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In this study, we found a new traversable wormhole solution in the framework of a bumblebee gravity
model. With these types of models, the Lorentz symmetry violation arises from the dynamics of a
bumblebee vector field that is nonminimally coupled with gravity. To this end, we checked the wormhole’s
flare-out and energy (null, weak, and strong) conditions. We then studied the deflection angle of light in the
weak limit approximation using the Gibbons-Werner method. In particular, we show that the bumblebee
gravity effect leads to a nontrivial global topology of the wormhole spacetime. By using the Gauss-Bonnet
theorem (GBT), it is shown that the obtained non-asymptotically flat wormhole solution yields a
topological term in the deflection angle of light. This term is proportional to the coupling constant, but
independent from the impact factor parameter. Significantly, we showed that the bumblebee wormhole
solutions, under specific conditions, support the normal matter wormhole geometries.
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I. INTRODUCTION

The search for a theory of wormholes through Einstein’s
general theory of relativity goes back to 1916 with the
famous papers of Flamm [1]. The simplest possible solution
to Einstein’s field equations is the Schwarzschild metric [2],
which describes the gravitational field around a spherically
symmetric static mass. If the mass (or its density) is
sufficiently high, the solution describes a black hole—the
Schwarzschild black hole. Flamm realized that Einstein’s
equations also allow a second solution, which is presently
known as a “white hole.” These two solutions, describing
two different regions of (flat) spacetime, are connected by a
“spacetime tube.” This tube does not define where those
regions of spacetime might be in the real world; the black
hole’s “entrance” and white hole’s “exit” could exist in
different portions of the same universe or in entirely different
universes. In 1935, Einstein and Rosen [3] further explored
the theory of interuniverse connections. In fact, their main
aim was to try to understand the fundamental charged
particles (protons, electrons, etc.) in terms of spacetime
tubes penetrated by lines of electromagnetic force. These
spacetime passageways were named “Einstein-Rosen
Bridges” by Wheeler, who would later call them wormholes.
It is worth noting that Wheeler [4] also coined the term
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“black hole.” Traversable wormholes have no horizon and
allow two-way traveling [5] by connecting two different
regions of spacetime in a Lorentzian geometry. Interest in
traversable wormhole gained momentum following the
paper of Morris, Thorne, and Yurtsever (MTY) [6] as shown
in Fig. 1. With a traversable wormhole, an interstellar or
interuniverse journey is possible [7,8]. However, to con-
struct such a traversable wormhole, one requires an exotic
matter with a negative energy density and a large negative
pressure, which should have a higher value than the energy
density. Meanwhile, the Casimir effect [9] is a way of
producing negative energy density. MTY also proved that
traversable wormholes could be stabilized using the Casimir
effect. Toward this end, placing two sufficiently charged
superconducting spheres at the traversable wormhole
mouths is enough. On the other hand, in 2011, Kanti and
Kleihaus [10] showed that it might be possible to construct a
traversable wormhole using normal matter by resorting to a
form of string theory.

In the literature, many authors have intensively studied
various aspects of traversable wormhole geometries within
different modified gravitational theories [11-60]. Among
them, the bumblebee gravity model has dynamically
violated Lorentz symmetry in terms of charge conjugation,
parity transformation, and time reversal. The model, with
its defined bumblebee vector field, can also feature rotation
and boost [61-66]. In fact, bumblebee gravity was first
used by Kostelecky and Samuel in 1989 [67,68] as a simple
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FIG. 1. Traversable wormhole.

model for investigating the consequences of spontaneous
Lorentz violation.

The bumblebee mechanism arose in the context of string
theory and lead to a spontaneous breaking of Lorentz
symmetry by tensor-valued fields acquiring vacuum expect-
ation values [65]. The forcefulness of the bumblebee vector
field on the gravitational field has motivated us to construct
traversable wormholes. Very recently, a Schwarzschild-like
bumblebee black hole solution has been obtained [69]. From
the perspective of string theory and loop quantum gravity
theory, Lorentz symmetry breaking (LSB) is an interesting
idea for exploring the tracks of the quantum gravity at low
energy levels. LSB has been extensively studied in the
literature, e.g., see [70-75] and references therein.

The main aim of this paper is to construct an exact
solution of a traversable wormhole in the bumblebee
gravity field, where in Finstein’s field equations are
influenced by spontaneous breaking of Lorentz symmetry.
We sought to compute the weak deflection angle of the
obtained bumblebee wormhole. To this end, we employed
the Gibbons-Werner method (GWM) [76]. In this method,
the deflection angle, for the weak lensing limit, is calcu-
lated by the Gauss-Bonnet theorem (GBT), defined by the
background optical geometry. It is important to highlight
that non-singular domains are considered to be outside of
the light ray, which means that the GBT has a global impact
[76-79]. Wormholes have been widely studied by many
authors as have black holes; light deflection has been of
particular interest [80-99]. Another purpose of this paper is

to discover a traversable wormhole using normal matter,
which satisfies energy and flare-out conditions in the
bumblebee gravity. In the following sections, we shall
explain how these goals are achieved.

This paper is organized as follows: In Sec. II, we briefly
outline bumblebee gravity and its corresponding Einstein’s
field equations. In Sec. III, we present LSB wormhole
solutions and study the flare-out conditions. We check the
energy conditions of the bumblebee wormhole in Sec. IV.
In the framework of the GWM, Sec. V is devoted to the
study of the deflection angle of light in the weak limit
approximation. Our conclusions and remarks follow
in Sec. VL

II. BUMBLEBEE GRAVITY

The action of the bumblebee gravity where the Lorentz
violation arises from the dynamics of a single vector field,
namely bumblebee field B, with a real coupling constant &
(with mass dimension —1) is given by

1 1 1
Sp= / d*x\/=g [§R+§5BﬂBURW—ZBWBW —V(B")

+ / d4xL:M,

where the bumblebee field strength (B,,) and the potential
(V) are defined as follows

(2.1)

B, =0,B,—0,B,,

4 H H

(2.2)

V=V(B'B, +d). (2.3)

where a? is a positive real constant [69]. Vacuum expect-
ation value of the bumblebee gravitational field is governed
by the following condition

V(B*B, £+ a*) = 0.
This automatically implies that

B'B, + a’>=0, (2.4)
in which the signs (4) potentially determines the field type
of b,: timelike or spacelike. Solutions of Eq. (2.4) are
conditional on the field B* that acquires a non-null vacuum
expectation value:

(B*) = Db*. (2.3)
In this setup, we use null torsion and null cosmological
constant, so that there is a non-null vector »# which satisfies
b"b, = Fa? = a = constant. Thus, the nonzero vector
background b*, which is a coefficient for Lorentz and
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CPT violation, spontaneously breaks the U(l) sym-
metry [100].

Bumblebee modified Einstein field equations [69] are
governed by

G

w = kT

Hv

(2.6)
where the total energy-momentum tensor is given by [100]

T, = Tf[,f + Tf,,,

(2.7)
in which T% is the matter field and the bumblebee energy-
momentum tensor Tff,, reads

1
T8,=-B,,B ——B,sB*g,,—Vg, +2V'B,B,

4
5 1 app a a
2B B’R,39,, — B,B“R,, — B,B°R,,

K

+

1 1 1
+§V(1V#(B"BD) —Ev2 (B,B,) —2g}wvavﬁ(B"Bﬂ)] )
(2.8)

Thus, the modified Einstein field equations (2.6) with the
bumblebee field can be expressed as follows [69]

1
R, —81G {T{fg +Th = 5 9u (T + TB)] =0, (29)

which has the following explicit form:

. 1
Eisein =R, —« (Tﬁ’,’, - EgWTM) - kTh, —2kg,,V

¢
+ KBaBag;wV/ - Zg/wvz (BaBa)

- ggﬂuvavﬁ(B“Bﬂ) =0, (2.10)

where T™ = ¢*T and x = 8x. The prime denotes a
derivative with respect to r. It can be easily checked that
when the both bumblebee field B, and potential V(B,) are
vanished, the original general relativity field equations are
recovered.

Here, we focus on the vacuum solutions induced by the
LSB, which is possible when the bumblebee field B,
remains frozen in its vacuum expectation value. Namely,
we consider the case of Eq. (2.5), so that we have a
vanishing potential: V = V' = 0 [101]. Thus, the bumble-
bee field strength (2.2) becomes

b, =0,b

w b, —0,b (2.11)

e

III. EXACT SOLUTION OF BUMBLEBEE
WORMHOLE

In this section, we consider a static and a spherically
symmetric traversable wormhole solution [5] without any
tidal force

dr?
W(r)

r

ds? = —di® + 1 + r2dO* + r’sin’0dg®,  (3.1)

where W(r) is the shape function of the wormhole.
Furthermore, we set the bumblebee vector as follows

a
1 =¥0

r

7090 . (3.2)

The bumblebee modified Einstein’s field equations with
the isotropic matter (7#,)™ = (—p, p, p, p) [51]. We shall
use the equation of state: p = wp, in which p denotes the
energy density of the matter field, p stands for the pressure,
and w is the dimensionless R number. Thus, Eq. (2.10)
yields the following three Einstein’s field equations in the
bumblebee gravity theory for the wormhole metric (3.1)
(the details are tabulated in the Appendix):

Esein — —xpr3 —3iwpr® + EarW' — EaW (r) =0, (3.3)
Eimstein — 2, W' —2W(r) + kwpr? — kpr?
+ 3éarW' = 3&aW(r) =0, (3.4)
EBsein — eyprd — kprd + 2EaW(r) — 2Ear
+rW +W(r)=0. (3.5)

From Eq. (3.3), one can obtain the density as follows
(see Appendix)

rW' — W(r)]

(U 3w) 30

p:

in which [ = &a. Solving Eq. (3.5) with Eq. (3.6), we find
the shape function as follows

Ir r ro\ S
0 0 wi=I+3w+
W(r) + < ) ,

= — 3.7
[+1 I+1\r (37)

where W(ry) = rq # 0: throat radius. Inserting Eq. (3.7)
into Eq. (3.4), we get a condition on @ as the following

[+1
T 38
Y513 (38)

Thus, the shape function and density become
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W) =y (lr + 7 <rro> ! > (3.9)
50+3 21

= (PP ry)T. 3.10
p k(31 + 1)ry? (o)t ( )

It can be easily checked that as [ >0=>w-o -1
W(r) - r’O—; and p 4%2. On the other hand, one can

easily see that g, diverges at r = r(. Furthermore, Eq. (3.9)
is nonasymptotically flat when (r — oo):

1+55
im Y L ()
r—co f [+1 roo\r

(3.11)

From the above equation, we infer that the first term is
independent of r, while the second term is vanished if
1+55 > 0. Non-asymptotically flatness reflects the
non-trivial topological structure (arising from the LSB
effects) of the wormhole. Such solutions are similar to
the spacetimes whose having topological defects and
dilaton fields [102—-104]. However, in principle, the sol-
ution obtained should be matched to an exterior vacuum
solution (for details, a reader may refer to [51]).
The Ricci scalar results in

3W'r2 = 2W(r)W' + 3W(r)?

R = 3.12
2’,.6 ( )
At r = ry, Eq. (3.12) results in:
1817 + 241+ 12
Iy =225 (3.13)
ro (3l + 1)
In a similar way, the Kretschmann scalar:
212 _ 2 ! 2
K—o" w rW(r6)W +3W(r) (a4
r
yields
3617 + 241 + 12
= 3.15
|r0 r04(3l—|— 1)2 ( )

It is clear from Eqgs. (3.13) and (3.15) that singularity arises
if | =—-1
3

A. Flare-out conditions:

Traversability of a wormhole is determined by the flare-
out conditions [5]. We can easily visualize the spatial
geometry of the wormhole using an embedding diagram.
The metric with ¢ = f, (constant) reduces to the following
form at the equatorial plane 6 =7 : [105]

d 2
ds? = 17’;4/“) + rzd(pz.

r

(3.16)

Then, we embed the wormhole geometry into a
Euclidean 3-space:

do* = dz* + dr* + r*dg?, (3.17)
which can be rewritten as follows
de® = (1 + 7?)dr* + r*dy?, (3.18)
where
1
=t —. (3.19)
Wiy~ |

We can now calculate the proper radial distance, which
ought to be real and finite:

rd
d(r) = / A (3.20)
o 4 /1 — M
We deduce from the above equation that
TPLAGIY (3.21)

It is worth noting that there is a coordinate singularity at
the throat of the wormhole. Thus, the flare-out conditions
[5,17] yield:

W(r)—r<0, (3.22)
and
W —W(r) <O0. (3.23)
Thus, we have
31+3
= 3.24
31+ 1 ( )

For the condition (3.24), it is depicted in Fig. 2 that the
flare-out conditions are satisfied for the negative [ values.

-10 -5 5 10

A

FIG. 2. W’ versus [ graph. The flare-out conditions are satisfied
for the negative values of 1.
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p+p
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FIG. 3. Null energy condition p + P > 0 is satisfied for ry = 1,
|=-2and k= 1.

IV. ENERGY CONDITIONS

Following the monograph of [106], in this section, we
shall analyze the energy conditions for the bumblebee
wormbhole described with Egs. (3.1) and (3.9).

A. Null energy condition:

The null energy condition is expressed in terms of energy
density and pressure as follows

p+p20, (4.1)
which yields
(4l -+ 2)7'0 ro %
=— - (= > 0. 4.2
P (Bl+ )xr* \ r - (42)

At =— % the null energy condition (4.2) becomes zero. It
is clear from Fig. 3 that the null energy condition for the
bumblebee wormhole is satisfied. Moreover, we depict an
interactive plot in [107] for the null energy condition of
the bumblebee wormhole in order to present the effect of
parameter [.

B. Weak energy condition

Weak energy condition is given by

p =0, p+p=0, (4.3)
which gives the following result for the bumblebee

wormhole:

(4.4)

o r0(51+3) ro %>
- Bl+Dxr \ r

In Fig. 4, we show that weak energy condition for the
bumblebee wormhole is satisfied when the physical param-
eters are fixed to ry = 1,/ = =2, and k = 1. One can reach

0.2f

Il Il Il Il r
2 4 6 8 10

FIG. 4. The plot of energy density p for the values of parameters
ro=1,1=-2,and «x = 1.

to the interactive plot of the weak energy condition for the
bumblebee wormhole with the link given in [107]. By this
way, the effect of / on the weak energy condition can be
monitored.

C. Strong energy condition

Strong energy condition is governed by

p+3p =0, p+p=0, (4.5)
which yields the following expression for the wormhole of

bumblebee gravity:

L3, 2ol @%ﬁm
P p_(31+1)1<r3 r -

From Fig. 5, it can be seen that strong energy condition
for the bumblebee wormhole is satisfied for the parameters
of ro=1, 1= -2, and x = 1. To reach to the interactive
plot of the strong energy condition for the bumblebee
wormhole, one can follow the link given in [108].

(4.6)

3p+p
0.72
06L
05F
04f
03f
02f

01F

Il Il Il Il Il r
2 4 6 8 10

FIG. 5.
k=1.

The plot of p + 3P is satisfied for ry = 1, / = -2 and
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V. DEFLECTION OF LIGHT

In this section, we shall explore the effect of bumblebee
gravity in the gravitational lensing of the spacetime of the
wormhole metric described by Egs. (3.1) and (3.7). For
simplicity, the Lagrangian is chosen in the equatorial plane.
Thus, we get

(14 10)i? i
1 (m)1+5w1+31+3w+1 + rz(pz'

wi—I+3w+1
There are two constants of motion (energy and angular
momentum) for a massless particle, which are defined as
follows

2L = -2+

(5.1)

dt
E = KUY = —, 5.2
I 7 (5.2)

v _ 2 de
L = glch”U = rza, (53)

in which 4 denotes the affine parameter along the light ray.
Note that K# and ®* are the timelike and rotational Killing
vectors, respectively. One can define the impact parameter
of the light ray as

L do
_E_ >
b—E e (5.4)

From the above relations, one can find the following
differential equation for the light ray

dr\?2 r2 r
aNty - o 5.5
(w) B0 " 9B (35)
in which
(1+1)
B =y 50

One can solve this equation by introducing a new
variable, let us say u(¢), which is related with the radial

coordinate as r = m If we use the following identity:

B B 1 du
¢ do  uPde’

rdr

(5.7)

then in the large r limit, it is possible to recover the
following relation

d2
—Z+ﬁu:O.

i (5.8)

Furthermore, # = (1 4 [)~!, since in the weak limit we
have the following approximation: B(r) — 1 4+ las r — oo.
The solution of the last differential equation is given by

u(p) = A, sin(\/fp) + A; cos(v/Po).

When using the following initial conditions u(¢ = 0) =0
and u(p = /2) = 4, we find

u(p) = Si“(\b//?(”) <sin (‘/Zﬁ”> ) B

. pr
Moreover, one can use sin <\/_T

derives the light ray expression:

(5.9)

(5.10)

~1 and in sequel

b

sin(v/fBo)

This equation is important in computing the deflection
angle in the GBT. Next, let us find the wormhole optical
metric by letting ds?> = 0, which corresponds to

(5.11)

(14 1)dr?

Swi4314-3w4-1
1 - (Q)1+ Wil 3w T
”

dr’ = + r*dg?. (5.12)

It is also possible to write down the wormhole optical
metric in terms of new coordinates x“:

df? = hydxtdx? = d¢? + H2(¢)de?,  (5.13)
where
VI+id
¢ = i H=r. (514

’
Swi+314-3w+1
\/1 _— (m)]+ wi=I+3w+1
r

The Gaussian optical curvature (GOC) /C can be found to
be (see for details, [76])

1 [drd /dr\ dH dr\2d*H
K=—|—|=)—4+—=) —
H|d¢dr \d¢) dr d¢) dr?
__ (I4+E) [r\'"=
2P(1+ D\ r ’

where

(5.15)

Swli+3l+3w+1
= ) 5.16
wl—1+3w+1 ( )

[1]

Alternatively, one can approximate the above equation by
expanding in series around /. Thus, we get
2 rgllAn(2)(w+1) —w—1]

r 3w+ 1)

(5.17)

The key point in this method is that a nonsingular
domain outside the light ray, say .4, which is bounded by
0AR = y;, U Cg should be chosen. The GBT in the context
of the optical geometry is expressed as follows
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/ Kdo + f kdr + Zu/k =2my(Ag), (5.18)
Ag 0.4z T

in which « gives the geodesic curvature, do is the optical
surface element, and y, stands for the exterior angle at
the k™ vertex. We set the Euler characteristic number to
one, i.e., y(Ag) = 1. Thus, the geodesic curvature is
defined by [76]

k= h(V,7.7). (5.19)
where the unit speed condition is selected as h(y,y) = 1.
For a very large radial coordinate R — oo, our two jump

angles (at the source S, and observer O), yield o +ws— 7z
[76]. Thus, the GBT simplifies to

Lo n+a
/ Kdo + % xdr = / Kdo + / dp = x.
Ag Cr Ay 0

(5.20)

By definition, the geodesic curvature for y,, is set to zero.
Then, we are left with a contribution from the curve Cy,
which is located at a distance R from the wormhole center
in the equatorial plane. In short, we need to compute the
following:

K(Cp) :‘VCRCR‘. (5.21)

In component notation, the radial part can be written as

(Ve, Cr)” = Co(9,Ch) + T (ChP. (5.22)

With the help of the unit speed condition, one can
calculate the Christoffel symbols that are related to our
optical metric in the large coordinate radius R and gets

Jim k(Cg) = lim [V¢, Crl,
1
- ——.
V1+IR

To understand the meaning of the above equation, we
rewrite the optical metric for a constant R. Thus, we have

(5.23)

lim dr — Rdg. (5.24)

Combining the last two equations together, we obtain

|
do.
Jirl?

This equation implies that our wormhole geometry is
nonasymptotically flat and correspondingly, the optical
metric is not asymptotically Euclidean. Using this result,
we can express the deflection angle as follows

K(Cg)dt = (5.25)

(\/1+l—17r—\/1+/ Kdo, (5.26)

sm(

\/—)

where the light ray r(¢) = (b is now interpreted as

sm( \/_
the impact parameter [85]) can be approximated to the
closest distance that is obtained from the wormhole in the
first order approximation. The first term of Eq. (5.26) can
be approximated as

In I
(\/1+l—1)ﬂ:§—?ﬂ—|—~ (5.27)
The surface can also be approximated to
do = Vhdede ~ /1 + Irdrde. (5.28)
Finally, the total deflection angle is found to be
l 148
Gt / / [ d+8) (r(’) ]drdga. (5.29)
r
Evaluating the last integral, we find
Iz (1+Dr (ry\ HET(HE)
a~— V70 =, 5.30
e R (b rEE) (5.30)

with the condition of 1+ = > 0. Performing a series
expansion, we can write the last equation as follows

- Ix ”—,,(2) 5rrjl JTI’OIW ﬂr%lln(%)
2 42T 8K b2 b?
_arglln2 27rr%lw In2 2zr§lwin()
! = NCR )

Note that for vanishing bumblebee gravity, [ =0, it
reduces to the original Einstein’s gravity and whence the

deflection angle becomes & ~ W’ which is in agreement

with the Ellis wormhole [81]. On the other hand, i
1+2<0, we can only incorporate the finite distance
corrections in the deflection angle of light.

It is worthwhile to reemphasize that due to the LSB
effect, there are additional terms seen in the left-hand side
of Eq. (3.11) that yields a nonasymptotically flat spacetime.
Although the first term of Eq. (3.11) is independent from
the radial coordinate, however the second term should be
vanished when r — oo, which is achieved by the condition
of 1+%+_13 > (. Otherwise, the second term blows up,
then the GBT becomes problematic. In fact, following
paper of Ishihara et al. [92], one can only apply a finite
correction to the deflection of light. Furthermore, there is a
reference paper [85] in which a similar work was carried
out for a different spacetime. To conclude, in a certain
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framework, the GBT can be applied to the spacetimes in the
presence of LSB effects.

VI. CONCLUSION

We searched for a way to construct a traversable worm-
hole solution, one which satisfies the energy conditions to
become the most interesting application of the general
relativity theory. In finding some realistic matter source that
keeps the wormhole throat open such that interstellar or
interuniverse travel might become possible, the modified
theories of gravity are thought to be new remedy. We have,
therefore, considered the bumblebee gravity model to have
such a traversable wormhole solution that satisfies the null,
weak, and strong energy conditions. In this paper, we first
derived the modified Einstein’s field equations for the
Lorentzian wormhole in the bumblebee gravitational field.
Next, using the associated field equations with bumblebee
gravity, we have obtained the new traversable wormhole
solution with the exact shape function (3.9) and with
W= - % Then, physical features of the obtained worm-
hole were studied in detail. Singularity of the solution was
analyzed by computing the Ricci and Kretschmann scalars.
It is seen that the singularity appears when [ = —%.
Afterwards, we have checked the flare-out conditions
W’ < 1 for the obtained bumblebee wormhole solution.
We have shown that the flare-out conditions are satisfied if
343 < 1 where it is plotted in Fig. 2.

In Sec. 1V, we checked the energy conditions (null,
weak, and strong) for the bumblebee wormhole and
rendered them graphically. In Figs. 3-5, we analyzed the
three energy conditions of the bumblebee wormhole for
the values of ry =1, [ = -2 and x = 1. We noted that
all energy conditions for the bumblebee wormhole were
satisfied when ry = 1, / = =2 and x = 1. We also plotted
the energy conditions manipulated as interactive in
[107-109].

Another important point is that under the LSB effect,
the global topology of the wormhole spacetime changes.

The limit of @ at spatial infinity was found to be

m — 1%1’ which shows that our wormhole solution
was non-asymptotically flat. The deflection of light was
computed by applying the GBT to the bumblebee worm-
hole expressed in the optical geometry. It was seen that
bumblebee parameter affects the geodesic optical curva-
ture, modifying the final result for the deflection angle. Due
to the nontrivial global topology, we have shown that the
deflection of light is changed by 6& = Iz/2, which is purely
a topological term and independent of the impact factor b.
In addition, we incorporated the bumblebee effects in the
total deflection angle by deriving the light ray equation,
which modifies the straight line approximation in the
domain of integration. In other words, the total deflection

angle not only depends on the geometry of the bumblebee

traversable wormhole (i.e., throat radius rg), but it varies
with the coupling constant /, and state parameter w. Finally,
in the case of [/ =0, we recovered the Ellis wormhole
deflection angle as being reported in the literature [81].

In short, the bumblebee wormhole that we constructed
satisfies the energy conditions for normal matter and flare-
out conditions near the throat. In the near future, we plan
to add new sources (scalar, electromagnetic etc.) to the
bumblebee gravity. In this manner, we wish to obtain
new spacetime solutions and analyze their physical fea-
tures [110].
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APPENDIX: ABOUT EINSTEIN FIELD
EQUATIONS OF THE BUMBLEBEE
WORMHOLE

The generic line-element of the static and a spherically
symmetric traversable wormhole can be expressed as
follows

ds? = —di* + e dr? + 12(d6* + sin® 0dg?), (A1)
which has following nonzero Ricci tensors:
2 /!
Ry ==, (A2)
/
-1
R, = 2% _— ru—. A3
% sin26 e(r) (A3)

Recall that the prime symbol denotes the derivative with
respect to variable r. Setting
b, = 10.b(r).0.0], (A4)

and making straightforward calculations, one can obtain the
following results from Eq. (2.10):

Eisein — (3¢ + l)prlce‘“’(’) =2b(r)b'é —y(r)ér, (AS)
Enstin — porc(w — 1)e*") + 4e>(y — 6b(r)b
+ 12b(r)2VE = 3y (r)é, (A6)

Eigrbswin = Ej/l)l(/s}tein _ (2+p1<(a) _ 1)r2)e4v(r) 4 2(”// _ 1)e2y(r)
=2(=3b(r)*>Vr+3b(r)b'r+b(r)?)é+ ry(r)é,
(A7)
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where

w(r)=[3b(r)2(V)?=b(r)>V" =5b(r)V'b' +b(r)b" + (b')?]r. (A8)

One can immediately check that for the traversable wormhole metric (3.1) with the bumblebee vector (3.2):

u(r) = —%m <1 - @) (A9)

b(r) =

Wy

a

(A10)

r

Eq. (A8) yields y(r) = 0. For this reason, in the obtained Einstein field equations (3.3)—(3.5), there are not any W’? and

W" terms.
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