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It is a well-known result that the effect of vacuum polarization in gravitational fields will lead to a
nonminimal coupling between gravity and electromagnetism. We investigate this phenomenon further by
considering the description of static magnetic field around a Schwarzschild black hole. It is found that close
to the Schwarzschild horizon the magnetic fields can be strongly modified with respect to both cases of
magnetic fields on flat spacetime and magnetic fields minimally coupled on curved spacetime. Under the
proper sign of the nonminimal coupling parameter, q, the effective fields can undergo large amplifications.
Furthermore, we discuss the physical meaning of the singularities that arise in the considered problem.
We conclude by discussing the potential observational effects of vacuum polarization on the magnetic
fields. In the case of astrophysical black holes, depending on the value of the coupling parameter,
significant modifications of the magnetic fields near the black hole horizons are possible—which could be
used to detect the vacuum polarization effect or at least to put constraints on the values of the coupling
parameter. Moreover, we show how the considered effect directly constrains the viability of primordial
black holes of sizes smaller than that of the Compton wavelength for the electron and also impacts the
distribution of magnetic fields in the early Universe.
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I. INTRODUCTION

Although the description of electrodynamic phenomena
in terms of Maxwell’s equations represents one of the most
successful physical theories, it is known that for high
enough electromagnetic fields quantum radiative correc-
tions should become important [1]. Vacuum polarization is
an effect of appearance of virtual pairs in a “fermion loop,”
which changes the propagation properties of photons in
vacuum. This process can be understood as a result of
quantum fluctuations, in which a photon can fluctuate into
a fermion pair, described by some probability amplitude
which will in general be different from zero. These effects
are theoretically well founded and have been known for
a long time, but their observation still remains an open
experimental goal [2]. Moreover, the observational aspects
of vacuum polarization were mostly focused on the
Minkowski (flat) spacetime.
While studying the electromagnetic fields on curved

spacetimes in the context of general relativity [3,4], the
focus is mostly put on the macroscopic and classical aspects
of these fields. In this framework, the electromagnetic field

is represented by the electromagnetic tensor, which contrib-
utes to the stress-energy tensor, thus leading to spacetime
curvature, in the same fashion as other forms of energy
distributions. The equations of motion are derived from the
Lagrangian density consisting of the Einstein-Hilbert and
Maxwell contributions, and the coupling between the
electrodynamics and gravitational sector is therefore only
minimal.
However, for strong enough electromagnetic and gravi-

tational fields, the analysis of electromagnetism on curved
spacetimes should be modified to take into account the
effects coming from the vacuum polarization. The domi-
nant process will be given by the transition of a photon into
an eþe− pair. This fluctuation defines a characteristic
length scale for the photon, which is of the order of the
Compton wavelength of the electron. Since it now has an
effective characteristic length, the photon will be influenced
by the change in geometry along this characteristic scale.
This means that properties of photons in vacuum will be
influenced by the spacetime curvature, coming from tidal
effects on its length, which are effectively acquired through
the vacuum polarization. This phenomenon was studied in
Ref. [5] in the one-loop approach, and it was shown to
introduce the nonminimal coupling between the electromag-
netic field and curvature. Apart from the standard Maxwell
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part, the Lagrangian for electrodynamics now also consists
of the additional contribution, given by the contraction of
electromagnetic and curvature tensors, leading to gauge
and curvature invariant terms. This effect also has some
important implications on the regime of validity of general
relativity. One of the central principles of general relativity
is the equivalence principle, which assumes the equiva-
lence of gravitational and inertial effects for sufficiently
small regions of spacetime, such that tidal effects can be
ignored. However, it is obvious that tidal effects cannot be
ignored even on the scale of electron Comptonwavelength,
when the vacuum polarization becomes important.
In Ref. [5], the QED vacuum polarization on the curved

spacetime was discussed for the simplest case of a photon
propagating in vacuum. It is not simple to generalize these
results to some arbitrary field configurations, but it seems
very plausible that the same type of coupling between
electromagnetic and curvature terms will remain valid in
general, at least in the leading order. However, the coupling
coefficients should be considered as different, and they
will probably depend on the characteristic physical regime.
In principle, for strong electromagnetic and gravitational
fields, characterized by a complex configuration of pho-
tons, the characteristic coupling between the electromag-
netic and gravitational fields could then be much stronger
than the one-photon correction, which is of the order of
the square of the Compton wavelength for the electron.
Nonminimal coupling between electrodynamics and gravi-
tational sector was in recent decades investigated in various
theoretical settings [6–14].
Although the effects of vacuum polarization on curved

spacetime electrodynamics are of fundamental significance
for our understanding of physical interactions, and are the
first step toward the unification of electromagnetism and
gravity, further research on this important issue is limited
by the fact that these effects are quantitatively negligible in
most of the observational settings. They could, however,
become important in the high curvature regimes where
electromagnetic fields are present, for instance in the very
early Universe and around black holes. Due to the very high
conductivity of the Universe, electric fields can be taken as
vanishing, while at the same time, magnetic fields are known
to be present on all scales of the observable Universe—from
planets to galaxy clusters and voids of intergalactic media
[15–17]. It therefore seems necessary that any empirical
confirmation of vacuum polarization leading to a non-
minimal coupling between electrodynamics and gravity will
be based on the observations of electromagnetic fields in
these settings. Probably the most promising strategy for the
potential detection of these effects is the analysis of
deformation of the galactic magnetic field near the black
hole horizons, which is in principle observable, for instance
using the Zeeman splitting method. Conversely, the absence
of such effects in measurements could be used to set
constraints on the values of coupling coefficients between

electromagnetism and gravity. The vacuum polarization
could become especially important for primordial black
holes, thus changing the evolution of magnetic fields in
the early Universe and its large scale distribution. In this
work, we propose these directions for further study of
nonminimal interaction between electromagnetism and grav-
ity, by analyzing the problem of modification of the galactic
field around a black hole that comes as its consequence.
This paper is organized as follows. In Sec. II, we briefly
present the theory of nonminimal coupling of gravity and
electromagnetism. In Sec. III, the relevant equations of
motion are derived with the corresponding assumptions.
In Sec. IV, the equations of motion are solved, their physical
content is analyzed. In Sec. V, some applications on realistic
physical systems are presented, and in Sec. VI. we conclude
our work.

II. NONMINIMAL COUPLING OF GRAVITY
AND ELECTROMAGNETISM

The effects coming from the virtual photon loops,
leading to the vacuum polarization in the presence of a
gravitational and electromagnetic field, can be described by
adding a corresponding quantum correction term, Scorr, to
the electromagnetic, Sem, and gravitational action, Sgrav, so
that the total action is given by S ¼ Sem þ Sgrav þ Scorr,
where [5]

Scorr ¼
X
n;even

1

n!

Z Yn
i¼1

d4xiAμiðxiÞGμ1…μnðx1…xnÞ: ð1Þ

Here, Aμ is the gauge Uð1Þ potential, and Gμ1…μn repre-
sents the sum over one-particle-irreducible Feynmann
diagrams. When this correction is computed to the lowest
order in powers of the Compton wavelength, and only the
quadratic terms in Aμ are considered, the total action can
be written as [5,18]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð2Þ

where the Lagrangian density is

L ¼ R
κ
þ 1

2
FμνFμν þ

1

2
RμνρσFμνFρσ þ Lmatter; ð3Þ

where κ ¼ 8πG=c4 (from now on, we will set c ¼ G ¼ 1),
g is the determinant of the metric tensor, R is the Ricci
scalar, and Fμν is the Maxwell tensor obeying Fμν ¼
∇μAν −∇νAμ where ∇μ is the covariant derivative and
Lmatter is the Lagrangian of neutral matter. The impact
of the vacuum polarization is given through the tensor
defined as
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Rμνρσ ≡ q1
2
ðgμρgνσ − gμσgνρÞR

þ q2
2
ðRνρgνσ − Rμσgνρ þ Rνσgμρ − RνρgμσÞ

þ q3Rμνρσ; ð4Þ

where q1, q2, and q3 are the coupling constants and as
usual Rμν is the Ricci tensor and Rμνρσ is the Riemann
tensor. We can thus clearly see that the considered
correction will lead to the nonminimal coupling between
electromagnetism and gravity. For the simplest case of a
single photon propagation, the coupling constants will
naturally be of the order of the Compton wavelength,
and their values were computed in Ref. [5]. It is natural
to generalize this type of quantum correction, which leads
to the nonminimal coupling between gravitational and
electromagnetic tensors and to the more general and
complex field configurations. Thus, we will assume that
the same type of coupling will remain valid in arbitrary
settings, at least to the leading order, but with different
values of the coupling coefficients. Now, it is straightfor-
ward to obtain the equations of motion in the nonminimal
coupled gravity and electromagnetism, as they are given
by varying the action with respect to the Uð1Þ gauge
potential Aμ. By doing so and by rewriting the equations
in the familiar form, we get

∇μðFμν þRμνρσFρσÞ ¼ 0: ð5Þ

By specifying the metric tensor gμν and the Maxwell
tensor Fμν, one can solve Eq. (5) and inspect the behavior
of the solution in the nonminimal coupled theory of
gravity and electromagnetism.

III. EQUATIONS OF MOTION IN THE
SCHWARZSCHILD METRIC

As discussed before, we are interested in the influence of
the static spherically symmetric spacetime on the electro-
magnetic field. Since the astrophysical electric fields can be
taken as vanishing, as discussed in the Introduction, we set
the electric component of the Maxwell tensor to zero, and
the remaining fields are only the magnetic fields. We will
also assume that the magnetic fields are weak with respect
to gravity effects, so the influence of the magnetic fields
to the geometry will be negligible. In this framework, the
equations are considerably simplified, and the problem
consists in finding the solutions for nonminimally coupled
magnetic fields on a static spherically symmetric space-
time. The static spherically symmetric spacetime is
described by the Schwarzschild metric

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

and in these coordinates, the Maxwell tensor becomes

Fμν ¼

0
BBBBBBBB@

0 0 0 0

0 0
rBϕffiffiffiffiffiffiffiffi
1−2M

r

p − r sin θBθffiffiffiffiffiffiffiffi
1−2M

r

p

0 − rBϕffiffiffiffiffiffiffiffi
1−2M

r

p 0 r2 sin θBr

0 r sin θBθffiffiffiffiffiffiffiffi
1−2M

r

p −r2 sin θBr 0

1
CCCCCCCCA
; ð7Þ

now, we can solve Eq. (5). The Schwarzschild metric is a
vacuum solution, and it follows that R ¼ 0 and Rμν ¼ 0;
the only remaining part of Rμνρσ is the Riemann tensor,

Rμνρσ ¼ q3Rμνρσ; ð8Þ

and Eq. (5) becomes

∇μFμν þ q3∇μðRμνρσFρσÞ ¼ 0: ð9Þ

In order to inspect the magnetic fields in the vicinity of the
Schwarzschild metric, it is convenient to consider a realistic
configuration of magnetic fields, which is of physical
interest. Since the Schwarzschild metric is asymptotically
flat, at distances which are considerably larger than the
Schwarzchild horizon, the black hole spacetime will
approach the Minkowski spacetime, and the solution of
(5) will be asymptotically given by the problem of magnetic
fields on the flat spacetime, which is the same as in the
minimally coupled case. Due to its relevance as the model
for the galactic magnetic field distribution, we will focus on
the field configuration, which leads to the magnetic dipole
on the flat spacetime.
In this way, we can further simplify the problem and set

Bϕ ¼ 0, Brðr; θ;ϕÞ ¼ Brðr; θÞ, Bθðr; θ;ϕÞ ¼ Bθðr; θÞ, and
Bθðr; θÞ ¼ tan θBrðr; θÞ=2. By putting all this assumptions
in Eq. (5), we get

rðr − 2MÞðr3 − 2Mq3Þ
dBrðr; θÞ

dr
− ð10M2q3 − r4 þMðr3 − 4q3rÞÞBrðr; θÞ

¼ 2

tan θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
rð4Mq3 þ r3Þ dBrðr; θÞ

dθ
: ð10Þ

Equation (10) can be separated by using Brðr; θÞ ¼
BRadðrÞΘðθÞ, and by doing so, we get two equations,

dΘðθÞ
dθ

− C tan θΘðθÞ ¼ 0; ð11Þ

dBRadðrÞ
dr

−
A1ðrÞ þ CA2ðrÞ

rðr − 2MÞðr3 − 2Mq3Þ
BRadðrÞ ¼ 0; ð12Þ
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where

A1ðrÞ ¼ ð10M2q3 − r4 þMðr3 − 4q3rÞÞ; ð13Þ

A2ðrÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
rð4Mq3 þ r3Þ; ð14Þ

and C is the separation constant. Equation (11) can be
easily solved, and the solution is

ΘðθÞ ¼ Θ0 cos−C θ; ð15Þ
where Θ0 is the integration constant. When we are far away
from the black hole horizon, 2M ≪ r, Eq. (15) remains the
same, and the dipole magnetic field configuration requires
the choice C ¼ −1, while (12) simplifies, leading to a well-
known dipole solution: BRAD ¼ constant=r3. The consid-
ered system thus reduces to the case of the magnetic dipole
on a flat spacetime in the asymptotically flat limit. In the
next section, we will consider the numerical solutions of
(12) around the black hole horizon.

IV. RESULTS

First, we will rescale Eq. (12) to work in dimensionless
variables,

r→ r̃¼ r
r0
; M→ M̃¼M

r0
; q3→ q̃¼ q3

r20
; ð16Þ

where r0 is the free scaling parameter and in our case we set
r0 ¼ 2M—the Schwarzschild radius. In order to numerically
solve Eq. (12), we need one boundary condition for which
we choose BRadðr ¼ 100r0Þ ¼ 10−10 T. This value was
motivated by the typical value of the magnetic field in
our Galaxy, which we assume to be valid on distances much
larger than r0 [19]. As the obtained solutions will be scaled
with respect to the magnetic dipole on flat spacetimewith the
same boundary condition, this numerical assumption will not
influence our results. The solution to Eq. (12) for different
parameters is depicted in Fig. 1. It is also interesting to plot
the magnetic field as a function of q̃ for a fixed radial value,
as shown in Fig. 2. In this fashion the dependence of the
relative change of the magnetic field on the parameter q̃ can
be seen. In the vicinity of the Schwarzschild radius, the
relative change of magnitude of the magnetic field is
drastically increased by increasing q̃, but farther away from
the Schwarzschild radius, this dependence starts to be less
pronounced. This means that at sufficiently large r the
nonminimal coupling effect of gravity and electromagnetism
approximately disappears. It can be observed that Eq. (12),
apart from two known singularities (the coordinate singu-
larity at the horizon r ¼ 2M and the physical singularity at
r ¼ 0), leads to an additional singularity at r ¼ ð2Mq3Þ1=3.
It is important to emphasize that the singularity at r ¼ 0 is no
longer only a spacetime singularity but is now also a field
source singularity. The geometrical nature of this singularity

can be shown by using the standard analysis of divergence of
the Kretschmann scalar, RμνρσRμνρσ, at r ¼ 0. The additional
existence of field source singularity at the same spacetime
point can be simply observed by taking the limit of
Minkowski spacetime where the magnetic dipole solution,
BRAD ¼ constant=r3, is singular at r ¼ 0. On the other hand,
the new singularity at r ¼ ð2Mq3Þ1=3 is obviously not
related to the curvature singularity on the spacetime
described by Eq. (6) but is a consequence of introducing

FIG. 1. The radial component of the magnetic field BrðrÞ scaled
with respect to the magnetic dipole field as a function of r=r0 for
different values of q̃. The full blue line represents the q̃ ¼ 0.5, the
orange dotted line is the general relativity (minimal coupling)
case, while the green dashed line is the negative case with
q̃ ¼ −0.5. For positive values of q̃, the magnetic field experiences
a significant amplification near the horizon; on the other hand, for
negative q̃, the field slowly diminishes as it approaches the
horizon. It is also visible that by going farther away from the
horizon the fields soon approach the general relativity (minimal
coupling) case.

FIG. 2. The radial component of the magnetic field BrðqÞ
scaled with respect to the magnetic dipole field as a function of q̃
for fixed radial value. The full blue line represents the magnetic
field as a function of q̃ for the fixed radial value r ¼ 2r0, the
orange dotted line is for the fixed radial value r ¼ 2.5r0, while the
green dashed line is the r ¼ 3r0 case. Here, again, it is visible that
near the horizon the magnetic fields experience a high amplifi-
cation; by going farther away from the horizon, the impact of q̃
becomes suppressed. By increasing q̃, the magnetic field blows
up at the effective source singularity r ¼ ð2Mq3Þ1=3.
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the vacuum polarization. This can be understood as a result
of the additional terms which enter in the electromagnetic
field equation due to the vacuum polarization effect. These
additional terms can be viewed as a new effective field
configuration by defining Fμν

eff ≡ Fμν þRμνρσFρσ. In this
sense, the new singularity can be seen as a source singularity
of the effective quantum corrected electromagnetic field
distribution.We note that under the assumptions taken in this
work this singularity will always be hidden within the black
hole event horizon. This follows from the fact that under the
approximation of negligible feedback on the spacetime,
jq3j ≪ M2, the condition ð2jq3jMÞ1=3 ≪ 2M needs to be
satisfied. The presence of such a singularity could become
important in the case of strong electromagnetic fields where
the interplay between the field distribution and the spacetime
geometry could no longer be neglected. If this singularity
were to still persist in the fully self-consistent analysis then it
would be necessary to go beyond one-loop correction used
in Eq. (4).

V. IMPLICATION FOR PHYSICAL SYSTEMS

As can be seen by the results presented in the previous
section, visible in Fig. 1, the positive sign of the vacuum
polarization parameter q̃ typically leads to amplification of
dipole magnetic fields near the black hole horizon with
respect to both the magnetic dipole solution and minimally
coupled (q̃ ¼ 0) magnetic field on Schwarzschild space-
time. In the opposite case with negative q̃, magnetic fields
are suppressed. However, these effects become negligible
as soon as we move away from the horizon. From Fig. 2,
we conclude that a relevant amplification of magnetic fields
requires the coupling coefficient to be at least of the order
of magnitude, q̃ ≈ 1. From definition (16), we see that this
implies q3 ≈ r20, which is a huge value of a coupling
parameter if the usual astrophysical values of r0 are
assumed. It can be seen from Fig. 2 that for q̃ of the same
order of magnitude the magnetic fields can be enhanced
for more than 4 orders of magnitude, therefore in principle
leading to practically observable consequences. On the
other hand, in most systems apart from black holes, the
gravitational curvature effects will be negligible and thus
would also be the effects of vacuum polarization related to
this parameter. For instance, in the case of the Earth with
q̃ ¼ 1 where REarth=r0 ≈ 109 and the Sun RSun=r0 ≈ 105,
the resulting ratios BRadðREarthÞ=BRadðREarth; q̃ ¼ 0;M ¼
0Þ and BRadðRSunÞ=BRadðRSun; q̃ ¼ 0;M ¼ 0Þ are practi-
cally indistinguishable from the general relativity case with
q̃ ¼ 0. The difference is more pronounced in the case of
neutron stars where RNS=r0 ≈ 17, so the resulting variation
from the q̃ ¼ 0 is around 0.1%. Therefore, even the high
values of the coupling parameter, making it of the order
of macroscopic lengths (as given by the square of
Schwarzschild radius), would lead to practically detectable
modifications of magnetic fields only in the vicinity of

black holes. The strategy to potentially observe the electro-
magnetic effects of vacuum polarization in a gravitational
field—or at least to put constraints on the coupling
parameter q3—would be therefore to systematically search
for the variations of magnetic field around the horizons of
black holes.
Although the value of the coupling q3 should be

considered as a free parameter for the systems studied
in this work, we know [5] that its value needs to be at least
of the order of the square of the Compton wavelength for
the electron, λc. This most conservative option should
thus be considered with a specific attention. In this case,
q̃ ¼ ðλc=r0Þ2. For all astrophysical systems it clearly
follows q̃ << 1 and thus no observable effect can be
expected. However, it has been speculated [20,21]—and
this option has gained a lot of popularity recently—that
black holes of microscopic sizes could be created in the
conditions of the early Universe. Since the minimal
Schwarzschild radius of primordial black holes is
expected to be larger only from the Planck length, if
primordial black holes exist, one would also expect
that at least for some of them r0 ≤ λc and their existence
would lead to modifications of primordial magnetic
fields, which could not be neglected. In fact, assuming
the existence of primordial black holes comparable to
Planck length would lead to q̃ ≈ 1046, which would
have a tremendous effect on the strengths and distribution
of primordial magnetic fields, but such strong coupling
regimes are far beyond the weak field and one-loop
approximations used in this work. In any case, the
investigations assuming the existence of such primordial
black holes and discussing their distribution should
consider the effects on the primordial magnetic fields
due to the vacuum polarization. Leaving this regime aside
for now, let us briefly discuss the potential consequences
of primordial black holes for which r0 ∼ λc. From the
results presented in the previous section, it follows that
such primordial black holes would lead to an effective
amplification or suppression of the primordial dipole
magnetic field in the close vicinity of their microscopic
Schwarzschild radius potentially for many orders of magni-
tude. The primordial black holes would subsequently
evaporate as the Universe evolves, but the change in the
local field strengths in the vicinity of regions where they
were previously existing would in principle still be present
even today. They would be visible as strongly localized
significant departures from the average magnetic field
strengths. Searching and analyzing such field patterns in
the observed astrophysical magnetic fields could be used for
testing the discussed vacuum polarization effects and setting
the constraints on its characteristic parameters and also the
existence and distribution of primordial black holes. Taking
into account that the question of magnetogenesis and the
subsequent evolution of cosmological magnetic fields rep-
resents an interesting and important problem in cosmology
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[22–25], these considerations are also important since they
could significantly influence it.

VI. CONCLUSION

Motivated by the effect of vacuum polarization for
photons in a gravitational field, which leads to the non-
minimal coupling between gravity and electromagnetism,
we studied its potential consequences on magnetic fields
present in the Universe. By assuming that magnetic fields
are sufficiently weak so that their backreaction on space-
time can be ignored, which is the case for characteristic
strengths of astrophysical magnetic fields, we solve the
resulting field equation on the Schwarzschild spacetime.
The obtained solutions demonstrate that in the vicinity of
the Schwarzschild horizon the magnetic fields can become
significantly amplified or damped—with respect to flat
spacetime and minimal coupling case—depending on the
value and sign of the characteristic coupling constant.
Furthermore, by moving away from the Schwarzschild
horizon, the obtained magnetic fields rapidly approach the
magnetic dipole configuration on flat spacetime. We have
also discussed the singularities present in the considered
system—where apart from the well-known curvature

and field source singularities at r ¼ 0 a new singularity
at r ¼ ð2Mq3Þ1=3 arises. We have argued that this singu-
larity can be understood as the result of the new effective
quantum corrected electromagnetic field distribution
Fμν
eff ≡ Fμν þRμνρσFρσ. Moreover, under the assumption

of negligible feedback of the magnetic fields on the
spacetime, this singularity will always be hidden inside
the event horizon. Finally, we have discussed how such
effects can be observable in principle by systematically
considering the variations of magnetic fields around the
horizons of black holes. Also, this effect could be strongly
pronounced in the context of cosmological magnetic
fields where the existence of primordial black holes could
lead to strong modifications of magnetic field configura-
tions and strengths. These effects would manifest,
depending on the sign of the coupling parameter, either
as pronounced peaks in the distribution of astrophysical
magnetic fields or in the opposite case as localized regions
of negligible magnetic field strengths significantly depart-
ing from the average values. Therefore, the considered
effects can have important consequences on the questions
of magnetogenesis and evolution of magnetic fields in the
early Universe.
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