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We numerically investigate limits of a two-parameter family of stationary solutions to the Einstein-
Vlasov system. The solutions are toroidal and have nonvanishing angular momentum. As the parameters
are tuned to more relativistic solutions (measured e.g., by an increasing redshift) we provide evidence for a
sequence of solutions which approaches the extreme Kerr black hole family. Solutions with angular
momentum larger than the square of the mass are also investigated, and in the relativistic limit the near-field
geometry of such solutions is observed to become locally rotationally symmetric about the matter density.
The existence of a deficit angle in these regions is investigated.
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I. INTRODUCTION

In a previous work [1], three different types of stationary
solutions to the axially symmetric Einstein-Vlasov system
were constructed numerically. These were disclike solu-
tions, spindlelike solutions, and toroidal solutions. The
main aim of the study [1] was to go beyond the analytic
solutions which were obtained in [2,3] as perturbations of
spherically symmetric Newtonian solutions. In particular, a
question that was raised in [3] was if there exist regular
stationary solutions which contain ergoregions. This ques-
tion was answered affirmatively in [1] where it was found
that the most relativistic members of the family of toroidal
solutions do contain ergoregions.
The presence of ergoregions suggests that one may be

approaching a family of rotating black hole solutions, and
one aim of the present study is to investigatewhether one has
a sequence of stationary solutions which have black hole
limiting members. Such a quasistationary transition to black
hole solutions does not occur in the spherically symmetric
setting due to a Buchdahl bound, which for a body of mass
M and radiusR reads 2M=R < 8=9, and which applies to
large classes of matter models; cf. [4]. In this case there is a
gap such that 2M=R cannot approach 1. However, if one
allows for charge, a similar bound relating the mass, radius,
and total charge is known [5], and in this case there is no gap;
that is, a quasistationary transition to a Reissner-Nordström
black hole could be possible. Indeed, such a limit to the
extremal Reissner-Nordström black hole has been shown by

Meinel and Hütten [6]. In the case where one has angular
momentum, the model black hole solutions are the Kerr
family, which are parametrized by the massM and angular
momentumJ with the restriction jJ j ≤ M2, where equality
is achieved for the extremal Kerr solution. The question of a
quasistationary transition of fluid bodies to extremal black
holes has been investigated analytically in the case of disc
solutions for dust by Meinel [7,8], where he shows that the
extremal Kerr solution is the only admissible limit. More
general dust solutions have been investigated numerically by
Ansorg et al. [9–11], and in particular, their study includes
families of toroidal bodies. Below, we provide evidence of
a quasistationary transition to an extreme Kerr black hole for
a class of rotating toroidal solutions to the Einstein-Vlasov
system.
To this end we study a two-parameter family of solutions

parametrized by E0 and L0. The black hole limit is
approached by decreasing E0 for a certain critical value of
L0. This critical solution sequence has the feature that the
extremal black hole solution is approached from the stable
side of the binding energy curve and while jJ j ≥ M2. We
are, however, not able to go all the way to the extreme black
hole limit. At some point near the black hole limit, the code
halts the approach to the black hole and instead changes
course towards a distinct limit. Solutions on such paths
appear to approach Dirac-type matter distributions in a thin
ring.
The solutions on the thin-ring path have angular momen-

tum which is larger than M2, and thus, due to angular
momentum conservation, the solutions are stable against
collapse to a Kerr black hole. The geometry of these
solutions is investigated and it is discovered that extreme
members of such solution paths exhibit a localized region
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near the matter distribution that is rotationally symmetric
about the matter. Such a region is suggestive of a conical
geometry characterized by a nonvanishing deficit angle
over an open set of coordinate values. The deficit angles
that we compute for the extremely thin toroidal solutions
appear to approach those consistent with a localized conical
region and a geometry similar to cosmic string models,
where the matter is represented by Dirac-type sources and
where the spacetime geometry is computed for such a given
singular matter distribution [12–14].
Before presenting the outline of the paper, let us briefly

comment on some previous numerical studies of the static
and stationary Einstein-Vlasov system. In spherical sym-
metry the static Einstein-Vlasov system has the advantage
that it is sufficient to solve an initial value problem for an
ordinary differential equation (ODE) to construct solutions.
The structure andproperties of these solutions,which include
thin shells and mass-radius spirals, are quite interesting;
cf. [15,16]. In addition, in the spherically symmetric case,
there exist static massless solutions; cf. [17,18]. Earlier
results in axisymmetry are due to Shapiro and Teukolsky
(and collaborators) who investigated the Einstein-Vlasov
system numerically in a long series of papers spanning from
1987 to 1994. Their main aim was to study the evolution
problem in the axially symmetric case, but in their general
program they also constructed stationary toroidal solutions in
[19,20], which are similar to those at the early stages of our
solution sequences.
The outline of the paper is as follows. In Sec. II we review

the formulation of the Einstein-Vlasov system, referring to
[1] for more details. The results of numerically solving a
boundary value problem for this system are presented in
Sec. III. In particular we discuss the overall behavior of the
parameter space (Sec. III A), as well as the black hole
(Sec. III B) and cosmic string (Sec. III C) limits. We end
the paper with a brief discussion and conclusions in Sec. IV.

II. THE AXISYMMETRIC
EINSTEIN-VLASOV SYSTEM

A. Equations

The formulation and numerical solution of the equations
closely follows that in [1], to which we refer the reader for
details. We parametrize the metric as in Bardeen [21],

g ¼ −e2νdt2 þ e2μdρ2 þ e2μdz2 þ ρ2B2e−2νðdφ − ωdtÞ2;
ð2:1Þ

where the coordinates (t, φ) are associated to the time and
angular commuting Killing fields, respectively, and the
metric fields ν, μ, ω, B depend only on ρ ∈ ½0;∞Þ and
z ∈ ð−∞;∞Þ. Vlasov matter is modeled by a distribution
function f, depending on spacetime coordinates x ¼
ðt; ρ; z;φÞ and four-momenta p. The momenta are taken
to lie in the mass shell P, defined at each spacetime point

x as the subset of forward oriented vectors satisfying
gxðp; pÞ ¼ −m2

p, where mp is the particle rest mass. The
particle mass is assumed the same for all particles, and we
make the choice mp ¼ 1. The distribution function is
transported along the geodesic flow of the spacetime by
the Vlasov equation, and the coupled Einstein-Vlasov
system is closed through an energy-momentum tensor,
which takes the form

TijðxÞ ≔
Z
R3

pipjfðx; pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p dp1dp2dp3

−p0

: ð2:2Þ

To solve the coupled Einstein-Vlasov system we make an
Ansatz that the Vlasov distribution depends on the phase-
space coordinates (x, p) only through the particle angular
momentum

L ¼ ðρBÞ2e−2νðp3 − ωp0Þ ¼ ρBe−νv3; ð2:3Þ

and particle energy

E ¼ e2νp0 þ ωðρBÞ2e−2νðp3 − ωp0Þ

¼ eν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ
X3
i¼1

ðviÞ2
vuut þ ωL; ð2:4Þ

where it is convenient to work in the orthonormal frame
v0 ¼ eνp0, v1 ¼ eμp1, v2 ¼ eμp2, v3 ¼ ρBe−νðp3 − ωp0Þ.
In general this Ansatz takes the form fðx; pÞ ¼ FðE;LÞ,
for a suitable function F. Since E and L are conserved
along the geodesics traveled by the particles, this choice of
distribution function ensures that the Vlasov equation is
satisfied. As a result, the full Einstein-Vlasov system is
reduced to an elliptic integro-differential system of equations
for the metric fields,

Δν¼ 4πðΦ00þΦ11þð1þðρBÞ2e−4νω2ÞΦ33þ2e−4νωΦ03Þ

−
1

B
∇B ·∇νþ1

2
e−4νðρBÞ2∇ω ·∇ω; ð2:5Þ

ΔB ¼ 8πBΦ11 −
1

ρ
∇ρ ·∇B; ð2:6Þ

Δμ¼−4πðΦ00þΦ11þððρBÞ2e−4νω2−1ÞΦ33þ2e−4νωΦ03Þ

þ1

B
∇B·∇ν−∇ν·∇νþ1

ρ
∇ρ·∇μþ1

ρ
∇ρ·∇ν

þ1

4
e−4νðρBÞ2∇ω·∇ω; ð2:7Þ

Δω¼ 16π

ðρBÞ2 ðΦ03þðρBÞ2ωΦ33Þ−
3

B
∇B ·∇ωþ4∇ν ·∇ω

−
2

ρ
∇ρ ·∇ω; ð2:8Þ
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where Δu ≔ ρ−1∂ρðρ∂ρuÞ þ ∂z∂zu and ∇u ¼ ð∂ρu; ∂zuÞ.
The variables Φij represent convenient combinations of the
energy-momentum integrals given by

Φ00 ¼ e2μ−2νTtt; Φ11 ¼ Tρρ þ Tzz;

Φ33 ¼ ðρBÞ−2e2μþ2νTφφ; Φ03 ¼ e2μþ2νTtφ: ð2:9Þ
For the present work we use a generalized polytropic

Ansatz given by

FðE; LÞ ¼ AðE0 − EÞkþðL − L0Þlþ; ð2:10Þ
for an amplitude A, and where ð·Þþ indicates that only the
positive part is taken. Furthermore, we make the “demo-
cratic choice” k ¼ l ¼ 0, meaning that all particle energies
(respectively, particle angular momenta) are equally
weighted. In this Ansatz the parameter E0 specifies the
maximum energy of a particle in the body, while the
parameter L0 specifies the minimum particle angular
momentum. For any choice of parameters E0, L0, and a
given metric, the amplitude A is fixed by taking the solution
to have total mass M. In our simulations M is taken to be
1. The result is a two-parameter family of Ansätze para-
metrized by E0, L0.
The system in Eqs. (2.5)–(2.8) is solved numerically by

an adaptive finite element method implemented with
FEniCS [22,23], using a code built on the one described
in [1]. The main addition is an adaptive mesh refinement
schemewhich is necessary in order to resolve the extremely
dense configurations while maintaining appropriate asymp-
totic boundary conditions. Our mesh refinement scheme
uses error indicators constructed from the jump in the
normal derivative of ν across the cell boundaries and
implements Dörfler marking [24] with a 35% marking
fraction. We have also implemented an Anderson [25,26]
acceleration scheme with variable depth (set to 4 for the
extreme solutions presented in this article), which improves
the convergence and stability of the fixed-point iteration.
Stationary solutions presented in this paper satisfy the
nonlinear system to a tolerance of 10−6. Details of the
method will be presented elsewhere.

B. Solution characteristics

In any axisymmetric and stationary solution, the total
mass M and angular momentum J can be computed via
Komar integrals [27], for which we obtain

M ¼ 2π

Z
∞

z¼−∞

Z
∞

ρ¼0

BðΦ00 þΦ11

þΦ33ð1 − ðρBÞ2ω2e−4νÞÞρdρdz; ð2:11Þ

J ¼ −2π
Z

∞

z¼−∞

Z
∞

ρ¼0

e−4νBðΦ03 þ ωðρBÞ2Φ33Þρdρdz:

ð2:12Þ

When comparing our regular solutions to black hole
solutions, it is useful to distinguish the cases where
jJ j=M2 is greater or less than 1.
A quantity of interest is the binding energy (or mass

defect), which specifies how much energy would be
released upon forming the gravitationally bound body
(cf. [28]). Below in Sec. III we give values for the fractional
binding energy Eb ¼ ðM0 −MÞ=M0, which is the ratio
of the binding energy to the total rest mass M0, where

M0 ¼ 2π

Z
∞

z¼−∞

Z
∞

ρ¼0

Be2μ
�Z

P
fðρ; z; pÞ

× p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
−p0

dp1dp2dp3

�
ρdρdz: ð2:13Þ

Another characterization of a solution geometry is the
redshift. We characterize the redshift using the zero angular
momentum observers [29] for which the redshift of a
photon emitted at (ρ, z) and observed at spatial infinity is
given by Zðρ; zÞ ¼ e−νðρ;zÞ − 1. For solutions approaching a
black hole, the field ν (which is negative) becomes
unbounded, and it is useful to instead use the rescaled
quantity

Z̄ ≔
Z

1þ Z
¼ 1 − eν; ð2:14Þ

which in the black hole limit approaches 1. We give values
for this quantity at the peak density of the body, denoted Z̄p.
In spherical symmetry, a black hole forms if the mass

M becomes confined within a Schwarzschild radius of
R ¼ 2M. The compactness 2M=R is thus a useful
characterization of the solution. There are no such well-
defined criteria in axisymmetry. In our setting, a natural
measure of the radius is the length of the axisymmetric
Killing vector field which we denote Rcirc ≔ ρBe−ν. This
quantity provides a natural length scale for the solution, in
particular when restricted to the reflection plane (z ¼ 0)
and evaluated near the boundary of the matter. For Vlasov
matter, which typically has an extended atmosphere, it is
useful to take the radius at which the ratio m=Rcirc inside a
cylinder of radius ρ is maximum. We define the compact-
ness parameter

Γ ≔ max
ρ∈ð0;∞Þ

2mðρÞ=R̄circðρÞ; ð2:15Þ

where R̄circ ≔ ðRcircÞjz¼0 and where

mðρÞ ≔ 2π

Z
∞

z¼−∞

Z
ρ

ρ̃¼0

BðΦ00 þΦ11

þΦ33ð1 − ðρ̃BÞ2ω2e−4νÞÞρ̃dρ̃dz:

Note that mðρÞ ¼ M when ρ exceeds the matter support.
For the regular solutions we construct Γ ∈ ð0; 1Þ.
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III. RESULTS

A. Overview

To investigate the limiting behavior of solutions under
the Ansatz Eq. (2.10), we construct sequences of stationary
solutions via a path-following approach starting from an
initial spherically symmetric solution with a diffuse density
profile. For each sequence the L0 parameter is fixed and the
E0 parameter is stepped down, where at each step the
previous converged solution is provided as an initial guess
to the solver. The behavior of various physical character-
istics is investigated along the sequence and also compared

with sequences of different L0 parameters. Solution sequen-
ces for several values of L0 were computed and in Fig. 1 we
illustrate the behavior of the E0, L0 parameter space. Our
studies indicate essentially two regimes, corresponding to
low and high total angular momentum solutions, and one can
tune between these by varying the minimum particle angular
momentum L0. Plots of various solution characteristics for
three select sequences L0 ¼ 0.6, 0.80625, 0.95 in Fig. 2
illustrate the behavior in the different regimes.
In Fig. 1(a) the fractional binding energy Eb is plotted

against E0 for several different L0 values. A conjecture
of Zel’dovich [28] says that steady state solutions in a

FIG. 1. Panel (a) shows the fractional binding energy Eb for a range of solution sequences with different L0-parameters. Panel
(b) illustrates a linear relationship between the compactness Γ and the peak redshift Z̄p for stationary solutions along a main sequence,
and the failure of this relationship for solutions tending towards the string limit.

FIG. 2. Solution characteristics for three different solution sequences plotted versus E0. Definitions of the characteristics can be found
in Sec. II B. Panel (a) shows the renormalized redshift at the peak in the energy density, Eq. (2.14). Panel (b) displays the compactness
parameter Γ, Eq. (2.15). In panel (c) the ratio of total angular momentum to total mass squared is plotted [cf. Eqs. (2.11) and (2.12)].
Panel (d) displays R̄circðρouterÞ; cf. the definition of Γ.
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parametrized family, which are past the maximum in the
binding energy, are dynamically unstable. For solution
sequences in the low-angular momentum regime [e.g.,
L0 ¼ 0.4, 0.6, 0.7 in Fig. 1(a)], such a maximum is
observed, and shortly after the maximum the residual in
our numerical fixed-point iteration grows and the numerics
break down. Furthermore, such solutions become subcriti-
cal in that jJ j=M2 < 1 [cf. e.g., the L0 ¼ 0.6 sequence in
Fig. 2(c)]. It is our hypothesis that solutions sufficiently far
past the maximum in the binding energy become unstable
to gravitational collapse via modes accessible in axisym-
metry. Further work to investigate instability in the axi-
symmetric setting numerically is in progress [30].
While solution sequences in the low total angular

momentum regime eventually terminate after a maximum
in the binding energy, this maximum occurs at lower E0

values for sequences with greater L0 value. For sufficiently
large L0 values, Eb appears to be monotonically increasing
with decreasing E0, and jJ j=M2 is always greater than 1.
Due to their supercritical total angular momentum, such
solutions cannot collapse to a black hole in axisymmetry
where gravitational waves carry no angular momentum.
A natural question to ask is which L0 parameter separates
the low and high total angular momentum regimes. Via a
bisection search we have determined this critical value to
be L0 ¼ 0.805625 to within �0.000625. Referring to
Fig. 1(a), the L0 ¼ 0.805 sequence (red in color version)
was determined to be subcritical in that a peak in the
binding energy appeared, whereas for the L0 ¼ 0.80625
sequence (purple in color version) no such peak appears.
Since the numerical computation of each sequence is
extremely computationally expensive, we halted the bisec-
tion search after L0 ¼ 0.80625. In Sec. III B we present
numerical evidence that the critical solution sequence
approaches an extremal Kerr black hole solution.
An interesting property of the solution sequences is

illustrated in Fig. 1(b). Here it is shown that solutions can
be classified as either lying on or off a main sequence.
Solutions on the main sequence correspond to those with a
major axis (as measured by Rcirc) that shrinks with
increasing redshift, resulting in an increasing compactness
parameter Γ. At high redshift, such solutions appear to be
approaching a black hole limit, as argued in Sec. III B.
However, solution sequences with a sufficiently large
angular momentum [such as the L0 ¼ 0.80625 and L0 ¼
0.95 solution sequences shown in Fig. 1(b)] eventually
leave the main sequence and tend towards a different limit,
along which Rcirc is increasing.

1 Properties of solutions at
the extreme of this portion of the sequence are discussed in
Sec. III C. In particular, the major axis grows, while the

minor axis of the configuration continues to decrease,
resulting in near-Dirac-type matter distributions.
It is also interesting to observe that for solution sequen-

ces with ergoregions, those ergoregions first appear near
E0 ¼ 0.66, independently of the L0 parameter. Density
profiles and accompanying ergoregions, if present, are
shown in Figs. 3 and 4 for a selection of solutions on
the L0 ¼ 0.80625 sequence.

B. A quasistationary transition to an
extreme Kerr black hole

Our bisection search indicates that the L0 ¼ 0.80625
solution sequence is near critical and remains on the stable
side of the binding energy curve as jJ j=M2 → 1 from
above. In this section we show that as E0 → 0.58, solutions
in this sequence appear to come close to an extremal Kerr
black hole solution, and we demonstrate that a quasista-
tionary transition to the extremal Kerr black hole is
plausible for a critical solution sequence in this family.
After E0 ¼ 0.58, the solutions change course and tend
towards the string limit discussed in Sec. III C. We
emphasize at this point that prior to this study nothing
was known about black hole limits of families of stationary
axisymmetric Einstein-Vlasov bodies, and there is no
a priori requirement known to the authors that any limiting
black hole to a family of Einstein-Vlasov solutions be in the
Kerr family or be an extremal black hole.
With the coordinates and metric parametrization used

here, the extreme Kerr solution of mass M has a metric of
the form Eq. (2.1) with [31,32]

νEK ¼ 1

2
ln

�
r2ðMþ rÞ2 þM2z2

ðM2 þ ðMþ rÞ2Þ2 −M2ρ2

�
; ð3:1Þ

BEK ¼ 1; ð3:2Þ

μEK ¼ 1

2
ln ðr−2ðMþ rÞ2 þM2z2r−4Þ; ð3:3Þ

ωEK ¼ 2M2ðMþ rÞ
ðM2 þ ðMþ rÞ2Þ2 −M2ρ2

; ð3:4Þ

where r2 ¼ ρ2 þ z2. In these coordinates the horizon is at
ρ ¼ z ¼ 0, and the exterior vacuum spacetime is coordin-
atized on the domain ρ ∈ ð0;∞Þ, z ∈ ð−∞;∞Þ.
Using the expressions (3.1) and (3.2), it can be shown

that R̄circðρÞ (cf. Sec. II B) is an increasing function of ρ and
that limρ→0R̄circðρÞ ¼ 2M. Thus, for an extremal Kerr
black hole, both the compactness parameter Γ and the
normalized peak redshift Z̄p are unity. In Figs. 2(a), 2(b),
and 1(b), it is shown that for the near-critical solution
sequence, these characteristics increase towards unity as
E0 → 0.58.
The hoop conjecture [33] says that a body collapses to

a black hole if and only if the radius of the body is less than
or equal to its Schwarzschild radius, 2M. If we use R̄circ

1The L0 ¼ 0.9 sequence can also be seen to leave the main
sequence. However, this sequence was not pursued to lower E0

values, so the departure is not as dramatic.
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measured at the outer radius of support as a measure
of the body radius, the hoop conjecture implies that a black
hole will form when this radius approaches 2 (noting that in
our simulations M is set to 1). This quantity is plotted in

Fig. 2(d), where it is observed that for the near-critical
sequence, R̄circ reaches a minimum of ∼2.5 as E0 → 0.58.
We note that this value is also consistent with the maximum
compactness ∼0.8.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 3. Energy density (heat map) and ergoregion (boundary shown by white trace) for a selection of solutions on the L0 ¼ 0.80625
solution sequence. The heat map is rescaled for each stationary solution.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Energy density (blue) and ergoregion (surface shown in white) for a selection of solutions on the L0 ¼ 0.80625 solution
sequence. The color map is rescaled for each stationary solution.
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We have also investigated the metric fields for the
near-critical sequence. In Figs. 5 and 6, the limiting
behavior of the metric fields is shown for traces in the
reflection plane and on the axis, respectively, and compared
with that of the extremal Kerr black hole solution.
The r → 0 limit, corresponding to the black hole horizon,
implies [cf. Eqs. (3.1)–(3.4)] νEK → −∞, μEK → ∞, and
ωEK → 1=ð2MÞ. Thus, in order to compare quantities

which are regular on the horizon, we plot eν [panel (a)],
B [panel (b)], e−μ [panel (c)], and ω [panel (d)]. The plots
show that the metric fields of solutions on the main
sequence before E0 ≈ 0.58 exhibit a steady approach to
those of the extremal Kerr solution. After E0 ≈ 0.58, the
fields cease this approach and appear to converge to a
different solution at larger radius, as illustrated in Figs. 7
and 8.

FIG. 5. Cross sections in the reflection plane (z ¼ 0) of the metric fields for a selection of solutions on the L0 ¼ 0.80625 solution
sequence approaching the black hole limit, and comparison to the extreme Kerr solution (black). Panel (a) shows expðνÞ, (b) B,
(c) expð−μÞ, and in (d) the ω field.

FIG. 6. Cross sections on the axis (ρ ¼ 0) of the metric fields for a selection of solutions on the L0 ¼ 0.80625 solution sequence
approaching the black hole limit, and comparison to the extreme Kerr solution (black). Panel (a) shows expðνÞ, (b) B, (c) expð−μÞ, and in
(d) the ω field.

FIG. 7. Cross sections in the reflection plane (z ¼ 0) of the metric fields for a selection of solutions on the L0 ¼ 0.80625 solution
sequence approaching the thin-ring limit, and comparison to the extreme Kerr solution (black). Panel (a) shows expðνÞ, (b) B,
(c) expð−μÞ, and in (d) the ω field.
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The fact that the extremal Kerr angular momentum to
mass ratio, normalized redshift, compactness, and metric
fields are all approached by the near-critical solution
sequence L0 ¼ 0.80625 as E0 approaches 0.58 suggests
that solutions on this sequence near E0 ¼ 0.58 are close to
the extremal Kerr solution. While our study does not rule
out a Buchdahl-type gap in this setting or the existence of a
quasistationary transition to more general rotating black
holes, these results along with the results of Meinel [7,8]
and Ansorg et al. [9–11], as well as results in the charged
spherically symmetric Einstein-Vlasov setting [5], suggest
the existence of a critical L0-parameter for which the
limiting member is an extremal Kerr black hole. Our study
suggests that this limit is reached at a positive E0 value.

C. Thin-ring limits of toroidal bodies

Families of solutions in the supercritical regime,
jJ j=M2 > 1, eventually tend towards a limit which is
distinct from the black hole limit. Due to the thin-ring-like
nature of the energy density for extreme members of these
solution sequences, we refer to this as the “thin-ring limit.”
Such sequences are illustrated in Fig. 2 by the L0 ¼ 0.95
solution sequence. The near-critical L0 ¼ 0.80625 solution
sequence also tends towards a thin-ring limit late in the
solution sequence. In fact, for larger L0-parametrized
sequences, the thin-ring limit is approached increasingly
earlier in the sequence, that is, at larger E0 values.
After branching off from the main sequence [cf. Fig. 1(b)]

an E0-parametrized sequence of solutions becomes increas-
ingly thin and the radius of the peak density increases
slightly, as can be seen in Fig. 3(h)–3(l). Figures 7 and 8
also show that along the sequence the fieldsmove away from
the black hole limit and apparently converge to a distinct
limiting configuration. The geometry of extreme solutions in
this limit has a near-field regimewhich is locally rotationally
symmetric about the matter ring as illustrated by the contour
plot in Fig. 9. This regime is small compared to the ring
radius. Far away, the fields are, as dictated by the boundary
conditions, asymptotically flat. Additionally, a computation

of theKretschmann scalar indicates that it vanishes a distance
of order the ring radius from the ring.
The geometry of these thin-ring solutions suggests a

comparison with circular cosmic string models [12–14].
The most relevant feature of these spacetimes is the deficit
angle that characterizes a conical region near the string.
Circular cosmic strings can be thought of as having two
regimes, similar to the thin-ring solutions shown in Fig. 9: a
near-field regime in which the string appears like an
infinitely long and straight cosmic string, and a far-field
regime in which the gravitational fields are asymptotically
flat, reflecting the compactly supported matter distribution.
The near-field regime is small compared to the major
toroidal radius, and the spacetime is rotationally symmetric
about the matter and conical. However, this rotational
symmetry is broken on distances comparable to that of
the toroidal major axis and on such scales the deficit angle
and conical geometry are not well defined. Thus, whereas
the deficit angle for a straight cosmic string approaches a
constant well-defined value at spatial infinity, for a circular
cosmic string, the deficit angle is only well-defined in the
near-field rotationally symmetric region. Below, we inves-
tigate the existence of a well-defined deficit angle, and a
near-field conical region in both toroidal coordinates

FIG. 8. Cross sections on the axis (ρ ¼ 0) of the metric fields for a selection of solutions on the L0 ¼ 0.80625 solution sequence
approaching the thin-ring limit, and comparison to the extreme Kerr solution (black). Panel (a) shows expðνÞ, (b) B, (c) expð−μÞ, and in
(d) the ω field.

FIG. 9. Near-circular contours of the μ field in the region near
the matter for the L0 ¼ 0.95, E0 ¼ 0.5 solution. Inset: A close-up
view of the matter density with a σ ¼ 6 contour of the toroidal
radius is included for reference (magenta curve). Axes ticks are in
units of ρ=M (horizontal) and z=M (vertical).
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(cf. Fig. 10) and in local polar coordinates (cf. Fig. 11). In
both cases the coordinates are centered on the peak matter
density.
Tomeasure thedeficit angle and facilitate comparisonwith

previous studies on circular cosmic strings in the literature
[12–14], we write the relevant part of our metric in toroidal
coordinates ðσ;ψÞ ∈ ð0;∞Þ × ½−π; πÞ defined by

ρ ¼ aN−2 sinhðσÞ; z ¼ aN−2 sinðψÞ;
where

N2 ¼ coshðσÞ − cosðψÞ
and a ¼ ρpeak is the radial coordinate of the peak density.
In these coordinates the peak in the density is obtained by the
limit σ → ∞. The metric in the meridional plane takes the
form

e2μ̃a2N−4ðdσ2 þ dψ2Þ;

where μ̃ðσ;ψÞ ¼ ðμ∘yÞðσ;ψÞ and y is the coordinate map
ðσ;ψÞ ↦ ðρ; zÞ. The deficit angle, Δη, can be expressed
in terms of the ratio of the proper ψ-arclength to proper
σ-radius:

Δηjσ¼σ0;ψ¼ψ0
¼ 2π −

R
π
−π ðaN−2ðσ;ψÞeμ̃ðσ;ψÞÞjσ¼σ0

dψR
∞
σ0
ðaN−2ðσ;ψÞeμ̃ðσ;ψÞÞjψ¼ψ0

dσ
:

ð3:5Þ

This quantity is based at (σ0, ψ0) in the sense that one must
choose values at which to evaluate the integrals. If there is an
open set of coordinate values (σ0, ψ0) onwhichΔηjσ¼σ0;ψ¼ψ0

is constant, then the geometry is conical with deficit angle
Δη.
The results of this calculation for a selection of solutions

in the L0 ¼ 0.95 solution sequence are shown in Fig. 10,
where in each panel we plot Δη versus σ0 for ψ0 ¼ ð0; π=3;
2π=3; πÞ, corresponding to the different color traces.

(a) (b) (c)

(d) (e) (f)

FIG. 10. Deficit angle as computed with Eq. (3.5) versus σ0 for ψ0 ¼ ð0; π=3; 2π=3; πÞ for a selection of solutions on the L0 ¼ 0.95
solution sequence. In each panel the vertical line indicates the support of the matter computed by Eq. (3.6), and the horizontal line is an
estimate of the deficit angle based on linearized theory for Dirac sources—see Eq. (3.10) and also Fig. 12(a). The ring that forms the
center of the toroidal matter distribution is located at σ → ∞.

(a) (b) (c)

FIG. 11. Deficit angle versus the local polar coordinate R for θ ¼ ð0; π=3; 2π=3; πÞ for a selection of solutions on the L0 ¼ 0.95
solution sequence. In each panel the vertical line indicates the support of the matter computed by Eq. (3.6), and the horizontal line is an
estimate of the deficit angle based on linearized theory for Dirac sources—see Eq. (3.10) and also Fig. 12(a).
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The vertical line in each panel is an estimate of the boundary
of the matter σsupp, which is obtained by

σsupp ≔ min
ρ̃∈fρinner;ρouterg

flog ððρpeak þ ρ̃Þ=ðρpeak − ρ̃ÞÞg: ð3:6Þ

Recall that larger σ corresponds to a distance closer to the
peak matter density. For reference, the σ ¼ 6 contour is
included (magenta line) in the contour plot in Fig. 9. The
plots in Fig. 10 have been cut off at σ ¼ 10 in order to show
more detail at low σ. However, Δη also remains zero (inside
the matter distribution) to σ as large as our numerical
resolution allows. The horizontal line in each plot is
discussed below.
Inspection of Fig. 10 shows that for solutions on the

main sequence (for the L0 ¼ 0.95 solution sequence, this
corresponds to E0 > 0.64) the deficit angle is zero where it
is defined and becomes undefined even within the support
of the matter due to a lack of symmetry for such solutions.
The transition between the near- and far-field regimes
discussed above is seen in Fig. 10 by the failure of the
different ψ0 traces to agree. For more extreme members of
the thin-ring sequence, Δη becomes constant in ψ0 outside
of the support of the matter and takes a nonzero value.
While Δη is not simultaneously constant in ψ0 and σ0 for
any of the solutions we compute, one notes that late in the
sequence [note in particular Fig. 10(f)] a region begins to
form where Δη appears to approach a constant in both ψ0

and σ0, suggestive of a locally conical region.
While toroidal coordinates are useful global coordinates,

they can be counterintuitive since the center of the
toroidal matter density is located at σ → ∞. Local polar
coordinates (R, θ) centered at the peak density defined by
ρ ¼ ρpeak þ R cosðθÞ, z ¼ R sinðθÞ, are suitable for inves-
tigating the near-ring geometry. The deficit angle can be
computed in a similar way as in Eq. (3.5), and this is plotted
in Fig. 11 for a selection of solutions. These plots further
support the picture of a locally conical region sufficiently
close to the matter support. In particular, the most extreme
solution we compute along this sequence, shown in
Fig. 11(c), shows a near-step-function-like graph character-
istic of a conical region.
The trend in the computation of Δη just illustrated

suggests to the authors that limiting members of such
sequences exhibit a local region about a near-Dirac-type
matter distribution in which Δη is constant and the
geometry is conical. We stress at this point, however, that
since we can only investigate the trend ofΔη along solution
sequences, and not the geometry of the limiting members of
these sequences, that the conical nature of the geometry for
such limiting members is far from certain. Nonetheless,
inspired by this trend, we find it of interest to compare the
extreme members of high angular momentum solution
sequences to circular cosmic string models with a pre-
scribed Dirac source. As pointed out by Garfinkle and
coauthors [34–36], in general relativity the gravitational

field should be found by solving the coupled Einstein-
matter system for an appropriate matter model rather than
through prescribing a fixed energy-momentum tensor. They
find, however, in the case of certain Einstein-scalar-gauge
field models for infinitely long straight cosmic strings that
the deficit angle can be approximated by the result obtained
through a prescribed Dirac energy-momentum and linear-
ized gravity originally derived by Vilenkin [37]. In the case
of circular cosmic strings Hughes et al. [13] and McManis
and Vandyck [14] have adapted the approach of Vilenkin.
They specify a Dirac source at ρ ¼ a, z ¼ 0 with a linear
energy density u ¼ −Tt

t and linear azimuthal pressure
k ¼ Tφ

φ. Using the linearized Einstein equations it is
found—both without [13] and with [14] rotation—that
the deficit angle Δη can be approximated by 4πðu − kÞ
(setting G ¼ 1).
Since the solutions presented in this paper have regular

(nondistributional) energy momentum, in order to compare
with the [13,14] results, we compute the corresponding
quantities u and k by integrating the components of the
energy-momentum tensor over the meridional plane. In
addition, the solutions of [13,14] are supported by an
external radial (meaning ρ) pressure, while the solutions
presented here have intrinsic positive pressure in the
meridional plane. We find that adding this meridional
pressure in our deficit angle approximation improves
agreement with the deficit angle computed via Eq. (3.5).
Using the metric Eq. (2.1) and the integration measure
e2μdρdz on the meridional plane, we find

u ¼
Z
R2

e2μ−2νðTtt þ ωTtφÞdρdz; ð3:7Þ

k ¼
Z
R2

ððρBÞ−2e2μþ2νð1 − ðρBÞ2ω2e−4νÞTφφ

− ωe2μ−2νTtφÞdρdz; ð3:8Þ

m ¼
Z
R2

ðTρρ þ TzzÞdρdz: ð3:9Þ

Combining and writing in terms of the Φ-quantities
[cf. Eq. (2.9)], we obtain

4πðuþm−kÞ¼ 4π

Z
R2

ðΦ00þΦ11þ2ωe−4νΦ03

− ð1− ðρBÞ2ω2e−4νÞΦ33Þρdρdz: ð3:10Þ

Note that there is a balancing of terms. The Φ00 and Φ11

terms are always positive, the Φ03 term is negative and
grows with increasing ω, while the Φ33 term is negative
outside of an ergoregion, but becomes positive within
an ergoregion. The net result is the behavior shown in
Fig. 12(a) and by the horizontal line in each plot of
Figs. 10 and 11. It is interesting that extreme members
along the string sequence have a deficit angle that grows
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to approximately this value outside the support of the
matter and before transitioning to the far-field regime. In
addition, the pressure in the meridional plane decreases
along the string sequence [cf. Fig. 12(b)], so that in the
limit 4πðu − kÞ is likely a good approximation to the
deficit angle. We note that similar behavior, including
agreement of the deficit angle with the result of Eq. (3.10),
occurs for the extreme members of the near-critical L0 ¼
0.080625 solution sequence.

IV. DISCUSSION AND CONCLUSIONS

We have investigated a two-parameter family of toroidal
stationary solutions to the Einstein-Vlasov system, and find
evidence for two interesting physical limits. In Sec. III B
we show that the Einstein-Vlasov system likely admits a
quasistationary approach to an extremal Kerr black hole.
This result is similar to that identified in axially symmetric
spacetimes with uniformly rotating fluids [7–11]. We also
show in Sec. III C that high angular momentum solutions
exhibit a distinct solution path, along which the peak in
the density moves to larger radii and the spatial density
becomes supported on a thin ring. The geometry of
solutions along such sequences is investigated, and the
gravitational field is observed to become increasingly
rotationally symmetric about the matter ring in the near-
field regime. While the geometry of the limiting solutions
along such sequences is not certain, we find the trend
suggestive of a locally conical region forming around a
near-Dirac-type matter distribution. We have compared
extreme members of these sequences, which are fully
self-consistent solutions of the Einstein-Vlasov system,
with models for circular cosmic strings with prescribed
Dirac sources, and note that the geometry and estimated
deficit angle of the conical region is consistent with the
results of [12–14].
It should be noted that the solutions presented in this

paper have intrinsic positive pressure. This can be com-
pared with solutions based on Dirac sources [13,14], which
require negative azimuthal pressure in order to preserve
Lorentz invariance, and also with the fully self-consistent

solutions with gauge field sources (e.g., [35]) for which the
longitudinal pressure is negative.
To what extent can the limits of these solution sequences

be pushed further? In the thin-ring limit, our computation is
eventually resolution limited even with mesh refinement.
The matter becomes unresolved and lost by the code,
resulting in a “zero mass distribution” error and code
breakdown. It is likely that the limiting solution along such
sequences has a Dirac distribution with radius and termi-
nating E0 value depending on the L0 value. We believe that
our solution sequences could be pushed further towards this
limit by increasing resolution. While it is unlikely that such
relativistic solutions are stable in full general relativity
(without symmetry), their large angular momentum makes
them stable against black hole collapse when restricted to
axisymmetry. To push the low angular momentum sequen-
ces further on the unstable side of the binding energy
curve and also get closer to the black hole limit, there is
some evidence that a different numerical method may be
required.
While stability in the axisymmetric Einstein-Vlasov

system is largely wide open, in spherical symmetry the
numerical study [38] provides a characterization of stable
and unstable static solutions. In this setting, we have
compared a fixed-point algorithm similar to the one
employed in this paper with existing ODE-based methods.
While the ODE methods are able to construct unstable
solutions, the fixed-point algorithm only converges, roughly,
in the case of stable solutions. We note that all of the near-
extremal solutions (either in the black hole limit or in the
string limit) contain ergoregions. Compact but non-black-
hole objects containing ergoregions are considered to be
unstable and short lived [39,40]. Lastly, numerical experi-
ments to investigate the stability of axisymmetric stationary
Einstein-Vlasov solutions are under way [30].
Finally we briefly comment on the potential physical

relevance of these solutions. We have solved the equations
with particle mass mp and total mass M both equal to 1.
To get back a solution in physical units, one may choose a
value for M and rescale, for instance, the radius r → Mr
and total angularmomentumbyJ → M2J (see, e.g., [19]).

FIG. 12. (a) The estimated deficit angle Eq. (3.10). (b) The contribution from the meridional pressure, given by 4πm for m as in
Eq. (3.9).

COSMIC STRING AND BLACK HOLE LIMITS OF … PHYS. REV. D 99, 024012 (2019)

024012-11



The parameter L0 has units of particle angular momentum,
equivalent tompM. There are no bounds on the length scale
associated to the solutions presented in this paper, and thus
under such a rescaling the solutions may represent objects
from very small to astrophysical scales.
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Poincaré 18, 681 (2017).

[18] A. Akbarian and M.W. Choptuik, Critical collapse in the
spherically symmetric Einstein-Vlasov model, Phys. Rev. D
90, 104023 (2014).

[19] S. L. Shapiro and S. A. Teukolsky, Relativistic stellar systems
with rotation, Astrophys. J. 419, 636 (1993).

[20] S. L. Shapiro and S. A. Teukolsky,Relativistic stellar systems
with spindle singularities, Astrophys. J. 419, 622 (1993).

[21] J. M. Bardeen, Rapidly Rotating Stars, Disks, and Black
holes, edited by C. Dewitt and B. S. Dewitt (Gordon
and Breach, Science Publishers, Inc, New York, 1973),
pp. 241–289.

[22] Automated Solution of Differential Equations by the Finite
Element Method: The FEniCS book, edited by A. Logg,
K.-A. Mardal, and G. Wells, Lecture Notes in Computa-
tional Science and Engineering Vol. 84 (Springer Science &
Business Media, Berlin, Heidelberg, 2012).

[23] A. Logg and G. N. Wells, DOLFIN: Automated finite
element computing, ACM Trans. Math. Softw. 37, 1 (2010).

[24] W. Dörfler, A convergent adaptive algorithm for Poissons
equation, SIAM J. Numer. Anal. 33, 1106 (1996).

[25] D. G. Anderson, Iterative procedures for nonlinear integral
equations, J. ACM 12, 547 (1965).

[26] H. F. Walker and P. Ni, Anderson acceleration for fixed-
point iterations, SIAM J. Numer. Anal. 49, 1715 (2011).

[27] A. Komar, Covariant conservation laws in general relativity,
Phys. Rev. 113, 934 (1959).

[28] Y. B. Zel’dovich and I. D. Novikov, Relativistic astrophysics
I, Sov. Phys. Usp. 7, 763 (1965).

[29] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Rotating
black holes: Locally nonrotating frames, energy extraction,
and scalar synchrotron radiation, Astrophys. J. 178, 347
(1972).
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