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In general relativity, the parallel transfer of a vector around a closed curve in spacetime, or along two
curves that together form a closed loop, usually results in a nonzero deficit angle between the vector’s initial
and final positions. We show that such holonomy in the McVittie spacetime, which represents a gravitating
object imbedded in an expanding universe, can in principle be used to directly detect the expansion of the
universe, for example, by measuring changes in the components of a gyroscopic spin axis. Although such
changes are of course small, they are large enough (ΔS ∼ 10−7) that they could conceivably be measured if
the real Universe behaved like the McVittie spacetime. The real problem is that virialization will lead to
domains decoupled from the global expansion on a scale much larger than that of the solar system, making
such an experiment infeasible probably even in principle. Nevertheless, the effect is of interest in relation to
ongoing discussions, dating back at least to Einstein and Straus, that concern the relationship between the
expansion of the Universe and local systems.
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I. INTRODUCTION

Attempts to understand how the large-scale behavior of
the Universe might affect local physics have been ongoing
at least since Einstein attempted to incorporate Mach’s
principle into general relativity. Einstein himself continued
this line of inquiry in his paper with Straus on modeling a
Schwarzschild domain in an expanding universe [1], and
this work was itself further generalized in various ways
by other authors (see, e.g., Ref. [2]). Recent papers on the
same general theme have included one by Bochiccio and
Faraoni [3], who examine how a Friedmann-Lemaître-
Roberston-Walker (FLRW) cosmology affects the behavior
of a Lemaître-Tolman-Bondi system; Faraoni and Jacques
[4], who examine whether various systems embedded in a
FLRW cosmology participate in the expansion; and
Cooperstock et al. [5], who ask how the universal expan-
sion of an FLRW universe affects the equations of motion
in a local inertial frame.
One of the earliest and most important investigations in

this areawas, of course, that ofMcVittie [6], who discovered
a solution to the Einstein equations that represents a spheri-
cally symmetric object in an expanding universe. For the

past two decades, there has been some renewed interest in
McVittie’s solution after it was realized that many misstate-
ments about the metric have been made in the literature [7]
and that a proper understanding of the spacetime was much
more subtle than previously thought [8,9].
The various controversies involving the horizon structure

and nature of the central object in the McVittie solution do
not concern us in the present investigation, which more
closely resembles Refs. [3–5]. We merely intend to use the
McVittie spacetime as a background to “design” a few
simple thought experiments that could, in principle, directly
detect the expansion of the universe through the holonomy
produced by the metric. That is, parallel transport of a
vector around a closed loop in a curved spacetime generally
results in a measurable deficit angle between the initial and
final directions of the vector. Rothman et al. [10] (REM)
calculated the deficit angle produced for a variety of
trajectories in the Schwarzschild-Droste1 static geometry
and showed that this metric produces a quantized band
structure of holonomy invariance. These results were
generalized by Maartens et al. to stationary axisymmetric
spacetimes [12]. In the current paper, we carry out an
analysis similar to REM’s for the McVittie metric. Any
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cosmological expansion should affect the deficit angle of a
vector under parallel transport, in principle allowing direct
experimental detection of the universe’s expansion. Of
course, one expects such effects to be extremely small, and
they are, but they turn out to be surprisingly large compared
to, e.g., the dimensionless strain of 10−21 successfully
measured by LIGO.
This paper is organized as follows: In the next section,

we discuss the basic geometry of McVittie spacetime and
write down the parallel transport equations in an ortho-
normal tetrad basis. In Sec. III, we discuss the holonomy
for the vectors parallel transported along circular orbits in
the equatorial plane. Circular orbits are not actually geo-
desics in the McVittie cosmology, but as we show, the error
introduced by using such orbits as proxies for geodesics in
computing the holonomy is negligible. As explained in
detail, such an experiment requires two measuring devices
(gyroscopes) to be sent along different paths to meet at the
same spatial location where their spin-axis directions can
be compared, thus directly measuring holonomy. Two
different versions are considered: an experiment with
one comoving and one orbiting apparatus (Sec. III C 1)
and an experiment with two counterorbiting gyroscopes
(Sec. III C 2). In Sec. IV, we consider the outcome, which
depends on the scale at which static or quasistatic domains
coalesce out of the expanding Universe as structure for-
mation takes place.

II. MCVITTIE METRIC

The line element for the McVittie spacetime in isotropic
coordinates is given by Faraoni [13], Eq. (4.10),

ds2 ¼ −
½1 − mo

2aðtÞr�2
½1þ mo

2aðtÞr�2
dt2

þ a2ðtÞ
�
1þ mo

2aðtÞr
�
4

ðdr2 þ r2dΩ2Þ; ð1Þ

where r here corresponds to r̃ in Faraoni, aðtÞ is the
cosmological scale factor, and mo the mass of the central
object. Note that a ¼ 1 gives the Schwarzschild solution
and mo ¼ 0 gives the flat FLRW universe. Thus the metric
is generally interpreted as representing a central object in an
expanding universe.
We have chosen this form of the metric (as opposed to

the more common “canonical nondiagonal form” in terms
of an areal radius; see Faraoni [13] for the important reason
that we wish to use a radial coordinate that is tied to the
matter. If we send out, e.g., a gyroscope along a closed
loop, we want to measure the deficit angle in the compo-
nents by the same material “apparatus.” In Eq. (1), r
represents a comoving coordinate; that is, a given matter
particle (galaxy) is attached to a given r because the
normalized 4-velocity

ua ¼
½1þ m0

2aðtÞr�
½1 − m0

2aðtÞr�
δa0 ð2Þ

is a Ricci eigenvector and hence an eigenvector of the
matter stress tensor Tab. This represents the average motion
of matter at each spacetime event and hence corresponds to
the idea of a fundamental observer in cosmology. Thus, a
gyroscope traveling along a circular orbit will return to the
original apparatus if r ¼ constant but not if the proper
distance dðtÞ ¼ raðtÞ ¼ constant; in that case, the universe
has expanded during the transit time, and the gyroscope
will return to a different device. Hence, in this paper,
“circular” means circular in comoving coordinates (1), (2).
We perform all our calculations in a orthonormal tetrad

basis feag, which correctly describes the local physics.
The obvious choice for such a tetrad for metric (1), as
represented by the dual basis 1-forms fωag, is

ω0 ¼ ωt ¼
½1 − mo

2aðtÞr�
½1þ mo

2aðtÞr�
dt ð3Þ

ω1 ¼ ωr ¼ aðtÞ
�
1þ mo

2aðtÞr
�
2

dr ð4Þ

ω2 ¼ ωθ ¼ aðtÞ
�
1þ mo

2aðtÞr
�
2

rdθ ð5Þ

ω3 ¼ ωφ ¼ aðtÞ
�
1þ mo

2aðtÞr
�
2

r sin θdφ: ð6Þ

Working out the connection coefficients by the Cartan
equation dωa ¼ −ωa

b ∧ ωb gives

ω0
1¼ω1

0¼
mo

r2a2ð1þ mo
2raÞ2ð1− m2

o
4r2a2Þ

ω0þ _a
a
ω1 ð7Þ

ω0
2 ¼ ω2

0 ¼
_a
a
ω2 ð8Þ

ω0
3 ¼ ω3

0 ¼
_a
a
ω3 ð9Þ

ω2
1 ¼ −ω1

2 ¼
ð1 − mo

2raÞ
arð1þ mo

2raÞ3
ω2 ð10Þ

ω3
1 ¼ −ω1

3 ¼
ð1 − mo

2raÞ
arð1þ mo

2raÞ3
ω3 ð11Þ

ω2
3 ¼ −ω3

2 ¼
cot θ

ð1þ mo
2raÞ3

ω3: ð12Þ

The parallel transport equation is

dAa þ ωa
bAb ¼ 0; ð13Þ
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which gives the change in a vector with tetrad components
Aa along a curve xbðλÞwith tangent vector XbðλÞ ¼ dxb=dλ
and curve parameter λ. For λ ¼ t and H ≡ _a=a, Eq. (13)
yields the following ordinary differential equations:

dAt þ mo

a2r2ð1þ mo
2raÞ4

ArdtþHa

�
1þ mo

2ra

�
2

Ardr

þHar

�
1þ mo

2ra

�
2

Aθdθ

þHar

�
1þ mo

2ra

�
2

sin θAϕdϕ ¼ 0 ð14Þ

dAr þ mo

a2r2ð1þ mo
2raÞ4

AtdtþHa

�
1þ mo

2ra

�
2

Atdr

−
ð1 − mo

2raÞ
ð1þ mo

2raÞ
Aθdθ −

ð1 − mo
2raÞ

ð1þ mo
2raÞ

sin θAϕdϕ ¼ 0 ð15Þ

dAθ þHar

�
1þ mo

2ra

�
2

Atdθ þ ð1 − mo
2raÞ

ð1þ mo
2raÞ

Ardθ

þ cos θðarÞ
ð1þ mo

2raÞ
Aϕdϕ ¼ 0 ð16Þ

dAϕ þHar

�
1þ mo

2ra

�
2

sin θAtdϕ

þ ð1 − mo
2raÞ

ð1þ mo
2raÞ

sin θArdϕ −
cos θðraÞ
ð1þ mo

2raÞ
Aθdϕ ¼ 0: ð17Þ

Note that t is not an affine parameter, but that does not
matter for our purposes; see the next section. Indeed, the
curve with tangent vector Xb need not even be a geodesic.
We note that for parallel transport along any curve

magnitude is conserved,

AagabAb ¼ ðAagabAbÞo ¼ const; ð18Þ

and so in the tetrad basis,

−ðAtÞ2 þ ðArÞ2 þ ðAθÞ2 þ ðAϕÞ2 ¼ const: ð19Þ

We will make extensive use of this property in the
following sections.

III. CIRCULAR HOLONOMY

A. Circular orbits and Kepler’s law

We consider the holonomy of vectors moving on a
circular orbit in the equatorial plane. It is important to point
out that, due both to a nonzero pressure gradient in the
McVittie spacetime and the expansion of spacetime,
circular orbits are not actually geodesics. Rather, in our
coordinates, over an orbital period, particles spiral inward

with time from a radius r1 to r2. Because the geodesics are
not closed, one cannot in principle measure holonomy on
them unless a force is exerted to ensure that any apparatus is
somehow returned to its initial spatial location (which
will be a very small displacement, as we show below).
Likewise, an instrument will not follow a circular orbit
without employing rockets to hold it at a fixed radius. The
use of rockets would, of course, introduce positioning
errors into any experiment, which might very well over-
whelm the desired results.
On the other hand, over an orbital period, one can allow

the apparatus to freely follow the geodesic from r1 to r2. In
the McVittie spacetime, the difference between r1 and r2 is
so small, however, that one introduces a negligible error by
computing the holonomy as if the instrument were follow-
ing a circular orbit. We take this approach and show in
Sec. III C 3 below that the error in measuring the holonomy
is indeed negligible.
Below, we will consider an experiment involving

gyroscopes. One might object that spinning objects do
not follow geodesics, due to the coupling of the spin tensor
to the Riemann curvature tensor, as manifested in the
Mathisson-Papapetrou-Dixon equations. This effect is
entirely negligible for spinning bodies of less than astro-
physical size. Cornadesie and Papapetrou [14] show that
the ratio of the spin terms to the ordinary relativistic terms,
which we consider, is approximately ðR2=r2ÞðT=τÞ, where
R is the size of the object, r is the Schwarzschild
coordinate, T is the rotation period of the object around
the Sun, and τ is the rotation period around its axis. For a
gyro of R ¼ 1 m and τ ¼ 10−3 s at r ¼ 1 A:U:, this ratio is
approximately 10−12, utterly negligible. In other words, for
any gyroscope that can be treated as a point particle, the
coupling vanishes.
We further note that a geodesic is generated whenever

the tangent vector to the curve remains parallel to itself.
Then, the geodesic equation for an arbitrary curve param-
eter λ is given by

D∂=∂λXa ¼ fXa ⇒ Xb∇bXa ¼ fXa: ð20Þ

In terms of an affine parameter of the geodesic, one will
have f ¼ 0. For the case when the proper time τ along the
curve is the curve parameter, the function f is

f ¼ d2λ=dτ2

ðdλ=dτÞ2 ¼ 0; ð21Þ

as is well known, proper time is an affine parameter.
However, if we choose the coordinate time t to be the curve
parameter, then for radius r ¼ constant, t is related to the
proper time τ by
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dτ ¼ ð1 − k
2aÞ

ð1þ k
2aÞ

dt; ð22Þ

where

k≡mo

r
: ð23Þ

Calculating f, we find

f ¼ −
Hk=a

ð1 − k
2aÞð1þ k

2aÞ
: ð24Þ

Since H ¼ _a=a, this equation shows that f ¼ 0 for a ¼ 1
or for k ¼ 0. The first situation corresponds to the
Schwarzschild spacetime, while the later corresponds to
FLRW spacetime. Thus, for both the limiting cases of
McVittie spacetime, the time coordinate t is an affine
parameter. However, it is not an affine parameter for the
general case when both k and H are nonzero. Nevertheless,
we can still use the coordinate time t as the curve parameter
along circular orbits because the parallel transport equation
of vector Aa moving in the equatorial plane will not change:

Xb∇bAa ¼ 0: ð25Þ

Furthermore, taking t as the curve parameter will enable us
to compute the limiting cases easily, without performing
complicated coordinate transformations.
For circular orbits as we have defined them, the

comoving radial coordinate r ¼ constant (not the proper
distance d ¼ ra), which implies that dr ¼ 0. The radial
component of the tangent vector will be zero, so

fr ¼ r0g ⇒ fXr ¼ 0g ⇒ fdXr ¼ 0g: ð26Þ

Further, by symmetry, we may take fθ ¼ π=2g, and so

fdθ ¼ 0g ⇒ fXθ ¼ 0g ⇒ fdXθ ¼ 0g: ð27Þ

Therefore, with t as the curve parameter, the components of
the tangent vector in the tetrad frame are

Xμ ¼ 1

α

�ð1 − k
2aÞ

ð1þ k
2aÞ

; 0; 0; ar

�
1þ k

2a

�
2

Ω
�
; ð28Þ

where the normalization factor α is found by setting
XμXμ ¼ −1, and the angular velocity is

Ω≡ dϕ
dt

: ð29Þ

When Aa is a tangent vector Xa, Eq. (15) directly gives an
algebraic relationship between Xt and Xϕ:

Xϕ ¼ k
ra2

�
1 −

k
2a

�
−1
�
1þ k

2a

�
−3

Ω−1Xt: ð30Þ

Then, Eqs. (28) and (30) immediately yield

Ω2 ¼ k
a3r2ð1þ k

2aÞ6
ð31Þ

independent of normalization, which is Kepler’s third law
for the McVittie spacetime in these coordinates, except that
as already mentioned these are not strictly geodesic orbits.
Over cosmological times,Ω and hence the angular momen-
tum of a body on a circular orbit would change.
We see that for a ¼ 1 (Schwarzschild) the orbital

frequency Ω differs from the “Newtonian” value ΩN ≡ffiffiffi
k

p
=r by approximatey k ∼ 10−8 in the vicinity of Earth. In

principle, one could measure this deviation, assuming one
could correct for other major perturbations. The additional
effect due to the expansion of the universe would be even
smaller. For example, for a de Sitter universe with a ¼ eHt,
Ht ≪ 1, and k ≪ 1, one has from Eq. (31) to first order in
small quantities

Ω
ΩN

¼ 1 −
3k
2
−
3Ht
2

: ð32Þ

The last two terms are of the same order near Earth
when t≳ 100 years.

B. Holonomy of a general vector along circular orbits

We now turn to the case of an arbitrary vector being
parallelly transported along a circular orbit described by
comoving radial coordinate r ¼ const and θ ¼ π=2.
Therefore, dr ¼ dθ ¼ 0, and the above set of parallel trans-
port equations (14)–(17) reduces to the following:

dAt þ k

a2rð1þ k
2aÞ4

ArdtþHar

�
1þ k

2a

�
2

Aϕdϕ ¼ 0

ð33Þ

dAr þ k
a2rð1þ k

2aÞ4
Atdt −

ð1 − k
2aÞ

ð1þ k
2aÞ

Aϕdϕ ¼ 0 ð34Þ

dAθ ¼ 0 ð35Þ

dAϕ þHar

�
1þ k

2a

�
2

Atdϕþ ð1 − k
2aÞ

ð1þ k
2aÞ

Ardϕ ¼ 0: ð36Þ

From above, we can easily see that −AtdAt þ ArdArþ
AθdAθ þ AϕdAϕ ¼ 0, which implies that −ðAtÞ2 þ ðArÞ2þ
ðAθÞ2 þ ðAϕÞ2 ¼ constant, as pointed out in Sec. II. This
constraint reduces the number of nontrivial independent
equations to two [as we can always integrate (35) trivially].
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It will be worthwhile to calculate here how the scalar
product of the arbitrary vector and the tangent vector
(XaAa) changes as the former is parallelly transported
along a geodesic. We have

Xb∇bðXaAaÞ ¼ ðXb∇bXaÞAa þ ðXb∇bAaÞXa: ð37Þ
By Eqs. (20) and (25), the above equation becomes

Xb∇bðXaAaÞ ¼ ðXaAaÞf: ð38Þ
Hence, we see that for any arbitrary curve parameter, if
these two vectors are perpendicular at a given spacetime
point, they continue to be perpendicular at all points on the
geodesic passing through that given point. This highlights
the importance of the gyroscope, in which the spin vector is
always held perpendicular to the 4-velocity, as the most
viable instrument to measure the holonomy of vectors.

C. Holonomy in gyroscope spin

As a thought experiment to directly measure holonomy,
one might place a gyroscope in orbit around the central
mass in a McVittie universe. The expansion should
influence the “geodetic” precession of the gyro compared
to the Schwarzschild case [15]. This is not to be confused
with the so-called Lense-Thirring effect, measured by
LAGEOS and Gravity Probe B, which depends on the
rotation rate of the central object; geodetic precession as
discussed here occurs even when the central object is not
rotating. As just mentioned, a gyroscope consists of a spin
vector Sa, which is taken to be perpendicular to the tangent
vector of the orbit Xa, such that SaXa ¼ 0. Typically, one
would find Sa by solving the gyroscope equation

dsa

dτ
þ Γa

cdScud ¼ 0: ð39Þ

However, because of the constraints present in this problem
and because the spin vector is parallel transported accord-
ing to the previous equations, one can employ the following
procedure, which is equivalent, but somewhat simpler.
For a circular orbit, the tetrad components of the

4-velocity were given by Eq. (28), and because XaSa¼0,
this provides a relation between St and Sϕ:

St ¼ ð1þ k
2aÞ3

ð1 − k
2aÞ

arΩSϕ: ð40Þ

With Kepler’s third law, Eq. (31), this becomes

St ¼ �
ffiffi
k
a

q
ð1 − k

2aÞ
Sϕ: ð41Þ

Since by definition, the vector Sa is spacelike (as it is
perpendicular to the 4-velocity), we can always normalize it

such that SaSa ¼ 1. Because of the spherical symmetry of
the problem, we can also, without loss of generality, take
Sθ ¼ 0. The constraint Eq. (19) then becomes

−ðStÞ2 þ ðSrÞ2 þ ðSϕÞ2 ¼ 1: ð42Þ

Note that these two constraints, (41) and (42), reduce the
number of independent nontrivial equations to 1. The time
evolution of Sr is then given by Eq. (34) as

dSr

dt
þ k
a2rð1þ k

2aÞ4
St −

ð1 − k
2aÞ

ð1þ k
2aÞ

ΩSϕ ¼ 0: ð43Þ

Inserting Eqs. (41) and (31) into this expression, we find
after simplification

dSr

dt
∓ ð1 − 2k

a þ k2

4a2Þ
ffiffi
k
a

q
arð1 − k

2aÞð1þ k
2aÞ4

Sϕ ¼ 0: ð44Þ

Now, substituting Eq. (41) into Eq. (42) gives

Sϕ ¼ � ð1 − k
2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2k
a þ k2

4a2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðSrÞ2

q
: ð45Þ

Inserting this expression into Eq. (44) yields the required
decoupled equation

dSr

dt
∓ ΨðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðSrÞ2

q
¼ 0; ð46Þ

where

ΨðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2k

a þ k2

4a2Þ k
a

q
arð1þ k

2aÞ4
: ð47Þ

The general solution of Eq. (46) is given by

SrðtÞ ¼∓ sin

�
c1 þ

Z
t

t0

ΨðtÞdt
�
: ð48Þ

Then, by Eqs. (41) and (45), the other components of the
spin vector are

SϕðtÞ ¼∓ ð1 − k
2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2k
a þ k2

4a2

q cos

�
c1 þ

Z
t

t0

ΨðtÞdt
�

ð49Þ

and

StðtÞ ¼∓
ffiffi
k
a

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2k

a þ k2

4a2

q cos

�
c1 þ

Z
t

t0

ΨðtÞdt
�
: ð50Þ

DIRECT DETECTION OF UNIVERSAL EXPANSION BY … PHYS. REV. D 99, 024033 (2019)

024033-5



Thus, we have a complete general solution for Sa in the
McVittie spacetime.
In the special case of Schwarzschild spacetime (a ¼ 1),

Ψ≡Ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1 − 2kþ 1

4
k2Þ

q
rð1þ 1

2
kÞ4 ¼ const: ð51Þ

In this case, the components of the spin vector become

StðtÞ ¼∓
ffiffiffi
k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2kþ 1

4
k2

q cos ½c1 þ Ψ0ðt − t0Þ�; ð52Þ

SrðtÞ ¼∓ sin ½c1 þΨ0ðt − t0Þ�; ð53Þ

SϕðtÞ ¼∓ ð1 − 1
2
kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2kþ 1
4
k2

q cos ½c1 þΨ0ðt − t0Þ�: ð54Þ

Thus, all three spin components oscillate with constant
frequency Ψ0. In the limit k ≪ 1, we easily find that

Ψ0 ¼ ΩNð1 − 3kÞ: ð55Þ

This expression apparently differs from the one given,
e.g., by Hartle [15] in his Eq. (14.15); however, when one
transforms from isotropic to Schwarzschild coordinates,
one finds that the two frequencies are in fact identical. In
the McVittie spacetime, by contrast, we see that a → ∞
implies thatΨ → 0, which means that the oscillations of the
spin vector are damped; Sr and Sϕ become constant, and St

goes to zero. Thus, by placing a gyroscope in orbit around
the Sun and measuring the behavior of the spin vector over
cosmological times, one would certainly be able to detect
the universal expansion by this method.
We now turn to two potentially more feasible

experiments.

1. Experiment with one comoving
and one orbiting apparatus

As an alternative to the experiment just described, we
can imagine one involving two gyroscopes (see Fig. 1), the
first of which is transported from point A around a circular
path Γ1 of radius r0 as before, while the second follows a
timelike path Γ2 at constant comoving radius r0 and
constant angular coordinates θ0, ϕ0. (Again, this is not a
geodesic, and rocket engine, e.g., would be required to keep
the apparatus in position.) These paths, coincident at time
t ¼ t0, will meet again at a point B at time t ¼ t0 þ t2π . The
total holonomy is found by comparing the vector compo-
nents at the point B where the two paths intersect again.
For the spin vector Sa2, because dr ¼ dθ ¼ dϕ ¼ 0, the

parallel transport equations (14)–(17) along Γ2 give

dSt2 þ
k

a2rð1þ k
2aÞ4

Sr2dt ¼ 0; ð56Þ

dSr2 þ
k

a2rð1þ k
2aÞ4

St2dt ¼ 0; ð57Þ

dSθ2 ¼ 0; ð58Þ

dSϕ2 ¼ 0: ð59Þ

Furthermore, since SaXa ¼ 0 and along the path Γ2 we
have Xa ¼ ½Xt; 0; 0; 0�, we must have therefore St2 ¼ 0

along the path. Plugging this into Eq. (57) shows that
Sr2 ¼ const. However, because dSt2 ¼ 0, Eq. (56) requires
Sr2 ¼ 0. Since, without any loss of generality, we can take
Sθ ¼ 0, the normalized spin vector along the path Γ2 is the
constant vector

Sa2ðtÞ ¼ ½0; 0; 0; 1�: ð60Þ
Now, let both the devices coincide at the same spacetime

point at t ¼ t0, where we take the readings of their
corresponding spin vectors. The first apparatus moving
along Γ1 will obey Eqs. (48)–(50). At the initial time t0, set
aðt0Þ ¼ 1. To get appropriate initial conditions, we choose
c1 ¼ π=2. Then, at t ¼ t0,

St1ðt0Þ¼∓
ffiffi
k
a

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2k

a þ k2

4a2

q cos
�
π

2
þ
Z

t0

t0

ΨðtÞdt
�
¼0; ð61Þ

Sr1ðt0Þ ¼∓ sin

�
π

2
þ
Z

t0

t0

ΨðtÞdt
�
¼ 1; ð62Þ

Sϕ1 ðt0Þ¼∓ ð1− k
2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 2k
a þ k2

4a2

q cos

�
π

2
þ
Z

t0

t0

ΨðtÞdt
�
¼0: ð63Þ

Thus, at the initial time, we have

Sa1ðt0Þ ¼ ½0; 1; 0; 0�; ð64Þ

t Γ

Γ

1

2

A

B

FIG. 1. Spacetime diagram for the experiment.
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and at that time, the difference in the spin of these
two gyroscopes is ½0; 1; 0;−1�. Clearly, these spins are
perpendicular to each other. Ideally, one would like to have
these vectors be parallel to each other. However, the parallel
transport equations and the constraint that the spin vector
must always be perpendicular to the 4-velocity force
parallel initial spins to be ½0; 0; 1; 0�. This means that,
instead of taking the constant Sθ ¼ 0, we set the value to
unity, without loss of generality. Unfortunately, this initial
spin vector is a fixed point for the transport equations of
both the gyroscopes. Therefore, if we pick the spins to be
initially parallel, they remain parallel, and there will be no
holonomy, which is why we chose the initial conditions
as above.
With the given initial conditions, we next perform a

measurement at the final point B, when the first apparatus
has completed a full rotation, and both apparatuses again
coincide. The time interval between these two measurement
is t2π − t0, where t2π is the solution of

2π ¼
ffiffiffi
k

p

r

Z
t0þt2π

t0

dt

a3=2ð1þ k
2aÞ3

: ð65Þ

We can immediately see that at this point the spin vectors of
the two gyroscopes are no longer perpendicular to each
other. Therefore, the net holonomy of the vector Sa1 is
given by

ΔSa1 ¼ Sa1ðt0 þ t2πÞ − Sa1ðt0Þ: ð66Þ

We now consider an experiment that runs for less than
cosmological times. From Eq. (47), we have to order k

ΨðtÞ ¼ 1

a3=2

�
1 −

3k
a

�
ΩN: ð67Þ

For a ¼ ðto þ ΔtÞ=toÞn with Δt ≪ to, Eqs. (48)–(50)
then give to first order in k

St ¼∓ k1=2
�
1þ k −

nΔt
2to

�

× cos

�
c1 þ

�
1 − 3k −

3

4
n
Δt
to

�
ΩNΔt

�
ð68Þ

Sr ¼∓ sin

�
c1 þ

�
1 − 3k −

3

4
n
Δt
to

�
ΩNΔt

�
ð69Þ

Sϕ ¼∓
�
1þ k

2

�
cos

�
c1 þ

�
1 − 3k −

3

4
n
Δt
to

�
ΩNΔt

�
;

ð70Þ

and for a ¼ eHt, with Ht ≪ 1 and t0 ¼ 0,

St ¼∓ k1=2
�
1þ k−

Ht
2

�
cos

�
c1 þ

�
1− 3k−

3

4
Ht

�
ΩNt

�

ð71Þ

Sr ¼∓ sin

�
c1 þ

�
1 − 3k −

3

4
Ht

�
ΩNt

�
ð72Þ

Sϕ ¼∓
�
1þ k

2

�
cos

�
c1 þ

�
1 − 3k −

3

4
Ht

�
ΩNt

�
: ð73Þ

Formally, the time t2π is given by Eq. (65). However, to
the required accuracy, we may take t2π to be the Newtonian
value t2π ¼ 2πrk−1=2, in which case ΩNt in the above
expressions becomes merely 2π. The holonomy for the spin
components is then ΔSa ¼ Saðt2πÞ − Sað0Þ. The obvious
choices for initial conditions are c1 ¼ 0 and c1 ¼ π=2.
However, the former results in initial spin components that
depend on k, whereas the latter gives simply Sa1ðt0Þ ¼
½0; 1; 0; 0� as in Eq. (64). We therefore confine ourselves
to this situation, which is presumably easier to experimen-
tally arrange. The holonomy in the spin components for the
de Sitter case is then to lowest order

ΔSt ¼ 6πk3=2 þ 3π2Hr ð74Þ

ΔSr ¼ 18π2k2 þ 18π3k1=2Hr ð75Þ

ΔSϕ ¼ 6πkþ 3π2Hr

k1=2
; ð76Þ

with a similar expression for the power-law universe.
Taking an orbit of 1 A.U., we have k ≈ 10−8 and
Hr ≈ 10−15. The largest change in holonomy can be seen
to be in the Sϕ component, where the first term in ΔSϕ is
approximately 10−7 and the second term is approximately
3 × 10−10. (However, in the outer reaches of the solar
system, the second term dominates.) The holonomy for all
the components after one rotation is

ΔSa ∼ ½10−11; 10−14; 0; 10−7�: ð77Þ

More useful, however, is the deviation from the
Schwarschild geometry. The first term (independent of H)
in each of the above expressions is the holonomy produced
in Schwarzschild. The fractional deviation of McVittie
from Schwarzschild,

fa ¼ ΔSaS − ΔSaMc

ΔSaS
; ð78Þ

is then

ft ¼ −
πHr

2k3=2
∼ 10−3 ð79Þ
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fr ¼ −
πHr

k3=2
∼ 10−3 ð80Þ

fϕ ¼ −
πHr

2k3=2
∼ 10−3: ð81Þ

Complete numerical integration agrees with these results
and shows that, in the scale of Earth’s orbit around the Sun,
there is virtually no difference between the power-law
expansion and de Sitter expansion of the universe (see
Fig. 2). The total holonomy over one complete rotation
found numerically is shown in Table I.
Although the holonomy produced by this experiment is

in principle detectable, with advanced enough technology,
the problem of keeping the “stationary” observer at the
same comoving radius probably makes this proposal
unviable even in principle. Is there a simpler proposal?
We turn to one possibility now.

2. Experiment with two counter orbiting gyroscopes

We reiterate that to compute holonomy one must
compare the components of the tangent vector after
the particle or measuring apparatus has traversed a closed
path. Even in Schwarzschild, the comparison cannot be
made with a single apparatus because after one orbit the

instrument is no longer in its original spacetime position.
We can, however, imagine two devices with their spin
vectors aligned at time t ¼ 0, which are then sent out on
circular orbits as above in opposite directions through an
angle 2π, to meet at the same comoving observation point.
Overall, this combination of curves gives a closed orbit that
can be used to measure holonomy. Since the two devices
have anΩ of the same magnitude but opposite sign at every
point, the changes in the vector components will add, and
so the total holonomy of each will be half of their sum.
Geometrically, the picture of this holonomy is as follows:

at the initial time, Saðt0Þ ¼ ½Stðt0Þ; Srðt0Þ; 0; Sϕðt0Þ�, while
at t ¼ t2π , the vector becomes Saðt2πÞ ¼ ½Stðt2πÞ; Srðt2πÞ; 0;
Sϕðt2πÞ�. This represents boosts in two different directions
relative to the tetrad frame, which by (18), because the
magnitude of the vector remains unchanged, is a Lorentz
transformation. The sum of the boosts in different direc-
tions represents a rotation. Since Sθ ¼ 0, the net change of
the spatial part of the vector Sa lies in the ðr;ϕÞ plane, in
other words, the θ direction.
This can be seen more formally by examining the

Lorentz group commutation relations

½Ji; Jj� ¼ iεijkJk; ð82Þ

½Ji;Mj� ¼ iεijkMk; ð83Þ

½Mi;Mj� ¼ −iεijkJk: ð84Þ

Here, Ji is the generator of rotations, and Mi is the
generator of boosts. The last commutator shows the spatial
holonomy will be in the θ direction, as stated.
The change in the vectors is the same as in the experi-

ment in the previous section, but in this case, the net
holonomy change will be 2ΔSa. Hence, as before, on the
scale of the solar system, there will be no difference
between the power-law expansion and de Sitter expansion
of the universe, and the order of the net holonomy will
remain ΔSa ∼ ½10−11; 10−14; 0; 10−7�. Figures. 3–5 show
numerical results for all spin components with the initial
condition c1 ¼ π=2.

3. Error introduced by assuming circular geodesics

We emphasized at the beginning of Sec. III A that
circular orbits in the McVittie spacetime are not actually
geodesics. During the course of an orbit, freely falling
instruments spiral inward from r1 to r2. If we do not wish
to use rockets to hold the apparatus at a constant r, we
therefore cannot compute the holonomy after a complete
orbit. However, it is easy to see that the error introduced
by assuming the orbit is circular, as we have done, is
negligible.
With k≡mo=r, we found, e.g., in the c1 ¼ π=2 de Sitter

case that

FIG. 2. Spin vector solution St for power-law expansion,
aðtÞ ¼ ðt=t0Þ2=3. Numerically, the net holonomy in this compo-
nent is calculated to be of the order 10−11.

TABLE I. The fractional deviation of the Schwarzschild geom-
etry from the McVittie spacetime, as defined by Eq. (78), for the
de Sitter case when c1 ¼ π=2.

Schwarzschild McVittie Fractional change

ΔSt 1.885 × 10−11 1.888 × 10−11 −1.592 × 10 − 3
ΔSr −1.776 × 10−14 −1.787 × 10−14 −6.194 × 10−3

ΔSϕ 1.885 × 10−7 −1.188 × 10−7 −1.592 × 10−3
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ΔSr ¼ 18π2k2 þ 18π3k1=2Hr ð85Þ

for circular orbits.
Now, instead, take two circular orbits at r2 and r1. If, as

above,

f1 ¼
ΔStðr1ÞS − ΔStðr1ÞMc

ΔStðr1ÞS
ð86Þ

f2 ¼
ΔStðr2ÞS − ΔStðr2ÞMc

ΔStðr2ÞS
; ð87Þ

then the quantity of interest to measure the fractional
deviation of McVittie from Schwarzschild by using r2
instead of r1 is evidently

Δf ¼ f2 − f1
f1

: ð88Þ

In our notation, McVittie shows that in the lowest
approximation

1

r
¼ moaðtÞ

h2
; ð89Þ

where h is some constant. If a ¼ 1 at t ¼ 0,

1

r1
¼ mo

h2
: ð90Þ

Taking Δr≡ r2 − r1, we have for a ¼ eHt

−
Δr
r1

¼ HΔt ≪ 1: ð91Þ

(Indeed, with the parameters used previously, Δr is of the
order 10 m.) Equations (85) and (88) then give

Δfr ¼ 2HΔt ¼ 4πHr1
k1=2

: ð92Þ

As this number is approximately 10−10, we see that the error
introduced in computing the holonomy by ignoring the
difference between r2 and r1 is completely negligible.
The results of this section suggest that a simpler experi-

ment might be merely to put a satellite in orbit around the
Sun and measure Δr, avoiding a spin measurement. In that
sense, such an experiment is indeed simpler. However, one
would need to hold some device (a second satellite) at the

FIG. 3. Spin vector solutions for de Sitter expansion,
aðtÞ ¼ eHt, where H ¼ const. These solutions are identical to
the power-law expansion, using the same initial conditions as in
that case.

FIG. 4. St solution for de Sitter expansion, aðtÞ ¼ eHt.

FIG. 5. Spin vector solutions, Sr and Sϕ, with k ¼ 10−8 and
H ¼ 10−15 as the initial conditions for power-law expansion,
aðtÞ ¼ ðt=t0Þ2=3, where t is the numerical integration time.
Equation (47) is used as the expression for ΨðtÞ, and we find
the net holonomy in the spin components to be the same as
predicted when taking the expression for ΨðtÞ to first order
in k, Eq. (67).

DIRECT DETECTION OF UNIVERSAL EXPANSION BY … PHYS. REV. D 99, 024033 (2019)

024033-9



original r in order to make the distance measurement,
which would require a force. Second, for an orbit at 1 A.U.,
Δr=ðorbital circumferenceÞ ∼ 10−11, suggesting that the
precision required for such a measurement is no less than
for the gyro experiment.

IV. DISCUSSION

We have discussed a few simple thought experiments,
which at first sight might in principle actually be per-
formed. These have been carried out in the McVittie
spacetime, which assumes that the “solar system” (the
Sun and a test particle) is directly embedded in an
expanding universe. Employing the McVittie metric has
enabled us to calculate the holonomy produced in gyro-
scopes on solar system scales. One might perform similar
calculations for other spacetimes as well, e.g., the Tolman
models. However, none of those models contains the
limiting cases of pure Schwarzschild geometry on the
one side and pure FLRW geometry on the other, which
the McVittie spacetime has. Hence, the results in those
cases would be more unrealistic.
In terms of holonomy, the key difference between a pure

Schwarzschild geometry and the McVittie spacetime that
emerges from our calculations is the variation in both
amplitude and frequency in the oscillations of a gyro-
scope’s spin vectors. The table below summarizes the
numerical results of the experiments we have discussed,
including the fractional change of components of the spin
vector between the two spacetimes.
Of course, the real Universe does not behave like the

McVittie spacetime. The Solar System contains nine

planets. However, by far most of the mass is concentrated
in Jupiter, which is only approximately 10−4 M⊙. As
Jupiter is also much farther away from Earth than the
Sun, kJ ∼ 10−5k⊙, and so any perturbation to the metric
would be extremely small. In any case, since we are
interested in the difference in measurements between the
Schwarzschild and McVittie spacetime, any such pertur-
bation would at least to first order subtract out.
The main problem concerns the scale at which static or

quasistatic domains coalesce out of the expanding Universe
as structure formation takes place. This is essentially the
issue of virialization of emerging gravitational structures
[16]. Given that virialization takes place on the scale of
galactic clusters, this is, in principle, the scale on which one
would have to carry out realistic experiments. As the order
of magnitude of that holonomy we have calculated is only
approximately 10−11, to distinguish the two geometries
does not appear feasible on solar system scales because the
virialization scale is so much larger. Nevertheless, in the
tradition of Einstein and Straus [1] and Noerdlinger and
Petrosian [2], it is conceptually interesting to consider
idealized experiments that show effects on solar system
scales and even more so in the context of any consideration
of how the Universe at large influences local physics.
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