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Current gravitational-wave observations made by Advanced LIGO and Advanced Virgo use theoretical
models that predict the signals generated by the coalescence of compact binaries. Detections to date have
been in regions of the parameter space where systematic modeling biases have been shown to be small.
However, we must now prepare for a future with observations covering a wider range of binary
configurations, and ever increasing detector sensitivities placing higher accuracy demands on theoretical
models. Strategies to model the inspiral, merger and ringdown of coalescing binaries are restricted in
parameter space by the coverage of available numerical-relativity simulations, and when more numerical
waveforms become available, substantial efforts to manually (re)calibrate models are required. The aim of
this study is to overcome these limitations. We explore a method to combine the information of two
waveform models: an accurate, but computationally expensive target model, and a fast but less accurate
approximate model. In an automatic process we systematically update the basis representation of the
approximate model using information from the target model. The result of this process is a new model
which we call the enriched basis. This new model can be evaluated anywhere in the parameter space jointly
covered by either the approximate or target model, and the enriched basis model is considerably more
accurate in regions where the sparse target signals were available. Here we show a proof-of-concept
construction of signals from nonprecessing, spinning black-hole binaries based on the phenomenological
waveform family. We show that obvious shortcomings of the previous PhenomB being the approximate
model in the region of unequal masses and unequal spins can be corrected by combining its basis with
interpolated projection coefficients derived from the more recent and accurate PhenomD as the target
model. Our success in building such a model constitutes an major step towards dynamically combining
numerical relativity data and analytical waveform models in the computationally demanding analysis of
LIGO and Virgo data.
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I. INTRODUCTION

The dawn of the gravitational-wave (GW) era began with
the first detection of a binary-black-hole (BBH) merger on
September 14, 2015 [1] by the Advanced Laser interfer-
ometer Gravitational-wave Observatory aLIGO [2]. More
BBH [3–6] and one binary neutron star (BNS) merger on
August 17, 2017 [7] have been observed by aLIGO and
Virgo [8] during their first two observing runs.
The search for GWs requires coincident signals in at

least two instruments. In order to uncover signals of
astrophysical origin hidden behind the instruments’ noise,
their data are filtered with a large number of waveform
templates [9]. More than one hundred thousand templates
of coalescing compact binaries were employed in aLIGO
GW searches during each of the first two observing runs.

An order of magnitude more modelled waveforms are then
used to estimate the source parameters and their uncer-
tainties. More accurate and efficient follow ups of GW
detections and their parameters will be needed for the
following aLIGO observing runs. This implies the need for
waveform models covering a wide range of parameter
space that can be generated quickly.
The GW signal emitted by coalescing binaries depends

upon many different parameters that are often grouped into
intrinsic and extrinsic parameters. Intrinsic parameters are
astrophysical parameters of the binary. These are two mass
parameters: the chirp mass (Mc) and the symmetric mass
ratio η; eccentricity; tidal parameters for neutron stars; and
the spin components of the two objects (χ⃗1, χ⃗2) that are
often represented by the dominant, effective spin parameter
(χeff ) in the case of non-precessing binaries. The exact
definition of these parameters will be introduced in Sec. II.
In this study we focus on nonprecessing BBHs for

which the spins are (anti)aligned with the binary’s orbital
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angular momentum. The dimensionless tidal parameters are
set to zero. Eccentricity has also been neglected in all
aLIGO GW searches that employ modelled templates
so far, mainly because for most plausible astrophysical
formation scenarios, the binary is expected to have circu-
larized by the time its GW signal enters the aLIGO
frequency range. However, future waveform developments
might include the eccentricity of the binary.
In addition to these properties, extrinsic parameters

define the location and orientation of the source relative
to the observer, such as the luminosity distance (DL),
inclination angle (ι), sky position (RA, Dec), polarization
angle (Ψ), time of coalescence (tc), and phase of coales-
cence (ϕc) [10]. For nonprecessing systems, modifications
in these parameters simply shift the waveform in time,
phase or amplitude, and they are much simpler to model
than changes in intrinsic parameters.
In order to predict GW signals from binaries, one needs

to solve the Einstein equation in general relativity (GR).
Analytical approximations have been established in form of
post-Newtonian (PN) expansions. These are asymptotic
expansions in a small parameter such as the ratio of the
characteristic velocity of the binary to the speed of light
[11,12]. By the nature of the approximation, PN expansions
become increasingly inaccurate as the two bodies move
closer to each other and faster, entering the strong gravity
regime. At this stage, numerical relativity (NR) simulations
provide the only viable approach to solve the Einstein
equation [13]. In general, NR waveforms can in principle
be very accurate and the accuracy can be tested through
different types of convergence tests, but they are computa-
tionally extremely expensive [14–17].
Hence, many efforts in the past focused on bridging PN

and NR [18,19], leading to a variety of effective-one-body
(EOB) and phenomenological waveform models that are
used in aLIGO’s analyses. EOB is an analytical method
proposed by Buonanno and Damour [20–27] which sub-
stantially reformulates PN results into a new description
of the binary coalescence beyond the inspiral phase. A
different approach was developed to build phenomenologi-
cal models (see II A) that essentially model coalescing
binaries using analytical fits of PN-NR hybrids.
However, both approaches depend on a number of

tunable parameters and fits whose optimal form and values
are determined through complex procedures that typically
require a fair amount of human input. Therefore, updated
models that incorporate new NR data and improved
analytical descriptions typically take years to develop.
A different method to generate an accurate waveform

model is based on sophisticated interpolation methods to
create a surrogate model [28–30] of NR waveforms. These
surrogate models have a high accuracy to the original NR
waveforms, however, they are limited to the parameter space
covered by the original simulations. Although boundaries
are constantly being expanded in parameter space, this

modeling strategy relies on large amounts of computational
power.At the time ofwriting this article, the latest precessing
surrogate model [29] is limited in mass ratio and dimension-
less spin magnitude to q ≤ 2 and jχj ≤ 0.8, respectively.
Here we explore a complementary method of construct-

ing a waveform model that combines the information of an
existing (computationally efficient) model with more accu-
rate waveforms that are only available in a limited set of
points in the parameter space. A future application of our
method would be a dynamical (i.e., fully automized) update
of an analytical model with NR waveforms to produce a
new waveform model that can be evaluated continuously
and has a better accuracy than the original model.
To develop our method, here we employ two analytic

phenomenological models: PhenomB [31] being the
approximate, less accurate model and PhenomD [32,33]
being the target, more accurate model.
We use singular value decomposition (SVD) to decom-

pose the approximate model into an orthogonal basis and
update the basis coefficients using information from the
more accurate model. Similar ideas of using SVD to
improve waveform models have been presented by
Cannon et al. [34–36] and Pürrer [37,38].
Cannon et al. explore the use of reduced-order SVD in

time domain. However, they only use one-dimensional
interpolation in mass components and consider a restricted
parameter space with no spin. We use a similar technique,
but consider frequency-domain waveforms, and we extend
the method to a much greater parameter space includ-
ing spin.
Pürrer discusses the use of SVD to build computationally

more efficient reduced-order models (ROMs) of existing
spinning, nonprecessing EOB models. ROMs are now a
standard tool to reduce the time taken to generate
a waveform, but the resulting accuracy is that of the
original model, or slightly less in challenging points of
the parameter space.
Throughout this article geometric units are used by

setting G ¼ c ¼ 1.

II. METHODOLOGY

A. Waveform models

The constantly increasing sensitivity of GW interferom-
eters demands ever more accurate models. Updating and
improving models is a major tasks entering the era of GW
astronomy, and we present a first end-to-end test of a fully
automatic tuning that in future will use NR simulations to
improve analytical models. Here, however, we start with a
proof-of-concept using two phenomenological waveform
models.
The phenomenological family is a set of approxi-

mate waveform models, written as closed-form analytical
expressions in the frequency domain [31,33,39–42]. These
models have been calibrated to NR waveforms that
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naturally cover a limited region of the intrinsic parameter
space. However, the most recent models [33,41] have been
shown to be perfectly suited for current BBH observations
with mass ratios close to unity.
As explained in Sec. I, we use PhenomB as the

approximate, less accurate model that we aim to update
with information from PhenomD as the accurate target
model. PhenomB [31] was the first (anti)aligned spin model
of this family, released almost simultaneously with an
alternative description of the same parameter space, called
PhenomC [42]. Both models were calibrated up to mass
ratios of 4 and black hole (BH) spins up to 0.75. They have
known shortcomings when extrapolating beyond the region
of calibration, especially towards more extreme mass ratios.
PhenomD is the most recent and most sophisticated version
of aligned-spin phenomenological models. It has been
calibrated to 19 NR waveforms from the SXS collaboration
[43] and the BAM code [44,45] that span mass ratios from
unity up to 18 and dimensionless spin magnitudes up to
0.85 (0.98 for equal-mass systems) [32,33].
The intrinsic parameters of relevance in the nonprecess-

ing case are the mass ratio q, or equivalently the symmetric
mass ratio η,

q ¼ m1

m2

≥ 1; η ¼ m1m2

ðm1 þm2Þ2
; ð1Þ

as well as the dimensionless spin projections along the
orbital angular momentum χ1z, χ2z (nonvanishing spin
components perpendicular to the orbital angular momen-
tum cause precession effects that we leave for future work).
For vacuum solutions of Einstein’s equation, the total mass
M ¼ m1 þm2 is a simple scaling factor.
We emphasize that the spin degrees of freedom in a

binary are commonly reduced in phenomenological models
to the observationally relevant dominant parameter combi-
nations. Following the analysis in [31,42] for aligned-spin
binaries, the dominant spin effect in GW phase can be
expressed as the weighted combination of individual BH
spins,

χeff ¼
m1χ1z þm2χ2z

m1 þm2

: ð2Þ

Apart from an overall time and phase, PhenomB exclu-
sively depends on χeff and η. PhenomD uses χeff for the
coefficients that were tuned to NR simulations, however,
through the inspiral and the final state portion of PhenomD
inherits two-spin dynamics. In Sec. III B we will apply our
method to the 3D problem ðη; χ1; χ2Þ and express our
results in terms of the symmetric ðχeffÞ and antisymmetric
ðχaÞ spin parameters where ð χaÞ is defined as

χa ¼
χ1z − χ2z

2
: ð3Þ

In the following sections, we present the details of how
to update PhenomB with the more accurate PhenomD
waveforms in frequency domain for a given range of η, χeff
and scaled by the total mass M. The end result of this
computation is a new waveform model that is closer to its
target waveforms. We call this new family as the enriched
basis (EB) waveforms.

B. Parameter ranges

This exploratory study is designed to test our method
across a wide range in parameter space. Here, we essen-
tially consider the range in mass ratio and spins where
PhenomD has been calibrated to NR waveforms (see
Sec. II A),

η ∈ ½0.05; 0.25�; χeff ∈ ½−1; 1�: ð4Þ

We stress that this region in the parameter space includes a
considerable part where PhenomB has not been calibrated,
e.g., mass ratios above 4 (η < 0.16). What we are going to
show is that despite the fact that the underlying approxi-
mate model does not accurately describe signals in certain
regions, using accurate signals to update the approximate
basis representation can entirely fix that problem.
In order to fully determine the signals for our test case,

we fix the following additional parameters,

M ¼ 50 M⊙; flow ¼ 30 Hz;

Δf ¼ 0.1 Hz; Mfhigh ¼ 0.2; ð5Þ

where flow and fhigh are the values of the lowest and the
highest frequency we consider, respectively, and Δf
defines the numerical discretization of the signal. Mfhigh ¼
0.2 is chosen to be slightly higher than the signal with
the largest ringdown frequency in our dense grid.1 For
M ¼ 50 M⊙, fhigh corresponds to 812 Hz.
Following the above choice of parameter ranges, we

create two two-dimensional (2D) uniform grids in η and
χeff . We build a dense grid of approximate PhenomB
waveforms, and a sparse grid of accurate PhenomD
waveforms (see Fig. 1 for visual representation). Our dense
grid contains N ¼ 65 × 65 ¼ 4225 signals, and the sparse
grid has S ¼ 33 × 33 ¼ 1089 signals. Thus, about 25% of
the approximate waveforms have the same η and χeff as the
target waveforms.
On each point of each grid, we generate the GW

polarizations, hþ=×. In this work, we only consider non-
precessing signals and their ðl; jmjÞ ¼ ð2; 2Þ multipoles

1The system with the highest ringdown frequency will be the
equal-mass, maximally spinning case ðχeff ¼ 1Þ which has
dimensionless ringdown frequency of ∼0.13.
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which means that the extrinsic parameters, such as the
orientation and location of the binary, simply scale
the amplitude of the signal and introduce a constant
phase shift. We can treat these trivial dependencies
independently and, at this stage, normalize all waveforms
to have the same extrinsic parameters. We then use the
software library LALSUITE [46] to generate the GW
polarizations.
In this study, both approximate and target models are

inexpensive to compute, so we can test our method for
large numbers of target-model waveforms. In the future,
we will use target waveforms that come from computa-
tionally expensive methods such as NR simulations. In
that situation we may not have access to signals at
arbitrary points in parameter space and we will have
fewer waveforms. Here we first choose a reasonably high
number of target waveforms, and later discuss how low
this number can become to still produce satisfactory
results.

C. Waveform matrices

In our method we will represent the waveform manifold
of the approximate model with a set of orthogonal basis
functions computed using SVD. First, we prepare our data
set in appropriate matrix form which we can factorize
subsequently. The procedure is explained by the follow-
ing steps.

1. Waveform decomposition

The frequency-domain strain h̃ðfÞ is the combination of
both GW polarizations, where f is defined for positive

frequencies. Here we assume the circular polarizations of
GW and describe h̃ðfÞ as follows2:

h̃ðfÞ ¼ h̃þðfÞ þ ih̃×ðfÞ: ð6Þ
We note that if we express h̃þ=×ðfÞ in terms of their

amplitudes, Aþ;×, and phases, Ψþ;×, factoring out the
dependency on the inclination angle, ι, we obtain the
following expressions [10]:

h̃þðfÞ ¼ AþðfÞeiΨþðfÞ
�
1þ cos2 ι

2

�
; ð7Þ

h̃×ðfÞ ¼ A×ðfÞeiΨ×ðfÞ cos ι: ð8Þ
The nonprecessing signals we consider further satisfy a
simple relation between the polarizations,

Aþ ¼ A×; Ψ× ¼ Ψþ −
π

2
: ð9Þ

While (9) is exactly valid only in the limit of large
separations, assuming it through merger and ringdown is
a commonly made approximation that does not introduce
inaccuracies relevant to today’s analyses.
By computing h̃þ and h̃× for ι ¼ 0, we can now

decompose h̃ðfÞ into amplitude and phase components,

h̃ðfÞ ¼ 2AþðfÞeiΨþðfÞ: ð10Þ
In this form, we can focus on two real-valued functions: the
strain’s amplitude and phase (we drop the “+” subscript
henceforth). This decomposition is convenient because
amplitude and phase are simpler, real-valued, nonoscilla-
tory functions which are better suited to perform SVD than
the oscillating strain.
Once we have constructed the improved EB amplitude

AEBðfÞ and phase ΨEBðfÞ, we can combine them again
into the EB strain h̃EBðfÞ, as well as individual polar-
izations, using Eqs. (7)–(10).

2. Phase alignment

Time and phase shifts enter the frequency-domain wave-
form through the GW phase ΨðfÞ according to

Ψ0ðfÞ ¼ ΨðfÞ þ 2πftþ ψ ; ð11Þ
where t is the amount of time shifted and ψ is the phase
shift.
We use (11) to align the phases in our approximate

waveform grid by determining the time and phase shift
individually for each configuration such that the square
phase difference with one fiducial case is minimized.

FIG. 1. Illustration of the two uniform grids we consider in
η-χeff parameter space. The blue crosses illustrate the dense grid
of approximate signals that we use to build an SVD basis, and the
red circles are the sparse grid of accurate signals we use to update
the model.

2In other literature, the strain is sometimes defined as
hþ − ih×, owing to a different convention of the Fourier trans-
form. Here we adopt the definition used in LIGO algorithm
library (LAL), h̃ðfÞ ¼ R

hðtÞ expð−i2πftÞdt
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Specifically, we align the phases against the first case in our
grid (η ¼ 0.05, χeff ¼ −1), although any other choice
yields comparable results. By aligning the phases before
performing the SVD we remove variations between the
phases that are purely due to time and phase shifts. These
variations can always be reintroduced analytically via (11).
The shifted phase is denoted by ΨBðfÞ.

3. Matrix form

We generate N signals from the approximate model
PhenomB, each discretized at L > N points in frequency
domain between flow and fhigh. After computing the strain
h̃ðfÞ from the two polarizations as explained in the
previous section, we decompose them into amplitude
and phase then align the phases. We then pack all amplitude
and phase arrays into a matrix, respectively (see Fig. 2)
Specifically, the rows of the matrices are arranged from the
lowest (η, χeff ) to the highest (η, χeff ).
We repeat the above procedure and generate S target

waveforms, using PhenomD, on the sparse grid, where
S < N < L. At this point, we have four matrices: two
amplitude matrices and two phase matrices; one of
each type for each approximant. The matrices of the
approximate model PhenomB have the dimensions RN×L

while the target PhenomD model matrices are ∈ RS×L.
With this prepared, we perform an SVD as discussed in
subsection II D.

D. The singular value decomposition

Our goal is to generate a new waveform family that can
be evaluated for arbitrary parameters from interpolating a
set of sparse target waveforms. To do this, we project our
target model onto a basis of the approximate model,
generated from a grid that is as dense as possible and
computationally feasible. As a first step, the basis is built by
an appropriate factorization of the grid of the approximate
waveforms.
There are two main strategies to factorize sets of wave-

forms. One uses a Gram-Schmidt orthogonalization to

obtain the basis from a first set of approximate waveforms
followed by a greedy algorithm to extend the basis until an
acceptable error limit is reached [29,47,48]. The second
strategy uses the SVD as in Cannon et al. [34–36] and
Pürrer [37,38,49] to factorize each matrix into two unitary
matrices and one diagonal matrix with elements sorted in
descending order. The comparison between the two strat-
egies has been discussed in [29]. Here we use the SVD
because it produces smoother result, and because it is
elegant and convenient given that it sorts the contribution
from the dominant basis vector to the least important ones.
This ensures that the error caused by SVD truncation is
generally small.
We adopt SVD to individually factorize amplitude and

phase matrices (P) of PhenomB into two unitary matrices
(U and V) and one diagonal matrix Σ [50],

P ¼ UΣVT: ð12Þ

Here, U ¼ ½u1j…jup� ∈ RN×p and V ¼ ½v1j…jvp� ∈ RL×p

are orthogonal matrices and the superscript T denotes the
transpose of the corresponding matrix. The vectors ui and
vi are left and right singular vectors of P respectively. The
singular values Σ ¼ diagðσ1;…; σpÞ ∈ Rp×p is a diagonal
matrix sorted in descending order, where p ¼ minðN;LÞ,
which in our setup yields p ¼ N. The diagonal elements σ2i
are the eigenvalues of PTP.
SVD can be interpreted as matrix decomposition into a

weighted sum of separable matrices, meaning that a matrix
P can be written as an outer product of two vectors P ¼
ū ⊗ vT (ū denote the u vectors weighted by the singular
values). The rank of this outer product depends on how
many singular values are involved in the sum. The index
notation of the above reads

Pij ¼
Xp
k¼1

uikσkvTkj: ð13Þ

E. Projection coefficients and reduced order

In our study, we use Eq. (13) in the following way. Every
row of the matrix Pij represents a Fourier-domain series of
either amplitude or phase; the index j represents individual
frequency samples. Every one of those Fourier-domain
series is expressed on the right-hand side as a linear
combination of orthogonal basis vectors ðVTÞkj (k is the
index of the basis, j specifies the frequency) multiplied
with coefficients cik ¼ uikσk (k corresponds to the asso-
ciated basis, i specifies the frequency series that is
reconstructed in this way). We call cik the projection
coefficients. The projection coefficients can be interpreted
as updating the left singular vectors uik weighted by the
rank of singular value σk.
In order to build an analytical model that can be

evaluated continuously across the parameter space, the
FIG. 2. Illustration of N signals, each of length L, decomposed
into amplitudes (left) and phases (right) packed into two matrices.
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projection coefficients need to become functions that
interpolate in the parameter space between the discrete
points given in the rows of Pij. We emphasize this below by
replacing the index i with the explicit functional depend-
ency on η and χeff , leading to

ckðη; χeffÞ ¼
XL
j¼1

Pjðη; χeffÞVjk: ð14Þ

The sum now describes a discretized inner product h·; ·i, so
that (14) becomes

ckðη; χeffÞ ¼ hPðη; χeffÞ; vki: ð15Þ

Again, P in this expression represents either the amplitude
or phase for the parameters ðη; χeffÞ, vk are the basis vectors
calculated via SVD.
Different from standard practice in SVD and ROM, we

now proceed by calculating coefficients from projecting the
target waveforms’ amplitude and phase onto the basis
representation of the approximate waveform, respectively.
In addition, we study a reduction of the basis size that is
achieved by only considering the first K coefficients. K
then reduces the rank of the singular values matrices [36],
and it enters (13) as the upper limit of the sum instead of p.
This reduced order is introduced to increase computational
efficiency and to decrease memory requirements when
building the EB in comparison to the full basis k ¼ N.
By updating the approximate (less accurate) waveforms

basis coefficients with information from the (more accu-
rate) target waveforms we have manipulated the basis
representation of approximate waveforms to be closer to
target waveforms. Hence, we name this process enriching
the basis.

F. Interpolation

To construct our enriched basis model, we calculate the
approximate SVD basis and project the target amplitude
and phase onto the respective basis vectors, giving us
projection coefficients according to (14) on the sparse grid
in parameter space (recall, the sparse grid is where we have
access to accurate target signal). We then interpolate the
projection coefficients and calculate their values on all
points on the dense grid, so that we can compare with all
approximate signals that we needed to start this process.
We stress that the dimensionality of the interpolation

depends on the target model. For equal-spin case, we use
two-dimensional interpolation ðη; χeffÞ in parameter space,
and later we consider two independent spins, where we
need three-dimensional interpolation. Here we employ
cubic spline interpolation as the most efficient and easy
method for this project. However, different interpolation
methods such as Chebyshev polynomials [36], tensor
product interpolation [37], Gaussian interpolation [51]

and empirical interpolation [28] have been used in
different studies. For the future, it will be beneficial to
compare all these methods systematically, evaluating
computational efficiency, accuracy and generalizability to
higher dimensions.
Once the target waveform’s coefficients, that we denote

by c0ðη; χeffÞ, have been obtained, we combine them with
the basis vectors to calculate the EB’s amplitude and phase,

PEB
j ðη; χeffÞ ¼

XK
k¼1

c0kðη; χeffÞvTkj: ð16Þ

Having amplitude and phase, we can build h̃EBðη; χeffÞ
using Eq. (10).

G. Match and improvement evaluation

Once the EB strains h̃EB have been calculated, we
evaluate their accuracy and improvement of EB model
relative to its approximate and target models. We then test
the accuracy of EB model both at points where the target
model was used to update the projection coefficients, as
well as at points where no target signals were available and
we use the interpolated projection coefficients. To perform
the evaluation, we compute matches between PhenomB
and PhenomD and compare them to the matches between
EB and PhenomD.
The match is defined as the normalized, noise-weighted

inner product between two waveforms h1 and h2 [10],
maximized over relative time and phase shifts between
them,

O ¼ hh1; h2i
kh1kkh2k

¼ max
ϕ0;t0

�
4Re

Z
f2

f1

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df
kh1kkh2k

�
: ð17Þ

Here, ϕ0 and t0 are relative phase and time shifts between
the waveforms, respectively, and khk2 ¼ hh; hi. SnðfÞ is
the noise spectral density of the detector, h̃� denotes the
complex conjugation of h̃, and ðf1; f2Þ is a suitable
integration range which corresponds to flow and fhigh
respectively. We use two noise spectra in our analysis, flat
noise (Sn ≡ 1) and the aLIGO zero detuned high power
density (AZDHP) which is the anticipated design sensi-
tivity of aLIGO in 2020 or later [52]. The motivation
behind using a flat power spectral density (PSD) is to
evaluate the signal agreement with equal weight on all
frequencies independent of an assumed instrument,
whereas using AZDHP allows us to relate our results to
GW analysis applications.
Matches are close to unity where waveforms agree (see

Sec. III), so it is easier to compare the difference between
two models by quoting the mismatch, defined as
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Mðh1; h2Þ ¼ 1 −Oðh1; h2Þ: ð18Þ

Finally, to quantify the accuracy improvement of the EB
model over the approximate model PhenomB, we define
improvement, I , as the mismatch of the approximate
waveform with the target model divided by the mismatch
of EB model with the target,

Iðh1; h2Þ ¼
Mðh1; h3Þ
Mðh2; h3Þ

; ð19Þ

where in this study, h1, h2 and h3 correspond to PhenomB,
EB, and PhenomD respectively.

III. RESULTS

We have outlined a technique to build a more accurate
waveform model in the above section. Here we present
results and analyses based on two different assumptions
about the spins in the target parameter space, equal-spin
(χeff ¼ χ1 ¼ χ2) and double-spin, where χ1 and χ2 are
varied independently (i.e., χa does not necessary vanish).

A. Two dimensions: Equal-spin systems

Following the above procedure, we evaluate the match
between the EB model and the target model under flat noise
and AZDHP. We also compare the mismatch between the
approximate model against the target model to calculate the
improvement we gain.
Figure 3 shows the original match of PhenomB against

PhenomD. It is evident that PhenomB has not been
calibrated to mass ratios above 4, and the agreement
between the two models deteriorates quickly, especially
for high spins.
Figure 4 presents the matches of EB against PhenomD

without invoking any interpolation. Recall, EB here is
based on basis vectors derived from PhenomB that do not
accurately represent high-mass ratio systems. However, by

projecting N ¼ 65 × 65 PhenomD waveforms onto the
basis derived from N PhenomB signals on the same
points in parameter space, we see that there is enough
extra freedom in the basis such that updated projection
coefficients can correct for the inaccuracies of the approxi-
mate model. Put differently, the space spanned by the
approximate PhenomB basis vectors does contain more
accurate signals, also for higher mass ratios, if the coef-
ficients in front of the basis vectors are adapted appropri-
ately. This might not be a surprising result, given the fairly
large number of basis vectors we use; it is not a trivial result
either.
Of course, this is not a useful application of the method

we develop. If one has access to N accurate waveforms,
there is no need build an approximate basis first. Now we
reduce the number of accurate waveforms to S ≈ N=4, and
interpolate the projection coefficients to calculate EB
signals on all N grid points. The mismatch result is shown
in Fig. 5. In most parts of the parameter space, the accuracy
of EB is only very slightly lower than what was achieved in
the ideal scenario shown in Fig. 4. Interpolation therefore
does not introduce significant errors for the grids chosen
here. Only at the boundaries of the parameter space we find
higher mismatches in Fig. 5.
We note that interpolation will likely become a major

source of error when the number of available target
waveforms is decreased significantly and when the dimen-
sionality of the parameter space increases. We shall return
to discussing both issues later in this paper.
We have repeated the study with the AZDHP noise curve

and find qualitatively the same behavior. A summary of
mismatches (in log10 scale) and improvements are given in
Table I. We present the minimum, maximum and medianFIG. 3. Matches of PhenomB against PhenomD under flat PSD.

FIG. 4. Matches of EB against PhenomD without interpolation
and under flat PSD. In this figure, we generated target model in
the same grid as the approximate model, and run our method in
full bases (without reduced order). This plot is used as compari-
son to interpolation and reduced order result as explained
in the text.
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mismatches across the dense grid, as well as the improve-
ments defined by (19).
Table I shows that overall the difference of mismatches

using one or the other noise spectrum is relatively small.
Full histograms are shown in Fig. 6. Because results are so
similar, we only show the figures for the flat PSD.
So far, we have generated our target model, PhenomD,

on a regular grid in the parameter space as illustrated in
Fig. 1. We also investigate how the choice of positions of
target signals affect our result. For that reason, we distribute
the same number of PhenomDwaveforms randomly, drawn
uniformly from the parameter space of η and χeff . These
target waveforms are then projected onto basis vectors
coming from the dense regular grid of PhenomB signals.

We follow the above procedure to build the EB coefficients
and interpolate them onto the dense regular grid to evaluate
mismatches between EB and PhenomD waveforms with
the same parameters. Since the results for flat and AZDHP
PSDs are relatively close, we evaluate the mismatch
assuming a flat PSD. We find that log10M of random
uniform grid ranges between −1.39 and −3.39. For direct
comparison, the mismatch of the regular grid of target
waveforms is between −1.73 and −3.38 as presented in
Table. I. From this simple study, we argue that different
positions will not affect the result significantly, so long as
the number and distribution of parameters are similar.

1. Accuracy of the reduced basis

Here we examine the accuracy of EB when restricting
ourselves to the first K bases. The advantage of a reduced
basis is mainly to optimize computational power.
Figure 7 shows the mismatches and improvements as a

function of the number of bases that are kept from the SVD
of PhenomB. To obtain the result, we projected S ≈ N=4
PhenomD signals onto the PhenomB basis and performed
interpolation as explained in previous section. For very
small numbers of bases we observe a rapid drop in
mismatches. After the first 25 bases are included, however,
the improvement of EB is much more gradual when more
bases are used. We speculate that the most important
variations in PhenomB signals are already well described
with 25 basis vectors, but we do need a lot more basis
vectors to accommodate additional features present in
PhenomD that are not captured accurately by PhenomB
(most notably, the high mass ratio, high spin regime).
If our goal is that the EB signals are at least as accurate as

the approximate model, and in most points of parameter

TABLE I. Mismatches between PhenomB and PhenomD as
well as mismatches between EB and PhenomD in log10 scale. The
improvement, I , is defined by (19). Here we compare the results
using two different PSD, flat PSD (Sn ¼ 1) and AZDHP. We also
compare results that interpolate from the sparse to the dense grid
with calculations entirely carried out on the dense grid (no
interpolation).

PSD No interpolation Interpolation

Min Max Med Min Max Med

Flat PhenomB −2.67 −0.001 −0.03
EB −3.37 −1.99 −2.69 −3.38 −1.73 −2.68
I 1.42 1201 40 1.42 1195 39

AZDHP PhenomB −2.50 −0.10 −1.14
EB −3.23 −1.95 −2.71 −3.23 −1.68 −2.71
I 1.17 1082 39 1.20 1082 39

FIG. 5. Matches between EB against PhenomD with interpo-
lation and under flat PSD. In this figure, we generated both target
and approximate models in regular grid. The number of target
model is about 25% of the approximate model as explained in
subsection II B. We perform two dimensional interpolation (see
subsection II F) over the projection coefficients. To make the
comparison easier, we set the range of match equal as that
on Fig. 4.

FIG. 6. Mismatches between EB and PhenomD target signals
for different configurations and PSDs. The histograms are
normalized so that the sum of area under each line are set equal
to unity. The dashed lines represent the result using fewer target
signals and interpolation, whereas the respective solid lines show
results using more target signals and no interpolation (see text).
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space significantly more accurate, then we find that 3375 of
4225 bases are needed to guarantee that the improve-
ment I ≥ 1.
We might expect that higher parameter-space dimension

(Dþ 1) require a larger number of bases to obtain at least
the same mismatch as lower dimension (D). Naïve intuition
would be that the increase of dimensionality in parameter
space requires an exponential growth of the basis size. This
is called “curse of dimensionality.” However, a study by
Field et al. 2012 [53] shows that one may only need a small
number of additional bases in higher dimension to obtain
comparable result as in lower dimension. Therefore, the
number of reduced bases is not exponentially proportional
to the number of dimensions in parameter space. Higher
parameter-space dimensions, however, affect computa-
tional time as we generate more waveforms covering a
greater space.

2. Minimum target waveforms

In the analysis above, we used a uniform grid for target
and approximate waveforms with the ratio of PhenomD to
PhenomB signals of about 1=4. In this section, we explore
the minimum number of target waveforms needed to obtain
a computational efficient EB model that improves the
approximate model significantly.

We projected various numbers of target signals given on a
sparse, uniform grid with S ¼ r × r points onto the basis
derived from the full N approximate waveforms. We
evaluate the improvement I on the dense grid (after
interpolating the projection coefficients from the sparse
onto the dense grid) and show the minimum in Fig. 8. We
find that 12 × 12 ¼ 144 target waveforms guarantee that all
EB results are better than PhenomB. This number is almost
30 times smaller than the number of PhenomB signals we
use, andmore than 95%of the signals generated on the dense
grid to compute mismatches are now interpolated and have
not been used as target waveforms in the construction of EB.
In fact, we find that the EB model built with S ¼ 144

accurate PhenomD signals performs in large parts of the
parameter space comparable to the previous case of 33 × 33
target signals. Only the problematic boundary regions that
were visible already in Fig. 5 become more pronounced,
both in size and mismatch. Better results, even with this
relatively small number of target signals, can be achieved
by the iteration procedure we will introduce below.

3. Phase and amplitude contributions

In order to identify the dominant contribution to the
inaccuracies that we reported for our EB model, we now
evaluate mismatches for individual components. In par-
ticular, we can apply the definition of the overlap (17) and
mismatch (18) to the amplitude alone, without maximizing
over time and phase shifts.
We find that the PhenomB amplitude has relatively high

overlap against PhenomD that ranges from 90.78% to
99.98%. As we show in Fig. 9, the EB amplitude also has
extremely small mismatches with the target signal
PhenomD. Because the strain mismatches, also included
in the figure, are orders of magnitude higher, we conclude

FIG. 7. The accuracy of a reduced-order model. The top plot is
the mismatch between EB and PhenomD waveforms as a
function of the number of reduced bases. The bottom plot shows
the improvement, cf. (19). The shaded areas are bounded by the
minimum and maximum mismatches. The red area is obtained
with a flat PSD while the yellow area uses AZDHP. Results with
different PSDs overlap well. From this plot, using the minimum
of 3375 bases, we can guarantee that all the EB waveforms are
more accurate than their approximate waveforms.

FIG. 8. Only 144 (12 × 12) PhenomD signals on a uniform grid
are needed to guarantee that all EB waveforms perform better
than PhenomB (assuming flat noise). The blue line is the value of
the minimal improvement using r × r target waveforms.
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that they are dominated by modeling inaccuracies in the
phase.
We note that one could in principle calculate mismatches

of the pure phase functions as well, but these numbers are
less meaningful because they are not invariant under the
physical degrees of freedom: phase and time shifts applied
to both functions simultaneously. A geometric interpreta-
tion relates the overlap to “the angle” between two
functions, but because the phases appear in the complex
exponential of the strain, the relevant measure is the phase
difference instead of their angle.

4. Mass scaling

So far, we have fixed the total mass of the systems in
consideration to M ¼ 50 M⊙. This choice is almost irrel-
evant for the actual waveform construction as vacuum
spacetimes include the system’s total mass as a simple
scaling factor. As a result, the signal models are actually a
function of the dimensionless productMf. This degeneracy
between total mass and frequency is broken when we need
to consider physical, full-dimension frequencies that enter
the AZDHP noise curve. We also specified our lower cutoff
frequency as 30 Hz. Hence, scaling the total mass means
appropriately setting flow and fhigh.
Binaries with higher total mass merge at lower frequen-

cies. Therefore, as we have constructed a signal model for
M ¼ 50 M⊙ starting at 30 Hz, we can use the same model
also for more massive systems with the same flow. The
higher mass system then has a shorter frequency range.
Assuming we have carried out the model construction for

a total mass M1, we can scale the frequency of a system
with a different total mass M2, but otherwise the same
intrinsic parameters, as follows

f2 ¼ f1

�
M1

M2

�
: ð20Þ

As a consequence of the Fourier transform, the strain h̃ðfÞ
also needs to be scaled by the total mass. Putting it all
together, the strain for M2 can be obtained through the
following relation,

h̃ðf;M2; η; χeffÞ ¼
�
M2

M1

�
2

h̃

�
M2f
M1

;M1; η; χeff

�
: ð21Þ

Without reconstructing the EB model, we can evaluate
the mismatch between EB and the target model PhenomD
in frequency range between flow and fhigh for total masses
between 50 to 200 M⊙. We assume the AZDHP PSD. The
results are shown in Fig 10. In this plot, we show that the
change of mismatches are relatively small for different total
masses under the AZDHP noise spectrum. With the same
flow (30 Hz) and fhigh scaled by the total mass as explained
above, higher total mass systems produce shorter wave-
forms. Since the AZDHP noise spectrum is most sensitive
in range of early hundred Hz and begin to drop gradually,
the agreement between different parts of the waveforms are
affected by different sensitivity ranges. Hence the matches
are not perfectly uniform for various total masses.

5. SVD iteration

In the previous sections, we found that our method is
effective in producing a more accurate waveform model
compared to the approximate model we started with,

FIG. 9. Normalized histogram of EB amplitude and strain
mismatches against PhenomD in flat noise spectrum. The dashed
curves are the result from interpolating fewer target signals; the
solid line did not employ interpolation (cf. Fig. 6).

FIG. 10. Mismatches of EB against PhenomD for various total
masses as explained in the text. The shaded area is the range of
log10 mismatch of the respective total masses, and the blue line is
its median. This figure compares mass scaling using AZDHP
PSD from 30 Hz to fhigh of the corresponding total mass.
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PhenomB. The mismatches of the resulting EB family are
better than PhenomB’s mismatches against the target
model, PhenomD. This section explores a method to iterate
the above steps to produce an even more accurate version of
EB, using the same number of approximate and target
waveforms.
The basic idea is that we can employ the EB model as the

approximate waveform of the subsequent iteration and
derive a basis from N EB signals interpolated on the dense
grid. We then project the same PhenomD signals onto the
new basis. We repeat this iterative procedure until the
median does not improve significantly.
We first use the minimum number of target waveforms

discussed in Sec. III A 2 and later compare the results
obtained with more target waveforms. We run the SVD
iteration using 12 × 12 PhenomD signals projected onto
65 × 65 approximate models without reducing the basis.
The reported mismatches employ a flat noise spectrum.
The first EB improves upon PhenomB in mismatch

between 1.04 and 860 with median of 23.5. This corre-
sponds to log10 mismatches between −3.36 to −3.57. We
then use the EB signals to construct a new SVD basis and
run the same process iteratively. After 35 iteration the
median log10 mismatch of EB decreases to −4.463 while
the median improvement raises to 1254. The mismatch and
improvement results are shown in Fig. 11. On a standard
laptop, one iteration of this process took about 10 minutes
using a single node (no parallelization).
For comparison, we also used PhenomD signals on a

33 × 33 grid and ran the same iterative process. Using more
target waveforms, we achieved a median mismatches
below 10−6 and an improvement of more than 1750 over
PhenomB.

In conclusion, we can reduce the mismatch of EB using
an iterative process, but of course this will not be as
effective as using more target waveforms.

B. Increased dimensionality: Two spins

We have shown that our method can successfully be
applied to the aligned equal-spin case, in which both the
approximate and target waveforms were varied across an
effectively two-dimensional space of intrinsic parameters.
Here we expand the dimensionality such that the new EB
waveforms are built from a higher-dimensional targetmodel
projected onto a lower-dimensional approximatemodel.We
therefore investigate to what extent the basis can represent a
greater parameter space than what it originated from.
Although the case we study here is not yet a practical

scenario for actual applications, we argue that in principle
one should be able to apply this method for future
projections of higher dimensional target models onto lower
dimensional basis models.
Specifically, here we consider the case where the target

waveforms PhenomD vary in η, χ1z and χ2z individually, so
that χa [see Eq. (3) for its definition] does not necessarily
vanish. We remind the reader that PhenomD is indeed
sensitive to these changes, both in the inspiral and in
predicting the ringdown signal of the remnant. In contrast,
the approximate model PhenomB only depends on χeff and
not χa, hence we keep generating those signals choosing
χeff ¼ χ1z ¼ χ2z. Below we discuss results and challenges
of this method.
First, we generate the approximate PhenomB waveforms

on the same grid of N ¼ 65 × 65 points in the η-χeff
parameter space that we used before. See Sec. II B for
details. Second, we give ourselves S ¼ 33 × 33 × 33 ¼
35937 target waveforms on regular grid η, χ1z and χ2z. The
parameter ranges are the same as for the approximate
signals, except that here χ1z, χ2z ∈ ½−1; 1� individually. The
procedure we then follow is the same as before. The SVD
basis is in fact unchanged compared to what we have used
in previous sections, but we now project a much larger
number of target signals onto that basis to see if we can
accurately represent variations in a parameter that was of no
relevance in the approximate model.
Let us emphasize that in this study, we only analyze the

errors caused by the projection onto a (lower-dimensional)
approximate SVD basis. Therefore, our comparison does
not include any interpolation. Instead, we calculate mis-
matches between PhenomD and either PhenomB or EB on
all S points of the parameter space. The results are shown as
histograms in Fig. 12. The log10 mismatches of the EB
model range from −1.89 to −3.34 (which corresponds to
matches between 0.987 to 0.999). Compared to the two-
dimensional, equal-spin case of Sec. III A, the matches we
find here are slightly lower. This is not surprising, as here
we have introduced many more PhenomD waveforms that
we know are not accurately captured by PhenomB.

FIG. 11. Mismatches and improvement between EB and
PhenomD after iterations. Left: mismatch range over iteration
number shown in shaded area with median indicated by the blue
curve. Right: improvement range that corresponds to the same
iteration is shown in shaded area, where the blue curve shows the
median improvement.
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For comparison, we also show the histogram of mis-
matches between PhenomB and PhenomD in the same
Fig. 12. Evidently, EB achieves a much better accuracy
than PhenomB, for which the log10 mismatches range
between −2.75 to −0.2 (matches between 0.380 to 0.998).
We note that this range is similar to Fig. 3 that is restricted
to the equal-spin case.
For completeness, Fig. 13 also illustrates the location of

the highest mismatches of between PhenomB and

PhenomD in the parameter space. In this plot, we show
the location of the 50 lowest and 50 highest mismatches.
The largest disagreement indeed occurs for high mass ratios
and asymmetric spins.
From this study, we conclude that one can in principle

project a set of higher-dimensional signals onto a basis
derived from a lower-dimensional model. However, inter-
polating across a high-dimensional parameter space
becomes much more challenging, especially if a large
number of bases has to be included in the EB model.
We leave a detailed analysis and discussion of this problem
to future work.

IV. CONCLUSION AND
FUTURE PERSPECTIVES

The development of accurate GW models is a crucial
task to support future detections and the correct interpre-
tation of GWs from merging compact objects. With higher
detector sensitivity in the upcoming science runs of LIGO
and Virgo, more detections are expected, increasing the
chance for an unusually loud, or in other ways special,
observation that will require more accurate models than
ever before.
Previous work on the development of GW models either

targeted a fairly restricted part of the parameter space or
required substantial computational as well as human
resources. Here we have developed a method to dynami-
cally update an approximate waveform model in a given
parameter range. We accomplished this by projecting a set
of a more accurate signals onto a larger set of a less accurate
waveforms that can be evaluated efficiently and continu-
ously across the parameter space.
We worked in frequency domain and decomposed both

waveformmodels into amplitude and phase that are updated
separately. Following earlier studies with a similar goal [36],
we employed SVD matrix factorization to split the approxi-
mate model’s data into two unitary matrices and one
diagonal matrix. We used the appropriate unitary matrix
as a basis representation of the approximate model, the other
two matrices are updated by projecting the accurate model
onto that basis. We then interpolated the projection coef-
ficients and combined them with the approximate basis to
obtain a new waveform family that we call enriched basis.
This model has a higher accuracy than the approximate
model and canbe evaluated continuously in parameter space.
In this first exploratory study, we restricted ourselves to

the nonprecessing parameter space of BBHs. We showed
that the EB model is considerably more faithful to its target
model (PhenomD) than the approximate model (PhenomB)
that we employed. This is true both for flat and AZDHP
noise spectra. Let us highlight that especially in regions of
the parameter space that were not accurately described
by the approximate model because it had not been
calibrated there, the improvement of EB can be dramatic.
This also holds if an extra physical dependence is

FIG. 13. The location of 50 lowest matches and 50 highest
matches of PhenomB against PhenomD. The color bar shows the
match. The matches between the worst and the best waves are
coloured white.

FIG. 12. Normalized histograms of double-spin EB against
PhenomD without interpolation, i.e., the EB model was built
from 33 × 33 × 33 PhenomD waveforms projected onto an SVD
basis of 65 × 65 PhenomB signals. For comparison, the disagree-
ment between PhenomB and PhenomD is also included.
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introduced by the target model that was not present in the
approximate model.
There are a number of procedural parameters that can be

tuned in this approach to achieve optimal results. Among
those, we tested the following.
(A) How many basis vectors need to be kept in the EB

model? As expected, we found that very few SVD
basis vectors are needed to describe the basic
parameter dependence of the approximate model.
However, as the success of our updating method
relies on accurately representing effects beyond
what was included in the approximate model, we
also found that a wide parameter space such as the
one tested here may require a basis of several
thousand vectors. We expect this number to sensi-
tively depend on the size of the parameter space and
the accuracy of the approximate model.

(B) How many target signals are required?
In the study presented here, we often used a large

number of target signal to first test the efficacy of the
basic principle. In Sec. III A 2, we reduced that
number systematically and analyzed the result. While
the edges of the parameter space suffer increasingly
from interpolation issues when number of target
signals was reduced, we found that even a regular
grid of 12 × 12 target signals showed overall satis-
factory improvement. We note that this number is
larger than the number of NR waveforms that were
used to calibrate PhenomD [32,33] which is not
surprising given that more physical insight and
intuition went into the original construction while
herewe test an agnostic, fully automatic approach.We
also note that we successfully tested uniform random
placement of target waveforms instead of a regular
grid, but designing more refined methods of placing
target waveforms is an active research topic that can
lead to a further reduction of the number of signals
required to build an EB model.

(C) Can the process be iterated to achieve better results?
Once a fast and efficient EBmodel has been built, it

can and should be used as an approximate model for
the next refinement. While this approach is obvious
when more (or different) target waveforms become
available, we also showed in Sec. III A 5 that such an
iterative procedure can further improve the EB when
using the same set of target signals again. This might
be counter-intuitive as the same target waveforms
seem to be projected onto the same N-dimensional
space of amplitude and phase functions in each
iterative step. However, it turns out that performing
a second SVD on EB data restructures the basis
vectors such that the number of irrelevant vectors
with vanishingly small σ values increases (i.e., the
EB is represented with fewer bases). It is these
basis vectors that are not needed to represent the

approximate model, but there are useful in each
iterative step to slightly change the vector space toward
a more faithful representation of the target. Further
studies need to show whether such a procedure also
introduces more irregularities and interpolation issues
that might counter the gain we report here.

Overall, the results we present here are very promising.
One important application that we work toward is actually
using the best available analytical models as approximate
signals and NR data as the target model. In order for this to
be feasible, however, we need to develop additional
methods in the immediate future. In particular, the para-
meter space of most interest include precessing systems,
and for those, we eventually need to deal with interpolating
over a possibly seven-dimensional parameter space (given
by two three-dimensional BH spin vectors and the mass
ratio). Interpolating a sparse set of projection coefficients
(given by the available NR simulations) may require much
more sophisticated interpolation techniques than the ones
we have employed here. In fact, we expect interpolation to
be the most challenging step in more realistic applications
of our procedure.
In addition, a likely scenario where our method could be

extremely useful is when a large parameter space needs to
be accessible for a signal model to be useful, but targeted
NR simulations only cover a reasonable small portion of
that space. In that case, our EB model could be updated
only where new information is available. This can be
achieved by implementing a more flexible interpolation
approach that smoothly bridges coefficients based on the
approximate model with information from a targeted and
localized set of NR data. Such a “hybrid”3 approach would
allow updating established models locally, and it would
complement, for instance, parameter estimation methods
that take advantage of models that can be generated for
arbitrary sets of parameters [54] and alternative methods
that use discrete NR data sets [55,56].
We intend to develop solutions for the above-described

use cases of EB in the near future. Codes will then be fully
integrated in existing analysis suites [46] to guarantee
direct impact on the analysis of GW observations. We
view this as an important step toward further fostering the
integration of numerical and analytical modeling tech-
niques in an era of frequent GW observations.
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