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The accelerated expansion of the Universe can be interpreted as a quest for satisfying holographic
equipartition. It can be expressed by a simple law, ΔV ¼ ΔtðNsurf − NbulkÞ which leads to the standard
Friedmann equation. This novel idea suggested by Padmanabhan in the context of general relativity has
been generalized by Cai and Yang et al. to Gauss-Bonnet and Lovelock gravities for a spatially flat universe
in different methods. We investigate the consistency of these generalizations with the constraints imposed
by the maximum entropy principle. Interestingly, both these generalizations imply entropy maximization
even if their basic assumptions are different. Further, we analyze the consistency of Verlinde’s emergent
gravity with the maximum entropy principle in the cosmological context. In particular, we consider the
generalization suggested by Shu and Gong, in which an energy flux through the horizon is assumed, in
addition. Even though the conceptual formulations are different, these two emergent perspectives of gravity
describes a universe which behaves as an ordinary macroscopic system. Our results provide further support
to the emergent gravity paradigm.
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I. INTRODUCTION

The deep connection between gravitational dynamics
and thermodynamics motivates the emergent interpretation
of gravity. Such a connection was realized after the
discovery of black hole thermodynamics by Bekenstein
and Hawking [1–4]. A great step in this field was put
forward by Jacobson. He obtained Einstein’s field equa-
tions from the fundamental Clausius relation on a local
Rindler causal horizon [5]. Following this, various schemes
for relating gravity and thermodynamics were discussed
for a variety of gravity theories [6,7]. Later, in [8]
Padmanabhan showed that Newton’s law of gravity can
be derived by combining the equipartition law of energy for
the horizon degrees of freedom (d.o.f.) and thermodynamic
relation S ¼ E=2T, where S and T are the entropy and
temperature of the horizon and E is the active gravitational
mass.
Verlinde introduced gravity as an entropic force caused

due to the changes in entropy associated with the positions
of material bodies [9]. He derived Newton’s law of
gravitation and Einstein’s field equations using the holo-
graphic principle and equipartition law of energy. Using
this idea, the authors of [10,11] derived Friedmann equa-
tions through different methods. In [12], Miao and Wang
discussed the implications of holographic dark energy in
the entropic force frame work. In a recent work, Verlinde
explains the possibility of a common origin for dark matter

and dark energy [13]. This entropic force formalism also
attracted a lot of investigations [14–19].
Most of these studies treat the gravitational field as an

emergent phenomenon assuming the spacetime background
as pre-existing. Recently, a more elegant way to view
gravity as an emergent phenomenon was suggested by
Padmanabhan where spacetime itself is considered as an
emergent structure [20]. However it is conceptually difficult
to think of time as being emerged from some pregeometric
variables. Also it is hard to imagine the space around finite
gravitating systems as emergent. But, Padmanabhan argued
that these difficulties disappear in the cosmological context,
when we choose the time variable as the proper time of the
geodesic observers to whom the cosmic microwave back-
ground radiation appears homogeneous and isotropic. Thus
the spatial expansion of the universe can be described as the
emergence of cosmic space with the progress of cosmic
time. He successfully derived the Friedmann equation of a
flat Friedmann-Lamaitre-Robertson-Walker (FLRW) uni-
verse in general relativity, using this new idea.
Cai generalized Padmanabhan’s proposal to a higher

nþ 1 dimensional spacetime. By properly modifying the
d.o.f. and the volume increase, he also obtained the
Friedmann equation of a flat FLRW universe in Gauss-
Bonnet and Lovelock gravity [21]. With some modifica-
tions, this procedure was extended by Sheykhi to derive
the dynamical equations of the universe with a spatial
curvature [22]. Following this, Ali arrived at the Friedmann
equations by considering a general form of entropy
[23]. Another generalization was suggested by Yang et al.
for the flat universe [24] which is further extended by
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Wen-Yuan Ai et al. for the nonflat case [25]. Instead of
modifying the d.o.f., in [24,25] the change in Hubble volume
is assumed to be proportional to a more general function
fðΔN;NsurfÞ, where ΔN ¼ Nsurf − Nbulk. The authors of
[26], extended Padmanabhan’s proposal to a non flat
universe by using the appropriate invariant volume instead
of the volume of the sphere in a flat space. In Ref. [27],
Padmanabhan’s conjuncture and its modified versions were
obtained from Friedmann equations. This paper also dis-
cusses the difficulties in generalizing Padmanabhan’s pro-
posal to a nonflat universe. In [28], Friedmann equations
are extracted in the brane world scenarios. This emergent
paradigm has been further explored by Padmanabhan and
his collaborators from a variety of perspectives [29–31].
For recent investigations on this novel idea, see [32–34].
As is well known, every macroscopic system evolves to a

state of thermodynamic equilibrium consistent with their
constraints [35]. The entropy of such systems should attain
a certain maximum value in the long run. In [36], it is
shown that our universe with a Hubble expansion history
behaves as an ordinary macroscopic system. In a previous
work, we have proved the equivalency of holographic
equipartition law and the maximum entropy principle in
the context of general relativity [37]. In this paper we study
the consistency of the generalized holographic equiparti-
tion in [21,24] with the maximum entropy principle for a
spatially flat FLRW universe. It is also our great interest to
see whether Verlinde’s hypothesis implies entropy maxi-
mization. We analyze Verlinde’s proposal in the cosmo-
logical context following the method in [11], suggested by
Shu and Gong and will check its consistency with the
maximum entropy principle.
The paper is organized as follows. In the upcoming

section, we obtain the constraints imposed by the gener-
alized second law (GSL) and the maximum entropy
principle for a spatially flat FLRW universe in nþ 1
dimensional Einstein’s gravity, Gauss-Bonnet gravity and
Lovelock gravity. We will also prove the consistency of an
asymptotically de Sitter universe with these constraints
obtained. In Sec. III, we analyze whether the modified
equipartition law in [21,24] ensures the maximization of
entropy. In Sec. IV, we will check the consistency of
Verlinde’s entropic force formalism with the maximization
entropy principle in the cosmological context. Section V
compares Padmanabhan’s proposal with Verlinde’s hypoth-
esis and Sec. VI is devoted to our conclusions.

II. MAXIMIZATION OF ENTROPY

An ordinary, isolated macroscopic system spontaneously
evolves to an equilibrium state of maximum entropy
consistent with their constraints. This implies,

_S ≥ 0; always ð1Þ

S̈ < 0 at least in long run; ð2Þ

where “S” denotes the total entropy of the universe and dots
indicate the derivatives with respect to a relevant variable
like cosmic time. Based on the Hubble expansion history,
Pavan and Radicella have shown that our universe behaves
as an ordinary macroscopic system that proceeds to a
maximum entropy state [36]. In this section we extend this
procedure to nþ 1 dimensional Einstein’s gravity, Gauss
Bonnet gravity and Lovelock gravity for a spatially flat
universe.
The total entropy of the universe, S can be approximated

as the horizon entropy since the entropy contribution from all
other components is negligibly small [38]. Using Bekenstein
result, the horizon entropy can be expressed as [1,3],

S ¼ Anþ1

4Ln−1
p

; ð3Þ

where A ¼ nΩn=Hn−1, for n ≥ 3, withΩn being the volume
of the unit n-sphere. Here Lp represents the Plank length and
H is the Hubble parameter. The rate of change of entropy
with respect to the cosmic time is,

_S ¼ −
nðn − 1ÞΩn

4Ln−1
p

_H
Hn : ð4Þ

Since the Hubble parameter H is always positive for an
expanding universe, the horizon entropy will not decrease,
if _H ≤ 0. The measurements on the Hubble parameter
[39,40] and the numerical simulations [41,42] have con-
firmed that, _H < 0. Hence the entropy of the universe
will never decrease. Even though this implies a possible
thermodynamic evolution, whether it attains a state of
equilibrium or not, is determined by the constraint on the
second derivative of the entropy. The system approaches
an equilibrium state, if the entropy corresponding to it
is maximum. A maximum entropy state is characterized
by the inequality, S̈ < 0 to be satisfied at least in the
long run. From Eq. (4), we have the second derivative of
entropy,

S̈ ¼ nðn − 1ÞΩn

4Ln−1
p

��
n _H2

Hnþ1

�
−
�
Ḧ
Hn

��
: ð5Þ

Then, one can immediately find the constraint for entropy
maximization,

n

�
_H2

Hnþ1

�
<

�
Ḧ
Hn

�
; ð6Þ

in the asymptotic limit. As per the observational data, we
have, Ḧ > 0 and _H → 0 in the asymptotic limit [39–42]
and thus the above inequality holds true for an expanding
universe. This shows the consistency of a nþ 1 dimen-
sional flat FLRW universe in Einstein’s gravity with the
maximum entropy principle.
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So far we have discussed the conditions for entropy
maximization in Einstein’s gravity, where the horizon
entropy follows the area law. But in Gauss-Bonnet and
Lovelock gravity, horizon entropy takes more complex
form. Hence it is worth noting, the conditions for entropy
maximization in those gravity theories.
The Gauss-Bonnet gravity is a natural extension of

Einstein’s gravity such that, the Gauss-Bonnet action
consist of second order terms, in addition. The entropy-
area law of the spherically symmetric and static black hole
in Gauss-Bonnet gravity is assumed to be satisfied for the
FRW universe also. Following this, the entropy of the
Hubble horizon can be expressed as [43,44],

S ¼ A
4Ln−1

p

�
1þ n − 1

n − 3

2α̃

H−2

�
: ð7Þ

Here A ¼ nΩn=Hn−1 and α̃ ¼ ðn − 2Þðn − 3Þα, where α
is the Gauss Bonnet coefficient which is positive [45].
Then, the rate of change of entropy can be calculated from
Eq. (7) as,

_S ¼ −
nðn − 1ÞΩn

4Ln−1
p Hn ð1þ 2α̃H2Þ _H; ð8Þ

where n ≥ 4. Since _H ≤ 0, the generalized second law will
be satisfied. When t → ∞, _H → 0 and _S → 0 indicating a
state of equilibrium in the final stage.
Taking the time derivative of Eq. (8), we find

S̈ ¼ nðn− 1ÞΩn

4Ln−1
p Hnþ1

½ _H2½nþ ð2n− 4Þα̃H2�−½HḦð1þ 2α̃H2Þ��:

ð9Þ

Since Ḧ is always positive as per the observational data, the
entropy maximization demands,

j _H2½nþ ð2n − 4Þα̃H2�j < jHḦð1þ 2α̃H2Þj ð10Þ

in the final stage. Since _H → 0, in the asymptotic limit the
above inequality holds and the entropy of the apparent
horizon will never grow unbounded.
We will now move to the more general Lovelock gravity.

Lovelock gravity [46] is a generalization of Gauss-bonnet
gravity, such that the Lagrangian consists of dimensionally
extended Euler densities. The entropy of the horizon in
Lovelock gravity is assumed to be of the same form as the
entropy of black hole and is given by,

S ¼ A
4Ln−1

p

Xm
i¼1

iðn − 1Þ
ðn − 2iþ 1Þ ĉiH

2i−2 ð11Þ

where m ¼ n=2 and the coefficients ĉi are given by ĉ0 ¼
c0

nðn−1Þ, ĉ1 ¼ 1, ĉi ¼ ci
Q

m
j¼3ðnþ 1 − jÞi > 1. One can

obtain the rate of change of horizon entropy in Lovelock
gravity from Eq. (11) as,

_S ¼ −
nðn − 1ÞΩn

_H
4Ln−1

p Hnþ2

Xm
i¼1

iĉiH2i: ð12Þ

Since _H ≤ 0 for an asymptotically de Sitter universe, the
above equation ensures its consistency with the generalized
second law. Also when t → ∞, _H → 0, indicating a state of
equilibrium in the final stage. Now we will consider the
second derivative of entropy by differentiating Eq. (12),

S̈ ¼ nðn − 1ÞΩn

4Ln−1
p

Xm
i¼1

iĉiH2i

�
ðnþ 2 − 2iÞ

_H2

Hnþ3
−

Ḧ
Hnþ2

�
:

ð13Þ

Since Ḧ is always positive, the horizon entropy tends to
some maximum value if,

����
Xm
i¼1

iĉiH2iðnþ 2 − 2iÞ
_H2

Hnþ2

���� <
����
Xm
i¼1

iĉiH2i Ḧ
Hnþ2

���� ð14Þ

in the long run. Since _H → 0, when t → ∞, the above
inequality holds true in the last stage of evolution indicating
the entropy maximization.
Here we have discussed the constraints imposed by the

GSL and the maximum entropy principle for a flat FLRW
universe in nþ 1 dimensional Einstein, Gauss Bonnet and
Lovelock gravity. These constraints are generally satisfied
by an asymptotically de Sitter universe. This entropy
maximization in the final de Sitter epoch has been already
emphasized in several previous studies [47–49] from
different perspectives. It is worth mentioning that in
Ref. [50], the rise of complexity content and the validity
of GSL demands an asymptotically de Sitter universe with
equation of state parameter, ω ≥ −1. On the other hand, in
[51,52], the authors discuss the thermodynamic motivation
for the existence of dark energy. The dark energy compo-
nent also seems unavoidable for the attainment of equilib-
rium in the braneworld scenario [53]. Since the attainment
of equilibrium demands an asymptotically de Sitter uni-
verse, our results also point in the same direction.

III. HOLOGRAPHIC EQUIPARTITION AND
ENTROPY MAXIMIZATION

Our aim here is to seewhether the generalized holographic
equipartition in [21,24] leads to the maximization of entropy.
In [37], it is shown that the holographic equipartition law
suggested by Padmanabhan for a flat universe effectively
implies entropy maximization in the context of Einstein’s
gravity. In this section we extend this procedure for a
spatially flat FLRW universe in nþ 1 Einstein’s gravity,
Gauss Bonnet gravity and Lovelock gravity.
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A. Friedmann equations from emergence of space

Here we will briefly review the necessary background
to which our work is closely related. We start with
Padmanabhan’s idea of holographic equipartition which
is followed by a brief discussion on the generalized
holographic equipartition law in [21,24].
Padmanabhan observed that, a pure de Sitter universe

with a Hubble constant H obeys holographic principle in
the form,

Nsurf ¼ Nbulk: ð15Þ

Here Nsurf is the number of d.o.f. on the Hubble horizon
with radius H−1 and is given by,

Nsurf ¼
4π

L2
pH2

: ð16Þ

where L2
p is the Plank area, attributed to one d.o.f. Nbulk

denotes the effective number of d.o.f. residing in the region
enclosed by the horizon and is given by,

Nbulk ¼
jEj

1
2
kBT

: ð17Þ

where jEj ¼ jρþ 3pjV, the Komar energy contained inside
the Hubble volume, V ¼ 4π

3H3; kB, the Boltzmann constant
and T ¼ H

2π, the Gibbon’s Hawking temperature. From the
above equations, one could reach at the condition,
jEj ¼ 1

2
NsurfkBT. This equality can be called as holo-

graphic equipartition since it relates the d.o.f. in the bulk
region of space, determined by the equipartition condition
to the d.o.f. on its boundary surface.
Even though the present universe is not exactly de Sitter,

many of the astronomical observations indicate that it is
proceeding to a pure de Sitter state. Based on these facts, it
is suggested that the accelerated expansion of the universe
can be explained as a quest for satisfying holographic
equipartition. It can be expressed by a simple law,

dV
dt

¼ L2
pðNsurf − NbulkÞ: ð18Þ

where V is again the Hubble volume and t is the cosmic
time in Planck units (kB ¼ c ¼ ℏ ¼ 1). Substituting for
each term in (18) and by integrating with the help of
continuity equation one gets the standard Friedmann
equation.
We will now turn our attention to the generalized

holographic equipartition law suggested by Cai [21]. For
a spatially flat FLRW universe in nþ 1 dimensional space
time, the surface d.o.f. can be defined as,

Nsurf ¼
αA
Ln−1
p

ð19Þ

where A ¼ nΩn=Hn−1, and

Nbulk ¼
−4πΩn

Hnþ1

ðn − 2Þρþ np
n − 2

: ð20Þ

Also the equipartition law given in (18) is modified for an
(nþ 1) dimensional space as,

α
dV
dt

¼ Ln−1
p ðNsurf − NbulkÞ: ð21Þ

where,V ¼ Ωn=Hn, thevolumeof the n-sphere. Substitution
of the d.o.f. in Eqs. (19) and (20) in the holographic
equipartition law given in (21) gives the Friedmann equation
of the flat FLRW universe in nþ 1 dimensional space time.
Now we will briefly describe the extension of the above
method to Gauss-Bonnet gravity andmore general Lovelock
gravity.
In Gauss-Bonnet gravity, the effective area correspond-

ing to the horizon entropy can be defined from Eq. (7) as,

Ã ¼ A

�
1þ n − 1

n − 3

2α̃

H−2

�
: ð22Þ

The corresponding increase in effective volume is given by,

dṼ
dt

¼ −
nΩn

Hnþ1
ð1þ 2α̃H2Þ _H: ð23Þ

From the above expression, the d.o.f. at the apparent
horizon can be assumed as,

Nsurf ¼ α
nΩn

Hnþ1Ln−1
p

ðH2 þ α̃H4Þ: ð24Þ

The d.o.f. in the bulk is still given by (20). Then, from
Eq. (21) the Friedmann equation of the flat FLRW universe
in Gauss-Bonnet gravity can be derived.
In Lovelock gravity, the increase in effective volume can

be calculated from (11) as,

dṼ
dt

¼ −
nΩn

Hnþ3

�Xm
i¼1

iĉiH2i

�
_H: ð25Þ

From the above equation the surface d.o.f. can be defined as,

Nsurf ¼ α
nΩn

Hnþ1Ln−1
p

Xm
i¼1

ĉi H2i: ð26Þ

As described earlier from (20), (25), (26), and (21) one can
arrive at the Friedmann equation of a flat FLRW universe in
Love1ock gravity.
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Inspired by this work, Yang et al. proposed another
generalization of Padmanabhan’s holographic equipartition
law [24]. In this case, the surface d.o.f. on the Hubble
surface is assumed to be proportional to the area of the
surface regardless of the gravity theory while the bulk d.o.f.
obeys the equipartition law of energy. Here the emergence
of cosmic space is described by a general form of a
dynamical equation,

dV
dt

¼ Ln−1
p fðΔN;NsurfÞ; ð27Þ

where, V ¼ Ωn=Hn, irrespective of the gravity theory and
ΔN ¼ Nsurf − Nbulk. The authors have used the relations in
(19) and (20) for defining Nsurf and Nbulk respectively in an
nþ 1 dimensional space time. If fðΔN;NsurfÞ is chosen to
be the most simplest form fðΔNÞ ¼ ΔN

α , as in [8,21], one
could arrive at the Friedmann equations for a flat universe
in Einstein’s gravity. In order to derive the Friedmann
equation in Gauss-Bonnet gravity one has to choose,

fðΔN;NsurfÞ ¼
ΔN=αþ α̃KðNsurf=αÞ1þ 2

1−n

1þ 2α̃KðNsurf=αÞ 2
1−n

; ð28Þ

where K ¼ ðnΩn=Ln−1
p Þ 2

n−1 and α̃ is a parameter with length
dimension 2. If fðΔN;NsurfÞ is assumed to be a more
general function,

fðΔN;NsurfÞ ¼
ΔN=αþP

m
i¼2 c̃i KiðNsurf=αÞ1þ2i−2

1−n

1þP
m
i¼2 ic̃iKiðNsurf=αÞ2i−21−n

; ð29Þ

where Ki ¼ ðnΩn=Ln−1
p Þ2i−2n−1 , m ¼ ½n=2� and c̃i are some

coefficients with the length dimension (2i − 2); one can
arrive at the Friedmann equation of the nþ 1 dimensional
spatially flat FLRW universe in Lovelock gravity.

B. Holographic equipartition and Entropy
maximization: Analysis of Cai’s proposal

Let us consider a spatially flat nþ 1 dimensional
universe in Einstein’s gravity. The time derivative of the
cosmic volume, V ¼ Ωn=Hn, can be calculated as,

dV
dt

¼ −nΩn

_H
Hnþ1

: ð30Þ

Now recalling Eq. (4), we can write

dV
dt

¼ 4Ln−1
p

Hðn − 1Þ
_S: ð31Þ

Then, holographic equipartition law in Eq. (21), can be
written as,

_S ¼ ðn − 2ÞH
2

ðNsurf − NbulkÞ: ð32Þ

For an expanding universe, we have dV
dt ≥ 0, which

demands

Nsurf − Nbulk ≥ 0: ð33Þ

This in turn ensures the non-negativity of the r.h.s. of
Eq. (32). Consequently the generalized second law in the
form _S ≥ 0 will be satisfied.
Taking the differential of (32), we get

S̈ ¼ ðn − 2Þ _H
2

ðNsurf − NbulkÞ þ
ðn − 2ÞH

2

×
d
dt

ðNsurf − NbulkÞ: ð34Þ

We have in the asymptotic limit, Nbulk → Nsurf and the first
term in the above expression vanishes. As per the holo-
graphic equipartition law, the evolution of the universe can
be explained as a tendency to equalize the d.o.f. on the
horizon and that in the bulk. In other words, one can say
that the universe is trying to minimize the holographic
discrepancy with the progress of time. Since Nbulk cannot
exceed Nsurf , we have “Nsurf − Nbulk,” always positive and
tending to zero in the asymptotic limit. This in turn implies
that

d
dt

ðNsurf − NbulkÞ < 0 ð35Þ

which guarantees the nonpositivity of S̈ in the long run,
ensuring the consistency with the maximum entropy
principle. Also, substituting (19) and (20) in (34) we get
the condition for S̈ < 0 as,

n

�
_H2

Hnþ1

�
<

�
Ḧ
Hn

�
; ð36Þ

This is nothing but the constraint in Eq. (6) we obtained in
the last section for the entropy maximization which is
satisfied by an asymptotically de Sitter universe.
Next, we will investigate whether the holographic equi-

partition law proposed in the context of Gauss-Bonnet
gravity implies entropy maximization. Combining (23)
and (8), one can relate the rate of change of effective
volume within the apparent horizon to the rate of change
of entropy as,

dṼ
dt

¼ 4Ln−1
p

Hðn − 1Þ
_S: ð37Þ

Note that the above equation is in the same form of Eq. (31)
withV and _S are replacedwith the corresponding expressions
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in Gauss-Bonnet gravity. Hence, the holographic equiparti-
tion law in Eq. (21) can be rewritten as,

_S ¼ ðn − 2ÞH
2

ðNsurf − NbulkÞ: ð38Þ

just as in the case before, where Nsurf and Nbulk are given by
Eq. (24) andEq. (20) respectively. For an expanding universe,
wehave dV

dt ≥ 0,whichdemandsNsurf − Nbulk ≥ 0.Hence the
above equation guarantees the consistency of the universe
with the generalized second law. Now we have the second
derivative of entropy,

S̈ ¼ ðn − 2Þ _H
2

ðNsurf − NbulkÞ þ
ðn − 2ÞH

2

×
d
dt

ðNsurf − NbulkÞ ð39Þ

aswehave seen earlier.Here also, the first termvanishes in the
asymptotic limit and the entropy tends to a certain maximum
value if, d

dt ðNsurf − NbulkÞ < 0.
Since, the universe is trying to decrease the holographic

discrepancy with the progress of time, the above inequality
holds and the entropy gets saturated in the asymptotic limit.
Substituting the Eqs. (24) and (20) in (39), we get the
constraint for the nonpositivity of S̈,

j _H2½nþ ð2n − 4Þα̃H2�j < jHḦð1þ 2α̃H2Þj ð40Þ

which is same as the inequality in (10) that we obtained
earlier for the entropy maximization in Gauss-Bonnet
gravity.
Let us now generalize this procedure to Lovelock

gravity. Recalling the Eqs. (21), (25), and (12), the holo-
graphic equipartition law in Lovelock gravity can be
expressed as,

_S ¼ ðn − 2ÞH
2

ðNsurf − NbulkÞ; ð41Þ

where Nsurf and Nbulk are given by Eq. (26) and Eq. (20)
respectively. Note that the above relation takes the same
form as in the Einstein’s and Gauss-Bonnet gravity. We
have Nsurf − Nbulk ≥ 0 for an expanding universe which
guarantees the consistency with the generalized second law,
_S ≥ 0. The second derivative of entropy takes the form,

S̈ ¼ ðn − 2Þ _H
2

ðNsurf − NbulkÞ þ
ðn − 2ÞH

2

×
d
dt

ðNsurf − NbulkÞ: ð42Þ

Here, S̈ will be negative in the asymptotic limit, if
d
dt ðNsurf − NbulkÞ < 0, just as in the previous case. As the
holographic discrepancy is a decreasing function of time, the

above inequalitywill be satisfied in the long run. Substituting
(26) and (20) in Eq. (42), we obtained the constraint for
entropy maximization,

����
Xm
i¼1

iĉiH2iðnþ 2 − 2iÞ
_H2

Hnþ2

���� <
����
Xm
i¼1

iĉiH2i Ḧ
Hnþ2

����: ð43Þ

As expected, this is same as the constraint (14) we have
obtained for the entropy maximization in Lovelock gravity in
the previous section. Thus, the validity of the holographic
equipartition law ensures the validity of maximum entropy
principle. The tendency for satisfying the holographic equi-
partition can be explained as a tendency for maximizing
entropy in Einstein, Gauss Bonnet and Lovelock gravity
theories for a flat FLRWuniverse. Since the law of emergence
has the same form in Cai’s proposal irrespective of the gravity
theories, the Eq. (32), (38), (41) and their derivatives take the
same form, although the definitions of each term in those
equations are different. The above discussions strengthens the
deep connection between the emergence of space and the
entropy maximization.

C. Holographic equipartition and
entropy maximization: Analysis of

Yang et al.’s proposal

Even though Cai obtained Friedmann equations for a flat
universe in Gauss-Bonnet and Lovelock gravity, his work
was criticized for using effective volume for the volume
change and plain ordinary volume for defining the bulk
d.o.f. In order to overcome this discrepancy Yang et al.
used the plain ordinary volume for defining both the rate of
emergence and the bulk d.o.f. [24]. In the context of general
relativity, the generalized holographic law given in Eq. (27)
is not different from Cai’s proposal. Then, as we have seen
earlier the holographic discrepancy, ΔN vanishes in the
long run ensuring the consistency with the generalized
second law and the maximum entropy principle. On the
other hand, in Gauss-Bonnet and Lovelock gravity,“ΔN”
is generally nonvanishing. Even in the final de Sitter state,
the holographic discrepancy will not be zero. In this case,
the emergence of cosmic space could not be explained as a
tendency for equalizing the d.o.f. Hence it is worth
investigating whether this generalization fulfills the gen-
eralized second law and the maximum entropy principle.
Now, from Eqs. (8), (27), and (28), the rate of change of

entropy with respect to the cosmic time can be expressed as,

_S ¼ ðn − 1ÞH
4

ð1þ 2α̃H2ÞfðΔN;NsurfÞ: ð44Þ

Since dV=dt ≥ 0, for an expanding universe, Eq. (27)
guarantees the non-negativity of fðΔN;NsurfÞ and thus
ensures the consistency with the generalized second law.
Differentiating the above equation, we get
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S̈ ¼ ðn − 1Þ
4

d
dt

ðHð1þ 2α̃H2ÞÞfðΔN;NsurfÞ

þ ðn − 1Þ
4

Hð1þ 2α̃H2Þ d
dt

ðfðΔN;NsurfÞÞ: ð45Þ

In order to fulfill the maximum entropy principle, the right-
hand side (r.h.s.) of the above equation must be negative in
the long run. In the asymptotic limit, when t → ∞, the rate of
emergence of space, dV=dt will tend to zero. Hence as per
equation (27), fðΔN;NsurfÞ → 0 and the first term in the
above expression vanishes. Since the rate of emergence is
always positive, tending to zero in the long run, from
Eq. (27), we get

d
dt

ðfðΔN;NsurfÞ < 0 ð46Þ

in the final stage. This guarantees the nonpositivity of “S̈” in
the last stage of evolution and thus ensures the consistency
with the maximum entropy principle.
In Lovelock gravity, from Eqs. (12), (27), and (29), the

change in entropy can be obtained as,

_S ¼ ðn − 1Þ
4

Xm
i¼1

iĉiH2i−1fðΔN;NsurfÞ: ð47Þ

and its derivative,

S̈ ¼ ðn − 1Þ
4

d
dt

�Xm
i¼1

iĉiH2i−1
�
fðΔN;NsurfÞ

þ ðn − 1Þ
4

Xm
i¼1

iĉiH2i−1 d
dt

ðfðΔN;NsurfÞÞ: ð48Þ

As per the earlier arguments, the above equations guarantee
the validity of the generalized second law and the maxi-
mum entropy principle. What is striking in our result is that
even if the law governing the emergence of space in [24]
does not lead to the condition Nsurf ¼ Nbulk, it guarantees
the validity of the generalized second law and the maxi-
mum entropy principle. In short, a flat FLRW universe that
obeys the generalized holographic equipartition law in
[21,24], behaves as an ordinary macroscopic system in
the context of Einstein, Gauss-Bonnet, and Lovelock
gravity. In the light of above discussions, the achievement
of holographic equipartition could be interpreted as the
attainment of maximum entropy in a spatially flat universe.

IV. ENTROPY MAXIMIZATION IN VERLINDE’S
EMERGENT GRAVITY

In [9], Verlinde introduced the treatment of gravity as an
emergent phenomenon. He interprets gravity as an entropic
force experienced by a material body when it approaches
a holographic screen. We, here, consider some of the

arguments in [9] and analyze the consistency of this
proposal with the generalized second law and the maximum
entropy principle in the cosmological context.
In [9], the number of bits of information on a holographic

screen of area A is assumed as,

N ¼ Ac3

Gℏ
: ð49Þ

Then, from the equipartition law, the total energy of the
system can be calculated as,

E ¼ 1

2
NkBT ð50Þ

where T is the temperature on the screen. The energy E in
the above expression is assumed to be equal to Mc2 where
M represents the mass that would emerge on the part of
space enclosed by the screen. Verlinde arrive at Newton’s
law of gravitation and Einstein’s field equations from these
postulates.
By generalizing this proposal to dynamic spacetimes

Shu and Gong [11] and Cai et al. [10] derive Friedmann
equations using different methods. We assume the Hubble
horizon as the boundary of the universe, as earlier, and
hence follow the method of [11]. Apart from the equi-
partition law and the holographic principle the authors of
[11] assume an energy flux through the horizon. If there is
an energy flux through the horizon, the energy ε enclosed
by it will increase in course of time. Consequently, as per
the equipartition law, the temperature and the number of
bits on the screen changes. If the universe is assumed to be
flat, the radius of the apparent horizon will be equal to the
Hubble radius, rH. Then, the change in total energy in an
infinitesimal interval of time dt can be expressed as,

dε ¼ 1

2
NHdTH þ 1

2
THdNH ð51Þ

where NH ¼ 4πrH2

L2
p

and TH ¼ ℏ
2πrH

, the Hawking temper-

ature. Here the increase in the number of bits on the Hubble
sphere,

dNH ¼ 8πrH
L2
p

drH ð52Þ

and the change in Hawking temperature is,

dTH ¼ −
ℏ

2πrH2
drH ð53Þ

as in [11]. This change in energy, dε will be equal to the
energy flow through the horizon within a time interval dt
which is given by,

−dE ¼ dε ¼ 4πrH3ðρþ pÞHdt: ð54Þ

Combining Eqs. (51), (52), and (53), we arrive at,

ENTROPY MAXIMIZATION IN THE EMERGENT GRAVITY … PHYS. REV. D 99, 023535 (2019)

023535-7



dε
dt

¼ −
_H

L2
pH2

: ð55Þ

From the definition of horizon entropy, S ¼ A=4 the above
relation can be expressed as,

T
dS
dt

¼ −
_H

L2
pH2

: ð56Þ

With the help of Friedmann equation, the energy flux
through the horizon can be defined from equation (54) as,

dε
dt

¼ 4π2ð1þ ωÞ
H2

ρ: ð57Þ

If the universe is assumed to be asymptotically de Sitter, the
equation of state, ω → −1, when t → ∞. In consequence,
as per the above equation dε

dt → 0. Also for ω ≥ −1, dεdt ≥ 0.
Here the universe is trying to minimize the energy flux
through the horizon with the progress of cosmic time. In
other words, the evolution of the universe can be interpreted
as a tendency for minimizing the flux through the horizon.
From Eqs. (55) and (56), the rate of change of entropy can
be expressed as,

_S ¼ 2π

H
dε
dt

: ð58Þ

Since dε
dt ≥ 0 for ω ≥ −1, the law of emergence is consistent

with the GSL.
Now, we will check the convexity condition for the

maximization of entropy. Differentiating the above equa-
tion once again with respect to time, we get

S̈ ¼ 8π2

H3
ð1þ ωÞ_ρ − 24π2 _H

H4
ð1þ ωÞρþ 8π2

H3
_ωρ: ð59Þ

In an asymptotically de Sitter universe, ω → −1, as t → ∞
and the first two terms in the above expression vanishes.
Since _ω is always negative the total entropy will never grow
unbounded. Thus, Verlinde’s proposal which is generalized
in [11] is in agreement with the generalized second law and
the maximum entropy principle.

V. PADMANABHAN’S PROPOSAL VS
VERLINDE’S HYPOTHESIS

Padmanabhan describes the evolution of the universe as
a quest for decreasing the holographic discrepancy [20].
But, based on the arguments in [11], one can interpret the
cosmic evolution as a tendency for reducing the energy flux
through the horizon. Although the basic assumptions are
different, the approaches in [20,11] leads to the same results
in the context of cosmology. Both these proposals assure
the validity of GSL and the maximum entropy principle.

Moreover, both of them describe a universe that proceeds to
a pure de Sitter state and thus demand the presence of dark
energy which is not too different from the cosmological
constant. The authors of [15], have pointed out a possible
connection between Verlinde’s and Padmanabhan’s argu-
ments by proposing a generalized entropy.
It is worthmentioning that, the authors of [11], assume the

conventional first law of black hole dynamics, TdS ¼ dE,
where dE is the energy flux through the horizon. This energy
flux, dE is getting reduced and finally vanishes, ensuring
the consistency with the maximum entropy principle.
Meanwhile, Padmanabhan’s holographic equipartition law
could be expressed in the form, TdS ¼ dEG þ PdV, where
we have an extra term PdV. Here, EG ¼ c4

G ðAH
16πÞ

1
2, is the

energy associated with the horizon of area AH and PdV is
the work function of the matter source. For detailed dis-
cussion see [54,55].When the universe evolves to the final de
Sitter state with a constant Hubble parameter, both dEG and
PdV will vanish resulting in the maximization of entropy.
But, one could easily reach at themaximumentropyprinciple
directly from the holographic equipartition law [37].
We wish to emphasize that the approach in [11] is

slightly different from Verlinde’s original proposal, as the
authors assume an energy flux through the horizon in
addition. Now, following Verlinde’s proposal in [9], the
total energy can be defined as,

E ¼ 1

2
NkBT ¼ Mc2 ð60Þ

where N ¼ Ac3
Gℏ , the d.o.f. on the holographic screen. In an

FLRW universe “M” is usually taken as the Komar mass
jρþ 3pjV [10,16], instead of the total mass ρV. Hence,
assuming the Hubble horizon as the boundary of the
universe the above equation can be written as,

N ¼ jEj
1
2
kBT

; ð61Þ

where jEj ¼ 4πρj1þ3ωj
3H3 , the Komar energy inside the Hubble

volume. Assuming a thermal equilibrium between the
horizon and the fluid inside the horizon, we take T ¼
H=2π, the Gibbons-Hawking temperature. Also, in
Ref. [56], it is argued that even though the radiation can
not reach thermal equilibrium with the horizon, nonrela-
tivistic matter may and dark energy might. With the help of
Friedmann equation, the Eq. (61) can be expressed as,

4π

L2
pH2

¼ j1þ 3ωj 2πc
3

GℏH2
: ð62Þ

In the final de Sitter state ω → −1 and the r.h.s. of the above
equation becomes equal to the l.h.s. Thus, in a pure de
Sitter universe, the d.o.f. on the horizon can be defined as,
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Nsurf ¼
jEj

1
2
kBT

: ð63Þ

This is nothing but Padmanabhan’s holographic equiparti-
tion condition, since it relates the d.o.f. on the surface to the
d.o.f. determined by the equipartition condition.
But, it has to be noted that Eq. (62) holds true only in the

final de Sitter state. Generally we have ω ≥ −1, throughout
the evolution for a universe that tends to a final de Sitter
state. For instance, ω ¼ 1

3
in the radiation dominated phase,

ω ¼ 0 for the matter dominated phase and ω ¼ −1, for the
dark energy dominated phase. Hence Eq. (62) should be
rewritten as the inequality,

4π

L2
pH2

≥ j1þ 3ωj 2πc
3

GℏH2
: ð64Þ

From the definitions ofNsurf andNbulk, the above inequality
can be expressed as,

Nsurf ≥ Nbulk: ð65Þ

In the final de Sitter state Nbulk approaches Nsurf and the
holographic equipartition is achieved. Conversely, starting
from Padmanabhan’s argument Nsurf ≥ Nbulk one can
deduce the inequality,

Nsurf ≥
jEj

1
2
kBT

; ð66Þ

which reduces to E ¼ 1
2
NkBT ¼ Mc2, in the asymptotic

limit. Hence if we assume the Hubble horizon as the
boundary of the universe Verlinde’s assumption in Eq. (60)
can be obtained as a limiting case of Padmanabhan’s
relation in (65). However, we wish to highlight the fact
that the approaches in [9,20] are conceptually different and
there exist no equivalency between them [57].

VI. CONCLUSION

In this paper, we investigate the consistency of the
generalized holographic equipartition with the maximum
entropy principle. In particular, we have considered the
generalizations in [21,24], where the authors extended
Padmanabhan’s proposal to Gauss-Bonnet and Lovelock
gravities for a spatially flat universe. We have also
analyzed the consistency of Verlinde’s entropic force
formalism with the maximum entropy principle in the
cosmological context.
In [36], Pavon and Radicella have shown that our

universe behaves as an ordinary macroscopic system that
proceeds to a maximum entropy state. But, their results are
restricted to the 3þ 1 dimensional Einstein’s gravity.
Hence we first extended the procedure in [36] to nþ 1
dimensional Einstein, Gauss-Bonnet, and Lovelock gravities

and obtained the constraints for the maximization of entropy.
These constraints are generally satisfied by an expanding
universe that proceeds to a final de Sitter epoch.
One of our main aimwas to check whether the generalized

holographic equipartition in [21,24] imply entropy maximi-
zation. Following the modified holographic equipartition
suggested by Cai in [21], we have found that the condition
_S ≥ 0 implies Nsurf − Nbulk ≥ 0 and S̈ < 0 (in the long run)
leads to d

dt ðNsurf − NbulkÞ < 0 in Einstein, Gauss-Bonnet
and Lovelock gravity theories. We showed that these
conditions are compatible with the respective constraints
that we have obtained for entropy maximization in each
gravity theory. Thus, an asymptotically de Sitter universe
which evolves to minimize the holographic descrepancy
Nsurf − Nbulk proceeds to a maximum entropy state. On the
other hand, following [24], we found that _S ≥ 0 leads to
fðΔN;NsurfÞ → 0 and S̈ < 0 (in the long run) leads to
d
dt ðfðΔN;NsurfÞ < 0 in all these gravity theories. Since the
rate of emergence is always positive tending to zero in
the final stage, fðΔN;NsurfÞ satisfies the above conditions,
ensuring the entropy maximization. What is remarkable here
is that, even if the law of emergence does not guarantees the
condition Nsurf ¼ Nbulk, it ensures the consistency with the
GSL and the maximum entropy principle. The above results
provide a thermodynamic basis for the law of emergence
beyond Einstein’s gravity.
It may be noted that Verlinde’s entropic force formalism

has been generalized to the cosmological context in differ-
ent methods. We have considered one of such generaliza-
tions in [11], where the authors assume an energy flow, dε
through the horizon. Following this approach, we found
that this energy flow through the horizon is getting reduced
in course of time. In this case, the generalized second law,
_S ≥ 0 implies the condition dε

dt ≥ 0. This energy flow
through the horizon will eventually stop in the final de
Sitter state of maximum entropy. Hence it can be argued
that the universe is trying maximize its entropy by reducing
the energy flow through the horizon.
Finally, we made a comparison between Padmanabhan’s

proposal and Verlinde’s hypothesis. According to
Padmanabhan, the evolution of the universe can be inter-
preted as a tendency for decreasing the holographic
discrepancy. But, following the argument in [11], one
can interpret the cosmic evolution as a tendency for
reducing the energy flux through the horizon. However
both these proposals ensures the consistency with the GSL
and the maximum entropy principle. Moreover, both of
them demands an asymptotically de Sitter universe which
in turn implies the presence of dark energy which is not too
different from the cosmological constant. We have already
mentioned that the approach in [11] is slightly different
from Verlinde’s original proposal, as the authors assume
an energy flux through the horizon in addition. It should
also be noted that, one of the basic assumption of Verlinde,
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1
2
NkBT ¼ Mc2 will hold true only in a pure de Sitter

universe. This relation could in general be expressed as
the inequality N ≥ Mc2

1
2
kBT

which has the same form of

Padmanabhan’s assumption Nsurf ≥ Nbulk.
Although the conceptual formulations in [11,20] are

different, both these emergent perspectives of gravity
describes a universe that behave as an ordinary macro-
scopic system. In other words, in both these perspectives,
the cosmic evolution could be explained as a tendency for
maximizing entropy. Our approach gives a thermodynamic

basis and thus provides further support to the emergent
gravity paradigm.

ACKNOWLEDGMENTS

We are grateful to the referee for the valuable suggestions
which helped for the substantial improvement the manu-
script. We are thankful to Prof. M. Sabir for the careful
reading of the manuscript. Thanks are also to IUCAA, Pune
for the hospitality during the visit. P. B. Krishna acknowl-
edges KSCSTE, Govt. of Kerala for the financial support.

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[2] J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974).
[3] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[4] S. W. Hawking, Phys. Rev. D 13, 191 (1976).
[5] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[6] C. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96,

121301 (2006).
[7] T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010).
[8] T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010).
[9] E. P. Verlinde, J. High Energy Phys. 04 (2011) 029.

[10] R.-G. Cai, L.-M. Cao, and N. Ohta, Phys. Rev. D 81, 061501
(2010).

[11] F.-W. Shu and Y. Gong, Int. J. Mod. Phys. D 20, 553
(2011).

[12] L. Miao and Y. Wang, Phys. Lett. B 687, 243 (2010).
[13] E. P. Verlinde, SciPost Phys. 2, 016 (2017).
[14] G. Changjun, Phys. Rev. D 81, 087306 (2010).
[15] H. Moradpour, Int. J. Theor. Phys. 55, 4176 (2016).
[16] H. Moradpour, R. C. Nunes, E. M. C. Abreu, and J. Ananias

Neto, Mod. Phys. Lett. A 32, 1750078 (2017).
[17] A. Sheykhi, Phys. Rev. D 81, 104011 (2010).
[18] A. Sheykhi and S. H. Hendi, Phys. Rev. D 84, 044023

(2011).
[19] R. B. Mann and J. R. Mureika, Phys. Lett. B 703, 167

(2011).
[20] T. Padmanabhan, arXiv:1206.4916.
[21] R.-G. Cai, J. High Energy Phys. 11 (2012) 016.
[22] A. Sheykhi, Phys. Rev. D 87, 061501 (2013).
[23] A. F. Ali, Phys. Lett. B 732, 335 (2014).
[24] K. Yang, Y.-X. Liu, and Y.-Q. Wang, Phys. Rev. D 86,

104013 (2012).
[25] W.-Y. Ai, H. Chen, X.-R. Hu, and J.-B. Deng, Gen. Relativ.

Gravit. 46, 1680 (2014).
[26] M. Eune and W. Kim, Phys. Rev. D 88, 067303 (2013).
[27] E. Chang-Young and D. Lee, J. High Energy Phys. 04

(2014) 125.
[28] A. Sheykhi, M. Dehghani, and S. Hosseini, J. Cosmol.

Astropart. Phys. 04 (2013) 038.
[29] S. Chakraborty and T. Padmanabhan, Phys. Rev. D 90,

084021 (2014).

[30] S. Chakraborty and T. Padmanabhan, Phys. Rev. D 90,
124017 (2014).

[31] S. Chakraborty, J. High Energy Phys. 08 (2015) 029.
[32] N. Komatsu, Phys. Rev. D 96, 103507 (2017).
[33] W. Zhang and X.-M. Kuang, Adv. High Energy Phys. 2018,

6758078 (2018).
[34] M. Hashemi, S. Jalalzadesh, and S. Farahani, Gen. Relativ.

Gravit. 47, 139 (2015).
[35] H. B. Callen, Thermodynamics (Wiley, New York, 1960).
[36] D. Pavon and N. Radicella, Gen. Relativ. Gravit. 45, 63

(2013).
[37] P. B. Krishna and T. K. Mathew, Phys. Rev. D 96, 063513

(2017).
[38] C. A. Egan and C. H. Lineweaver, Astrophys. J. 710, 1825

(2010).
[39] J. Simon, L. Verde, and R. Jimenez, Phys. Rev. D 71, 123001

(2005).
[40] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and

S. A. Stanford, J. Cosmol. Astropart. Phys. 02 (2010) 008.
[41] S. M. Crawford, A. L. Ratsimbazafy, C. M. Cress, E. A.

Olivier, S.-L. Blyth, and K. van der Heyden, Mon. Not. R.
Astron. Soc. 406, 2569 (2010).

[42] J. C. Carvalho and J. S. Alcaniz, Mon. Not. R. Astron. Soc.
418, 1873 (2011).

[43] R.-G. Cai, Phys. Rev. D 65, 084014 (2002).
[44] R.-G. Cai and Q. Guo, Phys. Rev. D 69, 104025 (2004).
[45] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656

(1985).
[46] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[47] S. M. Carroll and A. Chatwin-Davis, Phys. Rev. D 97,

046012 (2018).
[48] A. Albrecht, J. Phys. Conf. Ser. 174, 012006 (2009).
[49] L. Dyson, M. Kleban, and L. Susskind, J. High Energy

Phys. 10 (2002) 011.
[50] H. Moradpour and N. Riazi, Int. J. Theor. Phys. 55, 268

(2016).
[51] N. Radicella and D. Pavon, Gen. Relativ. Gravit. 44, 685

(2012).
[52] H. Moradpour, A. Sheykhi, N. Riazi, and B. Wang,

Adv. High Energy Phys. 2014, 718583 (2014).

P. B. KRISHNA and TITUS K. MATHEW PHYS. REV. D 99, 023535 (2019)

023535-10

https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.9.3292
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1103/PhysRevLett.96.121301
https://doi.org/10.1103/PhysRevLett.96.121301
https://doi.org/10.1088/0034-4885/73/4/046901
https://doi.org/10.1142/S021773231003313X
https://doi.org/10.1007/JHEP04(2011)029
https://doi.org/10.1103/PhysRevD.81.061501
https://doi.org/10.1103/PhysRevD.81.061501
https://doi.org/10.1142/S0218271811018883
https://doi.org/10.1142/S0218271811018883
https://doi.org/10.1016/j.physletb.2010.03.042
https://doi.org/10.21468/SciPostPhys.2.3.016
https://doi.org/10.1103/PhysRevD.81.087306
https://doi.org/10.1007/s10773-016-3043-6
https://doi.org/10.1142/S021773231750078X
https://doi.org/10.1103/PhysRevD.81.104011
https://doi.org/10.1103/PhysRevD.84.044023
https://doi.org/10.1103/PhysRevD.84.044023
https://doi.org/10.1016/j.physletb.2011.07.052
https://doi.org/10.1016/j.physletb.2011.07.052
http://arXiv.org/abs/1206.4916
https://doi.org/10.1007/JHEP11(2012)016
https://doi.org/10.1103/PhysRevD.87.061501
https://doi.org/10.1016/j.physletb.2014.04.011
https://doi.org/10.1103/PhysRevD.86.104013
https://doi.org/10.1103/PhysRevD.86.104013
https://doi.org/10.1007/s10714-014-1680-8
https://doi.org/10.1007/s10714-014-1680-8
https://doi.org/10.1103/PhysRevD.88.067303
https://doi.org/10.1007/JHEP04(2014)125
https://doi.org/10.1007/JHEP04(2014)125
https://doi.org/10.1088/1475-7516/2013/04/038
https://doi.org/10.1088/1475-7516/2013/04/038
https://doi.org/10.1103/PhysRevD.90.084021
https://doi.org/10.1103/PhysRevD.90.084021
https://doi.org/10.1103/PhysRevD.90.124017
https://doi.org/10.1103/PhysRevD.90.124017
https://doi.org/10.1007/JHEP08(2015)029
https://doi.org/10.1103/PhysRevD.96.103507
https://doi.org/10.1155/2018/6758078
https://doi.org/10.1155/2018/6758078
https://doi.org/10.1007/s10714-015-1971-8
https://doi.org/10.1007/s10714-015-1971-8
https://doi.org/10.1007/s10714-012-1457-x
https://doi.org/10.1007/s10714-012-1457-x
https://doi.org/10.1103/PhysRevD.96.063513
https://doi.org/10.1103/PhysRevD.96.063513
https://doi.org/10.1088/0004-637X/710/2/1825
https://doi.org/10.1088/0004-637X/710/2/1825
https://doi.org/10.1103/PhysRevD.71.123001
https://doi.org/10.1103/PhysRevD.71.123001
https://doi.org/10.1088/1475-7516/2010/02/008
https://doi.org/10.1111/j.1365-2966.2010.16849.x
https://doi.org/10.1111/j.1365-2966.2010.16849.x
https://doi.org/10.1111/j.1365-2966.2011.19603.x
https://doi.org/10.1111/j.1365-2966.2011.19603.x
https://doi.org/10.1103/PhysRevD.65.084014
https://doi.org/10.1103/PhysRevD.69.104025
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1063/1.1665613
https://doi.org/10.1103/PhysRevD.97.046012
https://doi.org/10.1103/PhysRevD.97.046012
https://doi.org/10.1088/1742-6596/174/1/012006
https://doi.org/10.1088/1126-6708/2002/10/011
https://doi.org/10.1088/1126-6708/2002/10/011
https://doi.org/10.1007/s10773-015-2659-2
https://doi.org/10.1007/s10773-015-2659-2
https://doi.org/10.1007/s10714-011-1299-y
https://doi.org/10.1007/s10714-011-1299-y
https://doi.org/10.1155/2014/718583


[53] N. Radicella and D. Pavon, Phys. Lett. B 704, 260 (2011).
[54] T. Padmanabhan, Gravity and Spacetime: An Emergent

Perspective, Handbook of Spacetime (Springer, New York,
2013).

[55] D. Kothawala, Phys. Rev. D 83, 024026 (2011).
[56] J. P. Mimoso and D. Pavon, Phys. Rev. D 94, 103507

(2016).
[57] T. Padmanabhan, arXiv:1602.01474.

ENTROPY MAXIMIZATION IN THE EMERGENT GRAVITY … PHYS. REV. D 99, 023535 (2019)

023535-11

https://doi.org/10.1016/j.physletb.2011.09.031
https://doi.org/10.1103/PhysRevD.83.024026
https://doi.org/10.1103/PhysRevD.94.103507
https://doi.org/10.1103/PhysRevD.94.103507
http://arXiv.org/abs/1602.01474

