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We study massive Dirac fields in the background of the near-horizon limit of the extremal Myers-Perry
black hole in five dimensions. We consider the case in which both angular momenta have equal magnitude.
The resulting Dirac equation can be decoupled into an angular and a radial part. The solution of the angular
part results in some algebraic relations that determine completely the angular quantum numbers of the
fermionic field. The radial part can be analytically solved in terms of special functions, which allow us to
analyze the near-horizon radial current of the Dirac field.
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I. INTRODUCTION

The study of gravity theories in higher dimensions, and in
particular black hole solutions, have recently gained con-
siderable interest. Apart from presenting interesting features,
like stationary solutions with more than one plane of
rotation, or nonspherical topology of the horizon [1,2],
these solutions appear at the center of various proposals
for quantum gravity, such as string theory or brane-world
scenarios. Of particular interest is the five-dimensional case,
since the AdS=CFT correspondence posits a duality between
solutions of five-dimensional gravity theories and strong
coupling states of four-dimensional field theories [3].
An important example of a higher-dimensional solution

is the stationary black hole known as the Myers-Perry (MP)
solution [4]. This solution is a generalization to arbitrary
dimensions of the four-dimensional Kerr black hole, but
instead of a single angular momentum, the black hole
rotates in bD−1

2
c independent planes, and the horizon retains

the spherical topology (in contrast with the black rings with
a torus-like topology of the horizon [5]).
The Myers-Perry black hole possesses an extremal limit,

similar to the Kerr metric. On the other hand specially
interesting is the case when all the angular momenta have
equal magnitude, because in odd dimensions the solution
acquires additional symmetry (cohomogeneity-1). This
particular case also possesses an extremal case [4].
An interesting limit of this cohomogeneity-1 extremal

solution is found if one looks at the near-horizon neighbor-
hood of the extremal case [6]. In this case, the isometries of
the metric are enhanced even further to AdS2 × S3, with the
metric acquiring a very simple expression. The properties of

the near-horizon geometry of the MP black hole and other
more general extremal black holes have been extensively
studied in the literature, and we refer the reader to [7–9].
Although the near-horizon solution allows us to calculate
some properties of the global solutions, it has been also
observed that the near-horizon metric does not uniquely
relates to a global solution (see e.g., [10–12]).
The interaction of black holes with test matter fields has

also attracted increasing interest lately, in particular, the
properties of massive fermionic fields around stationary
black holes. In contrast to bosonic fields, Dirac fields lack
zero modes [13–15] or superradiant instabilities [16–18],
resulting in stationary fermionic fields around a black hole
not being possible in GR, even if one allows for the
presence of additional structure [19–22] (although there are
examples of self-gravitating and stationary configurations
that make use of more than one fermionic field to bypass
this situation [23]).
In addition to these results, the quasinormal mode

analysis of the Dirac equation in the background of several
black hole spacetimes explicitly shows that these pertur-
bations are always damped in time [24–34]. However, it has
been found recently that such modes can be very slowly
damped if a massive fermionic field is allowed [35–37],
leading to effectively stable configurations, at least at the
level of a test field (effective stability has also been
discussed in the context of scalar fields [38]).
Analytical solutions to the Dirac equation can be

obtained in several backgrounds [39–42]. In particular,
the increased symmetry of the extremal black hole in the
near-horizon geometry allows us to study analytically
several properties of the Dirac perturbation. For instance,
the massive Dirac field was previously studied in the near
horizon geometry of the extremal Kerr black hole in [43].
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In higher dimensions, the separability of the Dirac
equation into an angular and a radial part is well-known
for the general Kerr-NUT–de Sitter black hole [44] (see
also [45–47]). In this paper, we will consider the case of a
massive spin 1=2 test field in the near-horizon geometry
of the extremal five-dimensional Myers-Perry black hole
with equal angular momenta. Hence, the separability of the
Dirac equation is ensured by the previous results for more
general cases [44]. In addition, we will see that constraining
to equal angular momenta and to the near-horizon limit
further simplifies the problem, allowing us to obtain
explicit solutions to the radial part, and to study analytically
the behavior of these spinor solutions.
The paper is organized as follows: in Sec. II, we will

write down the Dirac equation in the near horizon geometry
of the five-dimensional extremal Myers-Perry black hole
with equal angular momenta. We will also decouple the
Dirac equation into angular and radial equations. In Sec. III,
we will solve the angular equation imposing the physically
relevant boundary conditions. The solution to the radial
equations is presented in Sec. IV. The behavior of the
sign of the radial current for some simple cases near the
horizon is discussed in Sec. V. Lastly, in Sec. VI, we finish
with some final remarks and a short discussion regarding
future work.

II. THE RADIAL AND ANGULAR EQUATIONS

The metric of the extremal five-dimensional Myers Perry
black hole with equal angular momenta is [4]

ds2 ¼ dT2 −
ρ2R2

Δ2
dρ2

−
4a2

R2
ðdT þ asin2θdϕ1 þ acos2θdϕ2Þ2

− R2ðdθ2 þ sin2θdϕ2
1 þ cos2θdϕ2

2Þ; ð1Þ

where we have defined the functions

R2 ¼ ρ2 þ a2;

Δ ¼ ρ2 − a2: ð2Þ

Note that the metric is determined by a single parameter, a,
which determines both the mass and the angular momen-
tum of the black hole.
To obtain the near-horizon metric, we can make the

following coordinate change,

ρ ¼ aþ ϵr;

T ¼ 2t
ϵ
;

ϕj ¼ ψ j −
T
2a

; ð3Þ

which introduces the scaling parameter ϵ and jumps into a
frame corrotating with the horizon.
Taking the limit ϵ → 0 and only keeping the lowest-order

terms gives the near-horizon metric [6]

ds2 ¼ 2r2

a2
dt2 −

a2

2r2
dr2 − 2a2dθ2

− 4

�
r
a
dt − a½sin2θdψ1 þ cos2θdψ2�

�
2

− 2a2sin2θcos2θðdψ1 − dψ2Þ2: ð4Þ

Note the near-horizon metric is a solution of the GR
equations, and it depends again on a single parameter a
(the scaling parameter ϵ drops out of the leading term).
We are interested in solutions of the Dirac equation on

this geometry,

DΨ ¼ mΨ; ð5Þ

where Ψ is the spinor, D is the Dirac operator, and m is the
mass of the field. In order to introduce the Dirac field in the
spacetime (4), we will use the following vielbein:

ω0 ¼
ffiffiffi
2

p
r

a
dt;

ω1 ¼ affiffiffi
2

p
r
dr;

ω2 ¼
ffiffiffi
2

p
adθ;

ω3 ¼
ffiffiffi
2

p
a sin θ cos θðdψ1 − dψ2Þ;

ω4 ¼ 2

�
a½sin2θdψ1 þ cos2θdψ2� −

r
a
dt

�
: ð6Þ

This results in the Dirac operator

D ¼ iffiffiffi
2

p
a
γ0
�
a2

r
∂t þ ∂ψ1

þ ∂ψ2

�

þ
ffiffiffi
2

p
ir

a
γ1ð∂r þ ∂r ln

ffiffiffi
r

p Þ

þ iffiffiffi
2

p
a
γ2ð∂θ þ ∂θ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θ cos θ

p
Þ

þ iffiffiffi
2

p
a
γ3ðcot θ∂ψ1

− tan θ∂ψ2
Þ

þ i
2a

γ4ð∂ψ1
þ ∂ψ2

Þ − i
2a

ðγ0γ1 þ γ2γ3Þγ4: ð7Þ

In order to simplify the Dirac equation, it is convenient to
perform the following transformation to the Dirac operator:

1

ζ
e
π
8
γ0γ1γ2γ3ðD −mÞζeπ8γ0γ1γ2γ3 ≕D�; ð8Þ
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with ζ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r sin θ cos θ

p
. This transformation is the near-

horizon limit of the standard transformation used before
in the literature [44–47], which allows us to decouple the
angular and radial parts. Note that the γ matrices satisfy

e
π
4
γ0γ1γ2γ3ðγ0γ1 þ γ2γ3Þγ4 ¼

ffiffiffi
2

p
γ2γ3γ4: ð9Þ

In addition, for the Dirac algebra, we will use a represen-
tation such that

γ0γ1γ2γ3γ4 ≡ 1: ð10Þ

This results in a much simpler expression for the modified
Dirac operator D�,

ffiffiffi
2

p
aD� ¼ iγ0

�
a2

r
∂t þ ∂ψ1

þ ∂ψ2

�
þ 2irγ1∂r

þ iγ0γ1K� þ
�
i
2
½∂ψ1

þ ∂ψ2
� − am

�
: ð11Þ

We have written the Dirac operator in terms of the angular
operator K�

K� ¼ γ0γ1γ2∂θ þ γ0γ1γ3ðcot θ∂ψ1
− tan θ∂ψ2

Þ

þ 1

2
γ0γ1γ4ð∂ψ1

þ ∂ψ2
− 2iamÞ − 1

2
: ð12Þ

Note that both operators commute, ½K�;D�� ¼ 0. Hence,
we can write the spinor Ψ like

Ψ� ¼
1

ζ
e−

π
8
γ0γ1γ2γ3Ψ

¼ ϕðrÞ ⊗ ΘðθÞe−iωtþim1ψ1þim2ψ2 : ð13Þ

ϕðrÞ is the radial part of the function, and ΘðθÞ is the
eigenfunction of the angular operator,

K�Θeim1ψ1þim2ψ2 ¼ κΘeim1ψ1þim2ψ2 ; ð14Þ

where the angular quantum numbers are κ, m1 and m2.
As a result, the angular equation can be written like

�
γ̂2

d
dθ

þ iðm1 cot θ −m2 tan θÞγ̂3

þ iðλ − 2amÞ
2

γ̂4 −
1

2

�
Θ ¼ κΘ; ð15Þ

where we have defined

λ ¼ m1 þm2; ð16Þ

and the angular γ-matrices

γ̂j ¼ γ0γ1γj; j ∈ f2; 3; 4g: ð17Þ

In addition, the radial part results in

�
2irγ1

d
dr

þ γ0
�
ωa2

r
− λ

�
þ iκγ0γ1 −

λþ 2am
2

�
ϕ ¼ 0:

ð18Þ

III. SOLUTIONS OF THE ANGULAR EQUATION

Let us now focus on the angular part of the spinor.
Because of the form of Eq. (15), it is convenient to choose
the following representation for the angular γ-matrices
defined in Eq. (17):

γ̂2 ¼
�

0 1

−1 0

�
; γ̂3 ¼

�
0 i

i 0

�
;

γ̂4 ¼ −γ̂2γ̂3 ¼
�−i 0

0 i

�
; Θ ¼

�Θ1

Θ2

�
: ð19Þ

With this choice, Eq. (15) becomes a system of coupled
first-order differential equations,

�
d
dθ

þm1 cot θ −m2 tan θ

�
Θ1 ¼ −KþΘ2;�

d
dθ

−m1 cot θ þm2 tan θ
�
Θ2 ¼ þK−Θ1; ð20Þ

with

K� ¼ 1þ 2κ � ð2am − λÞ
2

: ð21Þ

Note that the system of equations possesses the follow-
ing symmetry:

a → −a; m1 → −m1; m2 → −m2;

Θ1 → Θ2; Θ2 → −Θ1: ð22Þ

Let us study now possible solutions to the system of
Eq. (20). In the following, we will only be interested in
solutions for which the spinor Ψ is analytic in the angular
variable θ ∈ ½0; π=2�. This results into two physically
different cases [modulo the symmetry (22)].
For the first case, let us consider Kþ ≠ 0. We define

p1 ≔ jm1 þ 1=2j, p2 ≔ jm2 þ 1=2j and

F j ≔ 2F1

�
jþ 1 − nκ; jþ nκ þ p1 þ p2

jþ 1þ p2

; cos2θ

�
;

Rj ≔
ðjþ 1 − nκÞðjþ nκ þ p1 þ p2Þ

jþ 1þ p2

; ð23Þ
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where 2F1ða; b; c; zÞ is the hypergeometric function,
nκ ≥ 1 is a natural number and m1 and m2 are half
integer numbers. With these definitions, the solution can
be written like

Θ1 ¼ ðcos θÞðjm2þ1=2jþ1=2Þðsin θÞðjm1þ1=2jþ1=2ÞF 0;

Θ2 ¼
�
2 cos θ sin θR0F 1

F 0

−
�
m1 þ

1

2
þ
				m1 þ

1

2

				
�
cot θ

þ
�
m2 þ

1

2
þ
				m2 þ

1

2

				
�
tan θ

�
Θ1

Kþ
; ð24Þ

and the angular eigenvalue is

κ ¼ −
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ − 2am

2

�
2

− λ2 þ Λ2

s
≡ κnkð�Þ;

Λ ¼ 2nκ − 1þ jm1 þ 1=2j þ jm2 þ 1=2j: ð25Þ

Note that, apart from m1, m2 and nk, the eigenvalue only
depends on the product m × a. In Fig. 1, we show κ as a
function ofm × a for nk ¼ 1,m1 ¼ 1=2, and several values
ofm2. On the other hand, the quantum number nk is related
with the number of nodes present in the functions (24),
with the number of nodes growing as this number
increases. For large values of nk, the angular eigenvalue
behaves like κ ∼� ffiffiffi

2
p

nk.
The solution is regular at θ ¼ 0, where

Θ1 ∼ θjm1þ1=2jþ1=2;

Θ2 ∼ θjm1−1=2jþ1=2; ð26Þ

and at θ ¼ π=2, where

Θ1 ∼ ðθ − π=2Þjm2þ1=2jþ1=2;

Θ2 ∼ ðθ − π=2Þjm2−1=2jþ1=2: ð27Þ

A second set of solutions can be obtained corresponding
to the special case when Kþ ¼ 0. The solution becomes
much simpler, with

Θ1 ¼ 0;

Θ2 ¼ ðsin θÞm1ðcos θÞm2 ; ð28Þ

where m1 > 0 and m2 > 0 are positive half integers.
Alternatively, we can choose to set K− ¼ 0 and obtain

Θ1 ¼ ðsin θÞ−m1ðcos θÞ−m2 ;

Θ2 ¼ 0; ð29Þ

where now m1 < 0 and m2 < 0 are negative half integers.
These simple cases correspond to an angular eigenvalue
given by

κ ¼ −
1

2
� λ − 2am

2
≡ κ0ð�Þ: ð30Þ

This set of solutions can be interpreted as the nk ¼ 0 limit
of the previous solution (25), when the angular functions
are in the ground state. The angular number κ possesses a
linear dependence with the product m × a.
Before finishing this section, let us comment here that

the angular solutions (24), (28) and (29) obtained for the
angular part of the Dirac field are related with the spinor
monopole harmonics, which have been previously studied
and used in many other settings (see e.g., [48–50]). In
particular, the solutions presented here are related with the
spinor monopole harmonics in a squashed 3-sphere [51].

IV. SOLUTIONS OF THE RADIAL EQUATION

Let us discuss now the radial equation (18). We will start
assuming that ω ≠ 0. In order to simplify the equation, we
can make the following change of variables:

z ¼ iωa2

r
: ð31Þ

With this, the radial equation (18) becomes

�
−ðizþ λÞγ0 − 2izγ1

d
dz

þ iκγ0γ1 −
λþ 2am

2

�
ϕ ¼ 0:

ð32Þ

Notice that the frequency ω dropped out of the differential
equation with this change of variables. Let us choose the
representation

–10

–5

 0

 5

 10

–10 –5  0  5  10

m1=1/2

nk=1

κnk
(+)

κnk
(–)

κ

m a

m2 = –7/2

m2 = –5/2

m2 = –3/2

m2 = –1/2

m2 = 1/2

m2 = 3/2

m2 = 5/2

FIG. 1. The angular eigenvalue κ vs the product ma, for fixed
nk ¼ 1 andm1 ¼ 1=2. We show several values ofm2 and the two
possible signs of κ.
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γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�
0 1

−1 0

�
; ϕ ¼

�
ϕ1

ϕ2

�
: ð33Þ

With this choice, the radial differential equation results in
the following system of coupled first-order differential
equations,

�
2iz

d
dz

− iz − λ

�
ϕ1 ¼ −

2iκ − λ − 2am
2

ϕ2;�
2iz

d
dz

þ izþ λ

�
ϕ2 ¼ −

2iκ þ λþ 2am
2

ϕ1: ð34Þ

Let us consider analytical solutions to this system of
equations [52]. We will assume that all the coefficients
of this system are different from zero, in particular
2iκ − λ − 2am ≠ 0. In this case, a general solution is given
by a combination of two solutions. The first solution to the
system of Eq. (34) can be written like

ffiffiffi
z

p
ϕð1Þ
1 ¼ W iλ−1

2
;kðzÞ;ffiffiffi

z
p

ϕð1Þ
2 ¼ 4i

2iκ − λ − 2am
W iλþ1

2
;kðzÞ;

k2 ¼ κ2 − λ2

4
þ
�
λþ 2am

4

�
2

; ð35Þ

where Wa;bðzÞ is the Whittaker’s W-function.
Similarly, the second solution can be written like

ffiffiffi
z

p
ϕð2Þ
1 ¼ Miλ−1

2
;kðzÞ;ffiffiffi

z
p

ϕð2Þ
2 ¼ 2λ − 4ik

2iκ − λ − 2am
Miλþ1

2
;kðzÞ; ð36Þ

with k as before and Ma;bðzÞ being the Whittaker’s
M-function.
In the special case that the coefficient 2iκ−λ−2am¼0,

these solutions simplify, becoming for the first solution

ϕð1Þ
1 ¼ 0;

ϕð1Þ
2 ¼ z

iλ
2e−

z
2 ð37Þ

and for the second solution

ϕð2Þ
1 ¼ z−

iλ
2e

z
2;

ϕð2Þ
2 ¼ 2iκ þ λþ 2am

4λ
z−

iλ
2
1F1

� −iλ
1 − iλ

; z

�
; ð38Þ

where 1F1 is the confluent hypergeometric function.
However this set of solutions are not allowed by the
conditions imposed by the solutions of the angular part
on the eigenvalue κ [for instance, Eqs. (25) and (30)].
Hence, they are not physically relevant.

Finally, we will discuss the radial equation (18) in the
case that ω ¼ 0. It is convenient to make the following
change of variables

ξ ¼ ln r=a: ð39Þ

The radial equation (18) then reads

�
2iγ1

d
dξ

− λγ0 þ iκγ0γ1 −
λþ 2am

2

�
ϕ ¼ 0: ð40Þ

Even without fixing the representation, the solution can be
simply written in terms of exponential functions,

ϕ ¼ exp

��
κγ0 þ i

λþ 2am
2

γ1 − iλγ0γ1
�
ξ

2

�
ϕ0; ð41Þ

with ϕ0 some arbitrary constant spinor

ϕ0 ≔ ϕðξ ¼ 0Þ ¼ ϕðr ¼ aÞ: ð42Þ

For comparison with the ω ≠ 0 case, let us choose the
representation (33). Then the ω ¼ 0 spinor is given by a
first solution of the form

ϕð1Þ
1 ¼

�
r
a

�
−k
;

ϕð1Þ
2 ¼ 2λ − 4ik

2iκ − λ − 2am

�
r
a

�
−k
; ð43Þ

and a second solution of the form

ϕð2Þ
1 ¼

�
r
a

�
k
;

ϕð2Þ
2 ¼ 2λþ 4ik

2iκ − λ − 2am

�
r
a

�
k
: ð44Þ

As a final note in this section, let us comment that when
taking the limit r → ∞ on the general solutions (35) and
(36) one obtains a behavior quite similar to the solutions
(43) and (44), with the components of the spinor behaving
essentially like r�k.
It is interesting to note that k can become an imaginary

number for certain combinations of m1, m2, nk and the
product a ×m. This implies that for certain cases, the
effective Breitenlöhner-Freedman (BF) bound is violated.
This violation has been studied before by Durkee and Reall
for other field perturbations (scalar, electromagnetic, and
gravitational) in the near-horizon of Kerr and also in the
near-horizon of the cohomogeneity-1 MP black hole [53].
There, it was conjectured by Durkee and Reall that this
violation could be indicative of an instability in the global
geometry.
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V. THE FERMIONIC CURRENT IN THE
NEAR-HORIZON REGION

With the purpose of categorizing the previous solutions
for the radial component, in this section we will look at the
behavior of the solutions as we approach the horizon. To
make sense of the behavior at the horizon we should look at
some relevant physical quantity, which in this case is the
radial current, jr ¼ Ψ̄γ1Ψ flowing in or out of the horizon.
This current has the following expression in terms of the
rotated spinor (14) we have used to decouple the Dirac
equation:

jr ¼ Ψ̄γ1Ψ ¼ Ψ†γ0γ1Ψ

¼ ζ2ϕ† ⊗ Θ†e−
π
8
γ0γ1γ2γ3γ0γ1e

π
8
γ0γ1γ2γ3ϕ ⊗ Θ

¼ ζ2ðϕ†γ0γ1ϕÞjΘj2: ð45Þ

The horizon is approached when r → 0. We will study
the asymptotical behavior of the current corresponding to
the different solutions we have presented in the previous
section.
Let us begin discussing the solutions with ω ≠ 0. The

horizon is approached by z → ∞ with the phase of z being
the phase of iω (jphðzÞj ¼ jphðiωÞj). The sign of the radial
current is determined by ϕ†γ0γ1ϕ, which in our chosen
representation (33) means that

jr ∝ jϕ2j2 − jϕ1j2: ð46Þ

Let us look at some simple cases for both sets of solutions.
We will use the asymptotic behavior of the Whittaker
functions given in the NIST handbook of mathematical
functions [54][Eqs. (13.14.20) and (13.19.3)]. We will
assume that 2iκ − λ − 2am ≠ 0, as imposed by the angular
solutions. For the first set, this means that given
jphðzÞj ¼ jphðiωÞj < 3π=2

ϕð1Þ
1 ∼ z

iλ
2
−1e−

z
2;

ϕð1Þ
2 ∼

4i
2iκ − λ − 2am

z
iλ
2e−

z
2

�
1þ jkþ iλ

2
j2

z

�
: ð47Þ

Thus in this case the functions ϕ1 decays faster than the
function ϕ2 for z → ∞ and thus jrjr→0 > 0. This means the
solution ϕð1Þ corresponds to emission of the fermionic field
from the horizon (i.e., a white hole scenario).
Next is the second set of solutions. Given jphðzÞj ¼

jphðiωÞj < π=2 and

iλ� 1

2
− k ≠ −

1

2
;−

3

2
;… ð48Þ

we have

ϕð2Þ
1 ∼

Γð1þ 2kÞ
Γð1þ k − iλ

2
Þ z

−iλ
2e

z
2;

ϕð2Þ
2 ∼

2λ − 4ik
2iκ − λ − 2am

Γð1þ 2kÞ
Γðiλ

2
þ kÞ z−1−

iλ
2e

z
2: ð49Þ

In this case, the function ϕ2 grows slower than the function
ϕ1 for z → ∞ and thus jrjr→0 < 0. Hence this implies that
the solution ϕð2Þ corresponds to a solution being absorbed
by black hole.
Let us now suppose we have a configuration which is not

damped nor exploding in time (ℑðωÞ ¼ 0). Denote the sign
of ω in this case by ε and define z ≔ iεy. Due to r > 0 we
have y > 0. To obtain the asymptotical behavor of the
Whittaker M-functions we use the asymptotic expansion
to order Oðz−1Þ given by [54][Eq. (13.19.2)], meaning that
the first solution is still given by Eq. (47), but the second
solution behaves like

ϕð2Þ
1 ∼

Γð1þ 2kÞ
Γð1þ k − iλ

2
Þ z

−iλ
2e

z
2 þ Γð1þ 2kÞ

z

×

�
eϵð1þk−iλ

2
Þπi

Γðkþ iλ
2
Þ z

iλ
2e−

z
2 −

jkþ iλ
2
j2

Γð1þ k − iλ
2
Þ z

−iλ
2e

z
2

�
;

ϕð2Þ
2 ∼

2λ − 4ik
2iκ − λ − 2am

Γð1þ 2kÞ
Γð1þ kþ iλ

2
Þ z

iλ
2e−

z
2
þϵðk−iλ

2
Þπi

þ 2λ − 4ik
2iκ − λ − 2am

Γð1þ 2kÞ
z

×

�
z−

iλ
2e

z
2

Γðk − iλ
2
Þ þ

jkþ iλ
2
j2eϵðk−iλ

2
Þπi

Γð1þ kþ iλ
2
Þ z

iλ
2e−

z
2

�
: ð50Þ

A zero mode with vanishing current on the horizon can be a
combination of the form

ϕðfÞ ¼ Aϕð1Þ þ Bϕð2Þ; ð51Þ

where A ≠ 0 and B ≠ 0 are the amplitudes of each
component. Rewritten in terms of r, the flux has to order
Oðr0Þ the expression

jr ∝
1

r
ðjAC2 þ BC4j2 − jBC3j2Þ

þ 2ℜfjAC2 þ BC4j2D�
2 − jBj2C�

3D
ð1Þ
3 g

þ 2ℜf½ðD�
4C2 − C�

3D1ÞAþ ðD�
4C4 − C�

3D
ð2Þ
3 ÞB�

× B�e−iαðrÞg þOðrÞ; ð52Þ

where we have defined
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C2 ¼
4i

2iκ − λ − 2am
ðiωa2Þiλ2 ;

C3 ¼
Γð1þ 2kÞ

Γð1þ k − iλ
2
Þ ðiωa

2Þ−iλ
2 ;

C4 ¼
2λ − 4ik

2iκ − λ − 2am
Γð1þ 2kÞ

Γð1þ kþ iλ
2
Þ ðiωa

2Þiλ2eiεπkþπελ
2 :

D1 ¼ ðiωa2Þ−1þiλ
2 ;

D2 ¼
jkþ iλ

2
j2

iωa2
;

Dð1Þ
3 ¼ −

Γð1þ 2kÞ
Γð1þ k − iλ

2
Þ

				kþ iλ
2

				2ðiωa2Þ−1−iλ
2 ;

Dð2Þ
3 ¼ Γð1þ 2kÞ

Γðkþ iλ
2
Þ eϵð1þk−iλ

2
Þπiðiωa2Þ−1þiλ

2 ;

D4 ¼
2λ − 4ik

2iκ − λ − 2am
Γð1þ 2kÞ
Γðk − iλ

2
Þ ðiωa2Þ−1−iλ

2 ;

eiαðrÞ ¼ riλez ¼ eiλ ln rþiωa2
r : ð53Þ

Not all of the above defined quantities are independent of
each other. Due to k being either real or purely imaginary
by definition, we have

C2D�
4 − C�

3D1 ¼ 0 ¼ C4D�
4 − C�

3D
ð2Þ
3 : ð54Þ

This means that the oscillating part in e−iαðrÞ vanishes
identically independent of the choice for A and B. In
addition, we have the identity

Dð1Þ
3 ¼ C3D�

2: ð55Þ
Using the above, we can rewrite the current as

jr ∝ ðjAC2 þ BC4j2 − jBC3j2Þðr−1 þ 2ℜ½D2�Þ þOðrÞ:
ð56Þ

An arbitrary combination of both solutions will have
a divergent flux at the horizon. But it is also possible to
have a constant current near the horizon, if we choose
jAC2 þ BC4j2 ¼ jBC3j2. Due to the above this current also
automatically vanishes near the horizon. This condition can
be fulfilled by appropriately choosing the amplitudes A
and B. Hence in principle, it is possible to obtain solutions
that have zero modes with vanishing flux at the horizon at
the level of the near-horizon solution.
Let us now look at the current of the solution (41) in the

special case in which we have a static perturbation with
ω ¼ 0. Using this equation, we can write the current like

jr ¼ ζ2ðϕ†γ0γ1ϕÞjΘj2 ¼ ζ2ðϕ†
0γ

0γ1ϕ0ÞjΘj2: ð57Þ

Thus in this case, it is possible to have a vanishing current
in the whole spacetime by choosing ϕ0 such that
ϕ†
0γ

0γ1ϕ0 ¼ 0.

VI. CONCLUSIONS

In this paper, we have considered a massive Dirac
field gravitating on the near-horizon region of the
extremal five-dimensional Myers-Perry black hole with
equal angular momenta. On this near-horizon space-time
we have constructed the Dirac operator that couples
minimally the fermionic field to the corresponding
metric. Using the standard method from the literature,
based on a convenient internal rotation of the spinor,
we decoupled the Dirac equation into an angular and a
radial part.
First, we have focused on the angular part of the

solutions, which we have solved by requiring the standard
regularity conditions to the spinor angular distribution.
The resulting solutions possess an angular quantum number
κ, which is characterized by the product m × a, the half
integer numbers m1 and m2, and the positive integer
number nk, related with the excitation level of the angular
momentum.
Next, we have considered the radial equation, which

we have solved in terms of some special functions. Taking
into account the conditions on κ from the angular part, the
solutions to the radial equation are constrained to two
independent set of solutions. In the limit ω ¼ 0, the radial
functions of this static spinor are given in terms of simple
exponential functions.
In order to study the physical properties of these radial

solutions, we have analyzed the radial flux at the horizon.
An asymptotical study of the analytical solutions reveals
that one set of solutions is related to an ingoing flux at the
horizon (absorption), while the other set is related to an
outgoing flux (emission). We have shown explicitly that in
the special case in which ℑðωÞ ¼ 0, a particular combi-
nation of the ingoing and outgoing solutions possesses a
vanishing flux asymptotically as one approaches the
horizon. We have also considered the case of static spinors
(ω ¼ 0), in which case the total flux in the near-horizon
region can vanish.
As future work, since one now has a complete set of

solutions for this particular near-horizon metric, the next
natural step would be to quantize the field and then analyze
the consequences of the quantization.
It would also be interesting to consider a full quasinor-

mal mode analysis of the Dirac field in the background of
the full five-dimensional Myers-Perry black hole, without
restricting the study to the near-horizon region. In this
case, it is necessary to study the behavior of the fields in the
far-field region, and no analytical solutions are expected
to be found in the bulk of the black hole. However, the
quasinormal mode analysis could reveal the presence of
slowly damped modes, as observed before in higher
dimensions in the Schwarzschild-Tangherlini black hole
[35] and in four-dimensional Kerr [36]. A study in this
direction for the cohomogeneity-1 case has been recently
presented in [37].
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