transformation (29) amounts to the transformation
Hð0Þðu; xÞ → Hð0Þðu; xÞ þH in (30), (31) and the resulting
metric (29) is clearly also Kundt degenerate metric.
From Appendix B it follows that the only changes in the

curvature of the Kerr-Schild transformed metric (29) appear
in b.w. –2 components of the Weyl and Ricci tensors.
Since b.w. of H is ð−2Þ the Kerr–Schild perturbation

2Hl ⊗ l in (29) is 1-balanced. Lemma A.7 of [14] then
implies that an arbitrary covariant derivative of 2Hl ⊗ l
remains 1-balanced. Thus arbitrary terms constructed from
the perturbation and its derivatives entering an arbitrary rank-
2 tensor Eab (constructed from the Riemann tensor
of the full metric (29) and its derivatives) influence only
b.w. –2 components of Eab and thus do not violate the form
(2). Therefore, using also the results of Appendix B we
arrive at
Proposition 12: For background metrics gUK of Weyl

types II, III, and N, the Kerr-Schild transformation (29)
preserves the Weyl type and the resulting metric is TN.
For Kerr-Schild spacetimes with a flat or (A)dS back-

ground, the Kerr-Schild transformation (29) gives a Weyl
type N spacetime [24,25]. Thus clearly the Kerr-Schild
transformation (29) with universal backgrounds represents
a more general class of spacetimes.
Since for Weyl type III Kundt spacetimes, the curvature

polynomials F0 ¼ ð1
2
Ψ0

ijkΨ0
ijk − Ψ0

iΨ0
iÞlalb and F2 (19)

are preserved by (29) [see (B6)–(B9) and (B11)], from
Proposition 5 it follows
Proposition 13: The Kerr-Schild transformation (29) of

a Weyl type III universal background metric gUK is a Weyl
type III TNS spacetime.

V. APPLICATIONS IN
HIGHER-ORDER GRAVITIES

Since terms □nSab appear in most higher-order gravity
field equations, cf. Appendix C, we start with an exami-
nation of their form in TN spacetimes.
Let us assume a spacetime to be Kundt of aligned

Riemann type II with the b.w. 0 part of the Ricci tensor
proportional to the metric and with l being the (affinely
parametrized) Kundt vector. Then, in a parallelly propa-
gated frame with τi ¼ L1i,

5 for a function f satisfying
Df ¼ 0, one has

□ðflalbÞ¼ ½ðD−2R0101Þf�lalb; ð32Þ

where the differential operator D is defined as

D≡□þ 4τiδi þ 2τiτi þ 2Φþ 2
d − 2

d − 1

R
d
: ð33Þ

Employing the Bianchi and Ricci identities and com-
mutators [27], one can see that for TN spacetimes, the b.w.
–2 components of □nSab are constant along geodesics
generated by l for any n ∈ N0. Using (32), one arrives at

□nSab ¼ ½ðD − 2R0101Þnω0�lalb: ð34Þ

A. Quadratic gravity

Let us apply the obtained results on the case of quadratic
gravity. Its Lagrangian reads

LQG ¼ 1

κ
ðR − 2Λ0Þ þ αR2 þ βRabRab

þ γðRabcdRabcd − 4RabRab þ R2Þ; ð35Þ
where the cosmological constantΛ0 and coupling constants
κ, α, β, γ of the theory are fixed. The metric variation of the
action corresponding to LQG then yields [28]

Eab ¼
1

κ

�
Rab−

1

2
RgabþΛ0gab

�
þ2αR

�
Rab−

1

4
Rgab

�

þð2αþβÞðgab□−∇a∇bÞR

þ2γ

�
RRab−2RacbdRcdþRacdeRb

cde−2RacRb
c

−
1

4
gabðRcdefRcdef−4RcdRcdþR2Þ

�

þβ□

�
Rab−

1

2
Rgab

�
þ2β

�
Racbd−

1

4
gabRcd

�
Rcd:

ð36Þ

In this section, two different classes of vacuum solutions
within TN spacetimes will be discussed.

1. Weyl type III solutions

For Weyl type III TN metrics satisfying F0 ¼ 0, the
tensor Eab of (36) simplifies to (3) with

λ ¼ Λ0

κ
−
d − 2

2κd
R −

ðd − 4Þðαdþ βÞ
2d2

R2

−
ðd − 4Þðd − 3Þðd − 2Þ

2d2ðd − 1Þ γR2; ð37Þ

a0 ¼
1

κ
þ 2R

�
αþ β

d − 2

dðd − 1Þ þ γ
ðd − 3Þðd − 4Þ

dðd − 1Þ
�
; ð38Þ

a1 ¼ β; ð39Þ
and with the rest of the coefficients faig being zero. Hence,
employing (34), the vacuum field equations Eab ¼ 0 read5Such a null frame always exists, cf. [26].
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ðd − 4Þ ðd − 1Þðαdþ βÞ þ ðd − 3Þðd − 2Þγ
2d2ðd − 1Þ R2

þ d − 2

2κd
R ¼ Λ0

κ
; ð40Þ

�
Dþ 1

κβ
þ 2R

�
1

d
þ α

β
þ γ

β

ðd − 3Þðd − 4Þ
dðd − 1Þ

��
ω0 ¼ 0:

ð41Þ
In the special case of a TN metric6 obtained by the
Kerr-Schild transformation (29) of a universal Kundt
metric, ω0 is given by ω0 ¼ −DH [using (B5) with
(B10)], and hence Eq. (41) takes the form of a factorized
4th order differential equation whose solution reads
H ¼ H0 þH1, where H0, H1 are solutions to 2nd order
equations

DH0 ¼ 0;�
Dþ 1

κβ
þ 2R

�
1

d
þ α

β
þ γ

β

ðd − 3Þðd − 4Þ
dðd − 1Þ

��
H1 ¼ 0;

ð42Þ

respectively. Note that the Kerr-Schild transformation (29)
with H ¼ H0 gives again an Einstein spacetime (ω0 ¼ 0)
while for H1 ≠ 0, it gives a non-Einstein solution to
quadratic gravity (i.e., H0 only changes the Einstein
background metric). While a type N subclass of these
solutions was obtained already in [29], genuine Weyl type
III solutions are new. Examples of such vacuum solutions
to quadratic gravity are given in Appendix D.

2. Weyl type II solutions

For the higher-dimensional generalization (27) of
Khlebnikov-Ghanam-Thompson metrics consisting of N
2-blocks, the tensor (36) reduces to

Eab ¼ λðIIIÞgab þ aðIIIÞ0 Sab þ a1□Sab

þ
�
2β − 4γ

d − 4

d − 2

�
ScdCacbd

þ 2γCacdeCb
cde −

1

2
γCcdefCcdefgab; ð43Þ

with λðIIIÞ, aðIIIÞ0 , a1 denoting the original coefficients (37)–
(39). On the first sight, Eab deviates from (3) by contri-
butions from the Weyl tensor. However, due to a convenient
structure of the b.w. 0 part of the Weyl tensor, one has

ScdCacbd ¼ −
d − 2

d − 1

R
d
Sab; ð44Þ

CacdeCb
cde ¼ 2

R2

d2
d − 2

d − 1
gab; ð45Þ

so that Eab again reduces to the form (3), but this time with
coefficients

λ¼Λ0

κ
−
d−2

2κd
R−

ðd−4Þðαdþβþ γðd−2ÞÞ
2d2

R2; ð46Þ

a0 ¼
1

κ
þ 2R

�
αþ γ

d − 4

d

�
; ð47Þ

a1 ¼ β; ð48Þ

and with the rest of coefficients faig vanishing. Employing
(34) again and noticing that D (33) reduces to □, the
vacuum field equations of quadratic gravity read

ðd − 4Þðαdþ β þ γðd − 2ÞÞ
2d2

R2 þ d − 2

2κd
R ¼ Λ0

κ
; ð49Þ

�
□þ 1

κβ
þ 2R

dαþ β þ ðd − 4Þγ
βd

�
□H ¼ 0: ð50Þ

While the solution R of (49) determines the parameter λ̃≡
R=d in the KGT metric, the remaining metric function H
determined by the 4th order equation (50) can be expressed
as H ¼ H0 þH1, where H0 and H1 solve 2nd order
equations

□H0 ¼ 0;

�
□þ 1

κβ
þ 2R

dαþ βþ ðd− 4Þγ
dβ

�
H1 ¼ 0;

ð51Þ

respectively. To our knowledge, the solutions with H1 ≠ 0
are the first known non-Einstein quadratic gravity vacuum
solutions of Weyl type II in arbitrary even dimension.

B. Conformal gravity in six dimensions

Now, let us study vacuum solutions of conformal gravity
in six dimensions given by the Lagrangian [30,31]

Lconf ¼ β

�
RRabRab −

3

25
R3 − 2RabRcdRacbd

− Rab□Rab þ
3

10
R□R

�
: ð52Þ

The parameters of this theory are tuned in such a way that
the field equations, which can be found in the full form in
[31], are satisfied by any metric conformal to an Einstein
metric. Let us present vacuum solution of this theory that
are not conformal to Einstein spacetimes.6Such a metric is necessarily TNS by Proposition 13.
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1. Weyl type III solutions

For Weyl type III TN Kundt metrics, Eab of the theory
Lconf takes the TNS form (3) with nonvanishing coefficients

a0 ¼ −
4β

75
R2; a1 ¼

7β

15
R; a2 ¼ −β; ð53Þ

thus the conformal gravity field equations have the form

�
□ −

4R
15

��
□ −

R
5

�
Sab ¼ 0: ð54Þ

For R < 0, we obtain ð□þ 8
l2Þð□þ 6

l2ÞSab ¼ 0, l2 ¼
−dðd − 1Þ=R, which is in agreement with the result (130)
of [5] obtained for Weyl type N AdS-plane waves (τi ¼
Φ ¼ 0) in six dimensions. In this case, Eab is traceless
and there is no algebraic constraint determining the value of
the Ricci scalar. Therefore, the vacuum field equations
reduce to

�
D −

R
5

��
D −

2R
15

�
ω0 ¼ 0: ð55Þ

Similarly as in the case of quadratic gravity, for TNS metrics
obtained by the Kerr-Schild transformation (29) of a
Weyl type III universal Kundt metric, the solution of (55)
(again ω0 ¼ −DH) can be found in the factorized form
H ¼ H0 þH1 þH2, where

DH0¼0;

�
D−

R
5

�
H1¼0;

�
D−

2R
15

�
H2¼0: ð56Þ

H1 and H2 generate non-Einstein solutions to six-
dimensional conformal gravity.

2. Weyl type II solutions

Let us consider the higher-dimensional generalization
(27) of Khlebnikov-Ghanam-Thompson metrics consisting
of three 2-blocks for which

Ra
e
c
fRbdefScd ¼

R
d
RacbdScd; Ra

e
c
fRbfdeScd ¼

R2

d2
Sab:

ð57Þ

Using these relations along with (44), (45) and its covariant
derivatives, one can show that the tensor Eab of conformal
gravity (52) reduces to the form (3) with

a0 ¼ −
52β

225
R2; a1 ¼ βR; a2 ¼ −β ð58Þ

and with the rest of the coefficients faig including λ being
zero. Taking into account (34) and that D ¼ □, vacuum
field equations of conformal gravity for KGT metrics
reduce to

�
□2 −

R
3
□þ 2R2

225

�
□H ¼ 0; ð59Þ

with an arbitrary Ricci scalar. The solution of the sixth
order equation (59) can be written as a sum H ¼ H0 þ
H1 þH2 of solutions of the 2nd order equations

□H0 ¼ 0;

�
□ −

5þ ffiffiffiffiffi
17

p

30
R

�
H1 ¼ 0;

�
□þ 5þ ffiffiffiffiffi

17
p

30
R

�
H2 ¼ 0: ð60Þ
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APPENDIX A: T-III SPACETIMES

Here, we consider a slight generalization of TN space-
times, so called T-III spacetimes, for which every sym-
metric rank-2 curvature tensor is of traceless type III:
Definition 14: (T-III spacetimes) T-III spacetimes are

spacetimes, for which there exist a null vector l and d − 2

spacelike vectors mðiÞ such that for every symmetric rank-2
tensor Eab constructed polynomially from a metric, the
Riemann tensor and its covariant derivatives of an arbitrary
order there exist a constant λ and functions ϕ and ψ i
such that

Eab ¼ λgab þ ψ ilðam
ðiÞ
bÞ þ ϕlalb: ðA1Þ

Thus, for T-III spacetimes, the vacuum field equations of
any theory with the Lagrangian of the form (1) reduce to
one algebraic equation and (at most) d − 1 differential
equations. Hence, also T-III spacetimes may be useful in
finding solutions to higher-order gravity theories.
It turns out that the necessary conditions for TN space-

times naturally extend to the T-III class:
Lemma 4: T-III spacetimes are CSI.
Proof.—Let us assume that a spacetime possesses a

nonconstant curvature invariant I constructed polynomially
from the Riemann tensor and its covariant derivatives of
arbitrary order. I can be expressed as a trace of a rank-2
tensor Eab. Since the trace of Eab is nonconstant then EðabÞ
is not of the form (A1) or more special and the spacetime is
not T-III. Thus TN ⊂ T-III ⊂ CSI. □

Proposition 15: (Necessary conditions for T-III space-
times). Non-Einstein T-III spacetimes are necessarily CSI
Kundt spacetimes of Weyl type II or more special.
Proof.—Thanks to Lemma 4, T-III spacetimes are CSI.

ALMOST UNIVERSAL SPACETIMES IN HIGHER-ORDER … PHYS. REV. D 99, 024043 (2019)

024043-9



l is geodetic: The traceless Ricci tensors Sab is of type

III (i.e., Sab ¼ ψ 0
ilðam

ðiÞ
bÞ þ ω0lalb) and b.w. þ2 compo-

nent of rank-2 tensor ∇aScd∇bScd reads

∇aScd∇bScdlalb ¼ 4ðκiψ 0
iÞðκjψ 0

jÞ þ 2κiκiψ
0
iψ

0
i: ðA2Þ

For T-III spacetimes, this b.w.þ2 component has to vanish,
which implies κi ¼ 0 and thus l is geodetic.
l is a Kundt vector field: For Sab of type III, the b.w. 0

components of Eab ¼ ∇aScd∇bScd have to satisfy

Eabma
ðiÞm

b
ðjÞ ¼ δijEablanb; ðA3Þ

implying

ψ 0
kψ

0
kρliρlj þ 2ψ 0

kψ
0
lρkiρlj ¼ 0: ðA4Þ

Contraction of i and j gives a sum of squares and therefore
ρij ¼ 0 and the spacetime is Kundt.
T-III spacetimes are of Weyl type II or more special: To

prove this, one can use the same arguments as in the proof
of Proposition 2. □

Note that, to prove that T-III spacetimes are Kundt and
algebraically special, it is sufficient to assume T-III1.
Finally, for Kundt spacetimes of Weyl type III and

traceless Ricci type III, all covariant derivatives of
the Riemann tensor ∇ðkÞR are of aligned type III
(Proposition A.8 of [14]) and thus
Proposition 16: (Sufficient conditions for T-III space-

times). Weyl type N and III Kundt spacetimes with the
Ricci tensor of the form (A1) are T-III.

1. T-III spacetimes in four and five dimensions

First, let us study necessary conditions for algebraically
special T-III spacetimes. In the four-dimensional NP
notation, the Weyl and Ricci tensors admit Ψ2, Ψ3, Ψ4

and Φ12 ¼ Φ̄21, Φ22 components, respectively.
Similarly as for TN spacetimes, for T-III0,Ψ2 is constant.

Bianchi equations (7.32a), (7.32b), (7.32e) and (7.32h)
from [15] then give again

κ ¼ σ ¼ ρ ¼ τ ¼ 0; ðA5Þ

respectively and thus we can immediately generalized
Lemma 3 to T-III spacetimes
Lemma 5: In four dimensions, genuine Weyl type II

and D T-III0 spacetimes are recurrent Kundt spacetimes.
The same arguments that have led to Proposition 8

then imply
Proposition 17: (Nonexistence of 5D T-III Weyl type II

spacetimes) In five dimensions, genuine Weyl type II and
D T-III0 spacetimes do not exist.

APPENDIX B: KERR–SCHILD
TRANSFORMATIONS OF EINSTEIN

KUNDT METRICS

A Kerr–Schild transformation of a metric ḡab is a
transformation with the transformed metric gab being of
the form

gab ¼ ḡab þ 2Hlalb; gab ¼ ðḡ−1Þab − 2Hlalb; ðB1Þ

where H is an arbitrary function and l is a null vector.
Let us assume that the transformed metric gab is Kundt

with l corresponding to the congruence of nonexpanding,
nonshearing and nontwisting affinely parametrized null
geodesics. Since

κi ¼ κ̄i; L10 ¼ L̄10; ρij ¼ ρ̄ij; ðB2Þ

the vector l has the same above mentioned geometrical
properties in the background metric ḡab and thus the
background spacetime is necessarily Kundt as well.
Without loss of generality, we can always set the frame

such that L1i ¼ τi. The frame components of the Ricci
tensor then read

ω¼ ω̄¼0; ψ i¼ ψ̄ i; ϕ¼ ϕ̄þD2H; ϕij¼ ϕ̄ij; ðB3Þ

ψ 0
i ¼ ψ̄ 0

i þ δiDHþHψ̄ i; ðB4Þ

ω0 ¼ ω̄0 − Ξii −
2H
n − 1

ððn − 3Þϕ̄ − ϕ̄iiÞ ðB5Þ

and the independent components of the Weyl tensor are
given by

Ωij ¼ Ω̄ij¼ 0; Ψijk ¼ Ψ̄ijk ¼
2ψ̄ l

n−2
δi½jδk�l; ΦA

ij¼ Φ̄A
ij;

ðB6Þ

Φijkl ¼ Φ̄ijkl þ 4
D2H

ðn − 1Þðn − 2Þ δi½kδl�j; ðB7Þ

Ψ0
ijk ¼ Ψ̄0

ijk þ 2
ψ 0
l − ψ̄ 0

l

n − 2
δi½jδk�l; ðB8Þ

Ω0
ij ¼ Ω̄0

ij −
�
Ξij −

1

n − 2
Ξkkδij

�
; ðB9Þ

where

Ξij ¼ δðiδjÞHþ ρ0ðijÞDHþ 2τðiδjÞHþMk
ðijÞδkH

þ 2H
�
τiτj þ Φ̄ðijÞ þ

ϕ̄ij

n − 2

�
: ðB10Þ

Note that D ¼ D̄, δi ¼ δ̄i, and since the spacetime is Kundt,
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τi ¼ τ̄i; ρ0ij ¼ ρ̄0ij; Mi
jk ¼ M̄i

jk: ðB11Þ
Furthermore, for Einstein background spacetimes, i.e.,

R̄ab ¼ λḡab; ðB12Þ
Sab is of type III iff D2H ¼ 0 and then the Ricci tensor of
the full metric gab reads

Rab ¼ λgab þ 2δiDHlðam
ðiÞ
bÞ þ ξlalb; ðB13Þ

where

ξ ¼ −∇̂2H − 2τiδiH − 2H
�
τiτi þ Φ̄þ n − 2

n − 1
λ

�
;

∇̂2 ¼ hab∇a∇b;

hab ¼ gab − 2lðanbÞ: ðB14Þ
Obviously, if in addition δiDH ¼ 0, Sab is of type N.
Possible combinations of the Weyl and trace-free Ricci
types of transformed metrics and background Einstein
metrics are summarized in Table I. Note that the most
general Weyl type of Einstein Kundt spacetimes is type II.

APPENDIX C: VARIATION OF THE FKWC
BASIS UP TO ORDER 6

To show what other terms than □nSab may appear in
field equations for generic TN spacetimes, we provide a list

of variations 1ffiffiffiffi−gp δð ffiffiffiffi−gp
IkÞ

δgab of FKWC basis elements [11] for

Weyl type III TN spacetimes.
Any scalar curvature polynomial of order 6 (in deriva-

tives of the metric) can be expressed in terms of 22 FKWC
basis elements [11]. However, since variations of 7 of these
are related to variations of the rest of the scalars via total
divergence, only 15 of these 22 basis elements possess a
nontrivial independent metric variation [32,33]. Therefore,
a general gravitational Lagrangian L of order 6 can be
expanded in those 15 curvature invariants.
For CSI (and thus in particular for TN) spacetimes,

variation of only 13 of these is non-vanishing and 4 of the
remaining 13 scalars (R2,R3,RRabRab andRRabcdRabcd) are

functions of invariants of lower orders (R, RabRab and
RabcdRabcd) and hence their variation can be easily computed
employing variations of their lower order counter-terms.
Thus, given any gravitational Lagrangian of order 6, to

compute the form of the field equations for TN spacetimes,
metric variation of only 9 from the total of 22 FKWC
invariants is needed. Moreover, if the TN metric is of Weyl
type III, the form of these variations reduces dramatically:

R∶ −
d − 2

d
Rgab þ Sab; ðC1Þ

RabRab∶ −
d − 4

2d2
R2gab þ

2ðd − 2Þ
dðd − 1ÞRSab þ□Sab; ðC2Þ

RabcdRabcd∶ −
d − 4

d2ðd − 1ÞR
2gab −

4ðd − 2Þ
dðd − 1ÞRSab

þ 4□Sab þ 2Ca
cdeCbcde; ðC3Þ

Rab□Rab∶ −
2R

dðd − 1Þ□Sab þ□2Sab; ðC4Þ

RpqRp
rRqr∶ −

d−6

2d3
R3gabþ

3ðd−3Þ
d2ðd−1ÞR

2Sabþ
3R
d
□Sab;

ðC5Þ

RpqRrsRprqs∶ −
d − 6

2d3
R3gab þ

3d2 − 10dþ 9

d2ðd − 1Þ2 R2Sab

−
3 − 2d
dðd − 1ÞR□Sab; ðC6Þ

RpqRp
rstRqrst∶ −

d−6

d3ðd−1ÞR
3gab−

2ð2d2−7dþ9Þ
d2ðd−1Þ2 R2Sab

−
4R
d−1

□Sabþ
2R
d
Ca

cdeCbcde

þCcdef∇d∇ðaCbÞcefþCðajcdej□CbÞcde

þ∇ðaCcfde∇jfjCbÞcdeþ∇fCbcde∇fCa
cde;

ðC7Þ

RpqrsRpqabRrs
ab∶ −

2ðd − 6Þ
d3ðd − 1Þ2 R

3gab þ
36R2

d2ðd − 1Þ2 Sab

−
24R2

dðd − 1Þ2 Sab þ
24R

dðd − 1Þ□Sab

þ 6ðdþ 2Þ
dðd − 1ÞRCa

cdeCbcde

þ 6∇cCbfde∇fCa
cde; ðC8Þ

TABLE I. Possible combinations of the Weyl and tracefree
Ricci types of the Kerr–Schild transformed metric gab with
D2H ¼ 0 depending on the Weyl type of the background Einstein
metric ḡab.

Types of gab

Weyl type of ḡab Conditions Weyl TF Ricci

II � � � II III, N
III Ψ̄0

ijk þ 2
n−2 δi½jδk�DH ≠ 0 III III, N

III Ψ̄0
ijk þ 2

n−2 δi½jδk�DH ¼ 0 N III

N � � � III III
N � � � N N
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RprqsRp
a
q
bRrasb∶ −

ðd−6Þðd−2Þ
2d3ðd−1Þ2 R3gab

þ9
d−2

d2ðd−1Þ2R
2Sab−

3R
dðd−1Þ□Sab

−
3ðdþ2Þ
2dðd−1ÞRCa

cdeCbcde

−3∇eCbdcf∇fCa
cde

þ3Ccdef∇f∇dCacbe: ðC9Þ

APPENDIX D: EXAMPLES OF TYPE III TNS
SPACETIMES AND CORRESPONDING VACUUM

SOLUTIONS TO QUADRATIC GRAVITY

In this section, we employ Proposition 13 to construct
Weyl type III TNS spacetimes using the Kerr–Schild
transformation (29) and we find new vacuum solutions
to quadratic gravity.

1. Ricci flat examples

For simplicity, as a background metric we consider
recurrent (τ̄i ¼ 0 implies τi ¼ 0, see Appendix B) Ricci–
flat Weyl type III universal spacetimes. Such spacetimes
belong to VSI (spacetimes with vanishing scalar curvature
invariants) class and admit a metric of the form (30) with
metric functions [34]

H ¼ Hð0Þðu; xÞ þ 1

2
ðF −Wm;mÞr; W2 ¼ 0;

Wm ¼ Wmðu; xÞ; gαβðu; xÞ ¼ δαβ ðD1Þ

that satisfy the Ricci-flat condition

ΔHð0Þ−
1

4
WmnWmn−2Hð1Þ

;m Wm−Hð1ÞWm;m−Wm;mu ¼ 0

ðD2Þ

and F ¼ Fðu; xiÞ is subject to

F;2 ¼ 0; F;m ¼ ΔWm; ðD3Þ

where Wmn ¼ Wm;n −Wn;m and Δ≡ ∂i∂i is the spacial
Laplacian. The natural null frame of VSI metrics

l̄adxa¼du; n̄adxa¼drþHduþWαdxα; m̄ðαÞ
a dxa¼dxα;

ðD4Þ

is parallelly propagated in the recurrent case and indeed
τ̄i ¼ L̄1i ¼ 0. For geodetic l and Df ¼ 0 (i.e., ∂rf ¼ 0),
the action of the operator D introduced in (33) on f
reduces to

Df ¼ Δf: ðD5Þ

The rank-2 tensor F2 vanishes identically for the back-
ground metric since τ̄i ¼ 0 and it remains to satisfy F0 ¼ 0,
i.e.,

Ψ̄0
ijkΨ̄0

ijk ¼ 2Ψ̄0
iΨ̄0

i; ðD6Þ

where Ψ̄0
i ¼ −Hð1Þ

;i and Ψ̄0
ijk ¼ 1

2
Wkj;i. Note that the trivial

solution with both sides of (D6) vanishing corresponds to
Weyl type N.
In four dimensions, F0 vanishes identically and thus

in this case, all Kundt metrics obeying (D1) and (D3) are
TNS (c.f. Proposition 5). In particular, note that the Einstein
equation (D2) is not a necessary condition for TNS.
However, it is useful to start with a background Einstein

spacetime and express Hð0Þ as Hð0Þ ¼ Hð0Þ
E þH, where

Hð0Þ
E corresponds to a background Einstein solution of (D2)

andH represents the Kerr–Schild transformation. Then the
field equation of quadratic gravity (42) reduces to

�
Δþ 1

κβ

�
ΔH ¼ 0: ðD7Þ

Clearly, the Kerr–Schild transformations with ΔH ¼ 0
takes the metric from an Einstein spacetime to an
Einstein spacetime [cf. Eq. (D2)]. The non-Einstein vac-
uum solutions to quadratic gravity are obtained by solving

�
Δþ 1

κβ

�
H ¼ 0: ðD8Þ

An example of such a solution is

H ¼ ðc1ðuÞe
ffiffiffiffi
k1

p
x þ c2ðuÞe−

ffiffiffiffi
k1

p
xÞðc3ðuÞe

ffiffiffiffi
k2

p
y

þ c4ðuÞe−
ffiffiffiffi
k2

p
yÞ; k1 þ k2 þ

1

κβ
¼ 0: ðD9Þ

To conclude, by adding a solution of (D8), H, to any

solution of (D2), Hð0Þ
E , we obtain a vacuum solution to

quadratic gravity, Hð0Þ ¼ Hð0Þ
E þH.

In contrast with the four-dimensional case, in higher
dimensions the equation (D6) is nontrivial. An explicit
solution of (D3) and (D6) is, for instance,

W3 ¼ ðαðuÞ sin x3 þ βðuÞ cos x3Þex4 ;
W4 ¼ ðγðuÞ sin x3 þ δðuÞ cos x3Þex4 ;
F ¼ FðuÞ; ðD10Þ

where α, β, γ, δ, F are arbitrary functions of u and all
other Wm vanish. If moreover δ ¼ −α and γ ¼ β, then the
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Ricci-flat condition (D2) simplifies to the Laplace equation
ΔHð0Þ ¼ 0 for Hð0Þ.
The metric (30), satisfying (D1), (D3) and (D10)

is thus TNS in any dimension. To find a solution to
quadratic gravity one can proceed similarly as in four
dimensions.

2. Examples with a nonvanishing Ricci scalar

So far we have studied cases with vanishing Ricci
scalar. In this section, using Propositions 9 and 13, we
construct examples of Weyl type III TNS metrics with
negative Ricci scalar. As a background metric gUK we use a
warp product of any of the above-mentioned Ricci-flat VSI
metrics satisfying F0 ¼ 0 and one extra flat dimension
(20). The Ricci scalar of gUK is R̄ ¼ dðd − 1Þλ. The
d’Alembert operators of the warped and seed metric are
related by

□̄f ¼ −λz2ð□̃f þ ∂z∂zfÞ þ ðd − 2Þλz∂zf: ðD11Þ

Choosing a parallelly propagated frame

l̄adxa ¼ du;

n̄adxa ¼
1

−λz2

�
drþ

�
H −

r2

2z2

�
duþWidxi −

r
z
dz

�
;

m̄ðiÞ
a dxa ¼ 1ffiffiffiffiffiffiffiffiffiffi

−λz2
p dxi;

m̄ðzÞ
a dxa ¼ 1ffiffiffiffiffiffiffiffiffiffi

−λz2
p

�
dzþ r

z
du

�
; ðD12Þ

a straightforward calculation shows that τ̄iτ̄i ¼ −λ,
L̄1i ¼ τ̄i and τ̄iδ̄i ¼ −λðz∇̄z þ r∇̄rÞ. Hence, the Kerr–
Schild transformation (29) with ladxa ¼ du and gUK being
a warp product (20) of a universal Weyl type III VSI metric
(30), thus obeying (D1)–(D3), and (D6), is a Weyl type III
TNS metric with R ¼ dðd − 1Þλ. For f, ∂rf ¼ 0, the
operator D defined in (33) reduces to

Df ¼ −λz2Δf þ ðd − 6Þλz∂zf þ 2ðd − 3Þλf; ðD13Þ

where Δ ¼ Δ̃þ ∂z∂z.
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