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The Laser Interferometer Space Antenna (LISA) will open a rich discovery space in the millihertz
gravitational wave band. In addition to the anticipated signals from many millions of binary systems, this
band may contain new and previously unimagined sources for which we currently have no models. To
detect unmodeled and unexpected signals we need to be able to separate them from instrumental noise
artifacts, or glitches. Glitches are a regular feature in the data from ground-based laser interferometers, and
they were also seen in data from the LISA Pathfinder mission. In contrast to the situation on the ground, we
will not have the luxury of having multiple independent detectors to help separate unmodeled signals from
glitches, and new techniques have to be developed. Here we show that unmodeled gravitational wave bursts
can be detected with LISA by leveraging the different way in which instrument glitches and gravitational
wave bursts imprint themselves in the time-delay interferometry data channels. We show that for signals
with periods longer than the light travel time between the spacecraft, the “breathing mode” or Sagnac data
combination is key to detection. Conversely, for short-period signals it is the time of arrival at each
spacecraft that aids separation. We investigate the conditions under which we can distinguish the origin of
signals and glitches consisting of a single sine-Gaussian wavelet and determine how well we can
characterize the signal. We find that gravitational wave bursts can be unambiguously detected and
characterized with just a single data channel (four functioning laser links), though the signal separation and

parameter estimation improve significantly when all six laser links are operational.
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I. INTRODUCTION

Gravitational wave (GW) astronomy has tremendous
potential for discovery, as has been spectacularly demon-
strated by the ground-based LIGO/Virgo observatories
[1,2]. The signals that have been detected to date have
all been from binary systems, and are accurately modeled
by theoretical templates. Going forward, it is hoped that
entirely new classes of signals will be discovered, many of
which we will not have templates for, either due to the
difficulty in calculating the waveform (such as for super-
novae), or from our ignorance about the existence of
the source. Detecting signals of unknown morphology is
challenging since the instruments themselves produce non-
Gaussian transients, or glitches, that can be mistaken for
signals of astrophysical origin.

The Laser Interferometer Space Antenna (LISA) [3], like
its ground-based cousins, will very likely be afflicted by
glitches. Glitches were seen in data from the LISA
Pathfinder mission [4,5], and it is hard to imagine that
they will be absent from the more complex LISA meas-
urement system. Characterizing these glitches and accu-
rately estimating their waveforms, will be an important
component of the LISA global data analysis program.
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Unlike the situation on the ground, where the availability of
multiple independent interferometers simplifies the task of
separating glitches from signals, with LISA we will have a
single instrument. Nor will we have any “off-source” data,
free of loud gravitational wave signals, with which to
perform a measurement of the instrument noise. With LISA
the signal and noise measurement must be done simulta-
neously [6] as part of a global analysis.

Similar concerns led to the developments of burst and
glitch characterization analyses for LIGO. One such analysis
was the wavelet-based Bayesian algorithm BayesWave [7].
This algorithm has played the key role for model-independent
waveform reconstructions for most of the detected mergers
seen by LIGO [1]. Its broad capabilities were best demon-
strated when applied to the binary neutron star merger
GW170817 [2]. BayesWave’s ability to characterize a loud
instrumental glitch, obscuring a large fraction of the all-
important late inspiral, allowed for an accurate recon-
struction of the astrophysical signal with the glitch removed
[8], so that other analyses could properly characterize the
binary neutron star’s physical parameters [2]. For LISA, we
wish to develop an algorithm to serve a similar purpose of
analyzing glitches and bursts. Instrumental glitches in LISA
studied here will fall into two categories: phasemeter and
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acceleration. Optical path glitches reflect non-Gaussian
deviations in the phasemeter length of any of LISA’s six
laser links. Acceleration glitches result from disturbances to
the acceleration of LISA’s test masses. Laser phase noise
glitches will be neglected in this study since they will be
suppressed in the time-delay interferometry (TDI) data
channels [9]. Glitches can be represented through a super-
position of sine-Gaussian wavelets in each component of the
instrument. Gravitational wave bursts can similarly be
represented by a superposition of wavelets. The signal is
referenced to the Solar System barycenter (SSB) and then
projected onto LISA by computing the instrument response.
As a first step, we consider signals and glitches that are
described by a single wavelet and defer the generalization to
multiwavelet fits to future work.

To investigate our ability to characterize glitches and
bursts consisting of a single wavelet, we will use Bayesian
probability theory to calculate our degree of belief in the
parameters which describe the injected signal, as quantified
by the posterior distribution. The duration of these signals
ranges from tens of seconds to roughly a day. Their
duration, and frequency content in relation to the light
travel time between the spacecraft will have important
implications on our ability to characterize these signals and
will also play a key role in our ability to distinguish whether
the data contains a glitch (and which kind) or a burst.
Glitches will enter the TDI data channels with time delays
of the light travel time between spacecraft. This time is
about 8.3 seconds for the nominal L = 2.5 Gm separation,
which sets the LISA response transfer frequency f, =
¢/(2zL) to be 19.1 mHz. Wavelets with frequencies below
the transfer frequency will be harder to characterize and
distinguish. An additional piece of the puzzle are the data
channels in which the wavelet’s power crops up, and in
what proportion. Acceleration glitches enter the data stream
by afflicting two different phase measurements while
phasemeter glitches afflict only one. Bursts, on the other
hand, enter all phase measurements through time delays
which depend on the various projected arm lengths depend-
ing on where the incident gravitational wave originates on
the sky. While the power distribution is the most useful
discriminant, the phasing becomes most important in the
case of a malfunctioning LISA arm i.e., when we would be
left with only one data channel. In this study we will
address these considerations and investigate what we can
learn and what features are most informative.

This work is organized as follows. Section II discusses
the waveforms for phasemeter and acceleration glitches and
for gravitational wave bursts. Section III reviews Bayesian
inference and then describes the Markov chain Monte Carlo
algorithm we employ to carry out the parameter estimation
and model selection analyses in this paper. Section IV
shows how well we can characterize glitch and burst
parameters and recover the injected waveform. In Sec. V
we explore under what conditions we are able to distinguish

between a glitch and a burst, and identify what features
of the signal are most responsible for making the dis-
tinction. We end with a discussion of future work to be
carried out in Sec. VI. Note that we work in units
where G = ¢ = 1.

II. GLITCH AND BURST MODELS

The LISA constellation consists of three spacecraft in
the shape of a quasiequilateral triangle trailing behind
Earth. The spacecraft have a total of six laser links, two
for each arm. Each laser has its phase measured by
phasemeters onboard the LISA spacecraft. A photon sent
from the laser situated on spacecraft i, pointing towards
spacecraft j, is emitted at time ¢ — L;;, where L;; is the
arm length connecting spacecraft i and j. The phase of
this photon is measured at time ¢ by the phasemeter on
spacecraft j. This phase measurement can be approximated
as [10]

(1) = Ci(t = Lyj) — C;(t) +wij(t) + ng (1)
= (1) - (n3(r = Lyj) —n(1)). (1)

The noise in the laser phase due to fluctuations of the laser
frequency around its nominal value is described by the
terms C;. We refer to this noise as laser frequency noise
The term y;; describes the phase shift induced by the
presence of gravitational waves. The term n; represents the
contribution from the optical bench on spacecraft j that
receives light from spacecraft i. The last term represents the
contribution to the phase measurement incurred by the
acceleration noise of the test masses. Note that in this
simplified model, where we are neglecting higher-order
features of LISA’s motion such as the flexing of the arms,
the only component of the acceleration that is relevant is the
differential acceleration along the line F;; connecting the
center of mass of the two test masses.

These laser phase measurements are expected to be
dominated by laser frequency noise. Current estimates
indicate that the frequency fluctuation noise will be roughly
10 orders of magnitude greater than the changes in phase
induced by the gravitational waves of interest [9]. The
phase noise can be canceled using TDI. The TDI data
combinations synthesize light paths of equal length by
adding together phase measurements with time delays
given by multiples of the instantaneous light travel times.
This superposition cancels the laser frequency noise. When
higher-order corrections to the spacecraft motion are taken
into account the superposition of time-delayed phase
measurements becomes more complicated. Here we use
the simpler first-generation TDI data combinations. Three
Michelson-like TDI channels can be formed from the
signals extracted at each vertex of the observatory. These
are denoted as X, Y, and Z. The X TDI channels is
constructed as follows:
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X(1) = ®15(1 = 3L) = ®y3(r = 3L) + Py (r - 2L)
— @3 (1 =2L) + ®@3(t — L) = @5 (r - L)
+ @3 (1) — Dy (1), (2)

where we have assumed that the LISA arm lengths are of
constant length, i.e., L;;(r) = L. The Y and Z channels are
constructed through a cyclic permutation of the spacecraft
labels, e.g., 1 - 2,2 — 3, and 3 — | to construct the YV
TDI channel. It is often convenient to work with the
following linear combinations of the X, Y, Z channels:

A:%(ZX—Y—Z), (3a)
1

E=—(z-0) (3b)

T:%(X+Y+Z). (3¢)

Below the transfer frequency, the A and E channels
synthesize two right-angle interferometers with a relative
orientation of 45°, and provide instantaneous measures of
the plus and cross polarization states of a gravitational wave.
At these frequencies the T channel is mostly sensitive to the
scalar breathing mode polarization state, which is absent in
Einstein gravity,1 and thus provides a null channel that is
useful for measuring a particular combination of the noise
contributions. When the noise levels are equal on each
spacecraft, the cross-spectral density of the noise in the A, E,
T channels vanishes [11,12].

An arbitrary signal seen in the TDI data channels may be
reconstructed by a superposition of sine-Gaussian wavelets.
In this study we use Gabor-Morlet wavelets. In the time-
domain they are given by

W = Ae~(10)"/7 cos Rzrfo(t—1t9) + o), (4)

where A is the wavelet amplitude, ¢, and f, are the central
time and frequency, the wavelet time scale is 7—related to
the wavelet quality factor Q through 7 = Q/2xf;—and ¢,
is the initial phase. Occasionally we will use the variable
¢ = o — 2xfoty. The Fourier transform of the Gabor-
Morlet wavelet is

P — @ e~ iQ@xfro+do)
2
X [e_(”T(f+fO)>2 + €2i¢0 e_<7”(f_f0)>2:| . (5)

'Modified theories of gravity may predict a breathing mode for
gravitational waves. It would be worthwhile to study the effect of
this mode in the characterization of instrumental noise. We
imagine that the distribution of power would be distinct enough
to distinguish the origin of the signal when all laser links are
functioning.

In the Fourier domain we see that in the large quality factor
0 regime (or equivalently the large-r regime) the second
term in Eq. (5) is dominant. Ignoring the subdominant term,
we can estimate the signal-to-noise ratio (SNR) in the case
of white noise as

o 2
LYV / Cﬁm>emMmeU
Sn(fO) 0 2

n A’r
- \/;Sn<f0) ’ (6)

where S, (f) is an appropriate noise power spectral density
which has been assumed constant such that we may
approximate the integral. This result will become useful
later when we wish to estimate a reasonable bandwidth in
the frequency domain to calculate these signals over.

A. Instrumental glitches

To model instrumental glitches we inject a Gabor-Morlet
wavelet into the appropriate term in Eq. (1). For example, a
glitch in the phasemeter length pointing from spacecraft 1 to
2 is modeled as @1, () = nf,(t) = ¥(r). We will label such
a glitch as @Y}, where the superscript “pm” stands for
phasemeter. Consider an acceleration glitch that is associ-
ated with the proof mass on spacecraft 2, referenced against
spacecraft 1. Such a glitch will appear in two phase
measurements: ®,(f) = =¥(7) and D, (1) =¥(r—L).
This acceleration glitch will be denoted as ®%5. Laser phase
glitches are neglected in this work since the TDI channels are
constructed such that laser frequency noise is canceled.

The X, Y, and Z TDI channels can be constructed for
both phasemeter and acceleration glitches analytically in
the frequency domain. For the phasemeter glitch ®3' the
response is

X = 2iPe 2111 sini, (7a)
/s

Y = —2iWe i/t sin%, (7b)

Z=0. (7¢c)

Note that there is no response in the Z channel. The factor
of sinf/f, is due to differencing the disturbance by the
time delay. The only other phasemeter glitch that has no
response in the Z channel is @5, which produces the
response

X =2iPeif/1. sini, (8a)
S

Y = —2iPe 2111 sin%, (8b)

Z=0. (8¢)
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TABLE L

This table contains the analytic first-generation TDI variables for phasemeter and acceleration glitches. Note that

phasemeter glitches occupy two of the XYZ TDI channels while the acceleration glitches only occupy one. Acceleration glitches
pick up an additional factor of the transfer function sin f/f,. A change in wavelet parameters, specifically the initial phase, leads to a
perfect degeneracy between pairs of acceleration glitches when all three TDI channels are functioning. This is not the case for

phasemeter glitches.

X
@ 2i¥e=2111sin (f/f)
@5} 2i%e= 11+ sin (f/f.)
o 0

o 0

L 2i¥e 1 sin (f/f.)
5 2i%e= 111 (f/f.)
D 0

3 —4Pe2I/1 sin? (f/£.)
D 0

P 4P 2011 sin? (f/f.)
(025 0

(025 0

y 7
—2i%e~i/F sin (f/f,) 0

—2iWe=2//1- sin (f/f.) 0

2ie= /1 sin (f/f,)
—2i%e= /1 sin (f/f,)

_2iBe21/. sin (f/f.)
2iWe2if/f+ sin (f/f)

0 —2iPe 2/ sin (f/f,)

0 —2iWe 21 - sin (f/f,)
4Pe 211 sin (f/f.) 0

0 0

0 —4We 201 sin? (f/f.)

0 0

0 42011 sin? (f/£.)

—4Be2111- sin (1/,) 0

We can already glean insight into how phasemeter glitches
can be identified. When all six laser links are functioning,
none of the phasemeter glitches can be made to look like
the other. For example, suppose we try to match the X
channel response of ®5' to that of ®}}". This would require
a time shift of ¢ + L i.e., a factor of e'///+ in the frequency
domain. This time shift will of course shift the ¥ response
in the opposite desired direction in time. We cannot find a
transformation of wavelet parameters such that any pha-
semeter glitch looks like another when all six laser links are
functioning. If we are unfortunate enough to have only two
functioning arms, we will be at a loss when attempting to
distinguish these two glitches. That is if we have only the X
channel, we will not be able to distinguish @3 from a time-
shifted @5

We must also contend with acceleration glitches. The
acceleration glitch ®%§ has the TDI response

Y = 4211 sinz%,

*

©)

where both the X and Z channels are null. All acceleration
glitches have a response in only one of the X, Y, and Z data
channels. Acceleration glitches also have an additional
suppression from the transfer function sin f/ f,.. This is due
to the acceleration glitch appearing in two phase measure-
ments separated by the light travel time between spacecraft.
With acceleration glitches however, we are unable to
unambiguously determine their origin even when all six
laser links are functioning. There are perfect degeneracies
between pairs of acceleration glitches. For example, the
response to the acceleration glitch @53,

Y = —4We2f11. sinz%,

*

(10)

has precisely the same form as @95 except for a shift in its
initial phase (by ). In the scenario where we lose one arm
of the constellation we will be no worse off with respect to
distinguishing acceleration glitches. The responses to
glitches in other components are shown in Table 1.

When generating these waveforms we wish to economi-
cally sample an appropriate bandwidth. The signal-to-noise
ratio for a phasemeter glitch, given one data channel, can be
estimated as

5 /m/2A%c

Pest = ’
' SX,M(fO)

in the large-r limit obtained from Eq. (6). Sy, is the
Michelson-equivalent power spectral density defined as
Sx.m = Sx/4sin?(f/f,). Similarly, the SNR for an accel-
eration glitch can be estimated as

5 4y /m)2A%Tsin? (fo/f.)
Pest = Sy (fo) '

A bandwidth of Af = 4(p.y/5)*/t was used to capture in
excess of 99.9% of the SNR in each glitch.

In addition to distributing power to different TDI
channels, glitches in different components produce differ-
ent phasings in the response. The phasing information
depends critically on the frequency of the glitch, f, and the
duration of the glitch z. Higher-frequency glitches, in
relation to LISA’s transfer frequency, get heavily modulated
by the transfer functions making it easier to determine their

(11)

(12)
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FIG. 1. This figure displays the A, E, and T TDI channel responses for various glitches (@}’ in red, and @35 in blue) and gravitational
wave bursts (in black). The top row shows wavelets with durations that are much longer than the light travel time between LISA
spacecraft. The middle row shows wavelets with durations that are comparable to the light travel time. The bottom row shows wavelets
with durations that are less than the light travel time, which leads to a clean separation of the glitch wavelets in the TDI channels. Note
that the glitch wavelets only appear in a subset of the TDI channels.

origin. In Fig. 1 the A, E, and T TDI channels for phasemeter
glitches @Y7' are displayed in red and acceleration glitches
@35 are shown in blue. The amplitudes of the optical and
acceleration glitches were chosen for ease of comparison,
while maintaining the correct relative amplitudes in the
different TDI channels. The top row (case 1) displays glitches
with the parameters 7= 0.2 hours, and f, =2/7 ie.,
2.7 mHz, placing this glitch well below the transfer fre-
quency. These parameters give the glitch a quality factor of
12.6. Since the wavelet has a low frequency, its amplitude
does not change substantially over the light travel time. This
means that the construction of the TDI channels acts like a
derivative of the input. In the middle row (case 2) the
parameters of the wavelet are 7 = L = 8.33 seconds and
fo =13/t =156 mHz (Q ~ 8). This wavelet has a tem-
poral extent comparable to that of the light travel time
between spacecraft. This results in a waveform that is the

superposition of two wavelets with a small time shift between
them. Last, in the bottom row (cases 3) we see a wavelet
of 7 = 1 second and f, = 800 mHz i.e., Q = 5.1. Here the
frequency of the signal is substantially larger than the transfer
frequency and the duration of the signal in time is much less
than the light travel time, leading to a clean separation of the
wavelets in the TDI channels. Note that in the low-frequency
regime the phasemeter glitch has a suppressed output in
the T channel. We also see that the E channel response to
the acceleration glitch is totally suppressed. This is because
thereis no Z or Y response for this specific acceleration glitch
and the E channel has no X channel dependence.

B. Gravitational wave bursts

The phasemeter length change due to a gravitational
wave signal in the laser link connecting the ith and jth
spacecraft is given by
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5&AQ:IM:/@hOML (13)
&

where the colon denotes full contraction between the
tensors, ie., A:B=A%B;,. The time ¢ is SSB time,
and &, =1t; — k- x; is the wave variable defining surfaces
of constant phase for the gravitational wave. The position
of the ith spacecraft is x;, #; is the time of emission of the
laser photon from spacecraft i, and ¢; is the time of
reception of the laser photon at spacecraft j. The detector
tensor D is given by

1 £ ®F;;
D:——ﬁ&%, (14)
2 1-k rij
where k = —(sin 6 cos ¢, sin fsin ¢, cos §) is the gravita-

tional wave propagation direction (6 and ¢ designate the
source’s position in spherical polar coordinates in the
SSB frame). The quantity F;; is the unit-separation vector
between the LISA spacecraft pointing from spacecraft i to
spacecraft j. In this study the LISA orbits are kept to
leading order in eccentricity thereby fixing the LISA arm
length to be constant [10] L = |r;;| for all , j combinations.
The gravitational wave tensor h is given by

h = h, ()€ (y.0.0) + heel(y.0.4).  (15)

where €', , are the polarization tensors e, , rotated by the
polarization angle y € [0, z]. In this work we assume that
the gravitational waves are elliptically polarized such that,
in the frequency domain, &, = ieiz+ is parametrized by the
ellipticity € € [0, 1]. We model the integrated gravitational
wave polarizations as Gabor-Morlet wavelets such that
J"h (¢)di' = L¥(r). We may approximate the detector as
static for the duration of a wavelet, since corrections would
be on the order of 7/1 yr. This means that we may safely
evaluate all terms associated with the position of the
detector at the central time of the wavelet ¢, and assume
that the value is constant. The response to the wavelet in the
frequency domain is then

5 f ! X! - \\J —27ifK-x;

Yij :]T(Ff; +ieF5)T(f;k)¥(f)e 2riflexiio) —(16)
Where ylj - 5KU/2L and F;;’X - [fll ® f‘,»j]le_,_’x. Tij’ the
transfer function, is given by

U s i X
T," _ _et(i(l—k‘l‘ij))sinc( f (1 — k- flj)) . (17)

The wavelet has its central time shifted by the light travel
time between the SSB origin and spacecraft i through the
phase factor e27i/KXi(1) present in Eq. (16). The ellipticity e

and polarization angle y simply modulate the amplitude of

the response. We see that the sky angles modulate the
amplitude too, but also enter into the phasing. As opposed
to instrumental glitches, gravitational wave bursts will
induce responses in all TDI channels. It is important to
note though that for frequencies below the transfer fre-
quency f ., the gravitational wave response in the 7' channel
is heavily suppressed [11]. This can be seen in the T
channel response for case 1 in Fig. 1. The signal in each
panel of Fig. 1 represents a gravitational wave burst. The sky
angles are chosen such that cos@ = 0.23 and ¢ = 2.31.
The polarization angle is 0.45 and the ellipticity is 0.5. The
wavelet parameters are precisely the same as those for the
glitches in the panel the burst shares (give or take an
amplitude factor or time shift for the sake of easy compari-
son). Note that for case 1 the signal response is distinctly
different than for the glitch. Recall that the glitches in this
case were cleanly separated. This is because glitches enter
the data stream with time delays equal to the light travel
time between spacecraft, which is longer than their extent in
time. Gravitational waves enter the data stream with time
delays equal to the projected arm lengths. This can lead to
foreshortened arms allowing for some overlap between the
wavelets as seen in case 3.

ITI. BAYESIAN INFERENCE

With the glitch and burst models established we now
turn to the methods used to infer the properties of the
gravitational wave signals and instrument glitches and
develop probability distributions for the parameters of
the models. These probabilities are quantified by the
posterior distribution p(4,,|s, M) which reflects our belief

about a given set of parameters a v Which specify model M
given data s. The posterior distribution is obtained via
Bayes’ theorem:

(8|2 M) p(pg| M)
p(s|M) ’

pAmls. M) = (18)

where p(z v |M) is the prior distribution for the parameters

Jng p(sliy. M) is the likelihood of the data given the
parameters, and p(s| M) is the evidence for the model M.
Along with the assumptions we have already made in the
construction of the TDI channels, we further assume that,
aside from the glitches modeled here, the noise is stationary
and Gaussian. The likelihood function for the data then
takes the form

pU6IE M) sexp |~ 55, = s = D)) (19

1

where the subscript M on the parameters has been dropped
for simplicity. The sum is over TDI data streams [ =
{A,E,T} (orjust I = {X} for some of our investigations).
The noise-weighted inner product is defined as
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- [

The noise strain spectral densities in these data channels are
given by

df. (20)

SuE ——smz%* |:(2+COS£) Powms

f f Pacc 1
+2<3+2005ﬁ+cosﬁ)( 27f) ] oL (21a)
oottt (1ot
f 2f\ Pace | 1
<3 4cosf*+cosf*>( 22 ) ] GL? (21b)

Poee 1
Sy :4sin2£ [4POMS+8< +0032J{*> (2n f) ]—(ZL)Z'

(21¢)

The noise in the A and E channels, S, is the same and the
noise in the 7 channel is S7. The single-link optical
metrology noise power Pgyg and single test-mass accel-
eration noise power P,.. were quoted in Ref. [13]. Another
contribution to the measured noise comes from millions of
unresolved galactic binaries [14] emitting gravitational
waves to which LISA is sensitive. Estimates of the
unresolved galactic binary confusion noise for various
observation periods can also be found in the same
reference.

A. Maximization over nuisance parameters

In a fully Bayesian analysis we would compute the joint
posterior distributions of all parameters in the model. To
simplify the analysis and achieve more rapid convergence,
we chose to eliminate certain nuisance parameters by
analytically maximizing the likelihood with respect to
these parameters using the J-statistic approach (we could
have analytically marginalized over the nuisance parame-
ters instead [15], but it is much faster and simpler to
maximize). The F-statistic [16] provides a way to maxi-
mize the likelihood over the extrinsic parameters: A, ¢ for
a glitch, and A, ¢, y, € for a burst. Through the use of
several filters, constructed from the burst or glitch wavelet
with specific choices of extrinsic parameters, one may
construct the maximized likelihood. To understand how to
construct the F-statistic it is useful to consider the burst
model in the large-z and low-frequency limit

fo
4f
+ eF} cos(2zfot; + §)). (22)

Vij = =5 [Fi sin(zfot; + )

where t; =t — k- x;. This signal may be deconstructed
into four terms which consist of a constant amplitude
dependent on extrinsic parameters multiplying a time-
dependent factor, additionally dependent on the intrinsic
parameters (fq, 7, ty, 6, ¢)

Yij = ZakA"(t). (23)

k

The four filters AX(7)

Al = —i;?* Ffisin (2zfot;), (24a)

a2 =~ T pxgn (2zfot;) (24b)
af, ’

A3 — — fo Fcos (2nfot;) (24c¢)
af,

A4 = — fo F% cos (2nfot;) (24d)

may be constructed by inserting the extrinsic parameters
listed in Table II into the burst waveform generator. The
glitch F-statistic filters can be constructed by the parameter
choices (1) A=1,¢=0and 2) A=1, ¢ = —n/4. The
extrinsic parameter coefficients are

a; = A(cos 2y cos ¢ — € sin 2y sin @), (25a)
a, = A(—sin2y cos ¢ — ecos 2y sing),  (25b)
az = A(cos 2y sin ¢ + e sin 2y cos ¢), (25¢)
a, = A(—sin2ysing + ecos 2y cos ). (25d)

The noise-weighted inner product of these filters with the
data N* = (s|A¥) can be used to construct the maximized
relative likelihood

F—logl = %(M ), NN, (26)

mn

TABLEII. Plugging these parameters into the gravitational wave
burst waveform generator will construct the filters (24a)—(24d). The
resulting filters can then be used to maximize the likelihood over
the extrinsic parameters.

Filter A P W €
Al 1 0 0 0
Al 1 0 —n/4 0
A3 1 7/2 0 0
At 1 /2 —r/4 0
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The value £ is the relative likelihood, i.e., the ratio
between the likelihood assuming h contains a burst and
the likelihood assuming there is no such signal, i.e., h = 0,
such that

log £ = (s|h) —%(h|h). (27)

The results hold for summing over multiple data channels
such as when we use the A, E, and T TDI channels. The
matrix M™" = (A™|A") is simply the inner product matrix
of the filters. Although, in this study we do not make use of
the extrinsic parameters which maximize the likelihood it
may prove useful in a future study to be able to calculate
them. Inverting the equations for the filter returns the
extremized extrinsic parameters

A=\ 305+ vra)

em STVPL (28b)

2(a a4 — ayaz),

(28a)

a3 + 2ayazay + a) (a3 + a3 — a3 + /pq)

tan(2y) = ,
an(2y) ata, +2ayaza, + ay(a5 — a3 + al +\/pq)
(28¢)
. ad+d-a-a+
tangp = ! 24374y PCI7 (284)

—2(ayas + ayay)

where s =a? +a3+a5+a3, p = (ay + a3)* + (a; — ay)?,
and ¢ = (ay — a3)* + (a; + a4)*. For glitches the ampli-
tude and phase can be extracted via

A=/a} - a3, (29a)

- —a
tan ¢ =2

; (29b)

B. Markov chain Monte Carlo

In this study we wish to characterize what we can learn
about a wavelet present in the data. To accomplish this we
marginalize the posterior distribution via the Markov chain
Monte Carlo (MCMC) algorithm. Suppose we inject a
signal into our data s. Upon choosing a model specified by
the initial set of parameters X we generate a proposed set of
parameters from a probability density g(y|X). The chance
that we accept this new set of parameters y is given by the
Hastings ratio

=1 ZSEMTUATI,

p(s|x, M) p(x| M)q(¥Ix)

The sequence of parameters we accept, called a chain, con-

stitute samples from the posterior distribution p (Z Mmls, M).
The MCMC we created uses the F-statistic likelihood,
extremizing the likelihood over the extrinsic parameters of
the signal. This effectively reduces the search space of the
MCMC, greatly improving its convergence, especially for
the burst model which otherwise converges slowly when the
sky location is poorly-constrained.

For the MCMC developed in this study uniform priors
were set for the parameter set {log A, f, t, log 7, ¢, cos 6, ¢,
v, €}. To aid in the convergence of the MCMC we used a
mixture of proposal distributions. We utilized local Gaussian
approximations to the posteriors through the Fisher matrix
(which approximates the inverse covariance matrix)

Iy = Z(hl,i|h1,j)7 (31)

I

where h; ; represent the derivative of the waveform (in the
Ith data channel) with respect to the ith parameter 4,. These
derivatives were calculated numerically using finite differ-
encing of the waveforms discussed in Sec. II. We occasion-
ally used proposals from the prior distribution. Since we are
not currently developing a detection algorithm, only an
MCMC which characterizes the signal, we used a targeting
distribution to help the MCMC find appropriate central
frequencies f, and decay factor 7. For f, and r individually,
this proposal consisted of a Gaussian distribution centered
on the true parameter used to generate the injection. The
width of the Gaussian was chosen based on the Fisher matrix
estimation for the error in that parameter. To improve the
acceptance rate of this proposal distribution the Gaussian
was mixed with a 20% by weight uniform distribution
covering the prior range. Differential evolution [17] pro-
posals were also used. Last, a time-shift proposal was used
to help highly oscillatory wavelets where shifts, forwards
or backwards, in the central time of the wavelet by the
wavelet’s period were proposed (with an appropriate shift in
initial phase).

To further improve convergence, and to ensure a
thorough exploration of parameter space—such as inves-
tigating the existence of secondary modes on the sky for
bursts—parallel tempering [18] is utilized. During parallel
tempering multiple chains are simulated simultaneously at
different temperatures, i.e., their likelihoods are flattened

p(s Z M)ﬁ/ , where f8; =1 / T; is the inverse temperature
for the jth chain. The cold chain, i.e., T = 1, represents
samples from the posterior distribution. The chains at
various temperatures propose and accept new parameters
just as before, but with the flattened likelihood.
Occasionally, parameter swaps between chains neighboring
in temperature are proposed based on the probability

P(S|/1j»M)ﬂf“P(SMjH,M)ﬂ’} (32)

Hpr = min{l, ~ >
p(s|lj’M)/jjp(S|ﬂj+]’M)/}/'Jrl
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FIG. 2. Marginalized posteriors for the parameters f, #,, and 7 are displayed for a phasemeter glitch ®}' in the left panel and a
gravitational wave burst in the right panel. The fully marginalized posteriors for f and 7 are similar for the two injections (while the
joint posterior exhibits some correlation for the burst), but the central time posteriors differ significantly. The injected parameters are

marked by the red lines.

Parallel tempering vastly improves convergence once a
proper selection of temperatures is made. The maximum
temperature is chosen such that the hottest chain freely
explores the parameters’ prior volume, while not so hot as
to be redundant in the prior space exploration as cooler
chains. In Sec. VA we see how parallel tempering addi-
tionally aids us in determining whether a glitch (and which
one) or a burst best explains the data.

IV. PARAMETER ESTIMATION

The MCMC may now be used to address questions
such as how well we can characterize the parameters of
the signal and recover the waveform itself. The central
frequency f( and time damping factor 7 are typically well
determined for bursts and glitches. An example margin-
alized posterior for these parameters is seen in Fig. 2. The
left panel shows marginalized posterior distributions
for a phasemeter glitch @75 and the right panel shows
marginalized posteriors for the same parameters for a burst.
The injected signals both have an SNR of 8. The SNR is
given by

P = Z(h1|h1)‘ (33)

They share the parameter values f, = 15 mHz, 1, = 0.5T
(where T is the observation period), and 7 = 53 seconds
(giving the wavelets a quality factor of 5.0). The
burst injection has the following additional parameters:

cos@ =0.23, ¢ =231, yw =045, and ¢ = 0.5. We see
that the fully marginalized posterior distributions for the
central frequency f and 7 are rather similar for these two
injections. However, the posteriors for the central time ¢,
are quite distinct in a significant way. One can show
through a simple Fisher matrix calculation for a wavelet
[7] that the standard deviation in 7, for a wavelet scales
as 1/pz. The injected glitch has a measured standard
deviation of 53 seconds while the Fisher matrix standard
deviation estimates an error of 70 seconds, demonstrating
agreement. The standard deviation in 7, for the burst is
4.6 minutes, which is much larger than that of the glitch
which must be attributed to the more complex response of a
burst compared to a glitch.

The reason for the increase in error associated with the
central time of the burst can be seen in Fig. 3. There exists a
substantial correlation between the azimuthal sky angle ¢
and 7. If we do not appropriately constrain the central time
it turns out that we cannot determine the sky location,
which is the case for this example burst. We can understand
this by looking at the low-frequency response to a GW
burst signal. In this regime, the Michelson-equivalent A and

E TDI channels are proportional to %‘i‘e‘h’f kxi modulo

overall constants that differ between the channels. The T
channel is null in this limit. We see that the sky angles enter
the phasing through a time shift factor multiplying the
Fourier transform of the Gabor-Morlet wavelet. Since this
factor is a time shift, the sky angles are almost perfectly
degenerate with the central time of the wavelet. The
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FIG. 3. The joint posterior for the azimuthal angle ¢ and the

wavelet’s central time 7, as well as their fully marginalized
posteriors. The injected parameters are again marked by the red
lines. There exists a very large correlation between these two
parameters.

likelihood is approximately constant under mappings of
the azimuthal sky location and central time that keep
the combination ¢z, — R sin @ cos(2zf,,ty — ¢) fixed, where
fm = 1/yr is the orbital modulation frequency and R =
1 AU. This relationship holds to leading order in the
orbital eccentricity. Higher-order corrections to the phasing
incorporate additional information about the sky location in
the form of the projected arm lengths L,;; = L(1 — k- £).

In Fig. 4 we see the posterior distribution for the
projected arm lengths from a burst injection of the same
sky location, polarization, ellipticity, and SNR as in the
previous example, but now the central frequency is 50 mHz
and 7 =16 seconds. This shorter envelope allows the
central time to be measured and therefore the sky location
to be better determined. The duration of the wavelet is more
important in determining the sky location than the central
frequency.

In Fig. 5 we see the posterior distribution for the sky
location for two different high-frequency bursts. Both
bursts in Fig. 5 have the same sky location, which is
denoted by the blue dot in the sky map on the left. The
central frequency of each source is 50 mHz. The duration
of the source shown on the left is 7 = 16 seconds (i.e., the
same burst used in Fig. 4) while the sky map on the
right is for a source with 7 =2.8 minutes. We see
that the origin of the burst on the sky has been localized
for the short-duration burst. This is due to the tight
constraint on the central time of the wavelet. When the

Lz
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x » 9 6 x & 9 6 9 % 6 %

X % AT R Y P A N P S
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FIG. 4. The posterior distributions for the quantities 1 — k - #; ;
are displayed here, i.e., LISA’s projected arm lengths for a high-
frequency gravitational wave burst, normalized by the arm length
L =2.5 Gm. The red lines indicate the injected values for the
GW burst signal.

central time of the wavelet is measured to better than the
light travel time between spacecraft we begin to have
the power to localize the wavelet on the sky. The source
shown on the right has a longer duration and poorer
constraint on the central time, and therefore a poorer
constraint on the sky location. An interesting structure
emerges on the sky posterior for the right source. The
most important factors in determining the sky location are
the measured values for the projected arm lengths. The
projected arm lengths can be related to the sky locations
via the relations

~ 1
k-t,(1) = _Ecose[cosa+cos<a+g>}

1
+ ——=sin@|2cos(2a — ¢) — 9 cos
50 |2605(2 = ) = 9os

+3\/§sin¢+2sin<¢—2a+%)], (34a)

. 1
k-#5(1) = —Ecose[cosaJrsin(aJr%)}

+ \2/—4§sin9{2 cos(2a — ¢) —9cos ¢

—3\/§sin¢+23in<2a—¢+%)], (34b)
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The joint posterior for the sky location for two bursts of the same central frequency. The burst shown on the left has a short

duration (z = 17 seconds), while the burst shown on the right has a longer duration (z = 2.8 minutes). The blue dot in the left panel
represents the true sky location, which is the same for both sources. Lines of constant projected arm length are shown in the sky map on
the right. The blue, red, and black lines are for spacecraft 1 and 2, spacecraft 1 and 3, and spacecraft 2 and 3, respectively. There are two
sky locations that satisfy these constraints. There is an additional maxima away from the intersection of these lines that corresponds to a

secondary mode with an overall half-period time shift.

- 3
k- fy3(1) = —[COSGSina+Sin9[Sin(20—¢+]6T>

—3\/§sin¢+sin(2a—¢—%>}, (34c)

where a = 2zf,,t. When these values, k - #; ;(t) which are
present in the phase, are well measured the sky location
can be determined. In the right panel of Fig. 5 we see the
curves on the sky defined by Eqs. (34a)-(34c). The blue
curve defines the sky locations that give the same time
delay (and the same projected arm length) along the arm
connecting spacecrafts 1 and 2 specified by the true sky
location of the injected burst. The red line displays the
sky locations that maintain the same time delay between
spacecraft 1 and 3 as the true sky location. The black line
applies to the arm spanned by spacecraft 2 and 3. We see
that these curves intersect at two specific sky locations,

%1020

one of which coincides with the true sky location by
construction. The other intersection is a second mode that
the MCMC explored. There exists one other mode which
corresponds with a different central time that also pro-
vides a good fit to the data. This secondary mode is
shifted by a half period in time from the true value. In
addition to the time delays, the sky localization is also
impacted by the antenna patterns which change the
amplitude of the signal in each channel, but this is a
weaker effect.

Last, we will also be concerned with the accuracy of our
waveform reconstruction, especially in future work where
we will work with signals consisting of a superposition
of wavelets. Figure 6 shows an example phasemeter glitch
@' with an SNR of 8, a central frequency of 15 mHz, and
a 7 of 2 minutes (Q = 17.0). The observation period
was set to 4.55 hours. The dotted black line denotes the
signal corresponding to the injected parameters. The red
lines denote waveforms for parameters sampled from the

2.1 2.2 2.3 2.4 2.1 2.2
t [hrs|

2.3 2.4 2.1 2.2 2.3 2.4
t [hrs] t [hrs]

FIG. 6. The left, center, and right panels display the A, E, and T TDI responses respectively for a phasemeter glitch injection denoted
by the dot-dashed black line. The red lines are MCMC samples of the waveform. The central frequency for this wavelet is 15 mHz, and

7 = 2 minutes.
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MCMC. Where the amplitude of the wavelet is largest we
see that the MCMC sampled wavelets hug the injected
waveform more tightly; the errors in the wavelets are
greater near the edges.

V. MODEL SELECTION

Now we will investigate whether we will be confused
when identifying whether the data contains a glitch or
signal. Recall that glitches enter the data stream with time
delays of the arm light travel times. On the other hand,
gravitational wave bursts instead enter the data stream with
delays equal to the projected arm lengths L(1 —k - %)
This impacts the phasing of the response, which can be
used to infer the origin of the glitch. This phasing
information will be shown to be a more powerful discrimi-
nant in higher-frequency glitches. Whether we call a glitch
high frequency or low depends on whether the wavelet’s
central frequency is larger or smaller than LISA’s transfer
frequency. Additionally, there are important differences
between GW bursts and instrument glitches in where they
place power in the TDI channels. Gravitational wave signals
whose frequencies are below the transfer frequency have a
greatly diminished response in the 7 channel. Additionally,
the fact that gravitational waves are seen in at least two TDI
channels, while glitches are only seen in one or two
channels, will be of great importance. In this section we
first demonstrate through a simple argument that we do not
expect to confuse GW signals with glitches when all six laser
links are operational. Later in this section we will more
rigorously demonstrate this conclusion by calculating the
Bayesian evidence. We will also study whether it is the
phasing of the response or the power distributed in the TDI
data channels that provides the greatest leverage for sepa-
rating GW bursts from instrument glitches.

If one has access to the A, E, and T data channels it is
easy to make an argument that we will almost never confuse
a glitch for a signal. Consider the following: noise in the
data streams will affect our ability to match the true signal.
A measurement of this match is the fitting factor (FF), i.e., a
normalized (such that 1 indicates a perfect reconstruction of
the signal) noise-weighted inner product, between the data
and model waveform, maximized over all model param-
eters. The noise in the data leads to statistical deviations in
the fitting factor, even if the true parameters and model are
used. The expected deviation from a fitting factor of 1 is
described by [19]

1—FF =27 (35)

where D is the dimension of the model.

Let us consider the scenario of an acceleration glitch
model, which crops up in the X channel only, when the
data actually contains a gravitational wave burst. In the
low-frequency limit, where we would expect to be most

confused, the burst does not have significant power in
the 7" channel and also A ~ A, E ~ h,.. Recall that in the
frequency domain /i, = ieh . The overlap (normalized
noise-weighted inner product) between the acceleration
glitch and burst is

>_i(silhy)
Vi (sils1)) (s (hy[hy))
%(AB‘XaC)

oKX ) + (P (XX

. (306)

where p is the SNR of the burst injection. This overlap is
maximized if somehow the acceleration glitch conspires to
be proportional to the burst’s A channel response X, o Ag.
Let us also assume that the A channel response to the
burst accounts for a fraction x of the squared SNR, i.e.,
(Ag|Ag) = xp?. We then find that the overlap simplifies to
2+/x/5.1f in the worst case scenario, all of the burst’s SNR is
in the A channel the largest fitting factor that can be obtained
is 0.89; similar considerations for all other glitches dem-
onstrate that this glitch is indeed the worst case in the regime
under consideration.

Should we be concerned by a fitting factor this large?
To answer this question we can consider Eq. (35) to
understand the statistical error in the fitting factor.
Inserting the value 0.89 into this equation results in an
SNR of 4.3. We can loosely understand this SNR as the
largest SNR possible for the burst that could result in
confusion regarding the origin of the data (i.e., whether it
was a glitch or signal). So we see that, under some very
general assumptions, it is only when a burst is marginally
detectable that we might confuse it for an instrument glitch.

A. Bayesian evidence

To more rigorously find out which model best explains
the data we must calculate the ratio of evidences p(s|M)
for two given models. This quantity is known as the Bayes
factor

_ p(s|My)

By =10
Top(sIM)

(37)

In this subsection we calculate the Bayes factor for
competing glitch and burst models for different injections
such that we can understand our ability to distinguish a
signal’s origin and to determine when we cannot. We
calculate the Bayes factor via thermodynamic integration
[20]. Since we have utilized parallel tempering in our
MCMC we can calculate the average log likelihood
Eg[log p(s|4, M)] for each temperature of the MCMC
by simply calculating the sample mean of the log likelihood
values for each sample in the chain. With these in hand one
may calculate the evidence for a model via the integral
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FIG.7. Bayes factors as functions of the signal-to-noise ratio. A
burst was injected into the data stream with a central frequency of
15 mHz and 7 = 2 minutes. The purple and orange lines represent
the Bayes factor when the A, E, and T TDI channels are used.
Note that for the A, E, and T lines the Bayes factors lie on top of
each other. The red and green lines represent the case when only
the X TDI channel was used. Triangles denote the GW burst
Bayes factors vs @}5', while circles represent the GW burst Bayes
factors vs ®%7. With the A, E, and T channels we swiftly gain
confidence regarding the true model as the SNR grows. The
growth of the Bayes factor is much slower when only the X
channel is available.

M) (38)

1
1np(s|/\/l):/o dpEg[log p(s

We perform the integral using the methods described in
Refs. [7,21]. The covariance matrix between the log-like-
lihood values for each temperature is estimated and used to
define a log likelihood for the integrand of the thermody-
namic integration [21]. The integrand is fit by a cubic spline
whose control points and locations are marginalized over
via a reversible jump MCMC [22]. The MCMC gives us
estimates for the evidence integral (upon integrating the
cubic spline) and its associated error.

Figure 7 shows the Bayes factor between the glitch and
GW burst models for data containing a simulated burst. We
use the notation B, p = p(s|A)/p(s|B) to represent the
Bayes factor in the figure’s legend. Additionally, the label B
is used to denote the burst model. The burst injections have
the same values for 6, ¢, v, and € as the burst discussed in
Sec. IV. The other important parameters are the central
frequency, set to 15 mHz, and 7 set to 2 minutes (giving a
quality factor of 17.0). The orange and purple lines denote
the Bayes factor when the A, E, and T TDI channels are
used and the red and green lines show the Bayes factor
when only the X channel was used. The lines marked by
upside-down triangles represent the model comparison
between the burst model and a phasemeter glitch between
spacecraft 1 and 2. The lines marked with circles represent
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FIG. 8. Bayes factors as functions of the signal-to-noise ratio

for a high-frequency burst injection. The lines are labeled
according to the same scheme as in Fig. 7. The GW burst is
much easier to separate from an instrument glitch in this case.

the Bayes factor between the burst model and an accel-
eration glitch between the same two spacecraft. The dashed
green line represents a Bayes factor of 1, i.e., no preference
between the two competing models. A Bayes factor
between 3-20 shows positive evidence [23] for the true
model. The evidence of the correct model is strong if the
Bayes factor lies in the range 20-150, and is considered
very strong if the Bayes factor is greater than 150. These
regions are denoted by the various dashed horizontal
black lines in Figs. 7 and 8. With the A, E, and T channel
combination we see that the Bayes factor grows rapidly
with the SNR, and for SNRs greater than 5 we are confident
that the signal is astrophysical. This supports our argument
that GW bursts and glitches are easily separated when we
have the full collection of TDI channels. With just the X
channel the prospects are not as good, and it is not until the
signal reaches an SNR of 10 that it can be confidently
distinguished from a glitch. In this low-frequency regime
we find that a burst injection recovered with a phasemeter
glitch model gets a biased central frequency and damping
time scale. In Fig. 8 we see the Bayes factors for a high-
frequency burst injection, where f, =50 mHz and 7 =
16.9 seconds (Q = 5.0). We see that it is much easier
to differentiate a gravitational wave burst from an accel-
eration glitch. Our ability to distinguish this burst from the
phasemeter glitch ®}5" however is not enhanced as much as
that of the acceleration glitch, but it is still improved.
Last, we wish to know how well we can differentiate
models for glitch injections. For low-frequency injections
the story is similar in that with the full A, E, and T data
stream we will be able to differentiate both acceleration and
phasemeter glitches through the distribution of power in the
different data channels. When we only have the X channel
discrimination it once again becomes challenging until the
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FIG. 9. This figure displays Bayes factors for high-frequency
glitch injections. The blue lines denote Bayes factors for a
phasemeter glitch ®}' injection and the red lines denote a
@3S injection.

SNR becomes large. In Fig. 9 Bayes factors are displayed
for high-frequency glitch injections. The central frequency
of the glitches is 50 mHz and 7 = 11 seconds (Q = 3.5).
The blue lines represent Bayes factors for a phasemeter
glitch injection @' and the red lines represent Bayes
factors for an acceleration glitch injection ®3]. We see
that in this high-frequency regime there will be little
issue in discriminating the origin of the signal. This figure
also suggests, as seen before, that there might be more
of a challenge discriminating this phasemeter glitch from
a burst.

VI. DISCUSSION

To realize the full discovery potential of the LISA
observatory we need to be in a position to detect unex-
pected and unknown signals. We have developed a forward
model for a wavelet basis to represent instrumental glitches
and gravitational wave bursts, as a first step towards this
goal. Ideally, to separate unmodeled signals from noise, we
would have multiple independent LISA observatories. We
have shown that this separation is possible with a single

LISA detector, and even with a single TDI data channel,
though the performance is much better when all three
TDI channels are available. The properties of the signals
and glitches can be recovered with good accuracy,
though degeneracies in some parameters can degrade sky
localization.

There are several extensions that will need to be made to
handle generic glitches and signals. In our analysis we
assumed that the Gaussian noise levels were both equal and
known. In reality the power spectral density of the noise in
each component will have to be estimated from the data, as
was done in Refs. [11,12]. We will also need to generalize
the analysis to model nonstationary noise, a complication
we know LISA will experience owed at least in part to the
significant contribution to the noise by unresolved galactic
binaries [14]. Our analysis in this paper took a quasi-
Bayesian approach via the maximization of the likelihood
over extrinsic parameters through the F-statistic. In the
future a full marginalization will have to be done, though
the F-statistic could be used to produced very effective
proposal distributions for the MCMC based on maps of the
F-statistic likelihood.

For gravitational wave bursts we will generalize the
polarizations to not be elliptically polarized. One last
crucial extension is the use of multiple wavelets in the
analysis [7]. Not only will we need to characterize multiple
wavelets, but we will also need to marginalize over the
number of wavelets in the data stream. Due to the shear
number of combinations of wavelets we expect in the data
stream we expect that the implementation of an effective
reversible jump MCMC [22] will be necessary to address
the issue of determining an appropriate number of wavelets
and the evidence that a GW signal or an instrument glitch is
present in the data. There may be additional information
gathered by LISA in the form of instrument monitors.
These could provide crucial information for characterizing
glitches and assessing whether a glitch has indeed occurred.
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