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The mixmaster model has always been a field of controversy in the literature regarding its (non)
integrability. In this work, we make use of a generalized definition of a class of nonlocal conserved charges
in phase space to demonstrate that the anisotropic Bianchi type IX model in vacuum is—at least locally—
Liouville integrable, thus supporting the findings of previous works pointing to this result. These additional
integrals of motion that we use can be defined only due to the parametrization invariance of the system and
can be seen to possess an explicit dependence on time. By promoting the time variable to a degree of
freedom (d.o.f.), we demonstrate the existence of two sets of four independent conserved charges that are in
involution, thus leading to the characterization of the system as integrable in terms of the Liouville-Arnold
theorem.
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I. INTRODUCTION

The general Bianchi type IX cosmological model has
always been a source of great debate in the literature, both
in regards to its integrability [1–7] and its chaotic nature
[8–24]. The situation gets more complicated given the fact
that different notions of integrability are used that are not
necessarily equivalent (e.g., Liouville [25] or Painlevé [26]
integrability). Even worse, in many cases gauge dependent
methods are being applied to a parametrization invariant
system, leading to conflicting results.
A general review of the basic features in spatially

homogeneous cosmologies can be found in [27,28]. The
study and importance of the Bianchi type IX geometry in
gravitational physics began with the pioneering work of
Misner and his mixmaster model [29]. With the works of
Belinskii et al. [30–32] it has been shown that the system
evolves through successive Kasner epochs and near the
singularity adopts an oscillatory behavior. They have also
suggested that the anisotropic Bianchi type IX may be
additionally used to describe more general gravitational
solutions. Several numerical studies for the Bianchi IX
have been performed in support of these results [33–35]. A
first important theorem on the asymptotic behavior towards
the singularity was derived in [36] and further discussed in
[37]. This was made possible with the use of variables that
were previously introduced in [38] for class A Bianchi
cosmological systems. The latter have served for the

asymptotic dynamical analysis in other Bianchi cosmolo-
gies as well [39–41].
To make a quick resume of the debate so far, we mention

that in [2,3] it was claimed that the Bianchi type IX
dynamical system passes the Painlevé test. Later in [4] it
was shown that for negative values of the energy the system
does not pass the test, thus criticizing the approach taken in
[2,3], which made no such distinction. The authors of [2]
revisited their study in [5], and concluded that the matter of
the Painlevé integrability of the model remains open. In [6],
it was claimed that the Bianchi type IX does not pass the
Painlevé test, while on the other hand, the authors of [7]
argue that the issues raised in [4–6] cannot exclude
integrability. At the same time, a discussion was raised
regarding the possible chaotic behavior of the model in
terms of the Lyapunov exponents and their noninvariance
under the adoption of different time gauges. Initially, it was
shown in [8] with the use of the Gauss map, that one is led
to a positive Lyapunov exponent. However, later analysis
[12,13] implied that the Lyapunov exponents tend to 0 as
the system asymptotically approaches the singularity. The
discrepancy was traced to the adoption of different time
gauge choices in the relevant studies [15–17]. For a review
on this matter see [42] and references therein. In [15] there
was also stated one of the basic problems in the analysis
about the emergence of chaos in the Bianchi type IX
vacuum model. Namely, the satisfaction of the constraint
equation whenever numerics are involved or the precise
conditions under which the Kasner Bianchi type I solution
is assumed at an approximate regime.
In regards to exact methods, works like [43,44] have

excluded the existence of first integrals, which are analytic
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functions of the phase-space variables for the general
Bianchi type IX system—that is, apart from the
Hamiltonian itself. However, in the usual studies of
integrability, one usually considers as possible integrals
of motion quantities that are functions just of the position
and the momenta, i.e.,Q≡Qðq; pÞ. In this work, we adopt
a different approach: We demonstrate that there exist
conserved charges that possess an explicit dependence in
timeQ≡Qðt; q; pÞ in the form of a nonlocal term, that is, a
term that is given as an integral over time of phase-space
functions. These nonlocal conserved charges appear in
parametrization invariant systems and are not a conse-
quence of Noether’s theorem [45]; i.e., they do not result
from variational symmetries of the action; rather, they are a
generalization of Kuchař’s conditional symmetries [46].
Their existence is tied to the parametrization invariance of
the system and thus, it is important to consider the latter in
its most general form avoiding any gauge fixing prior to the
derivation of the symmetries.
The structure of the paper is as follows: In Sec. II,

we begin by writing the equivalent minisuperspace
system that reproduces Einstein’s equation in vacuum for
the mixmaster model. Next, in Sec. III we introduce the
Hamiltonian description of the model and obtain all
those conserved charges that are at most linear in the
momenta and possess an additional nonlocal part. We
subsequently fix the gauge and treat the time variable as
an additional d.o.f. The latter is done in order to treat the
explicit time dependence of these integrals in phase space.
We prove that there exists the necessary number of
independent commuting integrals of motion so that the
system can be characterized as locally (Liouville) inte-
grable. Something that is in conjunction with the result of
[1] where the local integrability of the system was studied
from a different perspective. Before we conclude with our
final remarks, we recall in Sec. IV a few facts from the
theory of singular systems that we consider to play a
significant role in our proof and its relation to existing
results.

II. THE EQUIVALENT
MINISUPERSPACE SYSTEM

The mixmaster universe is described by the line
element

ds2 ¼ −NðtÞ2dt2 þ γαβðtÞσαi ðxÞσβj ðxÞdxidxj;
i; j; α; β ¼ 1; 2; 3; ð1Þ

where xi ¼ ðx; y; zÞ are the spatial coordinates, γαβ ¼
diagðaðtÞ2; bðtÞ2; cðtÞ2Þ is the scale factor matrix, and
the σαi are the 1-forms corresponding to the invariant basis
associated to the three-dimensional group of isometries
acting simply transitively on the spatial surface t ¼ constant:

σ1 ¼ sin x cos zdy − sin zdx;

σ2 ¼ sin x sin zdyþ cos zdx;

σ3 ¼ cos xdyþ dz: ð2Þ

These 1-forms satisfy the well-known Maurer-Cartan
equations [27]

dσα ¼ 1

2
Cα
βγσ

β ∧ σγ; ð3Þ

where in this case Cα
βγ ¼ ϵαβγ , with ϵαβγ being the Levi-

Civita symbol in three dimensions (ϵ123 ¼ þ1), since the
three-dimensional group of isometries in this case is the
rotation group SOð3Þ.
For the rest of our analysis—and in order to have a

simplified minisuperspace metric—we assume the descrip-
tion of the system in the Misner variables [27], where

a¼ eβ1þ
ffiffi
3

p
β2−Ω; b¼ eβ1−

ffiffi
3

p
β2−Ω; c¼ e−2β1−Ω: ð4Þ

If we substitute the line element (1) into the gravitational
action S ¼ R ffiffiffiffiffiffi−gp

Rd4x, with g ¼ Detgμν, and integrate out
the nondynamical d.o.f., then we are left with the minis-
uperspace Lagrangian

L ¼ 1

2N
Gαβ _qα _qβ − NVðqÞ; ð5Þ

where the dots denote differentiation with respect to the
time variable t. The configuration space variables are q ¼
ðΩ; β1; β2Þ [as we said we work in the Misner variables (4)]
and the potential VðqÞ is

VðΩ; β1; β2Þ ¼
1

2
e4β1−4

ffiffi
3

p
β2−Ω − e−2β1−2

ffiffi
3

p
β2−Ω

þ 1

2
e4β1þ4

ffiffi
3

p
β2−Ω þ 1

2
e−8β1−Ω

− e4β1−Ω − e−2β1þ2
ffiffi
3

p
β2−Ω: ð6Þ

The minisuperspace metric Gαβ is diagonal in these
coordinates and reads

Gαβ ¼ 12e−3Ω

0
B@

−1 0 0

0 1 0

0 0 1

1
CA: ð7Þ

The minisuperspace Lagrangian (5) correctly reproduces
the Einstein equations in vacuum, Eμν ≡ Rμν − 1

2
gμνR ¼ 0.

In order to avoid any confusion, we note that the greek
indices α, β used from (5) onwards are neither space-time
nor the internal indices utilized in (1) and (3). They are just
used here to denote the configuration space variables as
components of q ¼ ðΩ; β1; β2Þ. We may now proceed to
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the Hamiltonian description of the model and the derivation
of the nonlocal conserved charges.

III. PHASE-SPACE FORMALISM
AND INTEGRABILITY

Because of the fact that the Lagrangian (5) is singular,
i.e., the corresponding Hessian matrix is not invertible, we
have to put in use the Dirac-Bergmann algorithm [47,48] in
order to be led to the Hamiltonian function for the given
problem. The corresponding total Hamiltonian is

HT ¼ NHþ uNpN; ð8Þ

where

pN ≈ 0 ð9Þ

H ¼ 1

2
Gαβpαpβ þ VðqÞ ≈ 0 ð10Þ

are the two first class constraints of the system, while uN is
an arbitrary function. The ≈ symbol denotes a weak
equality, that is, the pN and H are 0 themselves, but their
phase-space gradients are not.
For systems characterized by (8)–(10), it can be seen that

any conformal Killing vector, ξ ¼ ξα ∂
∂qα, of the minisuper-

space metric Gαβ, i.e., LξGαβ ¼ ωðqÞGαβ generates a
(generally) nonlocal conserved charge of the form

Q ¼ ξαpα þ
Z

NðtÞ½ωðqðtÞÞ þ FðqðtÞÞ�VðqðtÞÞdt; ð11Þ

where pα ≔ ∂L
∂ _qα are the momenta of the system and

FðqÞ≔ 1
VðqÞξ

α∂αVðqÞ. Whenever ωðqÞ ¼ −FðqÞ we obtain
a typical linear in the momenta integral of motion
Q ¼ ξαpα. In any other case there exists a nonlocal part
as seen in (11) owed to the presence of an integral in time
over phase-space functions. It is easy to check that

dQ
dt

¼ ∂Q
∂t þ fQ;HTg

¼ Nðωþ FÞV þ NωGαβpαpβ − NFV

¼ NωH ≈ 0: ð12Þ

This is a generalization of Kuchař’s conditional symmetries
[46]. Kuchař had defined as conditional symmetries quan-
tities that are linear in the momenta and that have the
property of weakly commuting with the Hamiltonian
constraint, i.e., Q ¼ ξαpα with fQ;Hg ≈ 0 ⇒ fQ;Hg ¼
sðqÞH. Here, our Q in (11), may additionally have an
explicit dependence in time in terms of an integral of phase-
space functions. The emerging quantities Q are conserved
on the constraint surface H ≈ 0 and, hence, their existence

is tied to the parametrization invariance of the system. In
other words, these integrals of motion would not appear in
the study of a gauge fixed version of (5), e.g., if we had
considered N ¼ 1 in the latter (thus missing the quadratic
constraint).
For the given minisuperspace metric (7) it can be seen

that there exist ten conformal Killing fields,

ξ1 ¼ ∂Ω; ξ2 ¼ ∂β1 ; ξ3 ¼ ∂β2 ;

ξ4 ¼ Ω∂Ω þ β1∂β1 þ β2∂β2 ; ξ5 ¼ β1∂Ω þ Ω∂β1 ;

ξ6 ¼ β2∂Ω þ Ω∂β2 ; ξ7 ¼ β2∂β1 − β1∂β2 ;

ξ8 ¼
1

2
ðβ21 þ β22 þΩ2Þ∂Ω þ β1Ω∂β1 þ β2Ω∂β2 ;

ξ9 ¼ β1Ω∂Ω þ 1

2
ðβ21 − β22 þ Ω2Þ∂β1 þ β1β2∂β2 ;

ξ10 ¼ β2Ω∂Ω þ β1β2∂β1 þ
1

2
ðΩ2 − β21 þ β22Þ∂β2 ; ð13Þ

with the corresponding conformal factors

ω1 ¼ −3; ω2 ¼ ω3 ¼ ω7 ¼ 0;

ω4 ¼ 2 − 3Ω; ω5 ¼ −3β1; ω6 ¼ −3β2;

ω8 ¼
1

2
ð−3β21 − 3β22 þ Ωð4 − 3ΩÞÞ;

ω9 ¼ β1ð2 − 3ΩÞ; ω10 ¼ β2ð2 − 3ΩÞ: ð14Þ

From the latter we see that ξ2, ξ3, and ξ7 are Killing vector
fields of Gαβ, while ξ1 is a homothetic vector.
The above ξIs, I ¼ 1;…; 10, can be used to construct ten

conserved charges of the form (11). The ten functions FI
inside the integral of (11) can be easily calculated through
the relations FI ¼ 1

V ξ
α
I ∂αV. It is easy to verify that dQI

dt ¼ 0

whenever the Euler-Lagrange equations of (5) are satisfied
(of course counting the constraint equation in them). Note
that if we had considered as possible candidates for an
integral of motion only quantities that are strictly functions
of position and momenta, e.g., Q ¼ ξαpα, then this would
result in no conserved charge for the given system. This is
owed to the fact that the necessary condition ωðqÞ ¼
−FðqÞ for such a conserved charge in (11) is not satisfied
for any of the ξI appearing in (13). It is due to the nonlocal
part that these symmetries can define integrals of motion.
Now that we used the parametrization invariance to

derive all linear in the momenta symmetries of the system
we can proceed by fixing the gauge. At the same time, and
in order to check for the integrability of the system when
nonautonomous integrals of motion are present, we pro-
mote the time variable to a dynamical d.o.f., as also
happens for regular systems whenever there appears an
explicit dependence in time (see [49] and references
therein). We first introduce the additional gauge fixing
constraint
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χ ¼ N − fðtÞ ≈ 0; ð15Þ

where fðtÞ is some appropriate function of the time
variable (f can also be a constant). Then, we consider
the Hamiltonian

H ¼ pt þHT þ uχχ; ð16Þ

with pt being the canonical conjugate to the new d.o.f. t,
i.e., ft; ptg ¼ 1. The constraints pN ≈ 0, χ ≈ 0 turn into
second class since fχ; pNg ¼ 1, while the H ≈ 0 remains
first class, on account of fH; pNg ≈ 0 and fH; χg ≈ 0. The
consistency conditions _pN ¼ fpN;Hg ≈ 0 and _χ ¼
fχ; Hg ≈ 0 lead to the determination of the “velocities”
uχ and uN , respectively. We straightforwardly obtain uχ ≈ 0

and uN ≈ _f. As a result, the Hamiltonian (16) finally reads

H ¼ pt þ NHþ _fpN: ð17Þ

The Dirac brackets are defined as

fF;GgD ¼ fF;Gg − fF; pNgfχ; Gg
þ fF; χgfpN;Gg; ð18Þ

and by considering the ten integrals of motion

QI ¼ ξαI pα þ AIðtÞ; I ¼ 1;…; 10; ð19Þ

where

AIðtÞ ¼
Z

fðtÞ½ωIðqðtÞÞ þ FIðqðtÞÞ�VðqðtÞÞdt; ð20Þ

we can see that

fQI;HgD ≈ 0; fH;HgD ¼ 0; fQI;HgD ≠ 0: ð21Þ

From the last relation we may observe that these ten
integrals of motion, even though they commute (weakly)
with the HamiltonianH, do not commute with the quadratic
constraint H ≈ 0. The reduced (from the second class
constraints) phase space is eight dimensional and spanned
by t, Ω, β1, β2 and their conjugate momenta. The corre-
sponding reduced Hamiltonian is

Hred ¼ pt þ fðtÞH: ð22Þ

In order to talk about Liouville integrability we need four
independent phase space functions that are in involution.
From the ten conformal Killing vectors in (13) we may
notice that there exist two three-dimensional Abelian
subalgebras, the first involving ξ1, ξ2, and ξ3 and the
second consisting of ξ8, ξ9, and ξ10. This results in two
Abelian three-dimensional Poisson algebras in the corre-
sponding QI’s. If we also consider, according to the first of

(21), that all the QI’s have the property of weakly
commuting with H, then we have two choices for
a set of four independent integrals of motion that are in
involution,

fQI;HgD¼fQI;Hredg≈0;
�
QI;QJgD¼fQI;QJg¼ 0;

I;J¼ 1;2;3; or I;J¼ 8;9;10: ð23Þ

We have to make the following observations:
(i) The set of four mutually commuting phase-space

functions exists only on the constraint surface
H ≈ 0. We see that fQI;Hredg ≈ 0; i.e., it is a weak
equality, which practically means that the system
may be characterized as integrable only because of
the zero value of the Hamiltonian constraint.

(ii) We may be aware of the existence of the ten
integrals QI , but their explicit dependence on t
cannot be known, not unless we have the solution
in terms of the three qðtÞ. However, the gauge fixing
condition may be applied in such a manner that,
at least for one of the QI’s, the corresponding
function AIðtÞ becomes apparent. For example, if
we choose in, say Q1, the lapse function to be
NðtÞ ¼ fðtÞ ¼ ½ðω1ðqÞ þ F1ðqÞÞVðqÞ�−1, then in
this gauge, the conserved charge reads
Q1 ¼ ξα1pα þ t ¼ const. The rest of the AIðtÞ func-
tions however remain unknown as long as we do not
have the explicit expressions for Ω, β1, and β2 as
functions of t that solve the equations of motion.
This in itself is an important result since we have at
our disposal some specific gauge choices under
which a second integral of motion independent of
the Hamiltonian can have an analytic form in phase-
space variables and t. Previous theorems excluded
the existence of such a quantity [43,44]; however,
they were restricted to consider functions only in the
positions and the momenta, but not in time. We see
that by allowing explicit time dependence in
the conserved charges we are able to reveal such
quantities.

(iii) A natural question to ask at this point would be the
possible physical significance of the constants of
integration corresponding to the QI’s as they have
emerged from our treatment. This is a highly non-
trivial inquiry, even in the case where conserved
charges of a local form are involved in a minisuper-
space analysis. This is owed to the fact that the
minisuperspace system is not sensitive to three-
dimensional spatial diffeomorphisms of the base
manifold metric (1). In order to be able to distinguish
which combination of constants of integration is of
physical importance we would need to have at our
disposal the analytic solution, insert it into line
element (1) and then check if there exist any spatial
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diffeomorphisms that further reduce the number of
these constants. The physically relevant constants
(or the appropriate combinations of them) would be
those that are essential for the space-time geometry
and that cannot be absorbed by any diffeomor-
phisms. A particular example where four constants
of integration emerging from conserved minisuper-
space charges are reduced to just two that are
physically relevant can be seen in the classical part
of the analysis performed in [50].

(iv) Of course, one may wonder whether a solution qðtÞ
exists in the first place, so that there is sense in
considering the functions AIðtÞ in the integrals of
motion (19). This is something that we immediately
check in the paragraph that follows.

It can be easily seen that in the gauge N ¼ 12e−3Ω,
the three integrals of motion Q1, Q2, and Q3 are respec-
tively (when the momenta are substituted with respect to
velocities)

_Ω¼
Z

B1ðtÞdt; _β1 ¼
Z

B2ðtÞdt; _β2 ¼
Z

B3ðtÞdt;

ð24Þ

where

B1¼ 24ð2e6ðβ1þ
ffiffi
3

p
β2Þ þ2e6β1þ2

ffiffi
3

p
β2 þ2e12β1þ4

ffiffi
3

p
β2

−e12β1þ8
ffiffi
3

p
β2 −e12β1 −e4

ffiffi
3

p
β2Þe−4ð2β1þ

ffiffi
3

p
β2þΩÞ; ð25Þ

B2¼ 24ð2e12β1þ4
ffiffi
3

p
β2 −e6ðβ1þ

ffiffi
3

p
β2Þ−e6β1þ2

ffiffi
3

p
β2

−e12β1þ8
ffiffi
3

p
β2 −e12β1 þ2e4

ffiffi
3

p
β2Þe−4ð2β1þ

ffiffi
3

p
β2þΩÞ; ð26Þ

B3 ¼ 24
ffiffiffi
3

p
ð1 − e4

ffiffi
3

p
β2Þðe6β1þ4

ffiffi
3

p
β2 þ e6β1 − e2

ffiffi
3

p
β2Þ

× e−2ðβ1þ2
ffiffi
3

p
β2þ2ΩÞ: ð27Þ

The total derivatives of (24) with respect to the time t lead
to the spatial equations of the system

Ω̈¼B1ðΩ;β1β2Þ; β̈1¼B2ðΩ;β1β2Þ; β̈2¼B3ðΩ;β1β2Þ:
ð28Þ

Substitution of the latter in the Euler-Lagrange equations of
(5) for Ω, β1, and β2 results in the satisfaction of the latter
two, while the first becomes proportional to the constraint
equation ∂L

∂N ¼ 0. We may observe that equations (28) do
not include first order derivatives of the configuration space
variables q ¼ ðΩ; β1; β2Þ. It is known that the Bianchi type
IX equations can be brought to this form. Here, we see that
this property is a consequence of the existing nonlocal
conserved charges. By writing the first order equivalent
system of (28) it is obvious that it satisfies Peano’s theorem;
thus at least one solution always exists inside a given

domain of definition and given initial conditions. So we can
say that there is a sense in considering the AIðtÞ in (19) even
though we are not aware of their explicit dependence in t.
As we demonstrated, the sufficient number of mutually

commuting integrals of motion exists and thus the system
can be characterized—at least locally—as Liouville
integrable.

IV. A FEW COMMENTS FROM THE THEORY
OF CONSTRAINED SYSTEMS AND

THE IMPORTANCE OF H ≈ 0

It may be stated that the result obtained through our
proof in the previous section is in contradiction with the
implied chaotic behavior of the model from various
previous works. Although we are not experts in chaos
theory, we believe that such a comparison is neither trivial
nor straightforward. A first issue is that—unlike Liouville
integrability—chaos as a notion is not based on a univer-
sally used, exact mathematical definition; it is rather a
qualitative behavior of a system. What is more, it is not
obvious that the methods of examining a chaotic behavior
in regular mechanical systems can be directly used in the
singular case without appropriate modifications. To this
end let us just review some basic facts of the mixmaster
model that—not always, but many times—are overlooked
in the literature as trivial and that we consider here play an
important role.
The point of view is commonly encountered, according

to which the Hamiltonian constraint H ≈ 0 can be thought
of as an integral of motion that for some reason is restricted
to the value 0. In other words H is the Hamiltonian of a
system of three d.o.f., where the ad hoc condition H ¼ 0
has been set. This often creates the misconception that one
has to deal with three independent d.o.f. where H ¼ 0 sets
a restriction upon the six expected constants of integration
emerging from the general solution of the spatial equations.
However, the effect of H ≈ 0 has much more intriguing
consequences than that. Technically,H is not an integral of
motion for the system (an integral of motion can in general
assume arbitrary constant values on mass shell). The
constraint equation H ≈ 0 is a self-consistency condition
so that the Hamiltonian formalism, with the Hamiltonian
function HT in (8), corresponds to the parametrization
invariant Lagrangian (5) that describes the original system.
If we translate H ≈ 0 in velocity phase space coordinates,
we see that it is the Euler-Lagrange equation for the d.o.f.
N, i.e., ∂L

∂N ¼ 0, to be considered on an equal footing with
the spatial Euler-Lagrange equations forΩ; β1, and β2. As a
result, the existence of the constraint does not imply the
removal of a single combination of the integration con-
stants appearing in the general solution, but rather the
removal of a full d.o.f. among the three Ω, β1, β2. This
means that the mixmaster model exhibits only two inde-
pendent (or physical) d.o.f. with the third expressing just a
gauge choice. For the mathematical formula that calculates
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the number of physical d.o.f. in constrained systems we can
refer the interested reader to the textbook [51] and for an
equivalent counting in the Lagrangian formalism in [52].
To demonstrate the above-mentioned fact, consider that

you solve the constraint equation ∂L
∂N ¼ 0 algebraically with

respect to the lapse N. Substitution of this result into the
three spacial equations results in having only two of the
latter being independent. Thus, the system obtained con-
sists of two different, second order, coupled ordinary
differential equations for the three functions Ω, β1, β2.
One of them can be considered as a time variable since, up
to now, the gauge is not fixed; thus, the ensuing general
solution is expected to contain only four constants of
integration. What is more, which two of the three d.o.f. we
may consider as the physical ones and which as the gauge,
is completely at our disposal. In principle, it makes no
difference for the system. What we want to demonstrate by
this is that a method of analysis respecting parametrization
invariance must be insensitive to these choices. The
physically important results cannot depend on which two
functions of the triplet ðω; β1; β2Þ you consider as physical,
neither on the explicit dependence in t which the third
degree has. In our analysis, we have respected this principle
by treating the system in the complete phase space on
which HT is defined and proceeded following exactly the
theory of constrained systems. In view of this, let us note
that conclusions about ergodicity, based on plots of β1=Ω
vs β2=Ω etc., are not straightforward; before they can be
reached, further and rather careful investigations are
needed.
Another point we make is the importance of H ≈ 0 for

the existence of the conserved charges that we defined. The
aforementioned quantities are conserved only on the con-
straint surface. This—unlike what happens in the case of
regular systems where the Hamiltonian may assume arbi-
trary constant values—probably makes the integrability of
the system extremely sensitive to the satisfaction of the
H ≈ 0 condition. It has been noticed in the literature that
this is always an issue when numerical methods are being
employed [15,37] or other types of approximations like
involving the Kasner map conjecture [37]. In our work we
follow an exact treatment in phase space (having emerged
from the treatment of the original parametrization invariant

Lagrangian) without making a single approximation
throughout our analysis. In our view, this is what allowed
the revealing of the conserved quantities that make the
difference towards the (local) integrability of the model.

V. CONCLUSIONS

We have investigated the Liouville integrability of the
anisotropic Bianchi type IX model in vacuum. By allowing
functions that have an explicit time dependence in terms of
an integral of phase-space functions, we obtained a gener-
alized class of conserved charges. The latter are constants of
motion strictly on the constrained surfaceH ≈ 0 since they
weakly commute with the Hamiltonian H. From the ten
derived quantities whose dependence in the momenta is
linear, there exist two three-dimensional Abelian Poisson
algebras that together with the extended in t Hamiltonian in
(17) form two sets of four first integrals in involution for the
system.Even though the existence of these sets is guaranteed
by the fact that locally a solution ΩðtÞ, β1ðtÞ, β2ðtÞ always
exists, the explicit dependence of each integral in t cannot be
known—at least not for all the nonlocal charges. An
appropriate gauge choice can be made so that one of the
nonlocal integrals ofmotion assumes a local form, but for the
rest their explicit dependence in t remains unknown. For the
physical interpretation of these constants of motion one has
to take into account the limitations of the minisuperspace
analysis, the fact that spatial diffeomorphisms—which are
hindered at the minisuperspace level—can be used in the
base manifold metric to absorb some of these constants.
Thus, without the explicit solution, it is not clear which
combination of them may be essential for the space-time
geometry.
Lastly, we notice that the same conclusion about

Liouville integrability can be reached if we include a
cosmological constant term or any other matter content
that does not affect the minisuperspace metric (7), since the
existence of the two sets of commuting conformal Killing
fields is not affected. In this situation only the functions FI ,
which are associated to the Lie derivative of the ξI on the
minisuperspace potential, change. Of course, the potential
needs to be smooth enough for solutions to exist in some
domain of definition for the Ω, β1, and β2.
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