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In this paper we introduce a new approach to the study of the effects that an impulsive wave, containing a
mixture of material sources and gravitational waves, has on a geodesic congruence that traverses it. We find
that the effect of the wave on the congruence is a discontinuity in the B-tensor of the congruence.
Our results thus provide a detector-independent and covariant characterization of gravitational memory. We
note some similarities between our results and the study of soft gravitons and gravitational memory on I .
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I. INTRODUCTION

The study of impulsive gravitational waves in the form of
null shells was initiated by Penrose and others [1–3]. This
topic has recently received renewed attention due to their
possible role in the transfer of information from black hole
horizons to null infinity. As the black hole horizon is a
Killing horizon, there is an infinite variety of ways to attach
(solder) the black hole interior to the black hole exterior,
creating a null shell on the horizon [4,5]. A subclass of
these can be shown to correspond to BMS-like super-
translations. Furthermore, the long-studied BMS super-
translations at null infinity of asymptotically flat spaces are
linked to the physics of soft gravitons [6–8], which appear
to play an important role in restoring information not seen
in the hard gravitons of Hawking radiation [9,10]. In turn,
the soft gravitons are related to the gravitational memory
effect [11].
Gravitational memory [12–18] is the classical change in

the nearby geodesics in an asymptotically flat region of
space-time as they pass through an outgoing gravitational
wave. The study of the effect of a null shell on a timelike
congruence that crosses it has been addressed by Barrabes
and Hogan [19,20]. They calculated the change in the
tangent vector and the geodesic deviation vector together
with the expansion, shear, and rotation upon crossing an
impulsive gravitational wave and found a jump in the
acceleration of the geodesic and derivatives of the geodesic

deviation vector proportional to the stress-energy content
and gravitational wave components of the shell.
To further understand the relationship between gravitons

and gravitational memory, it is thus important to study the
effect of waves on null geodesic congruences, not only as
the congruence crosses the wave but also in the future
evolution of the congruence. In this paper we describe a
new exact approach for studying the effect of null shells on
null geodesic congruences. This method allows one to
easily calculate the change in the B-tensor, which encodes
the expansion, shear, and rotation of the congruence, upon
crossing the shell and its evolution to the future of the shell.
We find that the effect of the shell on the congruence, as
already observed in the timelike case in Refs. [19,20], is a
discontinuity in the B-tensor, and we will refer to this
memory of the passing wave carried by the B-tensor as the
B-memory effect, not to be confused with the B-mode
gravitational memory. We show how this B-memory is
determined by the stress energy and gravitational wave
components of the shell. We consider the simplest case of a
null shell representing an outgoing gravitational wave
and parametrized by a general soldering transformation
(a subclass of which are the BMS supertranslations) in
Minkowski space, but our method is applicable to any
geodesic congruence that crosses a null shell localized on a
Killing horizon. It is intriguing to note that our formulation
of B-memory has much in common with gravitational
memory as formulated in Ref. [16].
In Sec. II, we introduce the concept of a B-memory effect

as a covariant formulation of gravitational memory. In
Sec. III, we describe the setup of the problem and give a
general description of the suggested approach. A detailed
discussion of the approach is carried out in Sec. IV, while in
Sec. V the detailed behavior of a lightlike congruence is
studied. In Sec. VI, we discuss our results and their relation
to other formulations of gravitational memory—in particu-
lar, to that reviewed in Ref. [16].

*martino@fluiditj.com
†demhov@bao.sci.am

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 024031 (2019)

2470-0010=2019=99(2)=024031(8) 024031-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.024031&domain=pdf&date_stamp=2019-01-23
https://doi.org/10.1103/PhysRevD.99.024031
https://doi.org/10.1103/PhysRevD.99.024031
https://doi.org/10.1103/PhysRevD.99.024031
https://doi.org/10.1103/PhysRevD.99.024031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


II. B-MEMORY AS GRAVITATIONAL MEMORY

The gravitational memory effect is the change in relative
velocity between neighboring geodesics after the passing of
a gravitational wave—the idea being that the passing of a
gravitational wave leaves some “memory” in the relative
movement of inertial observers. Here we propose a more
covariant characterization of this memory effect by con-
sidering the effect of an outgoing wave in the form of a null
shell on a null geodesic congruence.
To see explicitly how this works, we begin with the

general construction and notation of Ref. [5]. The impul-
sive wave (null shell) is confined to a singular null
hypersurface N , which divides the space-time into two
domains M−⋃Mþ—the past and future domains—each
with its own coordinate system xμ�. Each domain has its
own metric, g−μν or gþμν, together with junction conditions for
soldering that relate the two metrics where they meet on the
hypersurface N . The soldering determines the constituents
of the impulsive wave, and in the case that N coincides
with a Killing horizon, an infinite variety of solderings are
allowed [5], producing an infinite variety of impulsive
signals. For explicit calculations we will use the freedom to
perform independent coordinate transformations on M−

and Mþ to choose a global coordinate system xμ that is
continuous across N , and such that the metric is also
continuous:

½gμν� ¼ gþμν − g−μν ¼ 0: ð2:1Þ

In these global coordinates, the hypersurface N is defined
by the equation ΦðxÞ ¼ 0, with ΦðxÞ > 0 covering the
future domain and ΦðxÞ < 0 covering the past domain.
We will consider a congruence with tangent vector field

T transverse to N together with the null generator n of the
shell, where T · n ¼ −1, and to calculate the independent
components of the B-tensor Bαβ ¼ ∇βTα [21], we will
project it onto the spatial submanifold of the shell, defined
by a pair of spacelike orthonormal vectors eαA, A ∈ ðx; yÞ
such that eA · n ¼ eA · T ¼ 0. Furthermore, we can and will
choose eαA to be parallel transported along the congruence, a
choice that simplifies the following equations by eliminat-
ing the connection from the evolution equation for B. The
projection of Bαβ onto the congruence is

BAB ¼ eαAe
β
BBαβ ¼

1

2
θδAB þ σAB þ ωAB; ð2:2Þ

where the expansion, shear, and rotation are explicitly
given by

θ ¼ BA
A; σAB ¼ BðABÞ −

1

2
θδAB; ωAB ¼ B½AB�: ð2:3Þ

The evolution equation for BAB (with respect to the affine
parameter λ of the congruence) is

dBAB

dλ
¼ −BACBC

B − RAB; ð2:4Þ

and

RAB ¼ RαμβνeαAT
μeβBT

ν ¼ 1

2
ℛδAB þ CAB; ð2:5Þ

where

ℛ ¼ RαβTαTβ; CAB ¼ CαμβνeαAT
μeβBT

ν; ð2:6Þ

and CAB is traceless.
In the presence of a null shell, the Riemann and Weyl

tensors have a term that is localized on the shell and
proportional to a delta function [4]. Thus, we separate ℛ
and CAB into their bulk and shell components

ℛ ¼ ℛ̂þ ℛ̄δðΦÞ; CAB ¼ ĈAB þ C̄ABδðΦÞ: ð2:7Þ

In the evolution equation for BAB, the delta function in RAB
on the right-hand side can only be balanced by a delta
function in the derivative of BAB, meaning that the B-tensor
must be discontinuous across the shell. This discontinuity is
related to the stress-energy and gravitational wave compo-
nents of the shell, as we will see in detail in the following
sections.
The evolution of the rotation is simply given by

dωAB

dλ
¼ −θωAB; ð2:8Þ

which can be integrated to give

ωAB ¼ Ke
−
R

λ

λ0
θdλ0

ϵAB: ð2:9Þ

We can deduce from this equation that the rotation must be
continuous, but not necessarily differentiable across the
shell, as the expansion is at most discontinuous. In
particular, and as we will see in detail in the following
sections, a zero rotation before the shell, and at worst a
finite jump in the expansion, will result in zero rotation
after the shell. This means that a congruence that is
hypersurface orthogonal to the past of the shell must also
be hypersurface orthogonal to the future of the shell.
Our calculations thus indicate that an alternative and

generally covariant formulation of the gravitational memory
effect is that there is a discontinuity in the B-tensor of a
congruence upon crossing a null shell. In the following
sections, we will show how to explicitly calculate the
evolution of the B-tensor for a congruence that crosses a
null shell.
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III. THE SETUP AND PROPOSAL

Our general construction is applicable to any null shell
located on a Killing horizon. For simplicity (and without
loss of conceptual insight), we will consider in the
following sections exclusively the case of a planar null
hypersurface (which is obviously a Killing horizon) in
Minkowski space.
To study the evolution of a null geodesic congruence

upon crossing a null shell, we start directly from the
geodesic equation. In continuous coordinates, by definition
the metric is continuous across N , while the Christoffel
symbols are discontinuous, and the Riemann tensor
has a delta function singularity localized on the shell, these
properties being directly related to the stress-energy
tensor of the shell and explained in detail in Ref. [5].
For the purposes of our calculations we will obtain
continuous coordinates across the shell by performing a
coordinate transformation onM− while leavingMþ in flat
coordinates.
The geodesic equation in the vicinity of the shell is

Ẍμ þ ðΘð−ΦÞΓ−μ
νλ þ ΘðΦÞΓþμ

νλ Þ _Xν _Xλ ¼ 0; ð3:1Þ

where Θ is the Heaviside step function. It is clear that
nontrivial solutions to this equation may have a disconti-
nuity in the acceleration, but not in the tangent vector
T ¼ _X, and thus the geodesic flow lines are C1 across the
shell, as shown in Fig. 1. Mathematically speaking, this
means that the geodesic vector on the shell (T0) is uniquely
defined, T0 ¼ T�jN . Taking this into account, we state that
if the test particle has approached the hypersurface from
the past, then the action of crossing the hypersurface is

mathematically equivalent to making a coordinate trans-
formation on the geodesic vector from the past flat
coordinates, where for the purposes of our calculations
we consider a trivial constant and parallel null congruence,
to the continuous coordinate system. This transformed
congruence then forms the initial conditions for the con-
gruence to the future of the hypersurface.

TαþjN ¼
�∂xαþ
∂xβ− Tβ

−

�����
N

ð3:2Þ

Here Tα
− is the geodesic vector of the test particle in the past

domain in past flat coordinates, and Tαþ is the correspond-
ing vector after the particle crosses the shell in future
coordinates, as shown in both Figs. 1 and 2. Here we should
recall that all the information regarding the stress-energy
tensor on the shell, which also means the effect that the
shell will have on the congruence, is fully encoded in
the definition of the soldering conditions, and thus in the
Jacobian of the soldering transformation.
Note that the geodesics are straight lines in the future and

the past in the corresponding coordinate systems, and with
affine parameters λ� they are given by

xα� ¼ xα0 þ λ�Tα
�jN : ð3:3Þ

There is a one-parameter freedom in the choice of affine
parameters

λ� → α−1� λ�; Tα
�jN → α�Tα

�jN ; ð3:4Þ

and the continuity equation (3.2) establishes a one-to-one
relation between α− and αþ; thus, by fixing the affine
parameter in the future we also fix the affine parameter in
the past.

FIG. 1. In continuous coordinates, the geodesic vector field is
continuous across N . Here we see that the transformed vector
field to the past ofN provides the initial conditions for the field to
the future, and thus the full solution to the geodesic equation.

FIG. 2. With flat coordinates to the past and future, the
soldering transformation leads to a discontinuity across N in
both coordinates and in the geodesic congruence.
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IV. NULL CONGRUENCES CROSSING
HORIZON SHELLS

Applying the proposed algorithm of the previous section,
we consider the congruence T− ¼ α∂u− globally to the past
ofN (α will be fixed after fixing the affine parameter to the
future, as discussed in the previous section) and perform on
Mþ a coordinate transformation parametrized by FðxaÞ,
where a ¼ v, x, y:

u− ¼ u
Fv

; v− ¼ F þ u
2Fv

ðF2
x þ F2

yÞ;

x− ¼ xþ uFx

Fv
; y− ¼ yþ uFy

Fv
: ð4:1Þ

We will refer to this transformation as a Newman-Unti
soldering, being the extension to a soldering of the
Newman-Unti transformation v− ¼ F. This one-sided sol-
dering transformation creates a shell at the location of N ,
and the properties of the shell are encoded in the function
FðxaÞ as described in detail in Ref. [5]. To the future of N
we have coordinates xαþ ¼ xα, and we identify the future
and past coordinates on N . After the transformation, the
metric to the past of the shell is

ds2− ¼ −2dudvþ dx2 þ dy2 þ u
�

2

Fv
Fabdxadxb

�

þ u2

F2
v
ðFxaFxb þ FyaFybÞdxadxb; ð4:2Þ

while to the future it remains

ds2þ ¼ −2dudvþ dx2 þ dy2: ð4:3Þ

We are interested in the value of the congruence T0 onN
in continuous coordinates,

Tα
0 ¼

∂xα
∂xβ− T

β
−jN : ð4:4Þ

Inverting the Jacobian matrix of the coordinate trans-
formation evaluated on N , we find, for our choice of
T−, that

T0ðxa0Þ ¼ α

�
Fv∂u þ

1

2Fv
ðF2

x þF2
yÞ∂v −Fx∂x −Fy∂y

�����
N
:

ð4:5Þ

The null congruences to the future of N are labeled by
the point ðxa0Þ at which they cross N and the affine
parameter u. Taking T0 as the initial condition for the
congruence on N at u ¼ u0 ¼ 0, we find that the null
congruence to the future is described by the lines

xα ¼ xα0 þ uTα
0ðxa0Þ; ð4:6Þ

and from the u component of this equation we find that

α ¼ 1=Fv: ð4:7Þ

The remaining components of Eq. (4.6) can in principle be
inverted (in practice, there will be unavoidable problems of
caustics, meaning that the inversion from some future points
will not be well defined; we will ignore these subtleties) to
obtain a projection along geodesic lines from Mþ to N of
the form xa0 ¼ xa0ðxαÞ, as illustrated in Fig. 3. The con-
gruence to the future is then simplyTαðxμÞ ¼ Tα

0ðxa0ðxμÞÞ. In
the following, by a slight abuse of notation, wewill use F to
denote the extension of the soldering transformationF to the
future such that FðxαÞ ¼ Fðxa0ðxαÞÞ. A simple and useful
consequence of this construction, that one can showwith the
help of the a components of Eq. (4.6), is

∂F
∂xa ¼

∂F
∂xa0 ; ð4:8Þ

With a little further work, one can show that the congruence
to the future of the shell is given by

Tμ ¼ −
1

Fv
ημν∂νFðxa0ðxαÞÞ; ð4:9Þ

and it is thus hypersurface orthogonal as anticipated at the
end of Sec. II.

V. HOW THE SHELL MODIFIES THE
CONGRUENCE

We now turn to the projection of the B-tensor and its
behavior upon crossing the shell as described in Sec. II.

FIG. 3. Every point to the future of N , apart from caustic
points, has a unique mapping onto N obtained by following the
geodesic of the congruence in Mþ that passes through that point
back to N .
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A natural choice for completing the tetrad along the
congruence is

eA ¼ −
FA

Fv
∂v þ ∂A ð5:1Þ

together with n ¼ ∂v and the tangent vector T. We will also
need the completeness relation

eαAe
β
Bδ

AB ¼ ηαβ þ nαTβ þ nβTα: ð5:2Þ

As already discussed, a null shell produces a delta function
singularity in the Riemann tensor, and the physical content
of the shell is encoded in the jump in the orthogonal
derivatives of the metric tensor:

γab ¼ Tα½∂αgab� ¼ −2
Fab

Fv

����
N
; γuα ¼ 0: ð5:3Þ

The shell in general contains matter with the stress-energy
tensor

Sαβ ¼ μnαnβ þ pgαβ þ 2jðαnβÞ; ð5:4Þ

with jα ¼ ð0; jaÞ. The four independent components of
the stress energy tensor are the energy density μ and the
surface current ja, the v component of which is minus the
pressure p:

μ ¼ −
1

16π
γαβη

αβ; ja ¼
1

16π
γaβnβ;

p ¼ −jv ¼ −
1

16π
γαβnαnβ: ð5:5Þ

These account for four out of the six independent compo-
nents of γαβ, the remaining two coming from the spatial
ðx; yÞ part of γ̂αβ:

γ̂αβ ¼ γαβ −
1

2
γδκη

δκηαβ; ð5:6Þ

which contribute to the Weyl tensor and encode the two
polarizations of an impulsive gravitational wave on the
shell. We will see in detail how this works below.
To study the behavior of a null congruence crossing the

null shell, we need to calculate RAB, and it is straightfor-
ward to show that

R̄AB ¼ −
1

2
γαβeαAe

β
B ¼ −

1

2
γAB: ð5:7Þ

Given the Einstein equation

Rμν −
1

2
gμνR ¼ 8πSμνδðuÞ; ð5:8Þ

we can relate the trace of R̄AB to the surface quantities

ℛ̄ ¼ 8πSμνTμTν ¼ 8πμ − 16πjaTa; ð5:9Þ

while the projection of theWeyl tensor on the congruence is

C̄AB ¼ −
1

2
γAB þ 1

4
γCCδAB

¼ −
1

2
γ̂αβeαAe

β
B þ 16πjaTaδAB: ð5:10Þ

A. Newman-Unti soldering transformations

Taking the explicit form for Tμ from the previous
section, we find for a general Newman-Unti-type trans-
formation that

BAB ¼ eαAe
β
BBαβ

¼ −
FAB

Fv
− FAFB

Fvv

F3
v
þ ðFAFBv þ FBFAvÞ

F2
v

: ð5:11Þ

Evaluating BAB on the shell gives us directly its disconti-
nuity, given that we have taken a congruence with BAB ¼ 0
before the shell. In this expression we must take care to
recall that although ∂a0F ¼ ∂aF, second derivatives must
include the Jacobian of the mapping xa0ðxαÞ. We see that
BAB is symmetric, and thus the congruence has zero
rotation consistent with the hypersurface orthogonality
demonstrated in the previous section and also the more
general arguments of Sec. II.
Evaluating explicitly ℛ̄ and C̄AB and comparing to

Eq. (5.11), we find that the change in expansion upon
crossing the shell

θjN ¼ −ℛ̄ ¼ −8πμþ 16πjaTa ð5:12Þ

is determined by a combination of the shell energy density
and surface currents, while the change in the shear

σABjN ¼ −C̄AB ¼ 1

2
γ̂αβeαAe

β
B − 16πjaTaδAB ð5:13Þ

is determined by the gravitational wave component and
surface current of the shell.

B. BMS soldering

To explicitly evaluate BAB [Eq. (5.11)] also to the future
of the shell, we need to invert Eq. (4.6) as discussed in the
previous section. We will simplify the following calcula-
tions by just considering the special case of BMS super-
translation solderings, and thus we take
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Fðv; x; yÞ ¼ vþ fðx; yÞ: ð5:14Þ

Then

Tα ¼ −∂αF ¼
�
−
1

2
ðf2x þ f2yÞ;−1;−fx;−fy

�
; ð5:15Þ

and

BAB ¼ −∂BfA ¼ −
∂xC0
∂xB

∂fA
∂xC0 : ð5:16Þ

In this case we need only the Jacobian of the transformation
on spatial coordinates that we obtain by taking derivatives
of the x, y components of Eq. (4.6) with respect to xA ¼
ðx; yÞ to obtain

δBA ¼ ∂xC0
∂xA ðδ

B
C − ufBCÞ; ð5:17Þ

and inverting, we find the Jacobian of the transformation

�∂xB0
∂xA

�
¼ 1

1 − utrðfÞ þ u2 detðfÞ
�
1 − ufyy ufxy
ufxy 1 − ufxx

�
;

ð5:18Þ

where trðfÞ ¼ fxx þ fyy and detðfÞ ¼ fxxfyy − f2xy. Thus,

B¼ −1
1−utrðfÞþu2detðfÞ

�
fxx−udetðfÞ fxy

fxy fyy−udetðfÞ
�
;

ð5:19Þ

corresponding to the expansion

θ ¼ −trðfÞ þ 2u detðfÞ
1 − utrðfÞ þ u2 detðfÞ ð5:20Þ

and shear

σ ¼ −1
2ð1 − utrðfÞ þ u2 detðfÞÞ

�
fxx − fyy fxy

fxy −fxx þ fyy

�
:

ð5:21Þ

Evaluating

ℛ̄ ¼ fxx þ fyy ¼ 8πμC̄ ¼ 1

2

�
fxx − fyy 2fxy
2fxy −fxx þ fyy

�

¼ −
1

2
γ̂; ð5:22Þ

it is easy to check that our solutions for expansion and shear
on and to the future of N satisfy the evolution equations

dθ
du

¼ −
1

2
θ2 − 2ðσ2þ þ σ2×Þ − 8πμδðuÞ and

dσ
du

¼ −θσ þ 1

2
γ̂δðuÞ: ð5:23Þ

We see in particular that for the BMS transformations, the
B-memory effect corresponds to a jump in the expansion
upon crossing the shell that is proportional to the energy
density of the shell together with a change in the shear that
is proportional to the gravitational wave component of
the shell.

VI. DISCUSSION

We have presented a new approach for studying con-
gruences that cross a singular hypersurface. Our method is
based on the physically justified assumption that the
geodesic vector of a test particle is continuous across the
hypersurface when using continuous coordinates. To obtain
the geodesic flow to the future of the hypersurface, one
simply needs to do a coordinate transformation on the past
coordinates to go to a continuous coordinate system. The
resulting transformation on the geodesic congruence in
M− gives initial conditions on N to develop the geodesic
vector field on Mþ to the future.
We then proved that a parallel congruence upon crossing

the shell gives rise to a hypersurface orthogonal congruence
to the future of the shell, and in particular that the shell
gives rise to a discontinuity in the B-tensor of the
congruence. In general, the jump in the expansion is
determined by the energy density, and currents on the
shell while the jump in the shear are determined by
the gravitational wave component together with the
surface currents. Although we derived these results using
a particular congruence, it should be clear from Eqs. (5.12)
and (5.13) that the results are independent of the choice of
congruence in the case of BMS supertranslations for which
the surface currents are zero. We also provide a general
argument that a hypersurface orthogonal congruence before
the shell will give rise to a hypersurface orthogonal
congruence to the future.
The change in the B-tensor after the passage of an

outgoing gravitational wave leads to a covariant description
of the gravitational memory effect—the B-memory effect.
Although our construction and approach to gravitational
memory appears to be quite distinct from that reviewed in
Ref. [16], there are many intriguing similarities. They
introduce a trace-free “shearlike” tensor σab ¼ ∇a∇bf,
where f is the shift in a BMS supertranslation on I and
the Lie derivative along I of σab is the news tensor Nab
[22]. The picture that emerges suggests that the outgoing
null shell induces a BMS supertranslation on I in the same
way that a soft graviton is supposed to [15].
It would be very interesting to study the quantum version

of this effect, and the calculation of the eikonal wave
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function may be a first step in such an approach. In the
eikonal picture, the local wave fronts of a wave function
follow the geodesics of the space-time. The presence of an
outgoing gravitational wave produces a radical reorgani-
zation of the congruence such that in general a flat wave
front can be distorted in a myriad of different ways. One
may imagine that at a deeper level this distortion corre-
sponds to a radical change in the quantum field theory
vacuum that is constructed from plane wave states. It would
be interesting in particular to investigate how the propa-
gation across the shell of a good basis of wave functions
may not give rise to a reasonable basis to the future of the
shell, given that BMS transformations map between
inequivalent quantum field theory vacuum states [16].
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