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We calculate the tidal Love numbers of black holes and neutron stars in the presence of higher
dimensions. The perturbation equations around an arbitrary static and spherically symmetric metric for the
even-parity modes are presented in the context of an effective four-dimensional theory on the brane. This
subsequently leads to the desired expression for the tidal Love number for black holes in the presence of
extra spatial dimensions. Surprisingly, these numbers are nonzero and (more importantly) negative. We
extend our method to determine the tidal Love number of neutron stars in a spacetime inheriting extra
dimensions and show that, in the context of effective gravitational theory on the brane, they are smaller than
in general relativity. Finally, we explicitly demonstrate that earlier constraints on the parameters inherited
from higher dimensions are consistent with the bound on the tidal deformability parameter from the
GW170817 event as well.
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I. INTRODUCTION AND MOTIVATION

The recent success of gravitational-wave (GW) detectors
in detecting GW from mergers of binary black holes (BHs)
and neutron stars (NSs) has been a feather in the cap
of scientific and technological advancement [1–7]. The
increasing sensitivity of GW detectors will enable us to
make more and more specific statements with regard to
different astronomical aspects of GWs. Thus, with GW
astronomy established on a firm footing, we can now turn
our attention to answer some of the more fundamental
questions of nature. These include: (a) the subtle relations
regarding black hole physics (e.g., the no-hair theorem,
the area increase theorem, and the existence of black hole
horizons themselves) [8–13]; (b) evidence of theories
beyond general relativity, in particular, the presence of
higher-curvature terms in the Einstein-Hilbert action and
theories involving specific curvature scalar couplings
(known as Horndeski theories), among others [14–22];
and finally (c) the fundamental structure of spacetime
itself [23–29]. An interesting line of thought in under-
standing the fundamental structure of spacetime happens to
be the question of the presence (or absence) of extra spatial
dimensions in addition to our usual four-dimensional
spacetime.

Incidentally, the idea of the existence of spatial extra
dimensions arose for a completely different reason. Origi-
nally, these extra dimensions have appeared quite naturally
in string theory, whose existence requires ten or more
dimensions. However, later the existence of extra dimen-
sions returned to the community in order to solve the
“gauge hierarchy problem” [30–36]. This has to do with the
fact that the scale of physics appears very much uncorre-
lated and hierarchical in nature. This is because the scale of
electroweak symmetry breaking, which is ∼103 GeV,
appears to be completely disconnected from the Planck
scale at ∼1018 GeV. Another and probably more practical
reason to worry about the gauge hierarchy problem has to
do with the running of the mass of the Higgs boson. In
order to get the observed value of the Higgs mass at the
Large Hadron Collider, one needs to fine-tune the counter-
term arising out of renormalization to one part in 1015. This
large fine-tuning is another reason for the existence of the
gauge hierarchy problem [35–37].
In the context of extra dimensions it is indeed possible to

cure the gauge hierarchy problem. Broadly speaking, there
are two possible ways to achieve this. First, one can
introduce large extra dimensions such that even though
the four-dimensional Planck’s constant is large enough, the
fundamental higher-dimensional Planck’s constant is on
the TeV scale due to volume suppression [30–32,35]. The
above model does not incorporate gravitational dynamics
and hence is not of much significance from the GW point of
view. On the other hand, it is also possible to provide a
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gravitational resolution to the gauge hierarchy problem.
One of the many possible ways to achieve this is by
introducing warped anti–de Sitter geometry in the bulk,
resulting in an exponential suppression of physical scales
on the brane [38–41]. We will mainly work with the second
possibility, where gravity itself comes to the rescue.
However, since all of the observations regarding GWs

are made in our four-dimensional spacetime it is legitimate
to ask for an effective four-dimensional theory starting
from the original higher-dimensional one [38,42–51]. As
such, we have modeled the extra dimension in a simple
manner, i.e., with one additional spacelike dimension. By
imposing orbifold symmetry on the extra dimension one
can determine the effective gravitational field equation
inheriting additional corrections from the bulk geometry
[45,46,52,53]. Such effective gravitational field equations
have been derived in the context of general relativity in
Ref. [52], which subsequently was generalized to many
other situations as well [54–56]. In this workwewill content
ourselves with the general-relativistic situation, and with the
advent of GW astronomy we would like to test the theory
using the strong-field regime of gravity.
The presence of extra dimensions would leave very

specific signatures on the GWs emitted by merging BHs or
NSs. In principle, these signatures will be present for the
entire duration of the GW signal, often separated into three
distinct regimes, commonly known in GW terminology as
the inspiral, merger, and ringdown phases. The inspiral and
merger phases would require a detailed numerical analysis,
which is presently unavailable, while the ringdown phase
can be understood analytically, since it involves the com-
putation of quasinormal modes (QNMs) from perturbed
BHs in these theories [57–64]. For both the higher-
dimensional black holes or black holes in the effective
gravitational theory one can indeed obtain distinct signa-
tures of extra dimensions in the QNMs, which recently
have been investigated in some detail in the literature
[28,65] (also see Ref. [66]).
In this paper, we explore yet another observational

window put forward by the recent GW observations,
namely, the modifications to the tidal Love number due
to the presence of higher dimensions (for some recent
works regarding the tidal Love number in other theories
beyond general relativity, see Refs. [67,68]). The tidal
Love number for a neutron star or black hole essentially
corresponds to the deformation in the respective objects
caused by an external tidal field [69–80]. Interestingly, for
black holes in general relativity the tidal Love number
identically vanishes, and hence determining the tidal Love
number for black holes in theories beyond general relativity
is of significant importance. If the associated tidal Love
number for black holes are nonzero, they may provide a
crucial hint about these theories beyond general relativity
[67]. On the other hand, the tidal Love number for neutron

stars are also of sufficient importance in the context of the
equation of state (EoS) of the material forming the neutron
star. Since the composition of neutron stars is not very well
known, tight constraints on the EoS parameter do not exist
either. Given the recent detection of an NS-NS merger by
the Advanced LIGO detectors, it is desirable to understand
the EoS parameter of NSs either by appropriate theoretical
modeling or using numerical simulations. The best way to
get an understanding of the tidal Love number is from the
early regime of the inspiral phase, as the signal is very
clean. However, the influence of tidal effects is through
the phase of the waveform and is only a small correction.
Thus, to detect this one may invoke the matched-filtering
technique by integrating the measured waveform, such that
the accumulated phase shift due to the tidal corrections
becomes larger. The influence of the internal structure of
the neutron star on the gravitational-wave phase is char-
acterized by the ratio of the induced quadrupole moment
to the perturbing external tidal field and is denoted by λ.
This is related to the dimensionless tidal Love number k2
through the relation ð3=2ÞðG4λ=R5Þ, where G4 is the four-
dimensional gravitational constant and R is the radius of the
neutron star. A systematic study of the determination of the
tidal Love number from perturbations of Einstein’s gravi-
tational field equations was presented in Refs. [70,71] and
later used extensively in the GW literature, where the ideas
were both refined and broadened [72,73]. In this paper, we
would like to understand the modifications to the tidal Love
number of both black holes and neutron stars due to the
presence of extra dimensions. This is evidently the first step
in trying to understand the complete set of modifications
to the GW signal which may arise in the strong-field regime
of gravity.
The paper is organized as follows. In Sec. II we discuss

the general framework of gravitational perturbations out-
side a compact object, which could be either a black hole or
a neutron star. The formalism derived here is subsequently
applied in Sec. III to discuss the tidal Love number for a
black hole in four-dimensional spacetime in the presence of
higher dimensions. Finally, we also demonstrate the mod-
ifications to the tidal Love number associated with neutron
stars pertaining to the existence of higher dimensions.
Implications of the results derived here for current and
future GWmerger events are explored in Sec. V. We finally
conclude with a discussion of our results. Some relevant
computations are presented in the Appendix.
Notations and conventions: Throughout the paper we

assume ℏ ¼ 1 ¼ c. Greek indices are used to represent
four-dimensional quantities and we work with the mostly
positive signature convention. By and large, in this paper by
the phrase “tidal Love number” we essentially mean the
dimensionful tidal Love number λ. Whenever the dimen-
sionless tidal Love number is used it will be mentioned
explicitly.
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II. PERTURBATION OUTSIDE A COMPACT
OBJECT IN THE PRESENCE OF EXTRA
DIMENSIONS: GENERAL ANALYSIS

In this section we determine the master equation satisfied
by the even-parity gravitational perturbations—which is
essential for the computation of the electric-type tidal Love
number—in the exterior region of a compact object, which
could be either a black hole or a neutron star. In the case of a
black hole, the exterior equation alone is sufficient to
determine the tidal Love number. This will help us to
determine whether the electric-type tidal Love number can
have a nonzero value in a black hole background in the
presence of extra dimensions. On the other hand, for
neutron stars (unlike the case for black holes) under-
standing the gravitational perturbation in the exterior region
is not sufficient to determine the tidal Love number: one
needs to solve the gravitational perturbation in the interior
of the star as well, which we will address in the subsequent
sections. Since the structure of the gravitational field
equations in the exterior region is of importance, irrespec-
tive of the nature of the compact object, we will first
characterize the background spacetime around which
perturbations will be considered in some detail, before
deriving the associated master equation for gravitational
perturbation around this background with full generality.

A. Setting up the background spacetime

The spacetime under consideration inherits one addi-
tional spatial dimension and we are interested in its effect
on the gravitational field equations associated with the four-
dimensional brane hypersurface we are living in. This can
be achieved by starting from the five-dimensional bulk
Einstein’s equations and then projecting onto the lower-
dimensional brane hypersurface, using appropriate normal
vectors. Since there is no matter field present in the exterior
region, the sole contribution will come from gravitational
effects. In such a vacuum exterior spacetime, the projected
field equation describing the dynamics of gravity can be
written as [53]

ð4ÞGμν þ Eμν ¼ 0: ð1Þ
Here Eμν corresponds to the electric part of the bulk Weyl
tensor and ð4ÞGμν is the Einstein tensor projected onto the
brane starting from the bulk. Interestingly, the derivation of
the above equation uses minimal information about the
nature of the extra dimension; in particular, it only requires
the brane to be located at an orbifold fixed point associated
with the extra dimension. Thus, the result presented in this
work will be general and possibly will hold for a large
class of extra dimensions. This fact is reflected in the
determination of Eμν, which requires information about the
bulk spacetime that in general is not available. Thus,
following Refs. [45,46,53,81], we will assume that Eμν

can be represented by a perfect fluid, defined by the

energy density U and pressure P. The exact correspon-
dence between the structure of Eμν and that of the bulk
spacetime can be understood as and when we get a handle
on the nature of physical theories near the Planck scale.
Since by definition the computation of the tidal Love

number involves an equilibrium configuration, we will
consider a static and spherically symmetric spacetime for
the background geometry. The line element for such a
spacetime can always be cast as

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dΩ2; ð2Þ
where νðrÞ and λðrÞ are arbitrary functions of the radial
coordinate alone. Therefore, the associated field equations
simplify to

e−2λðrÞ
�
1

r2
−
2λ0

r

�
−

1

r2
¼ −24πŨðrÞ; ð3Þ

e−2λðrÞ
�
2ν0

r
þ 1

r2

�
−

1

r2
¼ 8πðŨ þ 2P̃Þ; ð4Þ

e−2λ
n
ν00 þ ν02 − ν0λ0 þ 1

r
ðν0 − λ0Þ

o
¼ 8πðŨ − P̃Þ: ð5Þ

Here we have defined

Ũ ¼ 2G4

ð8πG4Þ2λb
U; P̃ ¼ 2G4

ð8πG4Þ2λb
P; ð6Þ

whereG4 is the four-dimensional Newton’s constant and λb
is the brane tension [45,46,53]. As is evident from the above
equations, the quantities Ũ and P̃ (or U and P) encode all of
the higher-dimensional effects and hence are completely
determined by Eμν. In particular, the “dark radiation” termU
is related to Eμν as U ¼ −ðG4=G5Þ2Eμνuμuν, where G5 is
the five-dimensional gravitational constant, while the “dark
pressure” term P essentially originates from the spatially
trace-free and symmetric part of Eμν. One can also verify the
correctness of the above equations from dimensional analy-
sis as well. Thus, the above set of equations can be thought
of as the background equations in the presence of an ani-
sotropic fluid, such that ρ ¼ 3Ũ, pr ¼ Ũ þ 2P̃, and p⊥ ¼
Ũ − P̃. Given this structure, we would like to determine the
master equation governing the even-parity gravitational
perturbation, which we elaborate in the next section.

B. Equations governing even-parity perturbations

Having described the background gravitational field
equations, depending on the metric functions νðrÞ and
μðrÞ along with the effect of extra dimensions (encoded
in Ũ and P̃), let us concentrate on the structure of the
perturbed equations. These are obtained from the first order
variation of the background metric presented in Eq. (1); i.e.,
one considers a modified metric gmod

μν ¼ gμν þ hμν and
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hence computes the differential equations that hμν satisfies
to its leading order. The perturbation hμν can be further
subdivided into two classes, namely, even and odd, depend-
ing on its transformation under parity. The electric-type
tidal Love numbers are governed by the even-parity modes,
while the magnetic-type tidal Love numbers are dictated by
the odd-parity modes. Since the even-parity modes have
direct observational consequences for GW physics, in this
work we will concentrate on the electric-type tidal Love
numbers with the hope of returning to the discussion of
magnetic-type tidal Love numbers elsewhere. Thus, we will
exclusively work with even-parity gravitational perturba-
tions. These even-parity perturbations are characterized by
the three functions H0ðrÞ, H2ðrÞ, and KðrÞ as follows:

hevenμν;lm ¼ diag½e−2νðrÞH0; e2λðrÞH2ðrÞ; r2KðrÞ;
r2sin2θKðrÞ�Ylmðθ;ϕÞ: ð7Þ

Here we are working with fixed values for l and m, which
will suffice as the determination of the tidal Love number
requires l ¼ 2 but is independent of the choice of m. For
the sake of generality, we will keep l arbitrary for the
moment, but will set l ¼ 2 as and when necessary.
In general, the ten components of the gravitational field

equations will lead to ten perturbed equations. On the other
hand, except for the ðr; θÞ component, all of the other off-
diagonal entries in the perturbed equations are trivially
satisfied. Among others, the right-hand sides of the angular
components of the perturbation equations are identical,
and hence δGθ

θ − δGϕ
ϕ ¼ 0, which yields H2¼H0≡HðrÞ.

Moreover, δGr
θ¼8πG4δTr

θ results in K
0 ¼H0 þ2ν0H. Thus,

one need not consider both H0 and H2 as two independent
perturbation components; rather, one can concentrate on the
differential equation satisfied byH alone. This will also help
to determine the nature of the remaining perturbation
component KðrÞ through the relation K0 ¼ H0 þ 2ν0H
introduced earlier. To proceed further, we need to take care
of the addition of the angular components as well as the
temporal and radial components of theperturbation equation.
First, the addition of the angular components, i.e., the

equation δGθ
θ þ δGϕ

ϕ ¼ 8πðδTθ
θ þ δTϕ

ϕÞ, yields

e−2λr2K00 þ e−2λrK0f2þ rðν0 − λ0Þg − e−2λr2H00

− e−2λrH0ð3rν0 − rλ0 þ 2Þ
− 16πr2δp⊥ − 16πr2Hp⊥ ¼ 0: ð8Þ

Here p⊥ ¼ Ũ − P̃, as defined earlier. Thus, the above
equation depends on double derivatives of both HðrÞ and
KðrÞ. Proceeding further, we can use the radial component
of the perturbation equation, which reads δGr

r ¼ 8πδTr
r.

Expressing this in terms of derivatives of the perturbed and
unperturbed metric components, we obtain

e−2λð1þ rν0ÞrK0 −
�
1

2
lðlþ 1Þ − 1

�
K − e−2λrH0

þ
�
1

2
lðlþ 1Þ − 1 − 8πr2pr

�
H − 8πr2δpr ¼ 0: ð9Þ

Here the radial pressure pr is defined as Ũ þ 2P̃, and
inherits the contributions from the existence of higher
dimensions. Finally, the remaining perturbation equation
δGt

t ¼ 8πδTt
t can be expressed in terms of metric pertur-

bations as

e−2λr2K00þe−2λrK0ð3−rλ0Þ−
�
1

2
lðlþ1Þ−1

�
K−re−2λH0

−
�
1

2
lðlþ1Þþ1−8πr2ρ

�
Hþ8πr2δρ¼0: ð10Þ

The density ρ defined above (similarly to pr and p⊥) is
expressible in terms of Ũ and P̃, such that ρ≡ 3Ũ.
Having written down all of the equations governing the

perturbations, the aim is to arrive at another equation that
does not involve any perturbation in the matter sector. In
other words, we want to eliminate δŨ and δP̃ from the
above equations. As a first step in that direction, we con-
sider the subtraction of the ðt; tÞ and ðr; rÞ components of
the perturbation equation, i.e., the subtraction of Eq. (9)
from Eq. (10), which yields

e−2λr2K00 þ e−2λrK0f2 − rðλ0 þ ν0Þg − lðlþ 1ÞH

þ 16πr2ð2Ũ þ P̃ÞH þ 16πr2
�
1þ 2

�∂Ũ
∂P̃

��
δP̃ ¼ 0:

ð11Þ

In the above expression we have written ρ and pr in terms
of Ũ and P̃, and used δŨ ¼ ð∂Ũ=∂P̃ÞδP̃. In an identical
fashion, we can also rewrite Eq. (8) in terms of Ũ and P̃,
which will involve a δP̃ term. Thus, one can use it
to eliminate the δP̃ term appearing in Eq. (11), which
results in

�∂Ũ
∂P̃−1

�
e−2λr2K00 þ

�∂Ũ
∂P̃−1

�
e−2λrK0f2−rðλ0 þν0Þg−

�∂Ũ
∂P̃−1

�
lðlþ1ÞHþ16πr2ð2Ũþ P̃ÞH

�∂Ũ
∂P̃−1

�

þ
�
1þ2

�∂Ũ
∂P̃

��
½e−2λr2K00−e−2λr2H00 þe−2λf2þðν0−λ0ÞgrK0−e−2λð3rν0−rλ0 þ2ÞrH0−16πr2HðŨ− P̃Þ�¼0: ð12Þ
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As desired, the above equation involves no reference to the
δŨ or δP̃ term whatsoever. Even though the above equation
depends on both H and K, a close inspection reveals that it
depends on K only through its derivative. Thus, one may

use the result K0 ¼ H0 þ 2ν0H to transform the above
differential equation into one that depends solely on
HðrÞ. This results in the following differential equation
for HðrÞ:

�
3
∂Ũ
∂P̃

�
e−2λr2ðH00 þ 2ν0H0 þ 2ν00HÞ þ e−2λrðH0 þ 2ν0HÞ

�
ð2 − rλ0Þ

�
3
∂Ũ
∂P̃

�
þ rν0

�
2þ ∂Ũ

∂P̃
��

− e−2λð3rν0 − rλ0 þ 2ÞrH0
�
1þ 2

�∂Ũ
∂P̃

��
þ 16πr2ð2Ũ þ P̃ÞH

�∂Ũ
∂P̃ − 1

�

− 16πr2HðŨ − P̃Þ
�
1þ 2

�∂Ũ
∂P̃

��
−
�
1þ 2

�∂Ũ
∂P̃

��
e−2λr2H00 −

�∂Ũ
∂P̃ − 1

�
lðlþ 1ÞH ¼ 0: ð13Þ

This explicitly depicts how one may manipulate all
of the perturbation equations so as to eliminate any term
depending on δP̃ and δŨ along with any remaining
gravitational perturbation components in order to arrive
at a single equation for the gravitational perturbation H.
In the next section, we will manipulate these terms to
express the above equation in a more tractable form, which
can subsequently be used to determine the tidal Love
number.

C. Master equation outside a compact object
in the presence of higher dimensions

In this section, we will determine the master equation
satisfied by the even-parity gravitational perturbation [intro-
duced in Eq. (7)] outside a compact object in the presence of
an extra dimension. For that purpose, one may start by
computing the coefficients of H00, H0, and H in the equation
for the single gravitational perturbation HðrÞ presented in
Eq. (13). It turns out that all of these coefficients are greatly
simplified, ultimately resulting in the following structure:

e−2λr2
�∂Ũ
∂P̃ − 1

�
H00 þ re−2λ

�∂Ũ
∂P̃ − 1

�
ð2 − rλ0 þ rν0ÞH0 þ e−2λr2

�
6
∂Ũ
∂P̃

�
ðν00 − ν0λ0 þ ν02ÞH

− 4ν02e−2λr2
�∂Ũ
∂P̃

�
H þ 12re−λν0

�∂Ũ
∂P̃

�
H þ 4ν02e−2λr2H −

�∂Ũ
∂P̃ − 1

�
lðlþ 1ÞH

þ 16πr2ð2Ũ þ P̃ÞH
�∂Ũ
∂P̃ − 1

�
− 16πr2HðŨ − P̃Þ

�
1þ 2

�∂Ũ
∂P̃

��
¼ 0: ð14Þ

The coefficients of all of the derivatives of H can be easily read off from the above expression. In particular, the structural
similarity between the coefficients ofH00 andH0 suggests dividing the above equation by r2e−2λfð∂Ũ=∂P̃Þ − 1g, which yields

H00 þ
�
2

r
− λ0 þ ν0

�
H0 þ 6

ð∂Ũ=∂P̃Þ
ð∂Ũ=∂P̃Þ − 1

�
ν00 − ν0λ0 þ ν02 þ 2ν0

r

�
H − 4ν02H

− e2λ
lðlþ 1Þ

r2
H þ 16πe2λð2Ũ þ P̃ÞH − 16πe2λHðŨ − P̃Þ f1þ 2ð∂Ũ=∂P̃Þg

ð∂Ũ=∂P̃Þ − 1
¼ 0: ð15Þ

In order to arrive at the above expression, we have manipulated various terms appearing in the coefficient ofHðrÞ. The above
expression can be written in a more suggestive form if we keep in mind that so far we have not used the background field
equations. In particular, we can use the background field equations to replace νðrÞ and λðrÞ by a more suitable expression. First
of all, one can integrate Eq. (3) in order to yield

e−2λ ¼ 1 −
2m̃ðrÞ

r
; m̃ðrÞ≡G4M þ 12π

Z
drr2ŨðrÞ; ð16Þ

where M is the mass of the central compact object. One can further use Eq. (3) as well as Eq. (4) in order to
arrive at

TIDAL LOVE NUMBERS OF BLACK HOLES AND NEUTRON … PHYS. REV. D 99, 024036 (2019)

024036-5



rðν0 − λ0Þ ¼ 8πr2e2λðP̃ − ŨÞ þ 2m̃ðrÞ
r

e2λ; ð17Þ
where Eq. (16) has also been used. Another significant
relation can be derived by using Eq. (5):

ν00 þ ν02 − ν0λ0 ¼ 8πe2λðŨ − P̃Þ − 1

r
ðν0 − λ0Þ: ð18Þ

Note that the last term can again be written in terms of Ũ and
P̃ by using Eq. (17). Thus, in Eq. (15) we can use both
Eq. (16) and Eq. (18) to write down all of the background
quantities in terms of Ũ, P̃, and the derivative ð∂Ũ=∂P̃Þ.
This results in the following structure of the master equation
for even-parity gravitational perturbation:

H00 þ
�
2

r
þ 8πre2λðP̃− ŨÞ þ 2m̃ðrÞ

r2
e2λ

�
H0 þ 6

ð∂Ũ=∂P̃Þ
ð∂Ũ=∂P̃Þ− 1

f24πe2λŨgH
�
−4ν02 − e2λ

lðlþ 1Þ
r2

þ 16πe2λð2Ũþ P̃Þ
�
H

− 16πe2λHðŨ − P̃Þ f1þ 2ð∂Ũ=∂P̃Þg
ð∂Ũ=∂P̃Þ− 1

¼ 0: ð19Þ

As is evident, the only information about the background spacetime comes from the e2λ and ν02 terms; the rest of the terms
have been converted into some combination of the dark radiation and dark pressure terms, which carry imprints of the
presence of higher dimensions. The above expression can be further simplified by appropriately grouping the various terms
that appear in the coefficient of HðrÞ. In particular, by expressing ð∂Ũ=∂P̃Þ ¼ fð∂Ũ=∂P̃Þ − 1g þ 1 we can write down the
final compact expression for the differential equation satisfied by the perturbation HðrÞ as

H00 þ
�
2

r
þ 8πre2λðP̃ − ŨÞ þ 2m̃ðrÞ

r2
e2λ

�
H0 þ

�
−4ν02 − e2λ

lðlþ 1Þ
r2

þ 16πe2λð9Ũ þ 3P̃Þ
�
H

þ 16πe2λð6Ũ þ 3P̃Þ
ð∂Ũ=∂P̃Þ − 1

H ¼ 0; ð20Þ

which is our desired result. Note that this is a single differ-
ential equation forHðrÞ (one of the perturbation components
of the even-parity metric perturbation) and hence depicts the
master equation that one must solve. An understanding of
HðrÞ will also lead to an understanding of the other metric
perturbation components. However, for arbitrary choices of
Ũ and P̃ this is as far aswe can go; to proceed further we need
to have a relation between Ũ and P̃. Only then can we
explicitly compute the solution to the above equation, either
analytically or by numerical techniques.

III. COMPUTATION OF THE TIDAL LOVE
NUMBER FOR A BRANEWORLD BLACK HOLE

We have already developed the basic equation gover-
ning even-parity gravitational perturbations in the exterior
region of a compact object. If the compact object depicts a
neutron star, we have to write down the corresponding
equations in its interior as well before obtaining the
associated tidal Love number. However, for black holes
the situation is much simpler: we just have to solve the
exterior solution and use some suitable boundary condi-
tions requiring regularity at the black hole horizon. Keeping
this in mind, in this section we discuss the tidal Love
number for braneworld black holes. As mentioned earlier,
this requires some choices for the dark radiation term Ũ and
dark pressure term P̃, for which we will use the most
favored equation of state for the Weyl fluid (given by Eμν).

This will help us to explicitly write down the background
solution and extract information about the equation-of-state
parameter. This in turn will help us present Eq. (20) in a
more appropriate form satisfied by the gravitational per-
turbation HðrÞ, which we will subsequently solve to find
the electric-type tidal Love number.

A. Background spacetime

In this sectionwe present the background spacetime, given
an appropriate equation-of-state parameter, depicting a black
hole solutionon thebrane [45].As is evident fromEq. (20), in
the context of aWeyl fluid induced from higher-dimensional
spacetime, the most interesting equation-of-state parameter
that greatly simplifies the background and perturbation
equations corresponds to 2Ũ þ P̃ ¼ 0 [45,81]. Thus, the
equation-of-state parameter is ð∂Ũ=∂P̃Þ ¼ −ð1=2Þ. With
this choice, the differential equation for the background
spacetime, presented in Eqs. (3)–(5), can be explicitly solved
with the following structure for the Weyl fluid:

Ũ ¼ −
P̃0

2r4
; P̃ ¼ P̃0

r4
; ð21Þ

where P̃0 is a constant dependent on the nature of the bulk
spacetime, i.e., it provides the signature of the existence of
higher dimensions. The metric elements, on the other hand,
take the following form:
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e2ν ¼ e−2λ ¼ 1 −
2G4M

r
−
12πP̃0

r2
: ð22Þ

This is similar to a Reissner-Nordström black hole, with one
crucial difference: in the context of a Reissner-Nordström
black hole coefficient of r−2 must be positive, while in the
present context it can be positive or negative depending
on the sign of P̃0. In what follows we will assume P̃0 > 0,
which will be the only nontrivial possibility when we
consider the case of the exterior of a compact object in
the next section. Keeping this in mind, in the context of a
black hole as well we will consider the case in which the
coefficient of the r−2 term is negative. Given the above
structure of the metric elements associated with the back-
ground spacetime, it immediately follows that

2ν0 ¼
�
2G4M
r2

þ24πP̃0

r3

��
1−

2G4M
r

−
12πP̃0

r2

�−1
¼−2λ0;

ð23Þ

and in this particular case we have m̃ðrÞ ¼ G4M þ
ð6πP̃0=rÞ. These expressions will be used extensively
in later sections when we explicitly compute the tidal
Love number for the above black hole solution located on
the brane.
Before we delve into the computation of the tidal Love

number, let us briefly discuss how to even define the tidal
Love number in the present context. For this purpose,
suppose that the above system is placed in a static, external
quadrupolar field Eij, where i and j are spatial indices. In
response to the above, the compact object will develop a
quadrupole moment Qij and in the asymptotic rest frame
the temporal components of the metric element, in the
present context, can be written as [70]

1

2
ð1þ gttÞ ¼

G4M
r

þ β

2

�
G4M
r

�
2

þ 3G4Qij

2r3

�
ninj −

1

3
δij

�

þO
�
1

r4

�
−
1

2
Eijninjr2 þOðr3Þ; ð24Þ

where we have introduced a dimensionless constant β≡
ð12πP̃0=G2

4M
2Þ which has been inherited from the extra

dimension. As is evident, in the β → 0 limit we recover
the expansion of gtt as in general relativity. Further, the
quantity ni ≡ xi=r and the above expansion defines
the quadrupole moment Qij of the compact object and
the external quadrupolar field Eij. The proportionality
constant between them corresponds to the tidal Love
number λ, defined as Qij ¼ −λEij. Further, we can expand
both Qij and Eij in terms of spherical harmonics, such that

Eij ¼
X2
m¼−2

EmYð2mÞij; Qij ¼
X2
m¼−2

QmYð2mÞij; ð25Þ

where Yð2mÞij are traceless tensors related to the
l ¼ 2 spherical harmonics Y2mðθ;ϕÞ by the relation
Y2m ¼ Yð2mÞijninj. Thus, using the expressions for Eij

andQij presented in Eq. (25), the expansion of the temporal
component of the metric becomes

1

2
ð1þ gttÞ ¼

G4M
r

þ β

2

�
G4M
r

�
2

þ 3G4

2r3
X2
m¼−2

QmY2m

þO
�
1

r4

�
−
1

2

X2
m¼−2

EmY2mr2 þOðr3Þ: ð26Þ

Since the tidal Love number does not depend on the
specific value of m, it can still be determined from the
relation Qm ¼ −λEm. Thus, the tidal Love number is
derived as follows: (a) using the background spacetime
geometry presented in Eqs. (21)–(22), one can rewrite the
perturbation equation presented in Eq. (20); (b) this can be
subsequently solved to determine HðrÞ and, hence,
h00 ¼ e−2νH0ðrÞ; then, (c) one can use the expansion of
the temporal component of the metric element [presented in
Eq. (26)] to determineQm and Em, which in turn determines
the tidal Love number. In the next section, we give the final
form of the perturbation equation in the present context.

B. Derivation of the final form of the master equation

Having spelled out the structure of the background
spacetime along with the notion of the tidal Love number,
let us concentrate on the derivation of the final form of the
master equation. For this we rewrite Eq. (20) using the
background metric elements presented in Eqs. (21)–(22).
This yields the following differential equation for HðrÞ in
the background of a braneworld black hole:

�
1 −

2G4M
r

−
12πP̃0

r2

�
H00 þ

�
2

r

�
1 −

2G4M
r

−
12πP̃0

r2

�

þ 8πr

�
3P̃0

2r4

�
þ 2

r2

�
G4M þ 6πP̃0

r

��
H0

þ
�
−
�
2G4M
r2

þ 24πP̃0

r3

�
2
�
1 −

2G4M
r

−
12πP̃0

r2

�
−1

−
lðlþ 1Þ

r2
þ 16π

�
−
3P̃0

2r4

��
H ¼ 0; ð27Þ

where both sides of the original equation have been
multiplied by e−2λ. It is always advantageous to rewrite
any equation in terms of dimensionless quantities, which
prompts us to introduce a new dimensionless variable x and
replace the radial coordinate r, such that x ¼ ðr=G4MÞ − 1.
This results in the transformation of H0 and H00, such that
H0 gets scaled by ðG4MÞ−1, while H00 gets scaled by
ðG4MÞ−2. Finally, by multiplying Eq. (27) throughout by r2
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and subsequently introducing the variable x in appropriate
places while removing the radial coordinate, we obtain

fx2−1−βg∂2
xHþ2x∂xH

þ
�
−lðlþ1Þ− 4ðxþ1þβÞ2

ð1þxÞ2ðx2−1−βÞ−
2β

ð1þxÞ2
�
H¼0:

ð28Þ

The above simple structure of the gravitational perturba-
tion equation is obtained by again introducing the dimen-
sionless quantity β≡ ð12πP̃0=G2

4M
2Þ. Note that for β ¼ 0,

i.e., when extra-dimensional effects are absent the above
equation reduces to

fx2 − 1g∂2
xH þ 2x∂xH þ

�
−lðlþ 1Þ − 4

ðx2 − 1Þ
�
H ¼ 0;

ð29Þ

exactly coinciding with the result derived in Ref. [70] in the
context of general relativity. This acts as an acid test of the
formalism developed above since it explicitly demonstrates
the correctness of our result by reproducing the general-
relativistic result in an appropriate limit. We will now
discuss the solution of the above equation in the asymptotic
limit in order to determine the associated tidal Love
number. For this purpose we will be using Eq. (26), the
asymptotic expansion of the temporal component of the
perturbed metric.

C. Tidal Love numbers of braneworld black holes

In this section we explicitly compute the tidal Love
number for the above black hole solution in the presence of
an extra dimension. As an aside, we also demonstrate why
the tidal Love number for general-relativistic black holes
must vanish, while they can be nonzero in the present
context.1 However, unlike the case of general relativity,
where an exact solution to the perturbation equation
presented in Eq. (29) is possible in terms of Legendre
polynomials, in the present context a general analytic
solution seems difficult. Before commenting on the pos-
sibility of getting an analytic solution, let us write down
Eq. (28) in a more suggestive form. This can be achieved by
introducing a new variable y, related to the old one by
x ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ β
p

y. Thus, the terms involving ∂xH and ∂2
xH will

get modified by the introduction of ð1þ βÞ−1=2 and

ð1þ βÞ−1, respectively, such that the master equation for
HðxÞ will now be converted into a master equation for
HðyÞ, which reads

fy2 − 1g∂2
yH þ 2y∂yH

−
�
lðlþ 1Þ þ 4

ðy2 − 1Þ
ðyþ ffiffiffiffiffiffiffiffiffiffiffi

1þ β
p Þ2

ð ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
yþ 1Þ2

þ 2β

ð ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
yþ 1Þ2

�
H ¼ 0: ð30Þ

As is evident, in terms of the new variable y the coefficients
of ∂2

yH and ∂yH are identical to the corresponding differ-
ential equation for general relativity; however, the term
proportional to HðyÞ differs significantly. Due to the
complicated nature of the coefficient of HðyÞ, this differ-
ential equation (unlike the β ¼ 0 case) does not have a
general analytic solution. But in order to determine the
tidal Love number it is sufficient that we understand the
asymptotic limit, and (as we will demonstrate below) an
analytic solution can indeed be obtained. Since y ¼
ð1þ βÞ−1=2fðr=MÞ − 1g, the asymptotic (i.e., large-r) limit
implies y → ∞. Hence, the above differential equation
simplifies significantly and we obtain

fy2 − 1g∂2
yH þ 2y∂yH

−
�
lðlþ 1Þ þ 4

y2 − 1

�
1þ β

2

1þ β

��
H ¼ 0: ð31Þ

The fact that the general-relativistic result is reproduced
in the β → 0 limit is apparent from the above differential
equation. It turns out that the above equation admits
analytic solutions in terms of associated Legendre poly-
nomials. The details of the solution and asymptotic limits
of the associated Legendre polynomial are given in the
Appendix. For our purpose, we can take a cue from
the Appendix [in particular, see Eq. (A26)] and write
down the asymptotic solution of the above differential
equation with l ¼ 2 as

HðyÞ ¼
�

3A1

ffiffiffi
π

p
Γð3 − β̄Þ

�
y2

þ
�
−

A1

15Γð−2 − β̄Þ þ
B1Γð3þ β̄Þeiπβ̄

15

�
y−3; ð32Þ

where we defined β̄2 ¼ 4f1þ ðβ=2Þgf1þ βg−1, and A1

and B1 are arbitrary constants of integration. At this stage,
in order to compare with the asymptotic expansion of the
metric elements it is essential to reintroduce the radial
coordinate r through the relation y ¼ xð1þ βÞ−1=2, with
x ¼ ðr=G4MÞ − 1. In the asymptotic limit, we obtain the
following structure for the metric perturbation:

1Of course, the fact that the tidal Love number for black holes
in general relativity must vanish holds when the expansion of the
temporal component of the metric element is truncated as
presented in Eq. (26). If higher-order corrections are taken into
account, the tidal Love number for black holes in general
relativity may turn out to be nonzero.
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Hðβ; rÞ ¼
�

3A1

ffiffiffi
π

p
Γð3 − β̄Þð1þ βÞ

�
×
�

r
G4M

�
2

þ ð1þ βÞ3=2
�
−

A1

15Γð−2 − β̄Þ þ
B1Γð3þ β̄Þeiπβ̄

15

��
G4M
r

�
3

: ð33Þ

To ensure the correctness of the above result, we must demonstrate that it is consistent with general relativity, which follows
from considering the β → 0 limit of Eq. (33), which yields

HGRðrÞ≡Hðβ ¼ 0; rÞ ¼
�
3A1

ffiffiffi
π

p
Γð1Þ

��
r

G4M

�
2

þ
�
8B1

5

��
G4M
r

�
3

; ð34Þ

where we have used the fact that β̄ → 2 as the parameter β vanishes. Further, since by definition Γð1Þ ¼ 1, it follows from the
identity Γð1Þ ¼ 0 × Γð0Þ thatΓð0Þ diverges. Thus, given that Γð−4Þ ¼ ð−1=4Þð−1=3Þð−1=2Þð−1ÞΓð0Þ, we can immediately
argue that Γð−4Þ diverges. The fact that Γð−4Þ diverges has been used in order to arrive at Eq. (34). As is evident, the solution
for themetric perturbation, presented in Eq. (34), exactlymatches the general-relativistic result presented in [70]. This suggests
using the same constant in thegeneral case aswell, andwe also introduceB ¼ B1 expðiπμÞ. Thus, in termsof the newly defined
arbitrary constantsA andB, the solution to themetric perturbation in the background of a braneworld black hole takes the form

HðrÞ ¼
�

3A

Γð3 − β̄Þð1þ βÞ
�
×

�
r

G4M

�
2

þ ð1þ βÞ3=2
�
−

A

15
ffiffiffi
π

p
Γð−2 − β̄Þ þ

BΓð3þ β̄Þ
15

��
G4M
r

�
3

; ð35Þ

which has the correct general-relativistic limit. Thus, at both the differential-equation and asymptotic-solution levels we have
explicitly verified that the general-relativistic result can be reproduced in the appropriate limit. Now that we know the exact
form of the asymptotic solution, we can compute the tidal Love number. This will essentially follow from Eq. (24). In the
presence of the perturbation, the temporal component of the metric involving the perturbation is gmod

tt ¼ −e2ν − e−νHðrÞY2m,
where e2ν is given by Eq. (22) and HðrÞ is given by Eq. (35). Hence, using the expressions for e2ν and HðrÞ, we obtain the
following relation in the asymptotic limit:

G4M
r

þ β

2

�
G4M
r

�
2

þ 3G4

2r3
X2
m¼−2

QmY2m þO
�
1

r3

�
−
1

2

X2
m¼−2

EmY2mr2 þOðr3Þ

¼ G4M
r

þ β

2

�
G4M
r

�
2

−
1

2

X2
m¼−2

�
3A

Γð3 − β̄Þð1þ βÞ
��

r
G4M

�
2

Y2m

−
1

2
ð1þ βÞ3=2

X2
m¼−2

�
−

A
15

ffiffiffi
π

p
Γð−2 − β̄Þ þ

BΓð3þ β̄Þ
15

��
r

G4M

�
−3
Y2m: ð36Þ

As it turns out, the unperturbed components exactly cancel out, and a subsequent matching of the powers of r on both sides of
the above equation yields

�
3A

Γð3 − β̄Þð1þ βÞ
�

¼ ðG4MÞ2Em; ð1þ βÞ3=2
�
−

A

15
ffiffiffi
π

p
Γð−2 − β̄Þ þ

BΓð3þ β̄Þ
15

�
¼ −3

G4Qm

ðG4MÞ3 : ð37Þ

Given the above relations, the tidal Love number can be easily determined by first taking the ratio of the above equations, and
then using the definition Qm ¼ −λEm. Performing the above, the tidal Love number is

G4λ≡ 1

3
ð1þ βÞ5=2

�
−

Γð3 − β̄Þ
45

ffiffiffi
π

p
Γð−2 − β̄Þ þ

BΓð3þ β̄ÞΓð3 − β̄Þ
45A

�
ðG4MÞ5; ð38Þ

wherewe used a singlem value to determine the tidal Love number. Note that one can compute another dimensionless number
using λ that is independent of the radial distance, which is simply given byG4λ=ðG4MÞ5. We also call this the dimensionless
tidal Love number, which is denoted byΛ.Whether the dimensionless tidal Love number under consideration is k2 orΛ should
be clear from the context.
To provide another independent derivation of the same, we also compute the dimensionless tidal Love number k2 in the

asymptotic limit, which reads
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k2 ¼
1

2

�
2H − rH0

3H þ rH0

�
: ð39Þ

The value forHðrÞ in the asymptotic limit has already been
computed, whose derivative is also simple enough to
determine. Hence, one can immediately determine the
combinations 2H − rH0 and 3H þ rH0. Substituting both
of these expressions into Eq. (39) leads to the following
expression for k2:

k2 ¼
1

2
ð1þ βÞ5=2

�
−

Γð3 − β̄Þ
45

ffiffiffi
π

p
Γð−2 − β̄Þ

þ B
45A

Γð3þ β̄ÞΓð3 − β̄Þ
��

G4M
r

�
5

: ð40Þ

This exactly coincides with Eq. (38), with the identification
k2 ¼ ð3=2ÞG4λr−5. Thus, the above result provides yet
another verification of the derivation of the tidal Love
number for braneworld black holes.
However, in order to numerically estimate the dimen-

sionless tidal Love number, we need to determine the
unknown constants A and B appearing in Eqs. (38) and
(40). These unknown constants can be obtained by using
the gravitational perturbation HðrÞ and its derivative H0ðrÞ
at some fixed radius R. For black holes this would
correspond to the event horizon, while for a neutron star
this is the radius that determines the extent of the neutron
star. Since for general relativity an exact solution of the
perturbation equation is known, it is possible to explicitly
determine the tidal Love number in terms of these quan-
tities. However, unlike the situation in general relativity, in
the present context we do not have a handle on the analytic
solution for the gravitational perturbation HðrÞ at an
arbitrary radius. Thus, we cannot compute A and B using
HðrÞ and rH0ðrÞ at some finite radius R. But some physical
insight may be gained by instead looking at the expression
for the dimensionless tidal Love number Λ, for which the
following expression can be determined from Eq. (38):

Λ ¼ B
135A

fð1þ βÞ5=2Γð3þ β̄ÞΓð3 − β̄Þg

−
�

Γð3 − β̄Þ
Γð−2 − β̄Þ

ð1þ βÞ5=2
135

ffiffiffi
π

p
�
: ð41Þ

As is evident, the vanishing of β implies β̄ → 2 and hence a
Γð−4Þ term (which diverges) appears in the denominator of
the second quantity in the above expression. Thus, we
indeed have Λ → ΛGR ¼ ð8B=45AÞ as β vanishes. Hence,
we can always arrive at the desired general-relativistic
limit. However, like for k2, it is difficult to analytically
determine the nature of Λ due to the presence of the
arbitrary constants A and B. As is evident from Eq. (41), in
the presence of higher dimensions it is most likely that even
for black holes the dimensionless tidal Love number Λ will

be nonzero. Furthermore, depending on the sign of the ratio
(B=A), the dimensionless tidal Love number Λ can also
become negative. If correct, such a nonzero but negative
value of the dimensionless tidal Love number Λ may
serve as a distinct signature of the existence of higher
dimensions.
At this stage it is worthwhile to point out the implications

of the above result for k2, the other dimensionless tidal Love
number presented in Eq. (40). Since the dimensionless tidal
Love number k2 varies with radius as r−5, it follows that
asymptotically it should vanish. In the context of general
relativity, on the other hand, k2 identically vanishes every-
where (not just asymptotically), while in the presence of
extra dimensions (following the above discussion) one
could possibly argue that the quantity (B=A) may result
in a negative contribution to the dimensionless tidal Love
number k2, which ultimately asymptotes to zero.
The analytical understanding of the dimensionless tidal

Love number k2 or Λ presented above can also be verified
by numerically solving the general differential equation
presented in Eq. (30). The result of such a numerical
analysis is shown in Fig. 1, which depicts the variation of
the dimensionless tidal Love number k2 with the radial
distance from black hole. Similarly, in Fig. 2 numerical
estimates of the dimensionless tidal Love number k2 are
plotted against the parameter β and the black hole mass.
The plots presented in both Figs. 1 and 2 clearly reveal a
negative value for the dimensionless tidal Love number k2,
further bolstering our claim. This has been achieved by

FIG. 1. This figure compares the variation of the dimensionless
tidal Love number k2 with the radial distance from the black hole
derived from numerical and theoretical analyses, for a black hole
with massMBH ¼ 10 M⊙. As is evident from both the theoretical
and numerical analyses, the dimensionless tidal Love number k2
is nonzero and negative for any finite r, unlike in the case for a
general-relativistic black hole, where it always vanishes. Further,
the difference between the theoretical and numerical analyses is
very small in the large-radius limit; however, in the near-horizon
region there is a moderate difference between them.
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computing yð∂yH=HÞ starting from the differential equa-
tion presented in Eq. (30), as y approaches the asymptotic
limit. The numerical computation reveals that for all values
of y, even when it reaches some asymptotic limit,
yð∂yH=HÞ remains above 2 and hence from Eq. (39) it
immediately follows that k2 should be negative (see Fig. 1
for a clear illustration of this fact). Further, the correctness
of the theoretical techniques demonstrated above is also
evident from the comparison of the theoretical estimates
with the numerical analysis, as presented in Fig. 1. Since
the match is almost exact at large radial distance, we have
computed k2 at r ¼ 400 km in the plot presented in Fig. 2.
Thus, the negativity and nonzero nature of the dimension-
less tidal Love number in this situation is borne out by our

numerical simulations as well. (see Fig. 3 for variation of
the other dimensionless tidal Love number Λ with β).
Before concluding this section, let us briefly mention that

even though these results were derived in the context of black
holes, they remainequally applicable in the context of neutron
stars as well, as long as the Weyl stress tensor outside of the
neutron star is still given byEq. (21). In that case, Eq. (40) still
provides the tidal Love number, but the unknown constants
need to be determined on the surface of the star. But that
requires an understanding of the gravitational perturbation in
the interior of theneutron star. In the next sectionwe explicitly
demonstrate how to achieve this understanding.

IV. TIDAL LOVE NUMBERS FOR
A NEUTRON STAR ON THE BRANE

In this section we compute the tidal Love number
associated with a neutron star located on the brane.
The results derived in Secs. II and III are still useful, albeit
outside of the neutron star. In particular, if we assume that
the dark radiation and dark pressure have the same form
outside of the neutron star, then the asymptotic behavior of
the metric perturbation remains the same. Hence, Eq. (40)
will hold outside of the neutron star as well. However, the
unknown constants can only be determined if the gravita-
tional perturbation in the interior of the neutron star is
known. This must be done in a separate manner, as the
matter equation-of-state parameter also comes into play.

A. Background equations in the interior
of the neutron star

Let us discuss the background spacetime in the interior
of the neutron star in the presence of an extra dimension.
The presence of matter in the interior of the neutron
star complicates the situation significantly by introducing
linear as well as quadratic terms depending on the matter
energy-momentum tensor. In particular, the effective gravi-
tational field equations in this context take the following
form [53]:

Gμν þ Eμν ¼ 8πG4Tμν þ ð8πG5Þ2
�
−
1

4
TμαTα

ν þ
1

12
TTμν þ

1

8
gμνTαβTαβ −

1

24
T2gμν

�
; ð42Þ

where G5 is the five-dimensional gravitational constant, Tμν is the matter energy-momentum tensor, and Eμν is the
projection of the Weyl tensor introduced above. To proceed further, we assume that Eμν can be represented as in Sec. II,
while Tμν depicts a perfect fluid with some energy density ρ and pressure p. Thus, for a static and spherically symmetric
background spacetime whose line element is given by Eq. (2), the associated field equations take the following form:

e−2λðrÞ
�
1

r2
−
2λ0

r

�
−

1

r2
¼ −8πG4ρ

�
1þ ρ

2λb

�
− 24πŨðrÞ; ð43Þ

e−2λðrÞ
�
2ν0

r
þ 1

r2

�
−

1

r2
¼ 8πG4

�
pþ ρ

2λb
ðρþ 2pÞ

�
þ 8πðŨ þ 2P̃Þ; ð44Þ

FIG. 2. This figure depicts the variation of the dimensionless
tidal Love number k2 with the black hole mass as well as the
parameter β inherited from the extra dimensions from numerical
analysis. The black hole mass MBH has been normalized to
ðMBH=10 M⊙Þ. As is evident from the panel on the right, the
dimensionless tidal Love number k2 is nonzero and negative,
which is expected from our theoretical analysis as well. As is
evident, there is very little variation of k2 with mass but it varies
considerably with β. As β changes from 10−4 to 0.1 the
dimensionless tidal Love number changes from −0.430 to
−0.480. See text for more discussion.
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e−2λ
�
ν00 þ ν02 − ν0λ0 þ 1

r
ðν0 − λ0Þ

�
¼ 16πG4

�
pþ ρ

2λb
ðρþ 2pÞ

�
þ 16πðŨ − P̃Þ: ð45Þ

Here we have defined Ũ and P̃ as in Eq. (6) with G4 being
the four-dimensional Newton’s constant and λb is the brane
tension. Thus, the above set of equations can be thought of
as the background equations associated with an anisotropic
fluid with two additional components: one coming from the
bulk Weyl tensor (i.e., the dark radiation and dark pressure
components) characterized by Ũ and P̃, and one coming
from the matter energy-momentum tensor and its quadratic
combination. In this case, the effective energy density ρeff
and effective pressure peff are

ρeff ¼ ρ

�
1þ ρ

2λb

�
; peff ¼ pþ ρ

2λb
ðρþ 2pÞ: ð46Þ

Hence, the above set of equations depicts an anisotropic
two-fluid system as the background. Thus, when comput-
ing the gravitational perturbation around this background,
we have to consider not only perturbations of Ũ and P̃, but
of ρ and p as well. As we will see, this will immediately
lead to problems by complicating the scenario quite a bit.
As it turns out, even then we can make an educated guess
about the nature of the Weyl fluid in the interior of the
neutron star to avoid the issues of the two-fluid system.

B. Perturbation equations in the interior
of the neutron star

The gravitational perturbation equations outside of
the neutron star were already discussed in the earlier
sections. In this section we concentrate on the gravitational

perturbation in the interior of the neutron star. The
modifications to the gravitational field equations due to
the presence of matter were already demonstrated in
Eq. (42). The gravitational perturbations inside the neutron
star in a static and spherically symmetric background obeys
Eqs. (43)–(45) and involves both the bulk Weyl tensor and
linear and quadratic contributions from the matter sector.
In this context as well, the fact that perturbations must

satisfy the symmetries of the background spacetime forces
the even-parity perturbation to take the form advocated in
Eq. (7). Since the angular component of the energy-
momentum tensor of the matter fluid and the contribution
from bulk Weyl tensor are identical, it follows that
δGθ

θ − δGϕ
ϕ ¼ 0. Hence, as in Sec. II B, in this case we

also have H0 ¼ H2 ≡HðrÞ. Similarly, the result δGr
θ ¼

8πG4δTr
θ will lead to K

0 ¼ H0 þ 2ν0H, which is identical to
that obtained in Sec. II B. Thus, the fact that only two
perturbation components [HðrÞ and KðrÞ] are necessary to
characterize the even-parity gravitational perturbation and
that they are connected by a differential equation holds both
inside and outside the neutron star. On the other hand, all of
the remaining relations connecting the components of the
perturbed metric with perturbations in the matter sector will
lead to a different set of equations. Let us start with the
addition of the perturbation equations in the angular direc-
tions, i.e., we concentrate on the equation δGθ

θ þ δGϕ
ϕ ¼

8πG4ðδTθ
θ þ δTϕ

ϕÞ. By expanding the above equation, we
have

e−2λr2K00 þ e−2λrK0f2þ rðν0 − λ0Þg − e−2λr2H00 − e−2λrH0ð3rν0 − rλ0 þ 2Þ

− 16πr2
�∂Ũ
∂P̃ − 1

�
δP̃ − 16πr2HðŨ − P̃Þ − 16πr2Hp̃eff − 16πr2δp̃eff ¼ 0: ð47Þ

Here Ũ and P̃ have the usual expressions, and ρ̃eff ¼ G4ρeff and p̃eff ¼ G4peff . Subsequently, the radial perturbation equation,
namely, δGr

r ¼ 8πG4δTr
r, yields

e−2λð1þ rν0ÞrK0 −
�
1

2
lðlþ 1Þ − 1

�
K − e−2λrH0 þ

�
1

2
lðlþ 1Þ − 1 − 8πr2ðp̃eff þ Ũ þ 2P̃Þ

�
H

− 8πr2δp̃eff − 8πr2
�
2þ ∂Ũ

∂P̃
�
δP̃ ¼ 0: ð48Þ

Finally, the remaining equation corresponding to the temporal part of the perturbation equation, namely, δGt
t ¼ 8πG4δTt

t,
yields

e−2λr2K00 þ e−2λrK0ð3 − rλ0Þ −
�
1

2
lðlþ 1Þ − 1

�
K − re−2λH0 −

�
1

2
lðlþ 1Þ þ 1 − 8πr2ðρ̃eff þ 3ŨÞ

�
H

þ 8πr2
�∂ρ̃eff
∂p̃eff

�
δp̃eff þ 8πr2

�∂Ũ
∂P̃

�
δP̃ ¼ 0: ð49Þ
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The difficulty associated with the above equations
should be apparent by now. Unlike for the perturbation
equations outside of the neutron star, here we have to
eliminate both δP̃ and δp̃eff . As we will see, this will
result in terms that depend on K. Hence, in the most
general setting it will not be possible to arrive at a

single master equation governing all of the even-parity
gravitational perturbations (for a similar situation, see
Ref. [82]).
However, for the moment let us press on and see how far

we can go. We start by solving for δp̃eff, which can be done
using Eq. (47),

16πr2δp̃eff ¼ e−2λr2K00 þ e−2λrK0f2þ rðν0 − λ0Þg − e−2λr2H00 − e−2λrH0ð3rν0 − rλ0 þ 2Þ

− 16πr2
�∂Ũ
∂P̃ − 1

�
δP̃ − 16πr2HðŨ − P̃Þ − 16πr2Hp̃eff : ð50Þ

Thus, by using Eq. (50) we can replace δp̃eff in the other two equations. However, they will both depend on δP̃. Hence, to
eliminate δP̃we focus on Eq. (48). First of all, we substitute δp̃eff from the above equation into Eq. (48), which results in the
following expression:

e−2λð1þ rν0ÞrK0 −
�
1

2
lðlþ 1Þ − 1

�
K − e−2λrH0 þ

�
1

2
lðlþ 1Þ − 1 − 8πr2ðp̃eff þ Ũ þ 2P̃Þ

�
H

− 8πr2
�
2þ ∂Ũ

∂P̃
�
δP̃ ¼ 1

2
e−2λr2K00 þ 1

2
e−2λrK0f2þ rðν0 − λ0Þg − 1

2
e−2λr2H00 −

1

2
e−2λrH0ð3rν0 − rλ0 þ 2Þ

− 8πr2
�∂Ũ
∂P̃ − 1

�
δP̃ − 8πr2HðŨ − P̃Þ − 8πr2Hp̃eff : ð51Þ

After simplifying the above equation further, one can immediately solve for the quantity δP̃,

48πr2δP̃ ¼ −48πr2HP̃ − 2

�
1

2
lðlþ 1Þ − 1

�
K þ 2

�
1

2
lðlþ 1Þ − 1

�
H

− e−2λr2K00 þ e−2λr2K0ðν0 þ λ0Þ þ e−2λr2H00 − e−2λrH0ð3rν0 − rλ0Þ: ð52Þ

In the final step one has to use both Eqs. (50) and (52) to
eliminate both δp̃ and δP̃ in Eq. (49), which can be done in
a straightforward manner. However, the differential equa-
tion so obtained will depend on KðrÞ and its derivative.
Thus, unlike the exterior scenario, even if one uses the
relation K0 ¼ H0 þ 2ν0H all of the dependences on the
angular part of the gravitational perturbation cannot be
eliminated. This suggests that in the interior one needs to
solve a set of coupled differential equations. This makes
handling the interior structure of the neutron star in the
presence of extra dimensions more difficult.
However, one can avoid this problem and arrive at

interesting scenarios with exact solutions to the above
problem if some suitable assumptions are made. Before
going into the details, note that the problem of getting
a closed-form solution is mainly associated with the fact
that in the interior of the neutron star we have a two-fluid
system. If we can set the extra-dimensional contribution
coming from the dark radiation and dark pressure to zero,
we may be able to circumvent the problem. In parti-
cular, the quantity of significant interest in this context

corresponds to the continuity of matter and the metric
across the surface of the neutron star. This continuity
equation in the presence of an extra dimension reads [83]

p̃eff þ Ũ− þ 2P̃− ¼ Ũþ þ 2P̃þ ¼ 3P̃0

2R4
; ð53Þ

where R is the radius of the neutron star. Here, the þ sign
corresponds to a configuration outside of the neutron star,
while the − sign is corresponds to the interior confi-
guration. Thus, the most economic way to get an analytic
handle on the perturbation equation is by assuming that
Ũ− ¼ 0 ¼ P̃−, i.e., the effects from the extra dimension
due to the Weyl stress tensor identically vanish in the
interior of the neutron star. This significantly simplifies
the analysis presented above and, more importantly,
reduces the above system of equations representing the
gravitational perturbation in the interior of the neutron
star to a single-fluid system. In particular, the field
equations presented in Eqs. (47)–(49) can be rewritten in
the following manner:
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e−2λr2K00 þ e−2λrK0f2þ rðν0 − λ0Þg − e−2λr2H00 − e−2λrH0ð3rν0 − rλ0 þ 2Þ − 16πr2Hp̃eff − 16πr2δp̃eff ¼ 0; ð54Þ

e−2λð1þ rν0ÞrK0 −
�
1

2
lðlþ 1Þ − 1

�
K − e−2λrH0 þ

�
1

2
lðlþ 1Þ − 1 − 8πr2p̃eff

�
H − 8πr2δp̃eff ¼ 0; ð55Þ

e−2λr2K00 þe−2λrK0ð3− rλ0Þ−
�
1

2
lðlþ1Þ−1

�
K−

�
1

2
lðlþ1Þþ1−8πr2ρ̃eff

�
H− re−2λH0 þ8πr2

�∂ρ̃eff
∂p̃eff

�
δp̃eff ¼ 0:

ð56Þ

As emphasized earlier, the gravitational perturbation equations now involve only a single matter field with energy density
ρ̃eff and isotropic pressure p̃eff along with their perturbations. Note that even though the influence of the Weyl fluid vanishes
in the interior, the effect of the extra dimension is still present through the effective matter energy-momentum tensor. Since
the above equations reduce to the familiar form as in Sec. II, we can employ the same strategy here as well, i.e., we first
eliminate any term involving δp̃eff , and then eliminate all of the references to the K term appearing in these equations with
the help of the relation K0 ¼ H0 þ 2ν0H. Finally, by combining all of these equations in an appropriate manner we obtain a
single differential equation for the master variable inside the neutron star,

H00 þ
�
2

r
þ e2λ

�
2m̃effðrÞ

r2
þ 4πrðp̃eff − ρ̃effÞ

��
H0 þH

�
−lðlþ 1Þe

2λ

r2
þ 4πe2λ

�
5ρ̃eff þ 9p̃eff þ

ρ̃eff þ p̃eff

dp̃eff=dρ̃eff

�
− 4ν02

�
¼ 0:

ð57Þ

This is essentially a general relativity problem, but with a different energy density and pressure, which must match
the exterior solution having a nonzero Weyl stress tensor. The important point about the above differential equation is
that the energy density and pressure appearing in it are not just the matter energy density and pressure; they also have
contributions from the higher dimensions through the brane tension λb. In particular, the equation-of-state parameter for the
effective fluid becomes

∂ρ̃eff
∂p̃eff

¼ ∂ρeff
∂peff

¼ ∂ρeff
∂p

�∂peff

∂p
�

−1
¼

�
1þ ρ

λb

� ∂ρ
∂p

�
1þ ρ

λb

∂ρ
∂pþ ρ

λb
þ p
λb

∂ρ
∂p

�
−1
: ð58Þ

Thus, the equation-of-state parameter is indeed modified in
the presence of an extra dimension through the brane
tension λb, such that in the limit λb → 0 we get back the
correct equation-of-state parameter.
The above analysis explicitly demonstrates that in the

context of neutron stars there will be two sources of
modifications to the tidal Love number in the presence
of higher dimensions. The first such modification comes
from the interior of the neutron star, as the master equation
for the perturbation is different due to the presence of
additional terms in the matter sector that depend on the
brane tension, along with a modified boundary condition at
the surface of the star. This will lead to different values for
the perturbation HðrÞ and its derivative H0ðrÞ at the stellar
surface. The second modification comes from the fact that
the differential equation for the gravitational perturbation
outside of the neutron star due to the presence of the Weyl
stress tensor will be different. Thus, an estimation of the
tidal Love number with a modified differential equation and
with modified boundary conditions will certainly differ
from that in the general-relativistic situation.

Since in this particular context it is not possible to
provide an analytical estimation of the tidal Love number
(or, better, the dimensionless tidal Love number), we have
to resort to numerical methods. However, taking a cue from
our earlier discussion regarding the tidal Love number for
BHs, we can argue that extra dimensions could possibly
decrease the numerical value of the dimensionless tidal
Love number from that in general relativity. If this is indeed
the case, there will be interesting consequences. For
example, given a central density, the dimensionless tidal
Love number Λ will be smaller in the presence of higher
dimensions i.e., in situations with finite λb. Thus, if GW
experiments rule out some model with a given central
density, they can come into the picture again if extra
dimensions are taken into account. This may have obser-
vational ramifications, as we will discuss below.
Keeping these intriguing possibilities in mind, we

perform a numerical analysis by solving the differen-
tial equation governing the behavior of the even-parity
gravitational perturbation in the interior of the neutron
star, which provides the numerical estimations for the
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gravitational perturbation and its derivative at the surface of
the NS. These are then used as the boundary conditions to
solve for the gravitational perturbation in the exterior
region, leading to a determination of the dimensionless
tidal Love number Λ. Of course, such estimations for the
tidal Love number will depend on the choice of the EoS

parameter for the material forming the neutron star. To
illustrate this, we plot these numerical estimates of Λ
against the brane tension λb for a tabulated EoS [84] and
polytropic EoS in Fig. 4. Further numerical estimations of
Λ are also presented for various choices of the brane
tension λb and the central charge density of the neutron
star in Fig. 5. As is evident from Fig. 5, as the central
density increases the dimensionless tidal Love number
decreases, since it becomes more difficult to deform the NS
by applying an external tidal field. Similarly, it is clear
from Fig. 5 (and also from Fig. 4) that the dimensionless
tidal Love number Λ attains smaller and smaller values
as the brane tension λb decreases, i.e., as the system
departs further from general relativity. This is completely
consistent with our earlier theoretical consideration. This
explicitly demonstrates the consistency of the theoretical
framework used in this work with the numerical analysis
performed to estimate the dimensionless tidal Love num-
ber. In the next section we discuss the implications for
GW170817 and possible observability in future GW
experiments.

V. IMPLICATIONS OF GW170817 AND
FUTURE MERGER EVENTS

In this section we comment on the possible implications
of the results derived above in the context of recent GW
observation from NS-NS (e.g., GW170817) and BBH
mergers. For GW170817, Advanced LIGO provides a
constraint on the dimensionless tidal Love number Λ <
800 [6]. This constraint in turn provides bounds on the
parameter space of the EoS of the neutron star by ruling out

FIG. 3. This figure depicts the variation of the dimensionless
tidal Love numberΛwith the parameter β inherited from the extra
dimensions using numerical analysis. The black hole mass MBH
has been taken to be ∼30 M⊙. As is evident, like for k2, the other
dimensionless tidal Love number Λ is also nonzero and negative,
which is expected from our theoretical analysis as well. There is
little variation of Λ with β, which is ∼20%. As β changes from
10−3 to 0.1, the dimensionless tidal Love number Λ changes
from −10.6 to −12.2.

FIG. 4. This figure depicts the variation of the dimensionless tidal Love number Λ with the brane tension λb from our numerical
analysis for two choices of the equation of state of the neutron star. The curve on the left is for a tabulated equation-of-state parameter
[84], while the one on the right is due to a polytropic equation of state, with Γ ¼ 5=3. In both panels the red thick line depicts the
asymptotic value of the dimensionless tidal Love number Λ, which corresponds to the general-relativistic limit. As is evident, the
dimensionless tidal Love number Λ is nonzero and is smaller than the general-relativistic value for a finite λb, signaling the possible
existence of extra dimensions. Note that the small-scale tests of the gravitational interaction forbid one from numerically estimating the
brane tension λb below 1038 (in units of mass density) [85].
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several EoSs leading to a high central density of the neutron
star. However, this analysis was completely within the
context of general relativity. As our numerical analysis
depicts, the presence of extra dimensions reduces the
estimations of the dimensionless tidal Love number Λ.
Hence, it follows that a significant portion of the EoS
parameter space (earlier ruled out by general relativity
estimations) will become viable again. This is clearly
illustrated in Fig. 5. The quantity calculated is the dimen-
sionless tidal Love number Λ for a polytropic EoS with
Γ ¼ 5=3 as a function of both the stellar central density and
the brane tension λb. The thick red line in Fig. 5 represents
the Λ ¼ 800 curve and (as is evident from the figure) the
regions to the left of the Λ ¼ 800 curve are ruled out by the
recent GW170817 measurement, while those on the right
are still viable (assuming general relativity). However,
the presence of an extra dimension leads to a smaller
value for Λ. Thus, one may consider a certain central
density (depicted by the blue vertical line in Fig. 5), which
is ruled out by the GW170817 measurement if general
relativity is assumed to be correct theory, but comes into
existence as one considers smaller values of brane tension

signalling possible presence of extra dimension. Further,
we note that the parameter space for the brane tension
considered in this work is completely consistent with the
small-scale tests of Newton’s law [86–88]. Thus, if the tidal
Love number is more accurately measured in future
observations, that in turn will provide stringent bounds
on the brane tension λb, which will be more accurate
compared to the small-scale tests of Newton’s law and
hence we will really be probing some of the microscopic
features of spacetime through GW experiments. This is a
direct consequence of the presence of extra dimensions on
the NS-NS merger.
On the other hand, for observations related to BBH

mergers the situation is more subtle, but also more
predictable. The dimensionless tidal Love number Λ values
associated with BHs in the presence of an extra dimension
are computed numerically by asymptotic matching of the
other dimensionless tidal Love number k2. As is evident
from Fig. 3, numerical estimates for the dimensionless tidal
Love number Λ are in the range ∼ − 10 to −20. Further,
from Fig. 3 we can also see the variation of the dimension-
less tidal Love number Λ for a braneworld BH with the
parameter β, which is also not very large (∼20%). Given the
present sensitivity of Advanced LIGO’s detectors and their
associated errors, a negative Λ value of a few hundred
would be easily detected, but a value of a few tens (as is the
case here) would probably be lost in noise. On a brighter
note, the upcoming Einstein Telescope (or LISA) will
increase the sensitivity of detection by an order of magni-
tude, meaning that lower values of the dimensionless tidal
Love number Λ could be detected if they turn out to
be negative, which may act as a very good test bed for
higher-dimensional theories.

VI. CONCLUSIONS

Understanding the possible implications of theories
beyond general relativity has become a topic of significant
importance in recent years, thanks to the detection of GWs
from binary BHs and NSs which have provided first-hand
experience of the strong-gravity regime. Among various
other possibilities, the existence of extra dimensions and
their implications and observability in the context of GWs
are of significant interest. Following this trend, in this work
we explored the effect of higher spatial dimensions on the
tidal Love number of BHs and NSs. For this purpose, we
started with an understanding of the modifications to the
static, even-parity gravitational perturbation in the exterior
region of an NS or BH due to the existence of extra
dimensions. These modifications to the differential equa-
tion satisfied by the gravitational perturbation also leads to
possible modifications to the tidal Love number.
In particular, using both theoretical and numerical

techniques we explicitly demonstrated that the presence
of an extra dimension will, beyond a doubt, make the tidal

FIG. 5. This figure depicts the variation of the dimensionless
tidal Love number Λ with the central density ρ0 of a Γ ¼ 5=3
polytropic neutron star as well as the brane tension λb, as
computed from our numerical analysis. The general-relativistic
result is obtained by taking the limit λb → ∞; thus, any finite
value for λb will denote a departure from general relativity. As is
evident from the panel on the right, Λ is nonzero, and increases
with decreasing central density, as it should. The black curve is
the Λ ¼ 800 line, such that points on the left are ruled out by the
GW170817 event, while those on the right remain viable options
[6,7]. While the blue vertical line presents a certain central
density, taken to be 1015.72 in gm cm−3. However, the value of Λ
changes with the central density and hence the Λ ¼ 800 curve
(being mass dependent) provides a crude estimation of the bound
from the GW170817 event, which will suffice for our purpose.
Moreover, the range of values for the brane tension λb is
consistent with the small-scale tests of Newton’s law.

CHAKRAVARTI, CHAKRABORTY, BOSE, and SENGUPTA PHYS. REV. D 99, 024036 (2019)

024036-16



Love numbers nonzero and (more importantly) negative
for braneworld BHs. On the other hand, it is well known
that for BHs in general relativity the tidal Love number
vanishes. Incidentally, the general relativity result can also
be derived by taking the appropriate limit of our higher-
dimensional result. We would like to emphasize that even
though the idea of nonzero tidal Love numbers for BHs is
not new, for the specific case of extra dimensions we found
that the tidal Love numbers are negative, unlike other
scenarios. The negativity of tidal Love number for BHs is
an additional distinguishing feature of extra dimensions,
and can possibly be exploited using real data in the future
for further confirmation.
We further demonstrated the relevant modifications to

the differential equations governing gravitational perturba-
tions in the interior of a neutron star as well. In general, this
will lead to a two-fluid system consisting of the Weyl fluid
(inherited from the higher dimension) and the fluid inside
the neutron star. However, due to its difficult nature we
have considered a simpler situation in which the Weyl fluid
is nonexistent inside the neutron star but is certainly present
outside, which preserves the continuity of the physical
quantities on the surface of the NS. In this particular con-
text the essential modifications to the equations satisfied
by the gravitational perturbations in the interior of the
neutron star involve the term ρ2=λb, where ρ is the energy
density of the fluid filling the interior of the NS and λb is
the brane tension. As λb → ∞ the general relativity result
can be obtained. As we have explicitly demonstrated by
numerically solving these equations, in the case of NS-NS
or NS-BH binaries the presence of extra dimensions will
induce deviations in the dimensionless tidal Love number
Λ from its expected general-relativistic behavior, which
essentially decreases the numerical estimations of the tidal
Love number. This results in an interesting possibility,
namely, a certain parameter space associated with the
central density of the NS (which was ruled out earlier
by GW170817 using general-relativistic methods) may
be viable for a finite λb, signaling the possible existence
of extra dimensions. Moreover, future GW observations
will constrain the dimensionless tidal Love number Λ to
a greater accuracy, which in turn may lead to further
stringent constraints (better than the existing ones) on the
brane tension λb. Further, given these modifications to the
dimensionless tidal Love number Λ, there may be a very
good chance of detection in future GW detectors because of
the low signal-to-noise ratio of these measurements. Thus,
using both theoretical and numerical techniques we have
explicitly demonstrated a modification to the dimensionless
tidal Love number Λ (or k2) for the specific scenario of
compactified extra spatial dimensions. The techniques
employed here are quite general, and can be equivalently
applied to understand the nature of the tidal Love number in

various other theories of gravity beyond general relativity
as well. We leave these questions for future studies.
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APPENDIX: SOLVING THE DIFFERENTIAL
EQUATION FOR EVEN-PARITY

GRAVITATIONAL PERTURBATIONS

Here we solve for Eq. (31). For this purpose, it
will be helpful to define the new quantity β̄2 ¼
4f1þ ðβ=2Þgf1þ βg−1. Thus, the differential equation
takes the following form:

fy2 − 1g∂2
yH þ 2y∂yH −

�
lðlþ 1Þ þ β̄2

y2 − 1

�
H ¼ 0:

ðA1Þ

This differential equation is exactly the same as the
differential equation satisfied by the associated Legendre
polynomials Pl

mðyÞ and Ql
mðyÞ, but with the exception

that m ¼ β̄ is now a fraction. However, in the context of
general relativity β ¼ 0 and we have the usual case with
m ¼ 2. The solution of this equation (found in Ref. [89]) is
given by

Hðl; m; yÞ ¼ A1Pm
l ðyÞ þ B1Qm

l ðyÞ; ðA2Þ

where Pm
l ðyÞ and Qm

l ðyÞ are the Legendre functions of the
first and second kind, respectively. Further, the arbitrary
constants that arise from solving the above second-order
differential equations are A1 and B1, respectively. Since we
are interested in the asymptotic behavior, we would like to
write down the above functions as polynomials in y. This can
be achieved by first expanding them in terms of hyper-
geometric functions and then employing a power-series
expansion. When written in terms of the confluent hyper-
geometric functions 2F1 they are
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Qm
l ðyÞ ¼ eimπ2−l−1

ffiffiffi
π

p Γðlþmþ 1Þ
Γðlþ 3

2
Þ y−l−m−1ðy2 − 1Þm=2

2F1

�
1þ lþm

2
;
1þ lþm

2
;lþ 3

2
;
1

y2

�
; ðA3Þ

Pm
l ðyÞ ¼ 2−l−1π−1=2

Γð− 1
2
− lÞ

Γð−l −mÞ y
−lþm−1Þðy2 − 1Þ−m=2

2F1

�
1

2
þ l −m

2
; 1þ l −m

2
;lþ 3

2
;
1

y2

�
;

þ 2l
Γð1

2
þ lÞ

Γð1þ l −mÞ y
lþmðy2 − 1Þ−m=2

2F1

�
−
lþm

2
;
1

2
−
lþm

2
;
1

2
− l;

1

y2

�
: ðA4Þ

For arguments smaller than unity, the hypergeometric functions have the following polynomial expansion:

2F1ða; b; c; xÞ ¼
ΓðcÞ

ΓðaÞΓðbÞ
X∞
j¼0

Γðaþ jÞΓðbþ jÞ
Γðcþ jÞ

xj

j!
: ðA5Þ

Using this expression for the confluent hypergeometric series,we can rewrite the associatedLegendre polynomial of the second
kind Qm

l from Eq. (A3) as

Qm
l ðyÞ¼ eimπ2−l−1

ffiffiffi
π

p Γðlþmþ1Þ
Γðlþ 3

2
Þ y−l−m−1ðy2−1Þm=2 Γðlþ 3

2
Þ

Γð1þ lþm
2
ÞΓð1þlþm

2
Þ
X∞
j¼0

Γð1þlþm
2

þ jÞΓð1þ lþm
2

þ jÞ
Γðlþ 3

2
þ jÞ

y−2j

j!
: ðA6Þ

It is worthwhile to define

αðl; mÞ ¼ eimπ2−l−1
ffiffiffi
π

p Γðlþmþ 1Þ
Γð1þ lþm

2
ÞΓð1þlþm

2
Þ ; ðA7Þ

βjðl; mÞ ¼ Γð1þlþm
2

þ jÞΓð1þ lþm
2

þ jÞ
Γðlþ 3

2
þ jÞ ; ðA8Þ

in terms of which Qm
l ðyÞ has the following expression:

Qm
l ðyÞ ¼ αðl; mÞy−l−m−1ðy2 − 1Þm=2

X∞
n¼0

βnðl; mÞ y
−2n

n!
: ðA9Þ

Since we are interested in the asymptotic limit, we can expand the above in powers of y−1, immediately leading to,

Qm
l ðyÞ ¼ αðl; mÞy−l−1ð1 − y−2Þm=2

X∞
j¼0

βjðl; mÞ y
−2j

j!

¼ αðl; mÞy−l−1
�X∞

k¼0

ð−1Þk ðm
2
Þ!

k!ðm
2
− kÞ! y

−2k
��X∞

j¼0

βjðl; mÞ y
−2j

j!

�
ðA10Þ

By expanding this series we obtain the first three nontrivial terms in the expression for Qm
l :

Qm
l ðyÞ ≃ αðl; mÞy−l−1

�
β0ðl; mÞ þ

�
−
�
m
2

�
β0ðl; mÞ þ β1ðl; mÞ

�
y−2

þ
�
1

2

�
m
2

��
m
2
− 1

�
β0ðl; mÞ −

�
m
2

�
β1ðl; mÞ þ 1

2
β2ðl; mÞ

�
y−4

�
: ðA11Þ

Let us concentrate on the associated Legendre polynomial of the first kindPm
l given by Eq. (A4). Using the series expansion of

the hypergeometric function, we obtain
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Pm
l ðyÞ ¼ 2−l−1π−1=2

Γð− 1
2
− lÞ

Γð−l −mÞ y
−lþm−1ðy2 − 1Þ−m=2

×
Γðlþ 3

2
Þ

Γð1
2
þ l−m

2
ÞΓð1þ l−m

2
Þ
X∞
j¼0

Γð1þ l−m
2

þ jÞΓð1
2
þ l−m

2
þ jÞ

Γðlþ 3
2
þ jÞ

y−2j

j!

þ 2l
Γð1

2
þ lÞ

Γð1þ l −mÞ y
lþmðy2 − 1Þ−m=2

×
Γð1

2
− lÞ

Γð− lþm
2
ÞΓð1

2
− lþm

2
Þ
X∞
j¼0

Γð− lþm
2

þ jÞΓð1
2
− lþm

2
þ jÞ

Γð1
2
− lþ jÞ

y−2j

j!
: ðA12Þ

For convenience, in this case we introduce the four quantities

γðl; mÞ ¼ 2−l−1π−1=2
Γð− 1

2
− lÞ

Γð−l −mÞ
Γðlþ 3

2
Þ

Γð1
2
þ l−m

2
ÞΓð1þ l−m

2
Þ ; ðA13Þ

σjðl; mÞ ¼ Γð1þ l−m
2

þ jÞΓð1
2
þ l−m

2
þ jÞ

Γðlþ 3
2
þ jÞ ; ðA14Þ

χðl; mÞ ¼ 2l
Γð1

2
þ lÞ

Γð1þ l −mÞ
Γð1

2
− lÞ

Γð− lþm
2
ÞΓð1

2
− lþm

2
Þ ; ðA15Þ

Πjðl; mÞ ¼ Γð− lþm
2

þ jÞΓð1
2
− lþm

2
þ jÞ

Γð1
2
− lþ jÞ ; ðA16Þ

and hence the associated Legendre polynomial can be written as

Pm
l ðyÞ ¼ γðl; mÞy−lþm−1ðy2 − 1Þ−m=2

X∞
j¼0

σjðl; mÞ y
−2j

j!
þ χðl; mÞylþmðy2 − 1Þ−m=2

X∞
j¼0

Πjðl; mÞ y
−2j

j!
: ðA17Þ

Expanding the above expression for large values of y, we obtain

Pm
l ðyÞ ¼ γðl; mÞy−l−1ð1 − y−2Þ−m=2

X∞
j¼0

σjðl; mÞ y
−2j

j!
þ χðl; mÞylð1 − y−2Þ−m=2

X∞
j¼0

Πjðl; mÞ y
−2j

j!

¼ γðl; mÞy−l−1
X∞
k¼0

ðm
2
þ k − 1Þ!

k!ðm
2
− 1Þ! y−2k

X∞
j¼0

σjðl; mÞ y
−2j

j!
þ χðl; mÞyl

X∞
k¼0

ðm
2
þ k − 1Þ!

k!ðm
2
− 1Þ! y−2k

X∞
j¼0

Πjðl; mÞ y
−2j

j!
:

ðA18Þ

Keeping the first few nontrivial terms, the above expression yields

Pm
l ðyÞ ≃ γðl; mÞy−l−1

�
σ0ðl; mÞ þ

��
m
2

�
σ0ðl; mÞ þ σ1ðl; mÞ

�
y−2

þ
�
1

2

�
m
2

��
m
2
þ 1

�
σ0ðl; mÞ þ

�
m
2

�
σ1ðl; mÞ þ 1

2
σ2ðl; mÞ

�
y−4

�

þ χðl; mÞyl
�
Π0ðl; mÞ þ

��
m
2

�
Π0ðl; mÞ þ Π1ðl; mÞ

�
y−2

þ
�
1

2

�
m
2

��
m
2
þ 1

�
Π0ðl; mÞ þ

�
m
2

�
Π1ðl; mÞ þ 1

2
Π2ðl; mÞ

�
y−4

�
: ðA19Þ

This completes our discussion of the general solution and the first few nontrivial terms in its asymptotic expansion.
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However, keeping future applications in mind, let us concentrate on the l ¼ 2 situation and the leading-order
contribution, which yields

Hð2; m; yÞ ≃ A1fγð2; mÞσ0ð2; mÞy−3 þ χð2; mÞΠ0ð2; mÞy2g þ B1αð2; mÞβ0ð2; mÞy−3
¼ fγð2; mÞσ0ð2; mÞA1 þ αð2; mÞβ0ð2; mÞB1gy−3 þ χð2; mÞΠ0ð2; mÞA1y2: ðA20Þ

Given the results in Eqs. (A7)–(A8) and Eqs. (A13)–(A16), we finally obtain

αð2; mÞ ¼
ffiffiffi
π

p
8

eimπ Γð3þmÞ
Γð2þ m

2
ÞΓð3

2
þ m

2
Þ ; β0ð2; mÞ ¼ Γð2þ m

2
ÞΓð3

2
þ m

2
Þ

Γð7
2
Þ ; ðA21Þ

γð2; mÞ ¼ 1

8
ffiffiffi
π

p Γð− 5
2
Þ

Γð−2 −mÞ
Γð7

2
Þ

Γð3
2
− m

2
ÞΓð2 − m

2
Þ ; σ0ð2; mÞ ¼ Γð3

2
− m

2
ÞΓð2 − m

2
Þ

Γð7
2
Þ ; ðA22Þ

χð2; mÞ ¼ 4
Γð5

2
Þ

Γð3 −mÞ
Γð− 3

2
Þ

Γð−1 − m
2
ÞΓð− 1

2
− m

2
Þ ; Π0ð2; mÞ ¼ Γð−1 − m

2
ÞΓð− 1

2
− m

2
Þ

Γð− 3
2
Þ : ðA23Þ

Using the above results, we finally obtain

αð2; mÞβ0ð2; mÞ ¼ Γð3þmÞ
15

eimπ; γð2; mÞσ0ð2; mÞ ¼ 1

8
ffiffiffi
π

p Γð− 5
2
Þ

Γð−2 −mÞ ; χð2; mÞΠ0ð2; mÞ ¼ 4Γð5
2
Þ

Γð3 −mÞ : ðA24Þ

Further, the result Γðnþ 1Þ ¼ nΓðnÞ can be used to obtain

Γ
�
−
5

2

�
¼

�
−
2

5

�
Γ
�
−
3

2

�
¼

�
−
2

5

��
−
2

3

�
Γ
�
−
1

2

�
¼ −

8
ffiffiffi
π

p
15

; ðA25Þ

as well as Γð5=2Þ ¼ ð3=4Þ ffiffiffi
π

p
. Thus, the solution becomes

Hð2; m; yÞ ¼
�

3A1

ffiffiffi
π

p
Γð3 −mÞ

�
y2 þ

�
−

A1

15Γð−2 −mÞ þ
B1Γð3þmÞeiπβ̄

15

�
y−3: ðA26Þ

This is the result we use in the main text.
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