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We study a hairy black hole solution in the dilatonic Einstein-Gauss-Bonnet theory of gravitation, inwhich
the Gauss-Bonnet term is nonminimally coupled to the dilaton field. Hairy black holes with spherical
symmetry seem to be easily constructed with a positiveGauss-Bonnet (GB) coefficient αwithin the coupling
function, fðϕÞ ¼ αeγϕ, in an asymptotically flat spacetime; i.e., no-hair theorem seems to be easily evaded in
this theory. Therefore, it is natural to ask whether this construction can be expanded into the case with the
negative coefficient α. In this paper, we numerically present the dilaton black hole solutionswith a negativeα,
and we analyze the properties of GB terms through the aspects of the black hole mass. We construct the new
integral constraint allowing the existence of the hairy solutions with the negative α. Through this procedure,
we expand the evasion of the no-hair theorem for hairy black hole solutions.

DOI: 10.1103/PhysRevD.99.024002

I. INTRODUCTION

The first astrophysical black hole is Cygnus A, which
was later recognized as a black hole [1]. The black hole is
now a real thing, a most fascinating object, and worth
exploring more deeply in the Universe. It was extensively
investigated both observationally and theoretically. At the
same time, various theories of gravitation, inspired by
string theory or astrophysics, were also developed. Based
on these backgrounds, a variety of black hole solutions,
such as a dilaton black hole [2–4] and Gauss-Bonnet (GB)
black hole [5–7], have been studied. Furthermore, recent
observations of a gravitational wave coming from the
mergers of compact binary sources [8,9] have opened
new horizons in astrophysics as well as cosmology, in
which it could be very interesting to test which theory of
gravitation describes our Universe and the existence of the
hairy black hole [10–12].
The existence of the hairy black hole solution with the

GB term has been constructed and extensively studied over
the past two decades [13–20], in which the black hole has
an exponentially decaying dilaton hair. Because of the
motivation coming from string theory in general [21–24],
the GB coefficient α is related to the Regge slope α0ð¼
16αÞ [14,25], and it is always treated to be a positive
constant on those works. From extensive studies, we
noticed that there is the lower bound for a black hole

mass, and that mass of a black hole increases when the
dilaton coupling γ increases [26,27]. We thought that the
GB term seems to provide a repulsive property, which
makes the formation of the dilaton black hole harder, and
the lower bound increases as a result. What would happen if
we change the sign of the GB coefficient? In this per-
spective, it is interesting to consider it as a kind of modified
theory of gravitation, even though the motivation from
string theory would not valid. For this reason, we more
deeply investigate the dilaton black hole with the negative
GB coefficient.
The no-hair theorem for black hole solutions was

conjectured [28] to summarize the progress in black hole
physics [29–34], and developed [35,36] in Einstein-
Maxwell theory, in which the solutions are associated with
Gauss’s law. In [35], the author used an integral constraint
obtained from the equation of motion for the scalar field.
Later, it was further developed into the novel no-hair
theorem through the analysis of an energy-momentum
tensor, especially the Tr

r component [36]. If a black hole
has the dilaton hair in the dilatonic Einstein-Gauss-Bonnet
(DEGB) theory, the no-hair theorem should be avoided.
Recently, we have seen that the no-hair theorem is bypassed
for black holes with a dilaton hair in DEGB theory [37,38];
by presenting both, the old no-hair theorem is easily evaded
and the novel no-hair theorem is not applicable for DEGB
theory. However, the GB coupling functions were positive
definite in their analysis. For your interests, the no-hair
theorem can also be evaded in the extended scalar-tensor-
Gauss-Bonnet gravity [39,40] In this paper, we numerically
present the dilaton black holes with a negative α, and we
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analyze the properties of the GB term through the aspects of
the lower bound for a black hole mass in more detail. The
purpose of this paper is to provide the expanded evasion of
the no-hair theorem for hairy black holes by constructing
the new integral constraint to allow the existence of the
dilaton black hole with arbitrary GB coefficients.
The paper is organized as follows: In Sec. II, we review

and calculate the numerical setup. We analyze the energy
momentum tensor and construct the new integral con-
straint. In Sec. III, we present a dilaton black hole solution
with the negative GB coefficient, and we analyze the black
hole properties with respect to the dilaton coupling and GB
coefficient. In Sec. IV, we summarize our results and
discuss the role of the GB term, with the difference between
both cases.

II. DEGB BLACK HOLE

Let us consider the action with the GB term:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
∇μϕ∇μϕþ fðϕÞR2

GB

�
þ Sb; ð1Þ

where g ¼ det gμν, the coupling function with the GB term is
given by fðϕÞ ¼ αeγϕ, and ϕ is a dilaton field. The scalar
curvature of the spacetime is denoted by R, and the GB
curvature term is given byR2

GB¼R2−4RμνRμνþRμνρσRμνρσ.
In this work, the boundary term Sb [41–44] is not important,
so it is abbreviated. The Einstein constant κ ¼ 8πG is set to
unity for simplicity. The dilaton field equation is

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μϕÞ þ _fðϕÞR2
GB ¼ 0; ð2Þ

where the dot notation denotes the derivative with respect to
ϕ, and Einstein’s equation is

Rμν−
1

2
gμνR¼Tμν¼ ∂μϕ∂νϕ−

1

2
gμν∂ρϕ∂ρϕþTGB

μν ; ð3Þ

where TGB
μν is the energy momentum tensor contributed from

the GB term [45] as follows:

TGB
μν ¼ 4ð∇μ∇νfðϕÞÞR − 4gμνð∇2fðϕÞÞR

− 8ð∇ρ∇μfðϕÞÞRν
ρ − 8ð∇ρ∇νfðϕÞÞRμ

ρ

þ 8ð∇2fðϕÞÞRμν þ 8gμνð∇ρ∇σfðϕÞÞRρσ

− 8ð∇ρ∇σfðϕÞÞRμρνσ: ð4Þ

The equation only has the derivative terms of fðϕÞ because
the minimally coupled terms in four-dimensions are can-
celled identically [46], and the contribution of the GB term
with the equations of motion is coming from the non-
minimally coupled terms only.

Let us consider the spherically symmetric static metric in
an asymptotically flat spacetime as follows:

ds2 ¼ −eXðrÞdt2 þ eYðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð5Þ

where the metric functions X and Y depend only on r.
Then, the dilaton field and Einstein’s equations turn out to
be [13]

0¼ϕ00 þϕ0
�
X0−Y 0

2
þ2

r

�

−
4_f
r2

�
X0Y 0e−Yþð1−e−YÞ

�
X00 þX0

2
ðX0−Y 0Þ

��
; ð6aÞ

0 ¼ r
2
ϕ02 þ 1 − eY

r
− Y 0

�
1þ 4_fϕ0

r
ð1 − 3e−YÞ

�

þ 8_f
r

�
ϕ00 þ f̈

_f
ϕ02

�
ð1 − e−YÞ; ð6bÞ

0 ¼ r
2
ϕ02 þ 1 − eY

r
− X0

�
1þ 4_fϕ0

r
ð1 − 3e−YÞ

�
; ð6cÞ

0¼X00 þ
�
X0

2
þ 1

2

�
ðX0−Y 0Þþϕ02

−
8_fe−Y

r

�
ϕ0X00 þ

�
ϕ00 þ f̈

_f
ϕ02

�
X0 þϕ0X0

2
ðX0 − 3Y 0Þ

�
;

ð6dÞ

where the prime notation denotes the derivatives with
respect to r. Equation (6c) can be solved in terms of Y
as follows:

eYðrÞ ¼ 1

4

�
−r2ϕ02 þ 2rX0 þ 8_fX0ϕ0 þ 2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−r2ϕ02 þ 2rX0 þ 8_fX0ϕ0 þ 2Þ2 − 192_fX0ϕ0

q �
:

ð7Þ

We should take the positive sign from the above equation to
be valid the near the horizon limit. In terms of the above
equation, Y and Y 0 can be eliminated from the equations of
motion. Thus, we use Eqs. (6a) and (6d) mainly for
numerical calculation and the remaining one for constraint.
For later use, it is better to calculate the GB term R2

GB,
which is given by

R2
GB ¼

2e−Y

r2
½ð1−3e−YÞX0Y 0− ð1−e−YÞðX02þ2X00Þ�: ð8Þ

To perform the numerical computation, we impose the
boundary conditions at the black hole horizon rh and
asymptotically flat region r ≫ 1. At the black hole horizon,
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the metric components should be zero, such as gttðrhÞ ¼
eXðrhÞ ¼ 0 and grrðrhÞ ¼ e−YðrhÞ ¼ 0. Then, the metric
components and the dilaton field can be expanded in the
near horizon limit by using the length parameter from the
horizon, δr ¼ r − rh as follows:

eXðrÞ ¼ 0þ x1δrþ x2δr2 þOðδr3Þ; ð9aÞ

e−YðrÞ ¼ 0þ y1δrþ y2δr2 þOðδr3Þ; ð9bÞ

ϕðrÞ ¼ ϕh þ ϕ0
hδrþ ϕ00

hδr
2 þOðδr3Þ: ð9cÞ

The above equations provide the boundary conditions for X
and ϕ, but the value ϕh is not determined yet. To do so, we
expand Eq. (7) in the near horizon limit:

eYðrÞ ¼ ðrþ 4_fϕ0ÞX0 þ 2r − r3ϕ02 − 4_fϕ0ð4þ r2ϕ02Þ
2ðrþ 4_fϕ0Þ

þO
�
1

X0

�
: ð10Þ

Now, we differentiate the equation with respect to r and
substitute the result from Eq. (10) into Eqs. (6a) and (6d), as
we discussed earlier. It eliminates Y 0, and we only need to
solve X and ϕ, not Y, when we solve the equation
numerically. It is also possible to diagonalize the equations
in terms of X00 and ϕ00, but the result is not simple
[13,26,27]. Finally, an expansion of the result in the near
horizon limit gives the results

X00ðrÞ ¼ −
r4 þ 8r3 _fϕ0 þ 16r2 _f2ϕ02 − 48_f2

r4 þ 4r3 _fϕ0 − 96_f2
X02 þOðX0Þ;

ϕ00ðrÞ ¼ −
ðrþ 4_fϕ0Þðr3ϕ0 þ 4r2 _fϕ02 þ 12_fÞ

r4 þ 4r3 _fϕ0 − 96_f2
X0 þOð1Þ:

ð11Þ

One might notice that ϕ00 will diverge at the horizon
because of X0 diverges. Thus, the numerator should be
zero, e.g., r3ϕ0 þ 4r2 _fϕ02 þ 12_f ¼ 0, not the other factor
to be consistent with eYðrÞ, which indicates the value of ϕ0

h
that is

ϕ0
h ¼ −

r2h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4h − 192_f2h

q

8rh _fh
: ð12Þ

We take the negative sign to get the appropriate solution.
It is easy to see that the positive sign will not give a solution
that we want [13]. To obtain the real value, there exists
a restriction for ϕh from the square root term of ϕ0

h,
however, it is highly model dependent. Let us assume that
ϕh is an arbitrary constant but it satisfies r4h ≥ 192_f2h. The

substitution of ϕ0
h into Eqs. (11) at the horizon reduces the

equations as follows:

ϕ00ðrÞ ≈ 0; and X00ðrÞ ≈ −X02: ð13Þ

Then, the derivative of metric function X0 is obtained,

X0ðrÞ ¼ 1

δr
þOð1Þ; ð14Þ

which recovers that which was originally assumed near the
horizon limit, Eq. (9a). As a result, the GB term at the
horizon is also obtained by

R2
GB ≈

4e−2Y

r2
X02: ð15Þ

We also can expand the metric components and dilaton
field in the asymptotically flat region in terms of the
Arnowitt-Deser-Misner (ADM) mass M [47,48] and dila-
ton charge D as follows:

eXðrÞ ¼ 1 −
2M
r

þOðr−2Þ; ð16aÞ

eYðrÞ ¼ 1þ 2M
r

þOðr−2Þ; ð16bÞ

ϕðrÞ ¼ ϕ∞ þD
r
þOðr−2Þ: ð16cÞ

The GB term in the asymptotically flat region is then,

R2
GB ¼ 48M2

r6
þOðr−7Þ: ð17Þ

In order to focus on the numerical analysis, we will not
show the relation between the parameters in the near
horizon limit and asymptotically flat region in more detail
(see the Refs. [37,38]). The ADM mass is represented as
follows:

M ¼ MðrhÞ þMhair; ð18Þ

where the first term is the mass inside the horizon,
MðrhÞ ¼ rh=2, and the second term is the mass of the
dilaton hair. Once the metric is obtained numerically by the
shooting method from the horizon, it is possible to obtain
the mass and charge of the black hole by matching the
behavior of the metric in the asymptotically flat region.
Since the dilaton black hole mass has the contribution

coming from the existence of a scalar hair, it seems to evade
the no-hair theorem. For this reason, we analyze whether or
not there is a contradiction in the equations of motion with
the energy-momentum tensor as in [37]. This is an
important procedure to both compare and evade the novel
no-hair theorem in [36].
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The ðttÞ and ðrrÞ components of the energy-momentum
tensor are given by

Tt
t ¼ −

e−Y

2r2
ðr2ϕ02 − 8_fϕ0Y 0ð1 − 3e−YÞ

þ 16ð _fϕ00 þ f̈ϕ02Þð1 − e−YÞÞ; ð19aÞ

Tr
r ¼ e−Y

2r2
ðr2ϕ02 − 8_fϕ0X0ð1 − 3e−YÞÞ; ð19bÞ

ðTr
rÞ0 ¼ e−Y

2r2

�
2r2ϕ0ϕ00 − r2ϕ02Y 0 − 8_fϕ0X00ð1 − 3e−YÞ

− 8ð _fϕ00 þ f̈ϕ02ÞX0ð1 − 3e−YÞ

þ 8_fϕ0X0Y 0ð1 − 6e−YÞ þ 16

r
_fϕ0X0ð1 − 3e−YÞ

�
:

ð19cÞ

In the near horizon limit, Tt
t, Tr

r, and ðTr
rÞ0 are reduced to

Tt
t ¼ 4r3 _fϕ0 þ 96_f2

r2ðr4 þ 4r3 _fϕ0 − 96_f2Þ þOðδrÞ; ð20aÞ

Tr
r ¼ −

4_fϕ0

r2ðrþ 4_fϕ0Þ þOðδrÞ; ð20bÞ

ðTr
rÞ0 ¼ 0 × X0 þOð1Þ þOðδrÞ: ð20cÞ

Since _fϕ0 is negative definite from Eq. (12) at the horizon,
Tr

r is positive definite in the near horizon limit. However,
for ðTr

rÞ0, the first order, which depends on X0, is
identically zero, and so we should consider the next order.
But, it is very hard to find and difficult to express, so we
calculate the sign by putting whole horizon values into the
second order, and we obtain the negative value. The sign is
same as shown in [37], even though we were not able to
reproduce the results that they obtained. Similar to the case
in the near horizon limit, those are given in the asymp-
totically flat region

−Tt
t ¼ Tr

r ¼ 1

2
ϕ02 þOðr−5Þ; and

ðTr
rÞ0 ¼ ϕ0ϕ00 þOðr−6Þ ¼ −

2

r
ϕ02 þOðr−6Þ; ð21Þ

where we used the asymptotic relation ϕ00 ¼ −ð2=rÞϕ0 þ
Oðr−4Þ from Eq. (6a). As a result, the tendency of Tr

r and
ðTr

rÞ0 are summarized in Table I. We also plot the
numerical results in Sec. III A, which correspond with
our description. Thus, there is no contradiction in the
equations of motion with the energy-momentum tensor,
and we argue that the dilaton black hole evades the novel
no-hair theorem even for the negative α.

To be sure of our result, we also checked the old no-hair
theorem, as shown in [37,38], in which they developed the
integral constraint equation with the positive definite
coupling function fðϕÞ to show the evasion of the no-hair
theorem. We construct the new integral constraint allowing
the existence of the hairy solutions with arbitrary coupling
functions. Starting with Eq. (2), it is possible to obtain the
integral constraint,

Z
fðϕÞð∇2ϕþ _fðϕÞR2

GBÞ¼−
Z

_fðϕÞðϕ02−fðϕÞR2
GBÞ¼0;

ð22Þ

where they used the integration in part only for the first
term. The boundary term vanishes at the horizon and
infinity due to the exponential factor of the metric and
the derivative of the dilaton field, respectively [37]. Simply,
ϕ02 is positive definite. The GB term is positive definite
both on the horizon and in the asymptotically flat region.
Thus, one can guess that the GB term is positive definite for
all regions and is monotonically decreasing with respect to
the radial length. Indeed, this really happens, and we will
show the result in Sec. III A. In order to avoid the no-hair
theorem, the only condition for fðϕÞ is positive definite. In
our study, we consider the negative α, which makes the
coupling function negative definite, in which the no-hair
theorem seems to valid in this analysis. Therefore, we
should find another way of treating the integral constraint
and expand that, which covers all signs of definite cases of
fðϕÞ. As a result, we construct the integral constraint
equation as follows:

Z
efðϕÞð∇2ϕþ _fðϕÞR2

GBÞ¼−
Z

efðϕÞ _fðϕÞðϕ02−R2
GBÞ¼0;

ð23Þ

where we also used the integration in part only for the first
term. In the above equation, ϕ02 and R2

GB are positive
definite, and the coupling function fðϕÞ can be arbitrary.
Thus, it is shown that the dilaton black hole solutions with
arbitrary coupling functions evade the old no-hair theorem.
In order to find the dilaton black hole solution, we used

the Dormand-Prince method [49], which is one of the
Runge-Kutta methods with specific parameters. Since the
metric function diverges at the horizon, we start our
calculation at δr ¼ ϵ ¼ 10−8, and we also set infinity as
rmax ¼ 105. Let us define the subscript h and ∞ by means

TABLE I. Behavior summary of Tr
r and ðTr

rÞ0.
Near horizon region Asymptotically flat region

Tt
t >0 <0

Tr
r >0 >0

ðTr
rÞ0 <0 <0
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of the value at the initial point rh þ ϵ and the final point
rmax, respectively. Then, the initial conditions of the metric
functions and field with the given coupling function
fðϕÞ ¼ αeγϕ are

Xh ¼ logðx1ϵÞ; X0
h ¼

1

ϵ
;

ϕh ≤
1

2γ
log

�
r4h

192α2γ2

�
and

ϕ0
h ¼ −

r2h −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4h − 192_f2h

q

8rh _fh
: ð24Þ

One can see that the equations of motion are invariant under
the shift of a dilaton field ϕ → ϕþ ϕ0 for a constant ϕ0

with the rescaling of r → reγϕ0=2 [13]. Thus, we fix rh ¼ 1,
vary ϕh to get a different black hole solution as a free
parameter, and rescale the result. Until now, the parameter
x1 is arbitrary. On the other side, the boundary conditions at
infinity are given by

X∞ ¼ 0; X0
∞ ¼ 0; ϕ ¼ 0; and ϕ0

∞ ¼ 0: ð25Þ

To make X∞ ¼ 0, x1 should be chosen properly, because
the equations of motion depend only on X0 so the nonzero
remaining constant X∞ can exist. In our calculation, we
obtain the value by setting x1 ¼ 1, and we do the same
procedure again with log x1 ¼ −X∞, which is a way of
fixing the parameter x1. We also want to make the dilaton
field vanish in the asymptotically flat region. For the dilaton
field, the value ϕ∞ also exists. The value can be absorbed
by using the symmetry between r and ϕ, such as the
rescaling of rh as rh → rhe−γϕ∞=2. Thus, the numerical
calculation starts with same rh but can vary with the dilaton
field value ϕh, and the solutions form a one parameter
family. Finally, we obtain X and ϕ from the equations of
motion, and it is possible to obtain Y by using Eq. (7). The
ADM mass M and dilaton charge D are obtained by fitting
the equation in the asymptotically flat region.

III. RESULTS

In this section, we present a hairy black hole solution in
DEGB theory. We set the dilaton coupling function
fðϕÞ ¼ αeγϕ, where the GB coefficient α has the negative
value, not the usual positive one. Since the DEGB theory
has the rescaling invariance under the r → r=

ffiffiffiffiffiffijαjp
, we

choose α ¼ −1 for all of our data. Furthermore, one can see
that the theory is invariant under the changes of γ → −γ and
ϕ → −ϕ. Thus, we always choose the positive dilaton
coupling γ, which is enough to obtain the solutions. Even in
this unusual negative coefficient set up, we obtained the
dilaton black hole solution and the different tendency of a
minimum black hole mass depending on the γ.

A. Dilaton black hole

This is an example of a hairy black hole solution with the
negative α. In order to get and present the dilaton black hole
in this section, we set γ ¼ 1 and ϕh ¼ logðr4h=192α2γ2Þ=2γ,
which is the maximum value of the given range in the initial
condition, Eq. (24).
Figure 1 represents the metric functions and the profile of

the dilaton field for a black hole solution with respect to r.
In Fig. 1(a), the black and red lines indicate the metric
components −gttðrÞ and grrðrÞ, which converge or diverge
at the horizon, respectively. Both metric components
converge to unity at infinity. In Fig. 1(b), the dilaton field
ϕðrÞ always has a negative value and the derivative of the
dilaton field has a positive value. Both quantities also
become zero at infinity. The blue dashed line in each figure
indicates the value of the horizon radius, which is not unity.
Originally, we set the horizon radius rh ¼ 1, but it is
modified by the factor e−γϕ∞=2, as we explained in the
previous section.
Figure 2 shows the positivity of the ðrrÞ component

of the energy-momentum tensor, Tr
rðrÞ, and the negative

value of its derivative, −ðTr
rÞ0ðrÞ, with respect to r.

gtt (r)

grr(r)

1 10 100 1000 104 105
r

0.5

1.0

1.5

2.0

(a)

10 100 1000 104 105
r

–0.8

–0.6

–0.4

–0.2

φ (r)

(b)

FIG. 1. The metric components and the profile of the dilaton
field for a black hole solution.
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Those quantities have positive values at the horizon and
diminish when r goes to infinity, but the signs never
change. Therefore, there is no contradiction in the equa-
tions of motion with the energy-momentum tensor,
which show that the novel no-hair theorem is not appli-
cable and finally is not valid for the DEGB thoery, as we
claimed before.
Figure 3(a) illustrates the GB term R2

GBðrÞ with respect
to r. The GB term is positive definite on all regions of r,
and it shows the monotonically decreasing behavior when r
increases. The result corresponds well with our expectation
about the old no-hair theorem, and the no-hair theorem is
again evaded. In Fig. 3(b), the black and red lines depict the
ðttÞ and ðrrÞ components of the energy-momentum tensor,
−Tt

tðrÞ and Tr
rðrÞ, respectively. The energy density

−Tt
tðrÞ has the negative value only for the near horizon

region and the positive value for all the other regions of r.
One of key assumptions in the novel no-hair theorem is
related to the energy condition. The energy density is non-
negative everywhere for any timelike observer. Thus, the
existence of the negative value in some region shows
the violation of the key assumptions satisfied in the novel
no-hair theorem.

B. Spectrum of dilaton black holes

Now, we have the dilaton black hole solutions with the
negative GB coefficient α. In order to investigate the
properties of the dilaton black holes with negative α, we
obtain the dilaton black hole solutions with same boundary
conditions and compare them, but we just change the sign
of α with respect to γ.
Figure 4 represents the lower bound for the dilaton black

hole mass with respect to α for several selected values of γ.
The ϕh is also chosen by the maximum value. It clearly
shows that there exists the

ffiffiffiffiffiffijαjp
dependency of the black

hole mass. The α dependency can be absorbed by the radial
coordinate transformation, r → r=

ffiffiffiffiffiffijαjp
, as we discussed

earlier. Therefore, we focused on the γ dependency of the
black hole mass for each sign of α. The lower bound is
increased when α has the positive value, but the lower
bound is increased up to some specific γ and decreased
when α has the negative value as γ is increased. Therefore,
we expect that there exists some maximum γ value, which
restricts the dilaton black hole for the negative α, and this is
the most different behavior between the dilaton black holes
with different signs of α.

(a)

(b)

FIG. 2. The ðrrÞ component of the energy momentum tensor
and its derivative.

(a)

(b)

FIG. 3. R2
GBðrÞ and the components of the energy momentum

tensor.
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Figures 5–7 illustrate the mass of dilaton black holes
with respect to γ for each of the α signs. The black line
denotes the black hole mass with the maximum value of ϕh.
The red dashed line indicates the maximum γ, which can
have the dilaton black hole when α is negative. The blue
dashed line represents the dilaton black hole, which has the
minimum mass under the variations of ϕh when α is
positive. It is already a well-known result that the maximum
ϕh does not always give the minimum mass of the dilaton
black hole [15,16,26,27]. The black and blue lines show the
dilaton black hole with maximum ϕh or minimummass. By
changing ϕh, we obtain the dilaton black holes with a
higher mass than the ones represented by black or blue
lines. Therefore, there also exists the dilaton black holes
over the black or blue lines but not under the lines.
Figures 5(a) and 5(b) show the dilaton black hole mass

increases and decreases when α is negative, but it keep
increasing even for the black holes with minimum masses
when α is positive by increasing γ, as we have shown in
Fig. 4. When α is negative, we cannot obtain the dilaton
black hole solution with the γ value, which exceeds the red
dashed line. In order to get the contribution coming from

FIG. 4. The lower bound for the black hole mass vs α with
several γ values.

(a)

(b)

FIG. 5. Several mass figures with respect to γ. The black line
represent the lower bound for black holes with maximum value of
ϕh, which have the minimum black hole radius rh. The red
dashed line represents the maximized γ to get the black hole
solution with the negative α. The blue dashed line represent the
black holes having the minimum masses.

(a)

(b)

FIG. 6. Several mass figures with respect to γ.
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the GB term in more detail, we need to investigate the large
γ region, because the GB term is exponentially dependent
on the γ. In this region, it seems that the GB term decreases
its own repulsive property and relatively easily assists in
making the dilaton black hole. As a result, we argue that the
minimum mass of the dilaton black hole decreases in the
large γ region. However, when α is positive, the GB term
appears to demonstrate a dispersive behavior, and it
disturbs the creation of the dilaton black hole. Thus, we
also argue that the minimum mass of the dilaton black hole
increases depending on γ.
Figures 6(a) and 6(b) show the hairy mass of the black

hole, and Figs. 7(a) and 7(b) show the ratio between the
hairy mass and the total mass with respect to γ. The hairy
mass increases in general, except the near maximum γ
region of the case with the negative α and the minimum
mass black hole of the case with the positive α. However,
the ratio always increases or decreases when α is negative
or positive, respectively. Especially for the case with the
negative α, the ratio increases even higher than > 0.5 near
the maximum γ; the red line and the behavior are really
strange. We wonder whether or not the value will keep
growing until it reaches unity, which means that the black

hole horizon would disappear and have the mass only as the
dilaton hair. This does not happen when α is positive. The
maximum and restricted value of γ seems to be motivated
from this reason. However, we cannot do an exact numeri-
cal calculation on the limit of maximum γ due to the
difficulties of error control, thus our argument remains as a
reasonable but open question.

IV. CONCLUSION

We have investigated the hairy black hole solutions in
DEGB theory, in particular with the negative GB coef-
ficient α. In Refs. [37,38], the authors showed that no-hair
theorems are easily evaded by the hairy black hole solutions
in DEGB theory. They considered the black hole solutions
with only the positive α and many scalar couplings, and
they constructed the integral constraint in the theory. In this
paper, we tried to expand the description about the dilaton
black hole into negative GB coefficients by changing the
sign of α. We constructed the new integral constraint
equation allowing the existence of the hairy black hole
solution with the arbitrary signature of α. Through this
procedure, we have expanded the evasion of the no-hair
theorem for hairy black hole solutions.
As a consequence of our analysis, we have numerically

obtained the dilaton black hole solutions with the negative
α. The dilaton black holes have more hair, in general, than
the case for the positive α. We restricted our calculation to
dilaton black holes that have the maximum values of
dilaton fields at the horizon ϕh or have minimum masses.
It is enough to investigate the properties of the dilaton black
hole. The minimum mass of a dilaton black hole with a
positive α is obtained from the maximum ϕh in the small
dilaton coupling γ region. When γ is increased, the cases of
dilaton black holes with the minimum mass and the
maximum ϕh are divided. The mass of a dilaton black
hole increases in both cases. We think that the GB term
seems to provide a repulsive effect, and it disturbs the
formation the dilaton black hole. However, those two cases
are not divided with the negative α, and the minimum mass
decreases for large γ. Since the minimum mass decreases, it
seems that the GB term decreases its own repulsive
property, and the black hole forms relatively easy.
Furthermore, there exists a maximum value γ that limits

the existence of the dilaton black hole solution. Until the
maximum γ, the minimum mass decreases but the hairy
mass increases and decreases again. Interestingly, the hairy
mass ratio of the total mass always increases. The results
give us an expectation that the dilaton black hole solution
with the maximum γ would have no horizon, and the mass
of the black hole is composed by the dilaton field only.
Even though this expectation has yet to be fulfilled, due
to the difficulties of the numerical calculation, it is worth-
while to investigate the properties and implications of such
behaviors for large γ in more detail, and we postpone
further analysis for future work.

(a)

(b)

FIG. 7. Several mass figures with respect to γ.
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It is important to investigate the stability for the maxi-
mally symmetric background as well as the hairy black hole
solutions. For the maximally symmetric background, there
is nonperturbative instability due to the tunneling for a
nucleation of a vacuum bubble when the initial vacuum
state is in the metastable vacuum and the true vacuum
state exists [50–53]. For black hole solutions, there is no
instability in Einstein theory when making use of the
Regge-Wheeler prescription [54], while the stability issue
is nontrivial in DEGB theory. There exists the positive
lower-bound for the black hole mass in that theory. There
are two black holes for a given mass above the lower-bound
in which the smaller one is unstable and the larger one is
stable under perturbations [14,16]. The equations gov-
erning the perturbations of the metric are decoupled from
the equation governing the perturbation of the scalar field
[39]. Recently, it has been reported that the black hole
without hair becomes unstable against scalar perturba-
tions, and a new black hole solution with scalar hair
bifurcates from the one without hair in DEGB [39,55]
and Einstein-Maxwell scalar theory [56].
The higher-dimensional black hole in EGB theory was

first discovered in Ref. [5] and in Einstein-Maxwell-Gauss-
Bonnet theory [57], in which the lower bound for a black
hole mass is proportional to α, not

ffiffiffi
α

p
. However, there is no

bound for the mass in six and higher dimensions [17,58].
It will be interesting to investigate our results in com-
parison with those in higher-dimensional DEGB theory or
EGB theory.
The stability of the maximally symmetric vacuum in

DEGB theory is not complicated. Let us consider the
maximally symmetric vacuum spacetime, flat Minkowski.
One can consider linear perturbations around this back-
ground. Then the quadratic curvature terms in the field

equations should not contribute to the perturbation
equations as in the higher-dimensional EGB theory [5].
Therefore, the perturbation equations are the same as
those in general relativity with a massless scalar field,
and hence, the flat background is stable against linear
perturbations for any value of α and γ. This can be
confirmed for spherically symmetric linear perturbations
[16]. When the background is flat Minkowski, the pertur-
bation equation for the dilaton perturbation reduces to
the Klein-Gordon equation in a two-dimensional flat
spacetime that does not contain α and γ as well as any
higher-curvature terms. Thus, the flat background is stable
against these spherical perturbations [59].
We postpone any possible application for the evasion

of the no-hair theorem and the applications for black
hole solutions, including the stability issue in higher-
dimensional DEGB theory, for our future work.
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