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We consider a collision of two dust thin shells with a high center-of-mass (CM) energy including their
self-gravity in a Bafiados-Teitelboim-Zanelli (BTZ) spacetime. The shells divide the BTZ spacetime into
three domains and the domains are matched by the Darmois-Israel junction conditions. We treat only the
collision of two shells which corotate with a background BTZ spacetime because of the junction
conditions. The counterpart of the corotating shell collision is a collision of two particles with vanishing
angular momenta. We compare the dust thin shell collision and the particle collision in order to investigate
the effects of the self-gravity of colliding objects on the high CM energy collision. We show that the self-
gravity of the shells affects the position of an event horizon and it covers the high-energy collisional event.
Therefore, we conclude that the self-gravity of colliding objects suppresses its CM energy and that
any observer who stands outside of the event horizon cannot observe the collision with an arbitrary high

CM energy.
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I. INTRODUCTION

In 1977, Piran and Shaham [1] discussed a collisional
Penrose process which is a kind of an energy extraction [2]
from a Kerr black hole and they found that the center-
of-mass (CM) energy of two particles can be arbitrarily
large in a near-horizon limit in the extremal Kerr spacetime.
In 2009, Banados, Silk, and West (BSW) rediscovered the
arbitrarily high CM energy of the particle collision and
they pointed out that rotating black holes can act as particle
accelerators [3]. The process is often called BSW collision
or BSW process after BSW’s work. See Harada and
Kimura [4] for a brief review on the BSW process.

In 2016, the LIGO Scientific and the Virgo Collaborations
have reported the first detection of gravitational waves and
they ensured the existence of astrophysical black holes [5].
Physics in strong gravitational fields of black holes and
compact objects such as BSW process would be more
interest among researchers not only in general relativity
but also in astronomy and astrophysics.

Several critical comments on the BSW process were
given in Refs. [6-8]. It is well known that there is the upper
bound of the angular momentum of the Kerr black hole in
an astrophysical situation [9]. It needs arbitrarily long
proper time of either of two particles with the infinite
CM energy to reach the event horizon for a maximally
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rotating Kerr black hole. If the self-gravity of the colliding
particles is strong, the self-gravity will weaken the CM
energy. We should keep in mind that an observer distant
from a black hole may not see the products of the collision
with high energy and/or very massive and the observed
products must be highly red-sifted even if the CM energy is
very large [8].

The details of the BSW collision have been investigated
after stimulation by the criticism. Patil ef al. [10] consid-
ered a finite CM energy of a collision of two particles with a
finite proper time. The collision of particle with an inner-
most stable circular orbit [11,12], off-equatorial-plane
collisions [13], a collision in a weak electromagnetic field
[14], and the BSW collision in the near-horizon geometry
[15] have been investigated. Nongeodesic particle colli-
sions have been considered in [16,17]. A close relation
between the BSW collision and the Aretakis instability
which is a test-field instability of an extremal horizon
[18-25] was pointed out [26]. The details of the collisional
Penrose process were also investigated by several authors
[27-36].

Particle collisions with high CM energy occur notonly in a
Kerr black hole spacetime but also in a Kerr naked singularity
[37], a Kerr-Newmann [38], a Kerr-(anti-)de Sitter [39],
lower-dimensional [40—45], and higher-dimensional space-
times [26,46-48]. A particle collision with an unbounded
CM energy in an extremal Reissner-Nordstrom spacetime
[49] and a higher-dimensional Reissner-Nordstrom space-
time [26] have been investigated as the electromagnetic
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counterpart of the BSW collision." The BSW collision is
regarded as a universal process in extremal spacetimes in all
dimensions.

The self-gravity effect of colliding objects on the BSW
collision cannot be neglected since the collision occurs in
a near-horizon limit. However, it is very difficult to treat the
self-gravity of particles analytically in a Kerr spacetime.
Kimura et al. considered the collision of two thin shells
[51,52] in a Reissner-Nordstrom spacetime instead of a
Kerr spacetime for its simplicity and they calculated
analytically the CM energy of the shell collision including
their self-gravity [53-55].

Can we treat thin shells in stationary and axisymmetric
spacetimes? The analytical treatment of a thin shell in the
Kerr spacetime is very difficult [S6-58] but the difficulty of
the technical problem depends on the dimension of the
spacetime [59-62]. In Ref. [59], Mann et al. investigated
the collapse of a shell in a three-dimensional stationary and
axisymmetric spacetime and they showed that the motion
of the shell is tractable.

A black hole solution in three dimensions was obtained
by Bafiados, Teitelboim, and Zanelli (BTZ) [63,64]. The
BTZ spacetime has a negative cosmological constant since
gravity in three dimensions is weaker than the one in four
dimensions. In the BTZ spacetime, particle motions [65],
the BSW collision [40-42,45], gravitational perturbations
induced by falling particles [66], and thermodynamics of
thin shells [67-69] have been investigated.

In this paper, we investigate the collision of two dust thin
shells in the BTZ spacetime with an angular momentum
and a negative cosmological constant in three dimensions.
We use a thin-shell formalism [70-72] for corotating thin
shells investigated by Mann et al. [59]. We study the
collision of two particles with vanishing angular momenta
as the counterpart of the shell collision and then we
investigate the effects of the self-gravity of the shells on
their collision with a high CM energy.

The organization of this paper is as follows. In Sec. II, we
investigate a collision of two particles with vanishing angular
momenta. We review the thin shell formalism in a corotating
frame in Sec. III. In Sec. IV, we investigate the collision of
two dust thin shells. Section V is devoted to the discussion
and conclusion. In this paper, we use the units in which the
speed of light and 8G are unity as in Sec. III of Ref. [59],
where G is Newton’s constant in three dimensions.

II. PARTICLE COLLISION IN THE BTZ
SPACETIME

In this section, we review the center-of-mass energy
of the collision of two particles in the BTZ spacetime.
The metric [63,64] is given by

"The collision of charged particles in a rotating and charged
spacetime was also investigated by Hejda and Bicak [50].

m2:<ﬂmmkf%%+#w¢-guwm, 2.1)
where

wa—M+g+§p (22)

m@_—%i_%i (23)

£= \/g (2.4)

Here M, J, and Q(r) are the mass, the angular momentum,
and angular velocity of the spacetime, respectively, and £ is
the scale of a curvature related to the negative cosmological
constant A < 0. The spacetime is a stationary and axisym-
metric spacetime with two Killing vectors 0, and 0,,.
Without loss of generality, we assume that the angular
momentum J is non-negative. In this paper, we concentrate
on the case where M is positive. The spacetime has an event
horizon at

M J?

for J < #M and it is called extremal spacetime for J = £M.
For J > £M, it has a naked singularity. We discuss the last
case in Appendix.

We consider a particle motion with a 3-momentum p#
and a rest mass m. The conserved energy and angular
momentum of the particle are given by

(2.6)

E= —gﬂp(aﬂ”P" and L= gﬂu(a(p)ﬂpl/’

respectively. From Eq. (2.6) and the condition p* p, = —m?,

we obtain the components of the 3-momentum as

p'(r) = 70 (2.7)
p'(r) = o\/R(r), (2.8)
p%g—g%%ﬁ+%, (2.9)

where o, S(r), and R(r) are defined as
o =sgn(p’) = £l, (2.10)
S(r)=E - Q(r)L, (2.11)
R(r) = S?(r) - <m2 + i—;)f(r), (2.12)
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respectively. Note that a forward-in-time condition

p'(r) 20, (2.13)
must be satisfied for a particle motion.

An energy equation which describes the radial motion of
the particle is given by, from Eq. (2.8),

(%)2 +V(r)=0,

where V(r) = —R(r) is the effective potential for the radial
motion of the particle and 7 is its proper time. Here we have
used relations p# = mu* and u# = dx*/dr, where u* is the
3-velocity of the particle. We call a condition V(rf') =0
critical condition. The critical condition is rewritten as

(2.14)

E-QuL =0, (2.15)

where

(2.16)

is the angular velocity of the horizon.
The angular velocity of a particle w(r) is defined as

_dp p?

== (2.17)

o(r

When a particle has a zero conserved angular momentum
L = 0,fromEgs. (2.7),(2.9), and (2.17), the angular velocity
of the particle coincides with the angular velocity of the
spacetime, i.e., (r) = Q(r). This means that the particle
with L = 0 corotates with the background spacetime.

We concentrate on the motion of a particle with L =0
which is the counterpart of a shell corotating with the
background spacetime. Using a dimensionless radial coor-
dinate x = r/?, the effective potential of the particle with
the specific energy e = E/m and the position of the event
horizon are expressed as

w@:—&+ﬂ@:ﬁ—M-é+§, (2.18)
and
rf M+ VM?* -4
o= MV = ae (2.19)
4 2
respectively, where
c J?
f(x):xz—M—F?, c= (2.20)

As x increases from 0 to infinity, V(x) and f(x) begin with
infinity, monotonically decrease to a local minimum at

x = x = ¢%, and monotonically increase to infinity. The
particle motion is restricted to a region x~ < x < x* where
the effective potential V(x) is nonpositive. The boundaries
x* are obtained as

A \/M+e2 + \/(M+e2)2—4c.
2

(2.21)

We notice a relation

X~ <xm < xf < xt, (2.22)
We obtain x” = x in the extremal case, x = xT in the
critical case, and x~ = x” = x = x* in the extremal and
critical case.

We consider a collision of two particles, named particle 1
and 2, with vanishing conserved angular momenta L; =
L, =0 in a region x/ < x < x} where is seen by an
observer who stands at the outside of the horizon x/7.
Hereinafter pl, E, e,, m,, x:, V,, and o, denote p#, E, e,
m, x*, V, and o of particle a (a = 1 and 2), respectively.
From Eq. (2.15), the critical condition for particle a with
L, =0 is given by

E, =0, ie.,

e, =0. (2.23)

The CM energy E.,(x) of the particles is given by

Egn (%) = =gy (myuf] + mouby) (myu 4 myus)
e1e; — 6162/ Vi (x)V,(x)
_ 2 249 1€2 — 010 1 2
ml + m2 + mni, f(x)
(2.24)

Let us consider a rear-end collision, i.e., we choose
6, =06, = —1. As x increases from x” to x}, the CM
energy begins with

€ €

Ecm(xH) = \/m%—l—m%—l—mlmz <e_+ ), (225)

1 €
and monotonically increases to
Eem(x3) = Eci, (2.26)

where

e e
Emx = \/m% +m3 + 2mym, ;22. (2.27)

a

We have used I’'Hopital’s rule to estimate E.,(x). We get
E.n(x) = my +m, if the both particles have a same
specific energy e; = e,. We set particle 1 to be inner than
particle 2 in the rest of this section.
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We are interested in the collision of the inner particle
with a critical limit e; — O and the outer particle which
is not critical in the extremal BTZ spacetime since the
collision will correspond with the BSW collision in the
extremal Kerr spacetime [3] and in the extremal Reissner-
Nordstrom spacetime [49]. In this case, the collisional point
must be x — x4 0 because of inequality (2.22) and x{ —
xf £ 0 and the CM energy E,,, diverges there. Notice that a
particle with the critical condition has V (xf) = V| (xf) =
0 and V7 (x#) > 0, where a prime denotes a derivative with
respect to x, in the extremal BTZ spacetime while one has
Vi(xf)=V{(x") =0 and V/(x) <0 in an extremal
Kerr black hole spacetime [3] and an extremal Reissner-
Nordstrdm spacetime [49]. The positive sign of V/(x) is
caused by the negative cosmological constant and it will
not affect on the BSW collision strongly as long as the
collision occurs near the horizon.

III. DUST THIN SHELL AND ITS MOTION
IN THE BTZ SPACETIME

In this section, as a preparation to study a shell collision,
we review the Darmois-Israel junction conditions [70-72]
and the motion of a dust thin shell in the BTZ spacetime
[59]. Hereinafter, we use x* denoting coordinates in every
domain for simplicity.

We consider a two-dimensional hypersurface X~ which
divides the BTZ spacetime into an interior domain D, and
an exterior domain D,. Domain D, (A =1 and 2) has a
mass M, and an angular momentum J4, see Fig. 1. For
simplicity, we assume that D and D, have the same £. We
assume that we can take same coordinates y' on X in both
the domains.

The projection operator from the three-dimensional BTZ
spacetime to X is defined as

t
Do
(M27 JQ)
D,
(My, J1)
—\ > T
(1, E)

FIG. 1. Schematic picture of the BTZ spacetime divided into
two domains D; and D, by the hypersurface £. Domain D,
(A =1 and 2) has a mass M, and an angular momentum J4. A
thin shell on the hypersurface X has a proper mass y and specific
energy &= (M, — M,)/p.

Ox*

o (3.1)

u
€;

The induced metric on the hypersurface X in domain Dy is
defined as

(3.2)

Using a unit vector #»* normal to the hypersurface Z, which
directed from D; to D,, the extrinsic curvature of the
hypersurface X in the domain D, is defined as

A — LM ,U\JA
Kf, = eieiVyn,,

(3.3)

where V;} is the covariant derivative within D,. The first
and second junction conditions are given by

l9j] =0 and [K;] =0, (3.4)
respectively. Here the bracket is defined as
(W] =Y(Dy)]s = ¥(D1)ls, (3.5)

where ¥ is any quantity defined on the both sides of X.
When we introduce a corotating frame on X with an
azimuth coordinate

J
dp = dop — —Atdt, (3.6)

2R2(1)
the metric in D, is given by

ds} = g, dx*dx"
dr?
falr)

+ 7 [dd) + %A <R2L(t) - %) dt} 2, (3.7)

= —fa(r)dr +

where

Falr) =My + oy T (3.8)
r)=-— —+-=. :

A S

From the first junction condition [g;;] = 0, the induced

metric g‘,“j on ¥ with

t=T() and r=R(7T(z))=R(z), (3.9)
is given by
dsg = gldy'dy’ = —d7* + R*(v)d¢®
. : 2
= |—fA(R)T? +fA(R) d® + R (r)dg?,  (3.10)
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where a dot denotes a derivative with respect to the proper
time 7 of an observer on X. This implies

FAR)T = By, (3.11)
where
a=\R* + fa(R). (3.12)
The components of ¢/ and n, are described by
¢ =(T.R.0).  ¢=(0,0.1), (3.13)
and
n, = (=R, T,0), (3.14)

respectively. We obtain the components of the extrinsic
curvature (3.3) and its trace K4 = ¢ Kf‘j as

A :gA A A JA
K,,_—%, Kjy=Rps.  Kiy=55. (3.15)
and

Ba . Pa
KA:f -
R R’

(3.16)
respectively. We notice that the second junction condition
[K;;] =0 is violated unless we consider a trivial case.
Therefore, we introduce a thin shell on X following
equations
7S, = ~(K,)) - [K]g). (3.17)
where §;; is the surface stress-energy tensor of the thin
shell.
Let us consider a dust thin shell with the surface stress-
energy tensor §;; given by
Sij Zpu,-uj, (318)
where p and u; = (—1,0) are the surface energy density
and the 2-velocity of the shell, respectively. Using
Egs. (3.10), (3.15), (3.16), and (3.18), the (7,7), (¢, ®),
and (7, ¢) components of Eq. (3.17) are obtained as

] + mpR =0, (3.19)
1# =0, (3.20)

and
[J] =0, (3.21)

respectively. From Egs. (3.19) and (3.20), we obtain

d
— (mpR) = 0. 3.22
= (wR) (322)
Therefore, we can define the proper mass u of the shell
u=2mpR, (3.23)

which is constant along its trajectory. We define the specific
energy &£ of the shell as

M]
u

We assume that the proper mass y and the specific energy &£

are positive. This implies that the masses satisfy the relation

M, < M,. From Eq. (3.21), the angular momenta in all the
domains must be the same, i.e.,

&= (3.24)

J=J,=J,. (3.25)

Using Egs. (3.12), (3.19), and (3.23), we obtain the
energy equation as

GEY+WM:Q

- (3.26)

where V(R) is the effective potential of the shell motion.
Using x = R/Z, the effective potential is expressed as

c

V(x) :x2_<M>_52+F_E’ (3.27)
where
(M) = w (3.28)

As x increases from 0 to infinity, V(x) begins with infinity,

monotonically decreases to a local minimum at x = x” = ci,
and monotonically increases to infinity.

The shell motion is restricted to the region x~ < x < x*
where the effective potential is nonpositive. Here

L b= VP —4c
2 b

(3.29)

have been obtained as the positive solutions of V(x) =0,
where

bE”—2+<M> +&= (” (3.30)

2
- — M,.
16 4 8) + M
We will call a limit 4 — 0 and M| > M = M, with £ =
(constant) # O test shell limit. In the test shell limit, the
effective potential of the shell (3.27) is obtained as

Vi) =2 - M- +5, (3.31)
X
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and it takes the same form as the effective potential of a
particle (2.18).

IV. DUST THIN SHELL COLLISION IN
THE BTZ SPACETIME

In this section, we investigate the collision of two dust
thin shells in the BTZ spacetime. We assume that shell 1
and shell 2 are on an inner hypersurface ¥; and an outer
hypersurface X,, respectively. These two hypersurfaces
divide the BTZ spacetime into an interior domain Dy, a
middle domain D,, and an exterior domain D;. We assume
that every domain Dy (A=1, 2, and 3) is the BTZ
spacetime with the same ¢ for simplicity. From
Eq. (3.21), all the domains have the same angular momenta
J. See Fig. 2.

When J < M ,, where M4 is a mass in D, is satisfied,
the position of the event horizon is obtained as x = x%,
where

2
= \/MA * VZMA 4 (4.1)
We assume M; < M, < M5;. We consider five cases
according to the value of J as shown in Table I: case I
{0 for J <M, (J =¢M,), case Il for J = £M,, and
case IV (V) for J = M5 (J > £M3).

The effective potential of shell a (a =1 and 2) is
given by

Va(x) = =Z5 + f(x). (4.2)
where
z, =M ¢, (4.3)
4
t
A
> T
=\ AN
(h1,&1) (k2, E2)
FIG. 2. Schematic picture of the BTZ spacetime divided into

three domains D;, D,, and D3 by hypersurfaces X; and X%,.
Domain Dy (A =1, 2, and 3) is the BTZ spacetime with a mass
M , and the same angular momentum J. A thin shell @ (a = 1 and
2) on the hypersurfaces £, has a proper mass p, and specific

energy ‘C/‘a = (Ma+l - Ma)//"a'

TABLE I.  Five cases of the spacetime according to the value of
J. Symbols S, E, and O denote the subextremal, extremal, and
overspinning spacetimes, respectively. X is defined as the
minimum value of f5(x).

Case D, D, D, J X

1 S S S J <M, X <0

I E S S J=1¢M, X<0

11 (0] E S J=7¢M, X=0

v (0] (0] E J =M, X>0

\Y (0] o o J > My X>0
Z, E’%+52, (4.4)

c
f(x)Efz(x):xz—M2+?. (4.5)
As x increases from 0 to infinity, V,(x) begins with infinity,
monotonically decreases to a local minimum

V,(x") = —Z2 + X, (4.6)

where

X = f(x™) =2vc — M,, (4.7)
at x = x" = ¢, and monotonically increases to infinity.
Note that x™ for shells 1 and 2 are the same.

A motion of shell a is restricted to the region
x; < x <x/, where the effective potential V,(x) is non-
positive. Here x is given by

b, £ /D2 - 4c

xi= 5 : (4.8)
and
by =72+ M,. (4.9)
In order for such the region to exist, a condition
X <7, (4.10)

must be satisfied.

For a comparison with a particle satisfying the critical
condition (2.23), one might have an interest in a shell with
Vi(xf) = V| (xf) = 0. We can show easily that

V() = Vi) =0, (4.11)

is satisfied if and only if

(4.12)
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and J = M, are satisfied. Therefore, we call the condition
Z; = 0 critical condition for shell 1.

A. Center-of-mass energy

The CM energy E.,(x) of two shells at a collisional
point is given by [53,55]

Ezn(x) = =g (U + o U5) (u U + poU%)
= Ui+ 45 + 2u1p> (f(x>7172 - fl(x)2>’

(4.13)

where g, is the metric in D,, U = (’j’a,fZa,O) is the
3-velocity of shell a, where

s VI =Vl
¢ f(x) ’
Ra =0y _Va (x)’

(4.14)

(4.15)

and 6, = sgn(R,) = +1.

We will concentrate on the rear-end collision of two dust
thin shells. In this case, we should choose 61 = 0, = —1
and the CM energy is expresses as

|Z\|Z, = \/V, (X)Vz(x>‘

f(x)

Egn(x) = i + 43 + 2110

(4.16)

We notice E.,,(x) = u; + po when |Z| = Z, is satisfied.
The shells must satisfy a relation R (x) < R,(x) to collide
at the point. It implies V,(x) > V,(x), |Z;| £Z,, or
X7 <xi

1 SX.

1. Cases I, II, and II1

In the cases I, II, and III, we concentrate on the region
M < x < x{ as in particle collisions. As x increases from
x2 to x|, the CM energy begins with

VA
Ep(x) = \/PH + 45 + pps <m+u> (4.17)

and monotonically increases to

Eem(x)) = EG.

(4.18)

where

. Z
Eq = \/ﬂ% + 15+ 2upy ﬁ (4.19)
Here we have used 1’Hopital’s rule to calculate E,(x4).
In a critical limit Z; — 0, both E,(x4) and E ,(x]") are

arbitrarily large and x| coincides with x%. The event
horizon, however, moves from x4 to x because of the
self-gravity of shell 2. Thus, the arbitrarily large CM energy
cannot be seen by an observer outside the event horizon x4

2. Cases IV and V

In cases IV and V, x does not exist. Let us consider the
region x7 <x<x{. The CM energy monotonically
decreases from

Ecm(xl ) Eénrng (420)
to
Eenla”)
Z1|1Z, =\ (22 - X)(Z5-X
_W%%HW; PN )
(4.21)

as x increases from x7 to x” and it monotonically increases
as from x™ to x| and then it reaches
Ecn (x1+) = Ea. (422)
In these cases, a critical shell with Z; = 0 is forbidden
since its effective potential is positive. When V(x ’”) =0,
= /X, shell 1 can be only at x = x" = x{". The
CM energy there is given by

2u 1 Z
"= x7) = \/ﬂ%‘ﬂl%"'—i/;( =

B. Collision at x > x¥

Let us consider a shell collision at x > x4 for the cases
I-IV. An observer at x > x4’ in domain D3 may see the parts
of the products after the collision. A condition x4 < x|
must be satisfied for the existence of the inner shell 1. From
Egs. (4.1) and (4.8), the condition x§ < x| is expressed as

En(x =x (4.23)

&, < 73, (4.24)

The finite upperbound of the CM energy is given by, from
Eqgs. (4.18), (4.22), and (4.24),

Hiy/Ha(po +4E5)
Ecm(x:xgsz)Z\/ﬂ%—f—ﬂ%—f— VT :
(4.25)

This shows that the self-gravity caused by the colliding
shells suppresses the CM energy. For an equal mass
U= U = U, the upperbound of the CM energy is given by
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M 2VE + Vi),

En(x=xl =x) = T (4.26)
V26,
and it becomes, for a small mass u < &,,
Een(x = x = x7) > 2128)4)3/4, (4.27)

C. Test shell limit

Here we consider test shell limits for shells 1 and 2 y; =0
and M| - M_ = M, with £, =(constant) #0 and y, — 0
and M, - M, = M5 with £, = (constant) # 0, respec-
tively. Notice x5 — x| in the test shell limit for shell a.
From Eqgs. (4.18) and (4.19), the CM energy of the shells
with the equal mass y at x = x in the test shell limits for
shells 1 and 2 is obtained as

E&n(x7)

£+ &, &
4 2

15— &1l &’

(4.28)

We realize that it is corresponds to the CM energy (2.26)
and (2.27) of the particle collision at x = x]” with an equal
mass m = m; = m, given by

Egm(xir) )
—=1+—. 4.29
2m2 * (4] ( )

V. DISCUSSION AND CONCLUSION

We have considered the rear-end collision of two dust thin
shells in the rotating BTZ spacetime to investigate the effects
of the self-gravity of colliding objects on the high energy
collision. The shells divide the BTZ spacetime into three
domains and the domains are matched by Darmois-Israel’s
method. From the junction condition, all the domains must
have the same angular momenta J. The angular momenta
imply that the shells and domains corotate.

We have revealed that there are two effects of the self-
gravity of thin shells. First, we have shown that the mass of
inner shell affects its critical condition (4.12). Second, the
position of the event horizon changed from x¥ to x4
because of the masses of two shells.

We have considered the shell collision in five cases
according to the value of J. The cases 1 (J < £M,),
I (J=¢M,), and IIl (J =¢M,) would be especially
interesting cases because of following reasons. The case
I is a usual astrophysical situation as a black hole
subextremely rotates and two objects collide near its event
horizon. In case II, the black hole extremely rotates initially
and the collision of two falling shells corresponds with the
BSW collision of two particles with an arbitrary high CM
energy in the extremal black hole spacetime. In case III,
inner shell 1 can be satisfied the critical condition (4.12)
that the effective potential for shell 1 becomes V;(x4) =
V' (x5") = 0 on the extremal event horizon x = x§ as with
the BSW process in extremal black hole spacetimes [3,4].

In cases I-1I1, the CM energy of the shells can be arbitrarily
large if inner shell 1 satisfies the critical condition (4.12)
and if outer shell 2 does not. However, an observer outside
the event horizon xf cannot see the products of the
collision with the arbitrary large CM energy because it
occurs inside the event horizon x%.

If a shell collision occurs in a region x > x§’ , an observer
who is outer than the collisional point may see products of
the collision. We have obtained the finite upperbound of the
CM energy of the collision there. Finally, we have con-
cluded that the self-gravity of colliding objects suppresses
its CM energy and the observer can only see the suppressed
collision.

We have also found a test shell limit. We have shown that
the CM energy and the effective potentials for shells in the
test shell limit are very similar to the ones of particles.
The test shell limit would help us to understand the effect of
the self gravity of the thin shells on the collisions.

We have considered only simple shell collisions on this
paper. We hope that our paper stimulates further work on
shell collisions and that researchers will investigate more
realistic cases in the future.
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APPENDIX: REAR-END COLLISION IN THE
OVERSPINNING BTZ SPACETIME

In this Appendix, we consider a rear-end collision of two
particles with vanishing conserved momenta L; = L, =0
in the overspinning BTZ spacetime with J > M.

From Eq. (2.18), the effective potential of particle a takes

the minimum value at x = x as
Vi (x™) = —e2 + X, (A1)

where

xzf(xm)zbfﬂ—Mm. (A2)

Particle a with the nonpositive effective potential V ,(x) can
be within a region x; < x < x/ if a condition
X <eél, (A3)

is satisfied.
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The CM energy monotonically decreases from Ega* (2.27) to

E.n(x™) = \/m% +m3 + 2mym,

ejey — \/(e% —X)(e% -X)
X ,

(A4)

as x increases from x; to x™. It monotonically increases and reaches EM* as x increases from x™ to x.
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