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We have found the quasinormal mode (QNM) frequencies of a class of static spherically symmetric
spacetimes having a smeared matter distribution, parametrized by Θ, an inherent length scale. Here, our
main focus is on the QNMs for the odd parity perturbation in this background geometry. The results
presented here for diffused mass distribution reveal significant changes in the QNM spectrum. This could
be relevant for future generation (cosmological) observations, specifically to distinguish the signals of
gravitational waves from a nonsingular source in contrast to a singular geometry. We also provide
numerical estimates for the Θ-corrected QNM spectrum applicable to typical globular clusterlike spherical
galaxies having a Gaussian spread in their mass distribution. We find that the Θ correction to the
gravitational waves signal due to smeared distribution is accessible to present day observational precision.
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I. INTRODUCTION

The recent detection of gravitational waves (GWs) from
binary black hole (BH) mergers and neutron stars by the
LIGO and Virgo Collaborations [1–4], has provided us with
a new window to study and understand physical processes
at extreme conditions, where the role of gravity by far
dominates the other known forms of interactions in nature.
Since the metric to describe the gravitational collapse of a
binary merger is unknown we fall back to numerical
relativity simulations from which we gain a fairly reason-
able understanding of such realistic phenomena. For the
present work we are assuming that these collapse events are
generally consistent with the theoretical predictions of
general relativity [5], although later works [6] have shown
that there are significant deviations. These observations
now firmly suggest studying the possibility of having
alternative sources that can account for such deviations
in GW characteristic frequencies. Although an ultracom-
pact system of binaries is probably too exotic a system
for producing strong GW signal to be detected at large

distances, more common objects nevertheless can also
produce GWs with frequencies that could be highly
relevant for the next generation space-based GW detectors.
The popularly known GWs as observed by the LIGO/

Virgo Collaboration are actually the quasinormal modes
(QNMs) [7–10]. The waveforms of these GW signals
consist of three parts: (1) inspiral, (2) merger, and (3) ring
down. The ring-down phase shows characteristic frequen-
cies of oscillation corresponding to damped resonances of
the remnant BH. These damped oscillations or QNMs
encode information about the BH source. Applying the
linear perturbation results, the ring-down portion of the
signal may be used to discriminate between BHs and other
possible sources. The damped modes in turn possess a
complex frequency whose real part corresponds to the
oscillation frequency and whose imaginary part gives the
lifetime. It is important to note that the QNM spectrum of a
BH is completely characterized by the BH parameters, and
does not depend on the initial conditions of the perturbations.
In this work our aim is to investigate the QNM

frequencies for a spherically symmetric geometry having
a smeared matter source. An interesting approach was
pioneered by Nicolini, Smailagic, and Spallucci [11]. These
authors introduced a (spherically symmetric) smeared
source in the matter sector and solved the Einstein equation
thereby obtaining a generalized form of Schwarzschild
(black hole) metric that successfully cured the black hole
singularity problem. It was also tentatively proposed to
identify the smearing scale with the Planck length so that
the metric can play a role in the context of quantum gravity.
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(For an exhaustive review see [12].) Various aspects of this
generalized black hole have been studied: its thermody-
namics [13] and the effect of the smearing on AdS=CFT
correspondence [14], among others. As mentioned above,
the conventional Dirac delta source term for matter is
replaced by a new type of matter source with the energy
density given by a Gaussian distribution function. The
resulting geometry will be helpful to understand the dynam-
ics of objects, which have approximately a Gaussian mass
profile. From an astrophysical point of view, such aGaussian
profile can be applied to study the dynamics of GWs for
elliptical galaxies (e.g., globular clusters having densematter
core in the center [15]). Besides that, this distribution is also
relevant for the dark matter profiles within galaxies (e.g.,
Press-Schechter mass distribution that is extensively used in
the context of a dark matter distribution profile [16]).
Therefore, the mathematical formulation of this study with
the smeared matter source will be particularly interesting
for astrophysical objects, where the length scales would be
OðLyÞ ð1 Ly ∼ 3 × 10−7 MpcÞ. In this paper, we can
tentatively identify this length scale with Θ, the smearing
parameter.
Let us point out the proper perspective of our work in

view of the recent works of Liang [17,18] who has also
made an exhaustive study of the smearing effect on QNM.
The results of Liang are valid up to third order in WKB. On
the other hand we have used the framework of [19] yielding
results valid up to sixth order in WKB. We explicitly
demonstrate that there are appreciable modifications when
the latter are taken in to account.
The organization of our paper is as follows: In Sec. II we

have briefly reviewed the basic aspects of QNMs and an
elementary method to obtain them for static spherically
symmetric Schwarzschild spacetime. Section III deals with
the gravitational perturbation of a spherically symmetric
quantum gravity (QG)-inspired spacetime. Here the analy-
sis is made in four segments. In Sec. III A we have
computed the equations for the odd parity gravitational
perturbation of this QG-inspired spacetime. Then in
Secs. III B and III C we have obtained the QNM frequen-
cies for this spacetime using the Ferrari-Mashoon formula
[20] and also the WKB sixth order formula [19]. Here we
discuss our results for the new QNMs by comparing them
with the standard Schwarzschild QNMs and also with the
QNMs for this QG-induced spacetime, obtained earlier
with the third order WKB method. Finally, in Sec. III D we
discuss the relevance of the results from observational
perspectives and in Sec. IV we conclude.

II. QNM AND DETERMINATION OF THE QNM
SPECTRUM: A BRIEF REVIEW

A. Quasinormal mode

A black hole posses characteristic frequencies which
arise from perturbations in its spacetime geometry. Such

perturbations of the BH geometry can originate in many
different ways. For example, a certain mass falling along the
geodesic of the Schwarzschild spacetime can be considered
as a perturbation on the background Schwarzschild geom-
etry. In the presence of such a distortion of the BH
equilibrium, the BH system undergoes damped oscillations
with complex frequencies. These frequencies are called
quasinormal modes (QNMs). Here the term “quasi” is
referring to the fact that the frequencies are complex; thus,
they show damping. While the conventional normal modes
of compact classical linear oscillating systems are non-
dissipative, for black hole QNMs [7] the dissipations cannot
be neglected, as the event horizon imposes a necessary loss of
energy. The real part of this QNM frequency corresponds to
the oscillation frequency, whereas the imaginary part corre-
sponds to the damping rate. From an astrophysical point of
view, QNMs dominate an exponentially decaying ringdown
phase at intermediate times in the GW signal from a
perturbed BH [9]. Moreover, they also govern the ringdown
phase of gravitational systems produced by the merger of a
pair of black holes [21,22]. Since these QNMs are indepen-
dent of the initial perturbation, we can infer crucial infor-
mation regarding the fingerprints (e.g., mass, charge, and
angular momentum of a BH [23]) of its source, the BH
geometry.
Let us briefly discuss the equations governing the

perturbation around a stationary spherically symmetric
geometry, i.e., Schwarzschild spacetime. This spacetime
is represented by the metric around a fixed spherically
symmetric center-of-mass M

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2 ð1Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2.
Now we consider a small nonspherical perturbation hμν

such that the new perturbed metric is

gμν ¼ ḡμν þ hμν where;
jhμνj
jḡμνj

≪ 1: ð2Þ

Here we denote the static generic background metric by
ḡμν. The inverse metric is then

gμν ¼ ḡμν − hμν þOðh2Þ: ð3Þ

The perturbed Christoffel symbols are given by

Γα
μν ¼ Γ̄α

μν þ
1

2
ḡασðhσν;μ þ hσμ;ν − hμν;σ − 2hσκΓ̄κ

μνÞ þOðh2Þ
≃ Γ̄α

μν þ δΓα
μν; ð4Þ

where the Γ̄ is the Christoffel symbol for the unperturbed
metric ḡμν and the small perturbation δΓ’s are given by
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δΓα
μν ¼

ḡαβ

2
ð∇νhμβ þ∇μhνβ −∇βhμνÞ: ð5Þ

Using the definition of covariant derivative ∇μ (with ∇μ

being with respect to ḡμν) for the perturbed Christoffel
symbol given in Eq. (5), the vacuum Einstein field equation
can be put into a more convenient form as

∇βδΓ
β
μν −∇νδΓ

β
μβ ¼ 0: ð6Þ

Finally, putting the expression for δΓ into Eq. (6) and
employing gauge freedom, we get the second order differ-
ential equation for hμν,

□hμν − 2R̄ρ
σμνhσρ ¼ 0 ð7Þ

in the TT (transverse traceless) gauge, where

∇μhμν ¼ 0 and hμμ ¼ ḡμνhμν ¼ h ¼ 0: ð8Þ

Now a generic perturbation hμν of the spherically
symmetric metric can be broken up into odd (hoddμν ) and
even (hevenμν ) parity components according to their trans-
formation properties under parity, i.e., ðθ;ϕÞ→ðπ−θ;πþϕÞ
[24–27]. Here, we will focus on the odd parity perturba-
tions hoddμν , also known as the axial perturbations. (We will
comment about the even-parity perturbations towards the
end.) Its components are simplified by using the residual
freedom to choose a proper gauge (e.g., see [25]) which
eliminates all the highest derivatives in the angles ðθ;ϕÞ.
Finally, the true gauge-invariant axial perturbations are
described by the functions h0ðt; rÞ and h1ðt; rÞ.
The gravitational odd parity perturbations for this spheri-

cally symmetric spacetime are now described by the
Regge-Wheeler equation

∂2Qðt; rÞ
∂t2 −

∂2Qðt; rÞ
∂r2⋆ þ VaxialðrÞQðt; rÞ ¼ 0 ð9Þ

where Qðt; rÞ is the gauge-invariant odd parity variable,
also known as Regge-Wheeler variable, and it is defined as

Qðt; rÞ ¼
�
1 −

2M
r

�
h1ðt; rÞ

r
ð10Þ

with h1ðt; rÞ being an unknown function from the per-
turbation1 and the so-called tortoise coordinate (r⋆) is
defined as

dr⋆
dr

¼ 1

1 − 2M
r

: ð11Þ

Integrating Eq. (11) one obtains for r⋆

r⋆ ¼ rþ 2M ln

�
r
2M

− 1

�
: ð12Þ

Since r⋆ → ∞ as r → ∞ and r⋆ → −∞ as r → 2M, so the
tortoise coordinate will be helpful in this context for it does
not suffer from coordinate singularity near the event
horizon at r ¼ 2M (since r⋆ is pushed to −∞ at horizon).
Now, extracting the time dependence in Qðt; rÞ as

Qðt; rÞ ∼ eiωtQðrÞ, Eq. (9) takes the form

∂2QðrÞ
∂r2⋆ þ ðω2 − VaxialðrÞÞQðrÞ ¼ 0: ð13Þ

The function VaxialðrÞ is given by

VaxialðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
: ð14Þ

The solutions of Eq. (13) define the QNMs of the black
hole with QNM mode frequencies ω. Below we describe
how to compute this frequency.

B. Method for computing the QNM spectrum
to sixth order in WKB approximation

There are various methods to determine the QNM
spectrum of a black hole spacetime. Note that for
Schwarzschild and Kerr black holes, there exist the method
of Leaver [28], who constructed exact eigensolutions of the
radiative boundary-value problem of Chandrasekhar. Later,
Detweiler [29] developed a stable numerical method in
order to determine the quasinormal frequencies with an
arbitrary precision. However, to the best of our knowledge,
no such stable numerical method exists for the QG-inspired
spherically symmetric BH spacetime [12], which is capable
of evaluating the QNMs with arbitrary precision. Therefore,
to find the QNMs we need to address the problem using
approximations. One of the easiest semianalytical ways to
determine the QNMs in the frequency domain is the
approximation of the effective potential by the Pöschel-
Teller potential. This method was suggested by Ferrari and
Mashoon [20].2

In this approach [20], the main problem of finding the
QNMs ω for VaxialðrÞ is reduced to finding the bound state
of an inverse potential given by the profile

VPTðr⋆Þ ¼
V0

cosh2αðr⋆ − r̃⋆Þ
: ð15Þ

This is the Pöschel-Teller potential, where r̃⋆ is the point of
extremum of the potential. Here V0 ¼ VPTðr̃⋆Þ is the height

1The other component h0ðt; rÞ can be removed by using the
δRθϕ components of Eq. (6) (∵δRμν¼∇βδΓ

β
μν−∇νδΓ

β
μβ¼0) [25]. 2For details and review of the other methods see, e.g., [7,8].
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and α ¼ 1
2V0

d2VPT
dr2⋆

jr⋆¼r̃⋆ is the curvature of the potential at

the extremum. The bound state frequenciesΩðV0; αÞ of this
potential are exactly known to be

ΩðV0; αÞ ¼ α

�
−
�
nþ 1

2

�
þ
�
1

4
þ V0

α2

�
1=2

�
: ð16Þ

The proper QNM frequencies of the original potential in
Eq. (14) are then obtained from Eq. (16) by the parameter
replacement ðV0; αÞ → ðV0; iαÞ [20], and are given by the
expression

ω ¼ ΩðiαÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
V0 −

α2

4

�s
− iα

�
nþ 1

2

�
: ð17Þ

However, this approach is just the first order approxi-
mation of the standard WKB method. To obtain the QNMs
of more complicated potentials, the WKB method is a
convenient procedure which offers good accuracy. This
method was originally suggested in [30], and developed to
the third order beyond the eikonal approximation in [31]. It
should also be noted that there has been considerable
development in the accuracy in the Ferrari-Mashoon
procedure and results up to sixth order in WKB are
provided in [19] (see [32] for a usage of the sixth order
WKB formula to the scattering problem). Below we

provide the results of the sixth order WKB formula that
will be exploited subsequently.
In the WKBmethod, one starts with the Schrödinger-like

wave equation

Ψ00ðxÞ þ ðω2 − VðxÞÞΨðxÞ ¼ 0 ð18Þ

where the potential VðxÞ approaches a constant at x → �∞
and at some intermediate value x0, it rises to a maximum.
For the present problem we identify x≡ r⋆ and ΨðxÞ≡
Qðrðr⋆ÞÞ. This problem is now analogous to the quantum
mechanical scattering problem from the peak of a potential
barrier, where the turning points divide the potential into
three regions. The solutions in those regions are then
matched at the boundaries to obtain the energy spectrum.
However for the higher order WKB extension, it turns
out that an explicit match of the interior solutions to WKB
solutions in the exterior regions to the same order is not
necessary (see [32] for details). The result with the sixth
order WKB formula then has the form

ω2 ¼ V0 − i
ffiffiffiffiffiffiffiffiffi
−V2

p �
nþ 1

2

�
þ
X6
i¼2

Ai n ¼ 0; 1; 2;…

ð19Þ

where Ai’s represent the ith order correction in the WKB
formula, e.g.,

A2 ¼ ð−11V2
3 þ 9V2V4 − 30V2

3nþ 18V2V4n − 30V2
3n

2 þ 18V2V4n2Þ=ð144V2
2Þ ð20Þ

iA3ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p ¼ ð−155V4
3 þ 342V2V2

3V4 − 63V2
2V

2
4 − 156V2

2V3V5 þ 36V3
2V6 − 545V4

3n

þ 1134V2V2
3V4n − 177V2

2V
2
4n − 480V2

2V3V5nþ 96V3
2V6n − 705V4

3n
2

þ 1350V2V2
3V4n2 − 153V2

2V
2
4n

2 − 504V2
2V3V5n2 þ 72V3

2V6n2 − 470V4
3n

3

þ 900V2V2
3V4n3 − 102V2

2V
2
4n

3 − 336V2
2V3V5n3 þ 48V3

2V6n3Þ=ð6912V5
2Þ: ð21Þ

Other correction terms A4, A5, A6 are given in [19]. Here
V0ðr̃⋆Þ is the value of the effective potential in its maximum
(r ¼ r̃⋆) and Viðr̃⋆Þ, is the ith derivative of V with respect
to the tortoise coordinate in the maximum.

III. SPACETIME FOR A SMEARED (GAUSSIAN)
MATTER DISTRIBUTION

In this section, we consider the metric of a spherically
symmetric spacetime geometry with a Gaussian distributed
matter source (this kind of matter distribution, motivated by
a quantum gravity perspective, has an astrophysical interest
as well, as mentioned in Sec. I). Our aim is to compute the
QNM frequencies for this smeared system (to sixth order in

the WKB scheme). The first task is to find the form of the
potential for odd parity perturbations of this background
geometry.

A. Perturbation of the spacetime

Let us now start with the QG-inspired spherically
symmetric spacetime. The metric of such spacetime is
given by [12]

ds2 ¼ −
�
1 −

4M
r

ffiffiffi
π

p γð3=2; r2=4ΘÞ
�
dt2

þ
�
1 −

4M
r

ffiffiffi
π

p γð3=2; r2=4ΘÞ
�

−1
dr2 þ r2dΩ2 ð22Þ
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where dΩ2 ¼ dθ2 þ sin2 θdϕ2,
ffiffiffiffi
Θ

p
is some minimal length scale which removes the singularity of the usual Schwarzschild

spacetime, and

γð3=2; r2=4ΘÞ ¼
Z

r2=4Θ

0

ffiffi
t

p
etdt ð23Þ

is the lower incomplete Gamma function. If we now expand the incomplete Gamma function of Eq. (22) in the limit
r2 ≫ 4Θ, the metric takes the following form [12]:

ds2 ¼ −
�
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

�
dt2 þ

�
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

�
−1
dr2 þ r2dΩ: ð24Þ

The perturbed Einstein equation in vacuum is then

Rμν ¼ δRμν ¼ 0 as; R̄μν ¼ 0: ð25Þ

This equation has ten components. It turns out that only three of them (corresponding to the components δRrϕ; δRtϕ, and
δRθϕ) survive and they are respectively given below in explicit form

�
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

��
∂2
rrh0 − ∂r∂th1 þ

2

r
∂th1

�
−
lðlþ 1Þ

r2
h0 þ

2

r

�
2M
r2

−
Mr

Θ
ffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

�
h0 ¼ 0; ð26Þ

�
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

�
−1
�
∂2
tth1 − ∂r∂th0 þ

2

r
∂th0

�
þ ðlþ 2Þðl − 1Þ

r2
h1 ¼ 0; ð27Þ

∂r

��
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

�
h1

�
þ ∂th0
ð1 − 2M

r þ 2Mffiffiffiffiffi
πΘ

p e−r
2=4ΘÞ ¼ 0 ð28Þ

where h0, h1 have been introduced earlier in Sec. II A.
Let us now introduce a Θ-dependent generalized Regge-Wheeler variable QΘ as

QΘðt; rÞ ¼
�
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

�
h1ðt; rÞ

r
: ð29Þ

With the help of Eq. (28) we can eliminate h0ðt; rÞ and thus the final equation for the axial perturbation assumes the
following simple form:

∂2

∂t2 QΘðt; rÞ −
∂2

∂r2Θ QΘðt; rÞ þ VΘ
axialðrÞQΘðt; rÞ ¼ 0; ð30Þ

where QΘðt; rÞ is given in Eq. (29) and the potential function is

VΘ
axialðrÞ ¼

�
1 −

2M
r

þ 2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

��
lðlþ 1Þ

r2
−
6M
r3

þ M

Θ
ffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ þ 4Mffiffiffiffiffiffiffi

πΘ
p

r2
e−r

2=4θ

�
: ð31Þ

We have defined the new coordinate rΘ, in analogy with the definition of Eq. (11), as

drΘ
dr

¼ 1

ð1 − 2M
r þ 2Mffiffiffiffiffi

πΘ
p e−r

2=4ΘÞ : ð32Þ

Likewise, in Eq. (13) we write QΘðt; rÞ as QΘðt; rÞ ∼ eiω
ΘtQΘðrÞ. So, Eq. (30) now becomes
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∂2QΘðrÞ
∂r2Θ þ ½ðωΘÞ2 − VΘ

axialðrÞ�QΘðrÞ ¼ 0: ð33Þ

Thus, we have obtained the form of the potential for the
odd parity perturbation of this spacetime. Here ðωΘÞ2 plays
the role of energy whose numerical estimate is what we are
interested in.

B. QNM due to smeared matter distribution

In this section we will evaluate the QNM frequencies for
the potential given in Eq. (31). Following the line of
discussion made in Sec. II, we will first determine the
QNMs by employing the Ferrari-Mashoon method (i.e.,
first order WKB) and subsequently we will also use the
sixth order WKB formula for computing QNMs with much
better precision.
To apply the Ferrari-Mashoon method, we need to see

whether this potential can also be mapped to the so-called
Pöschl-Teller potential of Eq. (15). Let us write the
modified potential for the axial perturbation after incorpo-
rating the Θ correction as

VΘ
axialðrÞ ¼ VaxialðrÞ þ Vextra

axialðrÞ ð34Þ

where Vaxial is given in Eq. (14) and

Vextra
axialðrÞ ¼

2Mffiffiffiffiffiffiffi
πΘ

p e−r
2=4Θ

×

�
lðlþ 1Þ

r2
−
6M
r3

þ
�

1

2Θ
þ 2

r2

��
1 −

2M
r

��
:

ð35Þ

Just by inspection of Eq. (35) we can see that at a large
distance from the horizon at r ¼ 2M, the correction terms
fall exponentially fast. Therefore, this effective potential is not
expected to deviate much from VPT. To see that, we find
out the minimum of the Θ-corrected effective potential in
Eq. (34).
We assume that the extremum of the new potential

VΘ
axialðrÞ is perturbatively shifted to the point

rΘ0 ≃ r0 þ
2Mffiffiffiffiffiffiffi
πΘ

p e−r
2
0
=4Θr0 ð36Þ

where r0 is so far unknown and r0 is the minimum of the
effective potential of Eq. (14), given by

r0
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðl2 þ lþ 3Þ2 − 96lðlþ 1Þ

p
2lðlþ 1Þ þ 3ðl2 þ lþ 3Þ

2lðlþ 1Þ : ð37Þ

Now, taking the derivative of Eq. (34) and using Eq. (36),
we solve for r0 to get the new extremum located at

rΘ0 ≃ r0 þ
2Mffiffiffiffiffiffiffi
πΘ

p e−r
2
0
=4Θ ×

1

Δ
½r20Aþ r40B�

where A ¼ −2M½r40 þ 12r20Θþ 60Θ2�;
B ¼ ½r40 þ 2ðl2 þ lþ 2ÞΘðr20 þ 4ΘÞ�;
Δ ¼ 24½lð1þ lÞr20 − 4ðl2 þ lþ 3ÞMr0 þ 40M2�Θ2:

ð38Þ
We note that for the Θ-corrected metric of Eq. (24), the

coordinate rΘ is a function of the parameter Θ. Integrating
Eq. (32) numerically, we found that the behavior of this
new coordinate rΘ is not markedly different from r⋆, since
dr⋆
dr ∼

drΘ
dr . Therefore, the maximum of the potential Vaxial

0

and the curvature parameter αnew are then given by VΘ
0 ¼

VΘ
axialðrÞjr¼rΘ

0
and αΘ ¼ 1

2VΘ
0

d2VΘ
axialðrÞ
dr2Θ

jr¼rΘ
0
where d2=dr2Θ can

be found by using the new transformation rule of Eq. (32).
In Fig. 1 we plot the variation of the Pöschel-Teller

potential VPT and the potential for the axial perturbation
Vaxial as a function of the coordinate rΘ. We have taken two
different values of Θ to show that the form of the axial
perturbation potential VΘ

axial does not differ drastically from
the form of VPT with respect to the new transformed
coordinate rΘ. Since the QNMs of VΘ

axial are related with the
asymptotical behavior of the potential, one may legiti-
mately use Eq. (17) to get the QNMs for this potential.
As mentioned in Sec. II, the semianalytic method due to

Ferrari-Mashoon is one of the easiest tools to estimate the
QNMs. However, the WKB treatment [30] for computing
QNMs offers much better accuracy. Also, in the context of

FIG. 1. Plot showing the comparison of Vaxial (red) and VPT (dashed blue) as a function of the new coordinate rΘ for Θ ¼ 0.3 and 0.4,
respectively. The figure shows that the asymptotic behavior of both potentials is very close to each other.
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QNM determination, the third order WKB formula [31] was
frequently used in the literature (see Refs. [33–36]). Later it
was shown that the WKB formula, when extended to the
sixth order, gives the relative error, which is about 2 orders
less than that of the third WKB order [37]. Therefore, in this
work wewill also compute the QNMs for the potential VΘ

axial
using the sixth order WKB formula given by Eq. (19).
A previous study of QNMs for different perturbations of the
Θ-correctedmetricwas done byLiang [17,18] using the third
order WKB formula. But we will shortly see that with the
sixth order WKB formula, the associated QNMs will show
nontrivialmodifications in their numerical estimates. Finally,
wewill make a comparison of the results with various orders
of the WKB method.

C. Results of QNM

In Fig. 2 we plot (colored dashed plots) the variation of
Re½ωΘ� as a function of Θ using the Ferrari-Mashoon

method (i.e., first order WKB). The associated frequencies
Re½ω� [corresponding to the normal case with potential of
Eq. (14)] in this graph are also shown by colored continu-
ous plots. Since Re½ω� is independent of Θ for all values l,
they appear to be parallel straight lines for the same set of l
values. Here, the difference (Re½ωΘ� − Re½ω�) is found to
increase for higher l values (though shown for l up to 2, but
this is true for l > 2 also, as explicitly checked by us). But
this simple observation does not remain strictly valid when
the sixth order WKB formula equation (19) is exploited.
Therefore, while Eq. (17) captures the relevant changes in
QNMs as a first hint, it is better to rely on the sixth order
WKB formula for numerical precision.
The following Table (Table I) shows the values of QNM

frequencies for the odd parity gravitational perturbation of
the Θ-corrected spacetime calculated using the sixth order
WKB formula.
In Fig. 3, we plot the real part of QNM frequencies as a

function of the parameter Θ for various orders of the WKB
approximation. It is clear from the graph that is why the
higher order WKB gives significant alteration in the value
of Re½ωΘ�. For 0.2 > Θ > 0.01, the third order WKB result
for the QNM frequency is nearly a constant. But this is not
the correct picture if we go to the fifth or sixth order
approximations. In fact, Re½ωΘ� begins to decrease much
earlier for Θ≳ 0.12. This change is significant. Figure 4
shows another plot for Re½ωΘ� for l ¼ 2ðn ¼ 0; 1Þ modes
computed using the sixth order WKB formula.
Let us compare our results, which are valid up to sixth

order in WKB, with that of Liang [17] that is valid up to
third order in WKB. Liang has considered Θ to be lower
than 0.25 approximately. It is straightforward to check that
for Θ > 0.25 there appears oscillations in the value of

TABLE I. Comparison between the QNM frequencies for the gravitational perturbation of Schwarzschild spacetime and spherically
symmetric spacetime with smeared matter source.

Gravitational modes Gravitational modes Gravitational modes

l n (Schwarzschild) Θ (smeared matter) third order WKB (smeared matter) sixth order WKB

2 0 0.373616 - I 0.0888891 0.1 0.373163 - i 0.089221 0.374579 - i 0.088672
0.2 0.371753 - i 0.089350 0.470351 - i 0.044726
0.3 0.360579 - i 0.066717 0.309889 - i 0.123928

1 0.346297 - i 0.273480 0.1 0.346028 - i 0.274930 0.352931 - i 0.268630
0.2 0.339165 - i 0.275108 0.918186 - i 0.002729
0.3 0.234593 - i 0.185924 0.235278 - i 0.629412

3 0 0.599444 - i 0.092703 0.1 0.599265 - i 0.092732 0.599440 - i 0.092735
0.2 0.598163 - i 0.091950 0.600413 - i 0.090236
0.3 0.594996 - i 0.081382 0.596246 - i 0.086833

1 0.582642 - i 0.281291 0.1 0.582362 - i 0.281424 0.582510 - i 0.281662
0.2 0.576212 - i 0.278026 0.573718 - i 0.276666
0.3 0.549907 - i 0.239466 0.581571 - i 0.261865

2 0.551594 - i 0.479047 0.1 0.553235 - i 0.476731 0.550833 - i 0.481339
0.2 0.534658 - i 0.469451 0.467130 - i 0.566279
0.3 0.442211 - i 0.393935 0.648012 - i 0.366030

FIG. 2. Plot showing the variation of the real part of QNM
frequency ωΘ, with an increasing value of the parameter Θ. For
the above plot we have considered l ¼ 2, 3.
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QNM frequency which seems to be spurious indicating that
the third order WKB perturbation scheme used by Liang is
reliable up to Θ ∼ 0.25. On the other hand, from Fig. 3 it is
clear that in the fourth, fifth, or sixth order in WKB such
oscillations appear earlier at around Θ ∼ 0.16. Thus, sixth
order computational results restrict the value of Θ to lower
values where the results are reliable. Naively, it might
seem that higher than sixth order results in WKB might
restrict Θ further but as has been noted in [19] orders
of WKB higher than 6 are not feasible in the WKB
framework.

D. Observational aspects of Θ correction in QNM

So far, we have depicted the change in the QNM
frequency spectrum when the source has smeared matter
distribution. Here, we discuss the relevance of this result in
the context of observational aspects. As an example, let us
consider the fundamental GW mode (for l ¼ 2, n ¼ 0) of
Schwarzschild geometry. The associated real part of the

frequency ωre ¼ 0.373616 from Table I can be expressed
in the Hz unit as

f ¼ ωre

2πM
×
c3

G
¼

�
ωre

2π
×

c3

GM⊙

�
×
M⊙

M
ð39Þ

where M⊙ is the solar mass. Using this formula with
M ¼ 1 M⊙, the frequency f for the fundamental mode
turns out to be 12 kHz.
Now there exist compact spherical star clusters (e.g.,

globular clusters) that approximately follow a Gaussian
matter distribution. A typical order of magnitude estimate
for the mass (M̃) of such a cluster is 105 M⊙. WithM ¼ M̃,
it can be shown from Eq. (39) that if the corresponding
smeared distribution has a spread

ffiffiffiffi
Θ

p
∼ 107 km (which

matches with a Θ ∼ 0.173 within the range Θ ∼ 0.16–0.19
of Table I), then it yields a signal having frequency
f ∼ 13 kHz. As a first clue, this small change in frequency
is significant to infer the nature of the source, that is to say,
whether a GW detected with this frequency is associated to
a point mass or a diffused mass pattern.

IV. CONCLUSION

In this work, we have studied the QNM frequency
spectrum for the static spherically symmetric spacetime
having a smeared (Gaussian type) matter distribution. This
type of matter distribution, involving a length scale, can be
motivated from astrophysical perspectives (in the context of
star clusters). Hence, our result can be relevant for those
scenarios depending on a proper choice of the length of
smearing scale. Also, such a length scale is crucial to identify
the character of the source density. As a demonstration with
astrophysical objects, we found that the resulting frequency
change due to smearing is of OðHzÞ and hence within the
current limits of the terrestrial GWdetectors. Originally such
metrics with smeared matter distribution was motivated by
quantum gravity with the smearing length tentatively iden-
tified with Planck length. However, in that case, due to the
smallness of the Planck length scale such quantum gravity
motivated corrections will be difficult to observe.
In summary, our analysis here focuses on the gravita-

tional perturbations of a background geometry, which are
odd multipoles under parity transformation. The gravita-
tional perturbations do posses an even parity component as
well. For the case of conventional spherically symmetric
Schwarschild geometry with a delta-function source, there
is a special property for the perturbation spectrum that
ensures that the QNM spectra for odd and even parity
perturbations are equal. In technical terms, one says that the
QNM spectrum of odd parity perturbations is iso-spectral
with the QNM spectrum of even parity perturbations [24].
However, it is not clear whether the same would hold true
for spacetime with a smeared matter distribution that has
been studied here. With Gaussian distributed matter den-
sity, the potential for even parity perturbation would have
a new (Θ-dependent) scale. This feature may restrict the

FIG. 3. Plot showing the variation of the real part of QNM
frequency ωΘ, with increasing value of the parameter Θ. For the
above plot we have considered l ¼ 3, n ¼ 0 and different orders
of the WKB formula.

FIG. 4. Plot showing the variation of Re½ωΘ� as a function of
the parameter Θ for l ¼ 2, n ¼ 0 and l ¼ 2, n ¼ 1 using the sixth
order WKB formula.
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validity of the iso-spectral character between perturbations
of opposite parity. This requires an explicit computation of
the QNM spectrum of even parity perturbations, which we
have left as a future work.
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