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We investigate near-horizon geometry of the rotating Bañados Teiteilboim Zanelli (BTZ) black hole with
torsion. Our main motivation is to gain insight into the role of torsion in the near-horizon geometry, which
is well understood in the Riemannian case. We obtain that near-horizon geometry represents a
generalization of AdS self-dual orbifold with nontrivial torsion. We analyze its asymptotic structure
and derive the corresponding algebra of asymptotic symmetries, which consists of chiral Virasoro and
centrally extended uð1Þ Kac-Moody algebra.
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I. INTRODUCTION

Black holes represent some of the most fascinating
objects in our Universe which, since their discovery by
Schwarzschild, do not stop to puzzle and inspire us. After
Hawking’s discovery of black hole radiation we stumbled
into quite a few problems. First of them is an information
paradox. Namely, if black hole radiates thermally, after its
evaporation the information about the matter it was con-
stituted of is inevitably lost. The second one is the problem
of black hole microstates which are responsible for the
black hole entropy and crucial for the information paradox
resolving.
There are numerous approaches to the previously men-

tioned problems, in this article we are particularly interested
in Kerr/CFT [1]. The basic idea of Kerr/CFT is that near
horizon geometry encodes many important information
about the full geometry itself if not them all. The only
drawback is that near-horizon geometry is well defined
only for the extremal black holes. Nevertheless, keeping in
mind the importance of the subject, gaining diverse insights
is valuable.
It is worth noting that charges that generate asymptotic

symmetry of near-horizon geometry are by construction
soft. This is interesting because there are propositions that
soft hairs are black hole microstates [2,3]. So, one might
hope to gain a small insight into importance of torsion for
this approach as well.
Although Kerr/CFT is, already, known for a decade there

is no analogous analysis for the gravity with torsion. Our
intention is to fill this gap and initiate investigation of near-
horizon geometries with torsion. Before proceeding to the
subject of our work it is instructive to give a short note on
the role of torsion in gravity.

Einstein’s general relativity (GR), prototype of all
modern gravitational theories, postulates that connection
is Christoffel or, equivalently, that there is no torsion.
Although successful in explaining many of the existing
macroscopic phenomena it still lacks the status of the
fundamental theory on the microscopic level, due its
nonrenormalizability. One also needs to include dark matter
and dark energy into GR to accomplish the agreement with
observations.
Instead of including mysterious new form of matter one

may turn to alternative theories of gravity. If we allow the
presence of torsion in gravitational theories we are exposed
to a vast number of new possibilities. One of them is that
dark matter represents one of the manifestations of non-
trivial torsion, see [4–6]. In cosmology there are also
considerations in which both dark matter and energy are
replaced by torsion [7]. Additionally, there are proposals
that torsion plays a crucial role in inflation. Namely in [8] a
simple model of inflation is proposed which, among other
issues, also solves the problem of cosmological singularity.
However, there is an approach to gravity based on

localization of Poincaré group in which basic dynamical
variables are vielbein and spin connection. For the com-
prehensive overview of the subject see [9]. This formu-
lation of gravity naturally incorporates presence of torsion
and metric postulate is a consequence of an antisymmetry
of spin connection. Also coupling of fermions to gravity is
natural, which makes this approach more appealing for-
mulation than standard metric one.
The paper is organized as follows. In the next section we

collect main results of Mielke-Baekler (MB) model: action,
equations of motion, BTZ black hole with torsion, canoni-
cal structure and generator of gauge symmetries. Third
section is devoted to the main results of this paper. We
construct near-horizon geometry of BTZ black hole with
torsion which represents a new solution of MB model, self-
dual orbifold with torsion and give its basic properties.
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After introducing suitable asymptotic conditions for viel-
bein and spin connection we derive the kinematical algebra
of asymptotic symmetries. Using the results of the second
section we construct the corresponding charges that gen-
erate this symmetry and derive commutation relations
between generators.
Our conventions are as follows. The Latin indices

(i; j; k;…) refer to the local Lorentz frame with the
signature of the metric (þ;−;−), Levi-Civita symbol
εijk is normalized to ε012 ¼ 1. We use Greek indices
(μ; ν; ρ;…) for the coordinate frame. The orthonormal triad
(coframe 1-form) is denoted with ei, while ωij is the spin
connection (1-form). The field strengths are torsion Ti ¼
dei þ ωi

m ∧ em and the curvature Rij ¼ dωij þ ωi
k ∧ ωkj

(2-forms). The Lie dual of an antisymmetric form Xij is
Xi ≔ −εijkXjk=2 and the exterior product of forms is
implicit.

II. MIELKE-BAEKLER MODEL

A. Mielke-Baekler model in a nutshell

Basic dynamical variables in the first order formulation
of gravity are vielbein eiμ and spin connection ωij

μ. Very
common is to use differential forms which, often, simplify
notation and calculation, so we introduce vielbein and spin
connection 1-forms

ei ¼ eiμdxμ; ωij ¼ ωij
μdxμ ð2:1Þ

In three dimensions (3D) it is useful to pass on dual spin
connection ωi ¼ − 1

2
εijkω

jk, and in the completely same
manner for every other two-index Lorentz tensors. In this
notation torsion and curvature 2-forms are given by

Ti ¼ dei þ εijkω
jek; Ri ¼ dωi þ εijkω

jωk:

MB topological model [10] of 3D gravity is described by
the action

I ¼ aI1 þ ΛI2 þ α3I3 þ α4I4 þ IM;

I1 ¼ 2

Z
eiRi; I2 ¼ −

1

3

Z
εijkeiejek;

I3 ¼
Z

ωidωi þ 1

3
εijkω

iωjωk; I4 ¼
Z

eiTi; ð2:2Þ

where IM is the matter field contribution. The first term
with a ¼ 1=16πG is the Einstein Cartan action, the second
term is the cosmogical one, the third terms is Chern-Simons
action for Lorentz connection, while the fourth term
explicitly depends on torsion. In the previous expressions
and in what follows wedge product between forms is
implicit.
We are particularly interested in the nondegenerate

sector of the theory in which the following relation

holds a2 − α3α4 ≠ 0. If the previous relation is true then
equations of motion can be cast in the simple form [11]

2Ti ¼ pεijkejek; p ¼ α3Λþ α4a
α3α4 − a2

; ð2:3aÞ

2Ri ¼ qεijkejek; q ¼ −
α24 þ aΛ
α3α4 − a2

: ð2:3bÞ

The vacuum configuration is characterized by constant
torsion and constant curvature. For p ¼ 0, or q ¼ 0 the
vacuum geometry is Riemannian (Ti ¼ 0) or teleparallel
(Ri ¼ 0).
From the torsion equation (2.3a) it follows that con-

torsion one form is particulary simple, Ki ¼ p
2
ei, so that

connection reads

ωi ¼ ω̃i þ p
2
ei; ð2:4Þ

where ω̃i is Levi-Chivita (Riemannian) connection. The
curvature equation of motion (2.3b) now implies that
Riemannian piece of curvature is

2R̃i ¼ Λeffεijkeiej; Λeff ¼ q −
p2

4
; ð2:5aÞ

where Λeff is an effective cosmological constant. In what
follows we shall restrict ourselves to the AdS sector of the
theory with negative effective cosmological constant

Λeff ≔ −
1

l2
; ð2:5bÞ

where l is an AdS radius.

B. BTZ black hole with torsion

MB model has an important and interesting, solution
which is a generalization of BTZ black hole and possesses
nontrivial torsion [12].
The metric of this solution, parametrized by m and j, is

given by

ds2 ¼ N2dt2 −
dr2

N2
− r2ðNφdtþ dφÞ2; ð2:6aÞ

where

N2 ¼ −8Gmþ r2

l2
þ 16G2j2

r2
; Nφ ¼ 4Gj

r2
: ð2:6bÞ

Triad fields can be chosen in a simple diagonal form

e0 ¼ Ndt; e1 ¼ dr
N

; e2 ¼ rðNφdtþ dφÞ; ð2:7Þ

The spin connection of the solution is
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ωi ¼ ω̃i þ p
2
ei ð2:8Þ

where ω̃i is Levi-Chivita connection.
Conserved charges of the black hole are energy

E ¼ m

�
aþ α3p

2

�
−
α3
l2

j; ð2:9Þ

and angular momentum

J ¼
�
aþ α3p

2

�
j − α3m: ð2:10Þ

The entropy of the solution contains a contribution stem-
ming from torsion. For more details see [13].

C. Canonical generator of gauge symmetries

We shall first review some of the results concerning the
canonical structure of the MB model, for details [11].
Primary and secondary constraints. There are six first

class primary constraints in the theory

πi
0 ≈ 0; Πi

0 ≈ 0; ð2:11aÞ

where πi
μ and Πi

μ are momenta conjugate to basic
dynamical variables eiμ and ωi

μ. Secondary first class
constraints in the reduced phase space, obtained from the
original phase space after elimination of second class
constraints, are given by

Hi ¼ −ε0αβðaRiαβ þ α4Tiαβ þ ΛεijkejαekβÞ;
Ki ¼ −ε0αβðaTiαβ þ α3Riαβ þ α4εijkekαekβÞ; ð2:11bÞ

Canonical generator.We shall now state the form of the
generator of gauge symmetry, which will be used in the
next section for determination of the asymptotic sym-
metries. The general procedure for the generator construc-
tion is given in [14]. Generator of gauge symmetries G
consists of two parts

G ¼ −G1 −G2:

The first part generates diffeomorphisms and has the
following form

G1 ¼ _ξρðeiρπi0 þ ωi
ρΠi

0Þ
þ ξρðeiρHi þ ωi

ρKi þ ð∂ρei0Þπi0 þ ð∂ρω
i
0ÞΠi

0Þ;
ð2:12aÞ

while the second generates local Lorentz transformations
and is given by

G2 ¼ _θiΠi
0 þ θiðKi − εijkðej0πk0 þ ωj

0Πk0ÞÞ: ð2:12bÞ

III. AdS SELF-DUAL ORBIFOLD
WITH TORSION

A. Near-horizon of the BTZ with torsion

We study the near-horizon limit of the extremal BTZ
black hole with torsion. Extremal BTZ black hole with
torsion is characterized by the following relation between
the parameters

j ¼ �ml; ð3:1Þ

from which we deduce the value of the radius of the event
horizon

r0 ¼ 2l
ffiffiffiffiffiffiffiffi
Gm

p
; ð3:2aÞ

and angular velocity

Ω ¼ Nφðr0Þ ¼
4Gj
r20

¼ 1

l
: ð3:2bÞ

In order to arrive at the near-horizon region, we need to
change the variables in the following manner

φ → φ − Ωt=ϵ; r → r0 þ rϵ; t → t=ϵ: ð3:3Þ

and after taking the limit ϵ → 0, we derive the near-
horizon geometry of the BTZ with torsion, which is
characterized by

N2dt2 →
4r2

l2
dt2;

dr2

N2
→

l2

4r2
dr2;

dφþ Nφdt → dφ −
2r
r0l

dt;

so we arrive at the metric of the near-horizon

ds2 ¼ 4r0r
l

dtdφ −
l2

4r2
dr2 − r20dφ

2: ð3:4Þ

The triad fields can be easily derived from the metric

e0 ¼ 2r
l
dt; e1 ¼ l

2r
dr; e2 ¼−r0dφþ 2r

l
dt: ð3:5Þ

The Levi-Chivita connection is given by

ω̃0 ¼ −
e0

l
; ω̃1 ¼ −

e1

l
; ω̃2 ¼ −

2e0

l
þ e2

l
; ð3:6aÞ

and the Cartan spin connection reads

ωi ¼ ω̃i þ p
2
ei: ð3:6bÞ
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In this way we constructed the new solution of the MB
model which represents the generalization of AdS3 self-
dual orbifold [15], with nontrivial torsion.

B. Asymptotic conditions

To further explore properties of the AdS orbifold with
torsion we analyze asymptotic structure of this solution.
First, we introduce asymptotic conditions of the metric,
which are

gμν ∼

0
B@

O0 O3 O−1

O3 − l2

4r2 þO4 O1

O−1 O1 O0

1
CA; ð3:7aÞ

where On stands for therm that at infinity behaves as r−n.
The asymptotic behavior of the triad is given by

eiμ ∼

0
B@

2r
l þO1 O4 O0

O2
l
2r þO3 O0

2r
l þO1 O4 O0

1
CA: ð3:7bÞ

Asymptotic form of the Levi-Chivita connection reads

ω̃i
μ ∼

0
B@

− 2r
l2 þO1 O2 O0

O1 − 1
2r þO2 O0

− 2r
l2 þO1 O2 O0

1
CA: ð3:8aÞ

By using ωi ¼ ω̃i þ p
2
ei we conclude that asymptotic

form of Cartan connection is

ωi
μ ∼

0
B@

− 2r
l2 þ pr

l þO1 O2 O0

O1 − 1
2r þ pl

4r þO2 O0

− 2r
l2 þ pr

l þO1 O2 O0

1
CA ð3:8bÞ

From the adopted asymptotic behavior of the fields we can
derive kinematical algebra of asymptotic symmetries. The
most simple way of deriving subalgebra of the algebra of
diffeomorphisms under which the adopted asymptotic
forms of fields are invariant is by looking at the invariance
of metric. Under diffeomorphisms metric transforms in the
following way

δ0gμν ¼ −ξρ∂ρgμν − ∂μξ
ρgρν − ∂νξ

ρgμρ:

Let us note that metric does not transform under local
Lorentz rotations.
Invariance of the vielbein gives a preliminary result for

the subalgebra of local Lorentz transformations that respect
the asymptotic conditions, while invariance of spin con-
nection may and will give further restrictions.
Transformation law of the triad fields under diffeo-

morphisms and local Lorentz rotations is of the form

δ0eiμ ¼ −εijkejμθk − ð∂μξ
ρÞeiρ − ξρ∂ρeiμ:

The local symmetries that preserve the asymptotic form
of vielbein are parametrized by

ξt ¼ TðtÞ þO2; ξr ¼ rUðφÞ þO1;

ξφ ¼ SðφÞ þO3; ð3:9aÞ

θ0 ¼ −
4r2

l2
∂rξ

t þO3; θ1 ¼ UðφÞ þ ∂tTðtÞ þO2;

θ2 ¼ θ0 þO3: ð3:9bÞ

By inspecting the invariance conditions for the asymp-
totic form of the spin connection

δ0ω
i
μ ¼ −∇μθ

i − ð∂μξ
ρÞωi

ρ − ξρ∂ρω
i
μ;

we conclude that only the invariance of ω1
t gives further

restriction ∂2
t T ¼ 0 with the simple solution

T ¼ Atþ B; ð3:10Þ

where A and B are constants.

C. Asymptotic symmetry

In order to find the interpretation of the asymptotic
parameters, we calculate the commutator algebra of the
corresponding gauge transformations. First, we observe
that commutator algebra of the local Poincaré transforma-
tions is closed: ½δ0ð1Þ; δ0ð2Þ� ¼ δ0ð3Þ, where δ0ð1Þ ≔
δ0ðξμ1; θi1Þ etc., while the composition rule is given by:

ξμ3 ¼ ξ1 · ∂ξμ2 − ξ2 · ξ
μ
1;

θi3 ¼ εimnθ
m
1 θ

m
2 þ ξ1 · ∂θi1 − ξ2 · ∂θi2:

After substituting the asymptotic parameters (3.9) and
comparing the lowest order terms we get:

U3 ¼ S1∂φU2 − S2∂φU1;

S3 ¼ S1∂φS2 − S1∂φS1; ð3:11Þ

while A3 ¼ 0 and B3 ¼ A1B2 − A2B1. Motivated by this
result in what follows we shall assume that A ¼ 0.
The pure gauge transformations are defined as the

transformations generated by the higher order terms in
(3.9) and they are irrelevant in the canonical analysis of the
asymptotic structure of spacetime [16]. The asymptotic
symmetry group is defined as the factor group of gauge
transformations generated by (3.9), with respect to the
residual gauge transformations.
Now, by introducing the Fourier expansion of the

parameters and the notation:
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jn ¼ δ0ðU ¼ einφ; S ¼ 0Þ;
ln ¼ δ0ðU ¼ 0; S ¼ einφÞ;

we get that the asymptotic algebra takes the form of the
semidirect sum of uð1Þ Kac-Moody and Virasoro algebra:

i½jn; jm� ¼ 0;

i½jm;ln� ¼ mjmþn;

i½lm;ln� ¼ ðm − nÞlmþn: ð3:12Þ

Central charges are absent, but their appearance can be
investigated within canonical formalism, as we shall see in
the next subsection.

D. Charges

The previous derivation is purely kinematical and is valid
in any theory of gravity that has AdS orbifold with torsion
as a solution. To conclude whether these symmetries are
true ones or pure gauge we need to chose specific theory
and calculate the charges that generate them. We decided to
use canonical approach to asymptotic symmetries [17].
Improved canonical generator. Canonical charges are

obtained by requiring that generator of gauge symmetry has
well-defined functional derivatives for the given asymptotic
behavior of fields. Generally, this leads to adding of a
surface term Γ to the generator of symmetry G

G̃ ¼ Gþ Γ: ð3:13Þ

In this way we obtain the improved generator G̃ [17].
After a shorter calculation we obtain that surface

term needed that has to be added to a time translations
generator is

Γ½ξt� ¼ 2

Z
dφξt½e2tðaω2

φþα4e2φÞþω2
tðae2φþα3ω

2
φÞ

−e0t ðaω0
φþα4e0φÞ−ω0

tðae0φþα3ω
0
φÞ�: ð3:14Þ

In the same manner we obtain that surface term for
symmetry generated by ξφ is

Γ½ξφ� ¼ −
Z

2π

0

dφSðφÞð2aeiφωiφ þ α4eiφeiφ þ α3ω
i
φωiφÞ:

ð3:15Þ

For ξr we obtain the following surface term

Γ½ξr� ¼
Z

2π

0

dφUðφÞ
�
e1φ

�
lα4 þ a

�
pl
2

− 3

��

þ ω1
φ

�
alþ α3

�
pl
2

− 3

���
: ð3:16Þ

The generator of local Lorentz rotations is regular.
Canonical algebra. Let us now find the Poisson bracket

(PB) algebra of the improved canonical generators. First,
we introduce the notation G̃ð1Þ ≔ G̃½U1; S1�, G̃ð2Þ ≔
G̃½U2; S2�, and we use the main theorem of [18] to conclude
that the PB fG̃ð2Þ; G̃ð1Þg of two differentiable generators is
also a differentiable generator. This implies:

fG̃ð2Þ; G̃ð1Þg ¼ G̃ð3Þ þ Cð3Þ; ð3:17Þ

where the parameters of G̃ð3Þ are defined by the composition
rule (3.11), while Cð3Þ is an unknown field-independent
functional, Cð3Þ ≔ Cð3Þ½U1; S1;U2; S2�, the central term of
the canonical algebra. The form of Cð3Þ can be found using
the relation

δ0ð1ÞΓð2Þ ≈ Γð3Þ þ Cð3Þ: ð3:18Þ

We get

Cð3Þ ¼
�
alþ α3

�
pl
2

− 1

��Z
2π

0

dφU2∂φU1 ð3:19Þ

After expressing the canonical generator in terms of Fourier
modes:

Jn ≔ G̃½U ¼ einφ; S ¼ 0�;
Ln ≔ G̃½U ¼ 0; S ¼ einφ�; ð3:20Þ

the canonical algebra takes the form:

ifJm; Jng ¼ κ

12
mδmþn;0;

ifJm; Lng ¼ mJmþn;

ifLm; Lng ¼ ðm − nÞLmþn; ð3:21Þ

where

κ ¼ 24π

�
alþ α3

�
pl
2

− 1

��
: ð3:22Þ

Thus, the canonical realization of the asymptotic symmetry is
given as the semidirect sumofuð1ÞKac-Moody algebrawith
central charge and the Virasoro algebra without central
extension.
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The values of the lowest order Kac-Moody and Virasoro
generators take the form

Lon-shell
0 ¼ 4πr20

l2

�
alþ α3

�
pl
2

þ 1

��
;

Jon-shell0 ¼ 0: ð3:23Þ

E. Alternative coordinates

We can, alternatively, introduce the coordinates r ¼ ρ2

l in
which the metric of the orbifold reads

ds2 ¼ 2r0ρ2

l2
dtdφ −

l2

ρ2
dρ2 − r20dφ

2: ð3:24Þ

where we further rescaled the time coordinate t → t
2
.

Vielbeins are chosen in the following form

e0 ¼ ρ2

l2
dt; e1 ¼ l

ρ
dρ; e2 ¼ ρ2

l2
dt− r0dφ: ð3:25Þ

In these coordinates metric takes the same form as that of
near-horizon of rotating Oliva-Tempo-Troncoso black hole
[19], so we can introduce the same asymptotic conditions
on the metric

gμν ∼

0
B@

O−1 O3 O−2

O3 − l2

ρ2
þO4 O1

O−2 O1 O0

1
CA: ð3:26Þ

The asymptotic behavior of the triad fields is also the same
as for the rotating Oliva-Tempo-Troncoso

eiμ ∼

0
BB@

ρ2

l2 þO1 O5 O0

O1
l
ρ þO3 O0

ρ2

l2 þO1 O5 O0

1
CCA ð3:27Þ

Asymptotic form of the spin connection is given by

ωi
μ∼

0
BBBBB@

− ρ2

l3

�
1− pl

2

�
þO1 O2 O0

O1 − 1
ρ

�
1− pl

2

�
þO2 O0

− ρ2

l3

�
1− pl

2

�
þO1 O2 O0

1
CCCCCA

ð3:28Þ

and differs from the rotating Oliva-Tempo-Troncoso in the
falloff of the ω1

t component and in the presence of the
torsional part parametrized by p. The asymptotic param-
eters for these falloff conditions are given by

ξt ¼AtþBþO3; ξρ ¼ ρVðφÞþO1; ξφ ¼ SðφÞþO4;

ð3:29aÞ

θ0 ¼ O2; θ1 ¼ 2VðφÞ þ ∂tξ
t þO4;

θ2 ¼ θ0 −
l2

ρ2
∂tξ

ρ þO5; ð3:29bÞ

where A and B are constants. By using the same arguments
as in the previous subsection we take A ¼ 0.
The asymptotic algebra, obtained after introducing the

Fourier expansion of the parameters and the notation

kn ¼ δ0ðV ¼ einφ; S ¼ 0Þ;
ln ¼ δ0ðV ¼ 0; S ¼ einφÞ;

takes the form of the semidirect sum of uð1Þ Kac-Moody
and Virasoro algebra

i½kn; km� ¼ 0;

i½km;ln� ¼ mkmþn;

i½lm;ln� ¼ ðm − nÞlmþn: ð3:30Þ

It is isomorphic with algebra (3.12).
The central charges can be obtained in the similar

manner by employing canonical formalism. The surface
terms for generators corresponding to ξt and ξφ are the
same as for the previous asymptotic conditions, while the
surface term for the generator G½ξr� takes form

Γ½ξρ� ¼
Z

2π

0

dφVðφÞ½e1φð2lα4 þ aðpl − 6ÞÞ

þ ω1
φð2alþ α3ðpl − 6ÞÞ�: ð3:31Þ

After introducing the Fourier modes of the improved
canonical generators

Kn ≔ G̃½V ¼ einφ; S ¼ 0�;
Ln ≔ G̃½V ¼ 0; S ¼ einφ�; ð3:32Þ

we get that the canonical algebra takes the form:

ifKm;Kng ¼ κ0

12
mδmþn;0;

ifKm; Lng ¼ mKmþn;

ifLm; Lng ¼ ðm − nÞLmþn; ð3:33Þ

where

κ0 ¼ 96π

�
alþ α3

�
pl
2

− 1

��
≡ 4κ: ð3:34Þ
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The values of the zero mode generators on the orbifold
background are given by

Lon-shell
0 ¼ 4πr20

l2

�
α3

�
alþ pl

2
þ 1

��
;

Jon-shell0 ¼ 0: ð3:35Þ

Therefore, the canonical algebra (3.33) is isomorphic to
the canonical algebra (3.21). The simple mapping that
relates the generators of the two algebras is given by

Ln ↔ Ln; Kn ↔ 2Jn: ð3:36Þ

The mapping (3.36) can be easily derived from the
definitions of the Fourier modes of the improved generators
Kn and Jn, given by Eqs. (3.33) and (3.20), and form of the
corresponding surface terms ΓðξρÞ and ΓðξrÞ, Eqs. (3.31)
and (3.16).

IV. CONCLUDING REMARKS

We analyzed near-horizon geometry with nontrivial
torsion with the aim to understand its influence on
applicability of Kerr/CFT. For simplicity, we undertook
the investigation of simplest case of extremal BTZ black
hole with torsion. After deriving the corresponding near-
horizon geometry which is the generalization of AdS self-
dual orbifold—the near-horizon of BTZ black hole. After
introducing the suitable asymptotic conditions we derived
the algebra of asymptotic symmetries, which consists of the
Killing vectors of the orbifold and direct sum of chiral
Virasoro and uð1Þ Kac-Moody algebra, known also as
warped CFT symmetry. Virasoro algebra is not centrally
extended, while Kac-Moody algebra possesses nonzero
central extension κ.
It is worth noting that investigation of asymptotic

structure of BTZ black hole with torsion was done in
[11] with the result that asymptotic symmetry is Virasoro
algebra with central charges c and c̄. Central extension of
Kac-Moody algebra, that we obtained, is proportional to c,
and on-shell value of Virasoro zero mode generator is
proportional to c̄.
There is the procedure, known as Sugawara-Sommerfeld

construction [20], for constructing Virasoro algebra from

bilinear combinations of Kac-Moody generators. In this
way it is possible to obtain Virasoro algebra which allows
the application of the Cardy formula. The drawback of this
approach is that one of the central charges is proportional to
an arbitrary constant which is fixed by demand that Cardy
formula correctly reproduces black hole entropy.
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APPENDIX: PROOF THAT SURFACE
TERM Γ½ξt� IS FINITE

Since, the surface term takes the same form for both
choices of asymptotic conditions it is enough to show that it
is finite for one of them.
In the case of radial coordinate ρ the following relations

between Riemannian part of connection and vielbein hold

e0φ
l

−
e2φ
l

þ ω̃2
φ − ω̃0

φ ¼ O2; ðA1aÞ

ω̃2
t ¼ −

e2t
l

þO1 ¼ −
ρ2

l3
þO1; ðA1bÞ

ω̃0
t ¼ −

e0t
l

þO1 ¼ −
ρ2

l3
þO1: ðA1cÞ

The first identity represents a consequence of Ti ¼ 0, while
the other two are obvious from the asymptotic behavior of
fields.
If we expand the Lorentz spin connection as ωi ¼

ω̃i þ p
2
ei, and use the relation between Lagrangian para-

meters α4 ¼ α3
l2 − ap − α3p2

4
as well as equalities (A1b) and

(A1c), after a shorter calculation, we derive

Γ½ξt�¼
Z

dφ
ρ2

l2

�
2aþα3p−

2α3
l

��
e0φ
l

−
e2φ
l

þω̃2
φ−ω̃0

φ

�

þO1: ðA2Þ

Now, from the first relation (A1a) it follows that
Γ½ξt� ¼ O0, i.e., it is finite.
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