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The geometric optics approximation traditionally used to study the propagation of gravitational waves
on a curved background, breaks down in the vicinity of compact and extended astrophysical objects, where
wavelike effects like diffusion and generation of polarization occur. We provide a framework to study
the generation of polarization of a stochastic background of gravitational waves propagating in an
inhomogeneous universe. The framework is general and can be applied to both cosmological and
astrophysical gravitational wave backgrounds in any frequency range. We derive an order of magnitude
estimate of the amount of polarization generated for cosmological and astrophysical backgrounds, in the
frequency range covered by present and planned gravitational wave experiments. For an astrophysical
background in the PTA and LISA band, the amount of polarization generated is suppressed by a factor 10−4

(10−5) with respect to anisotropies. For a cosmological background we get an additional 10−2 suppression.
We speculate on using our approach to map the distribution of (unresolvable) structures in the Universe.
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I. INTRODUCTION

Several diffuse stochastic backgrounds of different types
of radiation, arising from the incoherent superposition of
signals from resolved and unresolved sources, have been
observed in astronomy. In particular, backgrounds of
electromagnetic radiation include the cosmic microwave
background (CMB) with its black body spectrum [1],
cosmic infrared background (CIB) from stellar dust [2]
and the extragalactic background light made up of all the
electromagnetic radiation emitted by stars, galaxies, galaxy
clusters etc., since their formation [3,4]. Similarly, there
should exist a neutrino background [5] and a background of
gravitational waves (GW).
We can distinguish between a stochastic background

of gravitational radiation of cosmological origin (CGWB)
and one of astrophysical origin (AGWB). In the standard
cosmological model [6], the existence of a primordial GW
background from the amplification of vacuum quantum
fluctuations is a generic prediction of any inflationary
phase. Gravitational waves may also be produced at the end
of inflation during the reheating phase (see e.g., Ref. [7] for
an analytic and numerical study). More speculative sources
of a GW background produced at early times include pre
big-bang models, cosmic strings [8–12], first order phase
transitions in the early universe [13,14], magnetic fields
[15]; see Refs. [16,17] for a review on those topics and
Refs. [18,19] for more broader introductions. In addition,
an astrophysical background results from the superposition

of a large number of resolved and unresolved sources from
the onset of stellar activity until today. The nature of the
AGWB may differ from its cosmological counterpart,
which is expected to be (roughly) stationary, unpolarized,
statistically Gaussian and isotropic, by analogy with the
cosmic microwave background. Many different astrophysi-
cal sources may contribute to the AGWB, including black
holes and neutron star mergers [20–26], supermassive
black holes [27], neutron stars [28–30], stellar core collapse

]31,32 ] and population III binaries [33].
The recent detection by the Advanced Laser Inter-

ferometric Gravitational-wave Observatory (LIGO) of the
gravitational wave sources GW150914 [34] provided the
first observation of the merging of a binary black hole
system. Over the last three years, in total, nine detections
and one sub-threshold candidate from binary black hole
merger events have been reported, see the recent catalogue
[35] for a summary. Following these observations, the
rate and mass of coalescing binary black holes appear to
be greater than many previous expectations. Moreover, the
LIGO and Virgo1 collaboration very recently detected a new
gravitational-wave source, GW170817: the coalescence of
two neutron stars [36]. The merger rate of binary neutron
stars estimated from this event suggests that distant binary
neutron stars create a significant contribution to the AGWB
which will add to the background from binary black holes,

1https://www.ego-gw.it/public/about/whatIs.aspx.
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increasing the amplitude of the total astrophysical back-
ground relative to previous expectations. In the Advanced
LIGO-Virgo frequency band most sensitive to stochastic
backgrounds (near 25 Hz), the predicted amplitude of the
total background isΩGWðf ¼ 25 HzÞ ¼ 1.8þ2.7

−1.3 × 10−9with
90% confidence level compared to ΩGWðf ¼ 25 HzÞ ¼
1.1þ1.2

−0.7 × 10−9 from binary black holes alone. Assuming
the most probable rate for compact binary mergers, in [37]
they find that the total background may be detectable
with a signal-to-noise-ratio of 3 after 40 months of total
observation time. This improves bounds on the stochastic
background obtained from the analysis of big-bang nucleo-
synthesis [18,38], and of the cosmic microwave background
[39,40] at 100 Hz. At low frequencies, pulsar timing arrays
(see below) give a bound ΩGW < 1.3 × 10−9 for f ¼ 2.8×
10−9 Hz [41]. The possibility of measuring and mapping the
gravitational wave background is discussed in Refs. [42–47]
while different methods employed by LIGO andLISA (Laser
Interferometer Space Antenna) to reconstruct an angular
resolved map of the sky are presented in Ref. [48]. An
analogous discussion for pulsar timing arrays can be found
in Refs. [49–51].
The observational landscape is growing and covers

large bands of frequencies; see e.g., Ref. [52] for a
review.2 At extremely low frequencies ∼10−16 Hz bounds
come mainly from the analysis of CMB B-modes while at
low frequency of order 10−10 − 10−6 Hz, there are pulsar
timing arrays such as the radio telescope Parks Pulsar
Timing Array3 (PPTA), the Large European Array for
Pulsar Timing4 (LEPTA), the future International Pulsar
Timing Array5 (IPTA), the Square Kilometre Array (SKA)
and the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav). At low frequencies
(typically 10−6 − 1 Hz) detection relies on space-borne
detectors, such as the Laser Interferometer Space
Antenna6 (LISA) and the evolved Laser Interferometer
Space Antenna7 (eLISA) selected by ESA to be launched
around 2030. High frequency (typically 1 − 105 Hz)
observations rely on ground-based detectors, such as
LIGO and its advanced configuration (aLIGO), Virgo,
the Einstein Telescope8 (ET) or its American counterpart,
the Cosmic Explorer (CE) [53]. This spectrum covers
most of the theoretical predictions.
Traditionally the energy density of GW of an astro-

physical background has been modeled and parametrized
under the assumption that both our universe and the

distribution of sources are homogeneous and isotropic,
see e.g., Refs. [23,54]. These assumptions can be relaxed in
order to take into account that astrophysical sources are
located in cosmic structures that indeed have a distribution
that can be computed in a given cosmological model.
Therefore the energy flux from all astrophysical sources
(resolved and unresolved) is not constant across the sky
and depends on the direction of observation. In [55] an
analytic framework is presented to describe and compute
the anisotropies in the observed energy density of the
AGWB, taking into account the presence of inhomogene-
ities in the matter distribution and in the geometry of the
observed universe. In [56] an alternative (more geometri-
cal) derivation of the result of [55] is presented, and first
numerical predictions for the amplitude of anisotropies for
the contribution of the background coming from black hole
mergers can be found in [57]. For an astrophysical back-
ground, the origin of anisotropies is two fold: first, sources
are not isotropically distributed and second, a GW signal,
once emitted, is deflected by structures. For a background
of cosmological origin, lensing by large scale structures
is the main source of anisotropy and actually, CGWB
anisotropies are a tracer of CMB temperature anisotropies
(see e.g., [58] for the case of a CGWB from phase
transition). First constraints on the anisotropy have been
obtained by PTA [59,60], and from the first observing run
of advanced LIGO [61].
In the framework developed in Refs. [55–57] the

propagation of GW from the source to the observer is
computed in the geometric optics approximation. This is
also traditionally done for photons, e.g., to compute CMB
temperature anisotropies or fluctuations of the galaxy
distribution see e.g., [62]. The geometric optics approxi-
mation is justified as long as the wavelength of gravitons
(or photons) is much smaller than the length scale given by
the Kretschmann scalar of the metric describing the region
of spacetime where the graviton (photon) propagates. In
particular, for both gravitons and photons, this approxima-
tion is well motivated on cosmological distances, where
spacetime is well described by a Friedmann-Lemaître
metric with scalar perturbations. In the geometric optics
approximation, the polarization tensor is parallel trans-
ported along a geodesic: an initially unpolarized back-
ground stays unpolarized when it propagates in an
inhomogeneous medium. In other words, geometric optics
can not describe the generation of polarization. However, in
the vicinity of a compact object, wavelike effects are
present and sizable and the geometric optics approximation
does not capture interesting effects like diffraction and the
generation of polarization. In this regime a wavelike
description of GW propagation is necessary. We emphasize
that this result holds for GW where the wavelength of
gravitons is typically much larger than the one of CMB or
infrared photons. Therefore, when studying the propaga-
tion in a highly inhomogeneous medium, the analogy

2The associated code http://rhcole.com/apps/GWplotter/ al-
lows one to generate plots of noise curves for many detectors and
associated target sources.

3http://www.atnf.csiro.au/research/pulsar/ppta/.
4http://www.leap.eu.org.
5http://www.ipta4gw.org.
6www.lisamission.org.
7https://www.elisascience.org.
8http://www.et-gw.eu.
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between the behavior of electromagnetic and gravitational
radiation may break down.
In this paper we study the generation of polarization of

an (initially unpolarized) GW background by diffusion
through massive structures. We provide a framework to
describe the generation of polarization and we derive an
order of magnitude estimate of the polarization created by
the interaction of GWs with matter, in different frequency
bands. Our treatment bears several analogies with the
creation of polarization by Thomson scattering of the
CMB. The role played by electrons in the Thomson
scattering is played here by compact and extended astro-
physical objects (massive structures). In particular, as for
the CMB, it is the combined effect of anisotropies in the
energy density of the background and of the polarization-
dependence of the cross section effectively describing the
process of scattering, that are responsible for the generation
of polarization. The amplitude of the polarization generated
depends on several factors: on the abundance of scattering
centers (number density of massive structures), on the
relative amplitude of anisotropies of the radiation imping-
ing on a scattering center, on the wavelength of the GWand
on the size of the integrated cross section describing the
scattering off a given type of massive structure. This latter
effect, in turn, depends on the geometrical properties of the
astrophysical target (radius and mass) and on the wave-
length. Interestingly, as we will explain in detail, by
measuring the polarization of a given component of the
background at different frequencies, it may be possible to
set constraints on the abundance of some exotic and
unresolvable sources in the Universe.
This work is structured as follows. In Sec. II we illustrate

the general idea underlying our framework. In particular, in
Secs. II A and II B we explain that beyond the geometric
optics approximation, the interactions of GW with struc-
tures can be described as a diffusion process characterized
by an polarization-dependent effective cross section. In
Sec. II C we introduce the visibility function for a multi
scattering process. In the remaining part of Sec. II we
introduce the main ingredients needed to fully characterize
the generation of polarization: in Sec. II D we define Stokes
parameters for a GW background, in II E we study the
angular dependence of a (single) scattering event of a GW
off an massive structure and in II F we compute the Stokes
parameters after the scattering. Finally in II G we put all
these ingredients together to derive an expression for the
polarization tensor. In Sec. III we provide analytical
approximations for the polarization tensor of a GW back-
ground (both astrophysical and cosmological) as a sum of
contributions of scattering off different types of massive
structures. In Sec. IV we present order of magnitude
estimates of the amount of polarization generated by
diffusion for cosmological and astrophysical backgrounds
at different frequencies. Finally, in Sec. V we discuss our
results and future perspectives.

II. GENERAL FRAMEWORK

As for the CMB, the generation of polarization of a GW
background occurs due to the combined effect of:

(i) the presence of anisotropies in the energy density of
the background;

(ii) the dependence of the effective scattering cross
section of GWs by massive structures on incoming
direction and polarization.

In the following we explain in which regime the geometric
optics approximation to describe GW propagation breaks
down.This happens in thevicinityof amass distribution in the
form of compact (black hole) or extended objects, we denote
them “massive structures.” We then explain how to treat
diffraction effects as an effective scattering process. When
studying the angular dependence of the scattering process and
computing the Stokes parameters after a scattering, Secs. II E
and II F respectively, we make use of an approach similar to
the standard description of CMB polarization in terms of
Stokes parameters. In particular, we follow the pedagogical
derivations presented in the textbook [63].

A. Wavelike effects in GW propagation

We write the metric describing the geometry of the
spacetime as

gμν ¼ ḡμν þ hμν; ð2:1Þ
where with an overbar we denote the background metric
and hμν is a rapidly varying small perturbation on the top
of it. Within linear perturbation theory, hμν satisfies the
equation

□̄hμν þ 2R̄μανβhαβ ¼ 0; ð2:2Þ
where R̄μανβ is the Riemann tensor of the background metric
and □̄ is the d’Alembertian of the background metric.
The geometric optics approximation consists in writing

hμνðxÞ ¼ ðAμνðxÞ þ ϵBμνðxÞ þ…ÞeiθðxÞ=ϵ; ð2:3Þ
inserting it in (2.2) and keeping leading order terms in ϵ.
It is easy to verify that, in this approximation, the second
term in Eq. (2.2) is systematically discarded. It follows that
geometric optics is valid in the regime

1

λ2
≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̄μανβR̄μανβ

q
≡ ffiffiffiffi

K
p

; ð2:4Þ

where λ ∼ ð∂0θÞ−1 denotes a typical wavelength of the GW
and the quantity on the right-hand side of this equation is
the square root of the Kretschmann scalar of the metric ḡμν.
The vicinity of a compact object can be approxi-

mately described by a Schwarzschild metric with
Kretschmann scalar KðrÞ ¼ 12r2s=r6, where rs ¼ 2GM is
the Schwarzschild radius of the mass M. The condition
(2.4) defines a region around the object within which
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wavelike effects are present, given by rs ≤ r ≤ Rλ where Rλ

is defined byKðRλÞ ¼ λ−4, a length scale which depends on
the mass of the object and on the wavelength of the GW
under consideration. For a fixed mass, the size of this
region obviously increases with increasing wavelength.
Analogous conclusions hold for the case of an extended
object: in this case Rλ depends on both the mass and the
radius of the object through a combination of these two
quantities (compactness). In Sec. IVA, we will explicitly
work out the wave-effect region for different types of
astrophysical objects and for the wavelength range of
current and planned GW experiments have access to.
Corrections of the geometric optics limit to the amplitude

have also been considered in Ref. [64]. There, however the
term 2R̄μανβhαβ has been neglected. Here we are interested
in the polarization and we cannot neglect this term which
affects the polarisation as we shall see.

B. Effective treatment of scattering

Let us consider a GW impinging on a black hole
(extended object) of mass M (and radius R), with impact
parameter b > rs (b > R). The literature on gravitational
scattering of massless waves of various spin is broad and
stretches back over forty years; see the monograph [65]
for an extensive treatment of the subject. Over the years,
several authors using different methods (see Refs. [66–74])
have shown that the differential cross section (summed over
polarizations) describing wave-scattering depends on the
spin s of the scattered field as

1

8ðMGÞ2
dσ
dΩ

¼

8>>>>>><
>>>>>>:

1
sin4θ=2 ; s ¼ 0;

cos2θ=2
sin4θ=2 ; s ¼ 1=2;

cos4θ=2
sin4θ=2 ; s ¼ 1;

cos8θ=2þsin8θ=2
sin4θ=2 ; s ¼ 2;

ð2:5Þ

where dΩ≡ d cos θdϕ and θ is the scattering angle. The
cross section for s ¼ 2 is the result of at least four separate
studies. The first derivation was carried out in [67] applying
perturbation theory to the linearized gravitational equa-
tions. The author of Ref. [68] finds the same result via a
Green’s function approach while in Ref. [70] Feynman
diagram techniques are employed. Finally the author of
Ref. [73] finds again the same result using partial wave
methods and improves on previous work [66] which uses
the same techniques.9

We observe that for arbitrary spin, the cross section
diverges in the forward direction, i.e.,

dσ
dΩ

∝
1

θ4
for θ → 0: ð2:6Þ

This divergence is due to the long-range nature of gravi-
tational interactions and is present in every scattering
process of a charged massless wave (or particle) in the
Coulomb-like potential generated by a charged object.10

This divergence is physical and it is due to the fact that the
Coulomb potential, that is used to model the gravitational
potential of a massive object in a galaxy, is long-ranged.
Nevertheless a natural cut-off scale is present in the
problem under study. The far-field relation between deflec-
tion angle and impact parameter is given by

θ ≈
2rs
b

: ð2:7Þ

As we will see in detail in Sec. IVA, for both compact and
extended objects wavelike effects occur in a region of space
around the object of radius r ≤ Rλ where the parameter Rλ

depends on both the GW wavelength under consideration
and the geometrical properties of the object. This sets an
upper bound on the impact parameter bmax ¼ Rλ and
correspondingly a lower bound on the deflection angle

θmin ¼
2rs
bmax

: ð2:8Þ

The results (2.5) are found assuming an unpolarized
incoming flux and summing over the final polarization
states. The polarization-dependent differential cross sec-
tion for gravitational wave scattering is given by, see
e.g., [72,74]

dσP

dΩ
¼ ðMGÞ2 1

sin4 θ=2
je0ijðn0Þe�ijðnÞj2; ð2:9Þ

where n0 and n are the directions of the incoming and
outgoing gravitons, respectively and likewise for the polar-
izations, e0ij and eij. The angle θ is the scattering angle, i.e.,
n · n0 ¼ cos θ. Using the results of Appendix A, it is easy to
verify that the sum over polarizations of Eq. (2.9) gives
back Eq. (2.5) for s ¼ 2.

C. Visibility function

We recall that if a particle scatters with a cross section σ
off an ensemble of targets with number density n, its mean
free path is l ¼ 1=ðnσÞ. In our case, gravitons scatter off

9We emphasize that the gravitational result is somewhat
anomalous since it does not follow the same general rule
dσ=dΩ ¼ M2 cos4s θ=2= sin4 θ=2 as other fields. As explained
in [73], the origin of the extra term sin4 θ=2 is a direct
consequence of the nonconservation of helicity in gravita-
tional-wave scattering. Helicity is not conserved because axial
and polar waves are scattered in a different way.

10The Rutherford cross section can be considered as the
electromagnetic counterpart of (2.5) and presents the same type
of divergence in the forward direction.

CUSIN, DURRER, and FERREIRA PHYS. REV. D 99, 023534 (2019)

023534-4



astrophysical objects with physical number density nph and
the relevant cross-section for scattering off different astro-
physical objects is discussed in Sec. II B. One usually
defines the optical depth due to scattering in the time
interval ½η2; η1� by

τðη1; η2Þ ¼
Z

η1

η2

dηnphðηÞσðηÞaðηÞ; ð2:10Þ

where η is conformal time and η1 > η2. The (unnormalized)
probability that a graviton does not scatter off an astro-
physical object in the conformal time interval ½η2; η1� is
given by

Pðη1; η2Þ ¼ e−τðη1;η2Þ: ð2:11Þ

The probability density that a graviton observed at a time η1
has undergone a scattering in the interval ½η2; η2 þ dη2� is
given by Pðη1; η2 þ dη2Þ − Pðη1; η2Þ. We define the vis-
ibility function Vðη1; η2Þ as follows:

Vðη1; η2Þdη2 ≡ Pðη1; η2 þ dη2Þ − Pðη1; η2Þ: ð2:12Þ

It is easy to verify that

Vðη1; η2Þ ¼
d
dη2

e−τðη1;η2Þ ¼ −e−τðη1;η2Þ
dτðη1; η2Þ

dη2
; ð2:13Þ

with

dτðη1; η2Þ
dη2

¼ −nphðη2Þσaðη2Þ: ð2:14Þ

Hence

Vðη1; η2Þ ¼ e−τðη1;η2Þnphðη2Þσaðη2Þ: ð2:15Þ

We are mostly interested in VðηÞ ¼ Vðη0; ηÞ since we
observe gravitons today. The quantity

Z
η0

η
dη0Vðη0; η0Þ ¼ e−τðη0;ηÞjη0η ¼ 1 − e−τðη0;ηÞ; ð2:16Þ

by construction is the probability that a graviton observed
today has scattered in the time interval ½η; η0�.
A similar treatment is used for the CMB, see e.g.,

Chapter 20 of [63] which we have followed here, by
substituting nph → ne and σ → σT , where ne is the density
of electrons and σT is the Thomson cross section. In the
case of standard recombination, the visibility function is
peaked around recombination. Indeed, before recombina-
tion, τ is very large and V is exponentially suppressed.
Much later, dτðη0; ηÞ=dη is small because the density of
free electrons is small. The width of the maximum of the

visibility function gives the thickness of the last scattering
surface.
For a GW background the distribution of scattering

centers is extended in redshift and thus the situation is
different. In that case we expect the visibility function to
be much broader and peaked around a redshift at which
most of the astrophysical objects are expected to be located.
This is similar to what happens during reionization for the
CMB. Moreover, for the CMB, since τðη0; η0Þ ¼ 0 and at
early times, say η ¼ 0, τðη0; 0Þ → ∞, the visibility function
satisfies Z

η0

0

dηVCMBðη0; ηÞ ¼ e−τðη0;ηÞjη00 ¼ 1: ð2:17Þ

ThusVCMBðηÞ is the normalized probability function that a
photon observed today has scattered at conformal time η.
This is as expected since the total probability that a CMB
photon scatters before impinging on an observer equals
to one. This property is not, however, true for a GW
background.

D. Stokes parameters for GW background

In this section we introduce the Stokes parameters to
describe the intensity and polarization of a GW back-
ground, see also [47,75–77]. For a single monochromatic
plane wave propagating in direction n, we have that

h̃ijðf;nÞ ¼ h̃þðf;nÞeþijðnÞ þ h̃×ðf;nÞe×ijðnÞ; ð2:18Þ

where the expansion coefficients hþ;× are complex-valued
functions and eþ;×

ij is the ðþ;×Þ polarization basis (see
Appendix A for detailed definitions). We can introduce a
polarization tensor as

Pijkl ¼ P̃abeaije
b
kl; with P̃ab ¼ h̃�ah̃b; ð2:19Þ

where a; b ¼ ðþ;×Þ. The tensor P̃ab is a Hermitian 2 × 2
matrix and therefore can be written as

P̃abðn; fÞ ¼
1

2
½Iðn; fÞσð0Þab þUðn; fÞσð1Þab

þ Vðn; fÞσð2Þab þQðn; fÞσð3Þab �; ð2:20Þ

where σðαÞ with α ¼ 1, 2, 3 denote the Pauli matrices and
σð0Þ ¼ 12 (i.e., the 2 × 2 identity matrix). The objects I, U,
Q, V are four real functions of the GW direction n and are
the Stokes parameters. In terms of the polarization coef-
ficients of the GW, the Stokes parameters are given by

I ¼ jh̃þj2 þ jh̃×j2; Q ¼ jh̃þj2 − jh̃×j2;
U ¼ 2Reðh̃�þh̃×Þ; V ¼ 2Imðh̃�þh̃×Þ: ð2:21Þ
The Stokes parameter I is simply the intensity of the GW,Q
is the difference between the intensity of radiation polarized
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along eþij and e×ij (and U is the same in a frame rotated11

by π=8). The parameter V describes a phase difference
between hþ and h× which results in circular polarization.
Using Eqs. (A4) and (A5), we can rewrite these parameters
in terms of the left and right-handed polarization basis
defined as

eRijðnÞ ¼
1ffiffiffi
2

p ðeþijðnÞ þ ie×ijðnÞÞ; ð2:22Þ

eLijðnÞ ¼
1ffiffiffi
2

p ðeþijðnÞ − ie×ijðnÞÞ: ð2:23Þ

We obtain

I ¼ jh̃Lj2 þ jh̃Rj2; Q ¼ 2Reðh̃�Rh̃LÞ;
U ¼ 2Imðh̃�Rh̃LÞ; V ¼ jh̃Rj2 − jh̃Lj2: ð2:24Þ

It is useful to introduce the following tensor

Pabðn; fÞ ¼ ½Uðn; fÞσð1Þab þ Vðn; fÞσð2Þab þQðn; fÞσð3Þab �;
ð2:25Þ

in terms of the normalized Stokes parameters U ¼ U=ð2IÞ,
Q ¼ Q=ð2IÞ and V ¼ V=ð2IÞ. We can compute the total
amplitude of polarization as

Pðn; fÞ≡ 1ffiffiffi
2

p ðPabðn; fÞPbaðn; fÞÞ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2 þV2

p
;

ð2:26Þ
Under a rotation of an angle ψ around n, using the

transformation properties of (A10) and (A11), we find
(omitting the dependence on frequency)

h̃Rðn;ψÞ ¼ ei2ψ h̃RðnÞ; ð2:27Þ

h̃Lðn;ψÞ ¼ e−i2ψ h̃LðnÞ: ð2:28Þ

It follows that under rotation in the plane orthogonal to n,
the Stokes parameters transform as (omitting the depend-
ence on frequency)

Iðn;ψÞ ¼ IðnÞ; ð2:29Þ

Vðn;ψÞ ¼ VðnÞ; ð2:30Þ

Qðn;ψÞ þ iUðn;ψÞ ¼ e−i4ψ ðQðnÞ þ iUðnÞÞ; ð2:31Þ

Qðn;ψÞ − iUðn;ψÞ ¼ ei4ψ ðQðnÞ − iUðnÞÞ: ð2:32Þ

From this, together with the fact that the Stokes parameters
are real, we easily conclude that a pureQ polarization turns
into a pure U polarization under a rotation by �π=8 and
vice versa. This proves footnote 11. Furthermore, I and V
transform as scalars on the sphere under rotations while
Q� iU are spin-4 objects and can be written as linear
combinations of spin-4 spherical harmonics. In particular,
one can write

�
Qðn;ψÞ
Uðn;ψÞ

�
¼ Rð4ψÞ

�
QðnÞ
UðnÞ

�
ð2:33Þ

where Rð4ψÞ is a rotation matrix describing a rotation
around the n axis.

E. Angular dependence of the scattering process

If we have a flux of unpolarized radiation coming from a
given direction and impinging on a massive object, the
dependence of the cross section on the polarization tensors
generates an outgoing polarized radiation. As a first step we
compute the net polarization generated when a radial flux
of gravitons whose intensity has a given angular depend-
ence Iðθ0;ϕ0Þ scatters off a massive object at the origin of
our reference frame. We consider an incoming graviton
whose propagation direction is

n0 ¼ ðsin θ0 sinϕ0; sin θ0 cosϕ0; cos θ0Þ; ð2:34Þ

i.e., n0 is the unit radial vector with angles ðθ0;ϕ0Þ. In the
plane transverse to n0 we introduce two orthonormal vectors

u0 ¼ ðcos θ0 sinϕ0; cos θ0 cosϕ0;− sin θ0Þ; ð2:35Þ

v0 ¼ ðcosϕ0;− sinϕ0; 0Þ: ð2:36Þ

Using these vectors and Eq. (A12) we construct the polari-
zation basis ðe×ijðn0Þ; eþijðn0ÞÞ for the incoming radiation. Let
us choose a reference frame such that the direction of
propagation of the outgoing radiation n, is along the z axis,
i.e., n ¼ ez. Then we can chose u ¼ ex and v ¼ ey for the
polarization basis ðe×ijðnÞ; eþijðnÞÞ of the outgoing radiation,
using Eq. (A12).
If the incoming radiation has × polarization then the

probability that the outgoing radiation has × polarization is
proportional to12

je×ijðn0Þeij×ðnÞj2 ¼ 4 cos2 θ0 cos2 2ϕ0: ð2:37Þ

Analogously, if the incoming radiation has × polarization
then the probability that the outgoing radiation has þ
polarization is proportional to11Note that for spin 1 particles, photons, U describes the

polarization rotated by π=4 but for gravitons a rotation by π=4
simply exchanges hþ and h×, hence Q ↦ −Q. 12We recall that the basis ðþ;×Þ is real.
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je×ijðn0ÞeijþðnÞj2 ¼ 4 cos2 θ0 sin2 2ϕ0: ð2:38Þ

If the incoming radiation has þ polarization then the
probability that the outgoing radiation has × and þ
polarizations is proportional to, respectively

jeþijðn0Þeij×ðnÞj2 ¼ 1

4
ð3þ cos 2θ0Þ2sin22ϕ0; ð2:39Þ

jeþijðn0ÞeijþðnÞj2 ¼ 1

4
ð3þ cos 2θ0Þ2 cos2 2ϕ0: ð2:40Þ

If the initial radiation is unpolarized, there is an equal
probability that the incoming graviton has × or þ polari-
zation. It follows that the probability that a graviton is
scattered out with × polarization is given by

E2
× ≡ Cðn;n0Þ½je×ijðn0Þeij×ðnÞj2 þ jeþijðn0Þeij×ðnÞj2�;

ð2:41Þ
while the probability that the incoming radiation is scat-
tered out with þ polarization is given by

E2þ ≡ Cðn;n0Þ½je×ijðn0ÞeijþðnÞj2 þ jeþijðn0ÞeijþðnÞj2�;
ð2:42Þ

where Cðn;n0Þ is the prefactor multiplying the polariza-
tion-dependent part of the cross section, Eq. (2.9), and is
given by

Cðn;n0Þ ¼ C sin−4
θ0

2
; ð2:43Þ

where C is a constant which does not depend on angles and
which disappears in the final computation of the polariza-
tion tensor. Explicitly, one finds

E2
× ¼ C

1

sin4θ0=2

�
4

�
cos8

θ0

2
þ sin8

θ0

2

�
−
1

2
cos 4ϕ0sin4θ0

�
;

ð2:44Þ

E2þ ¼ C
1

sin4θ0=2

�
4

�
cos8

θ0

2
þ sin8

θ0

2

�
þ 1

2
cos 4ϕ0sin4θ0

�
:

ð2:45Þ

F. Stokes parameters after scattering

The Stokes parameter I of the radiation scattered in the
ez direction is obtained by integrating E2

× þ E2þ over all
directions of the incoming radiation, weighted with the
intensity of the incoming radiation Iðθ0;ϕ0Þ:

I ¼ C
Z

dΩ0Iðθ0;ϕ0Þ 8

sin4 θ0=2

�
cos8

θ0

2
þ sin8

θ0

2

�
: ð2:46Þ

The Stokes parameterQ is obtained by integrating E2þ − E2
×

over directions, again with Iðθ0;ϕ0Þ as a weight:

Q ¼ C
Z

dΩ0Iðθ0;ϕ0Þ 1

sin4 θ0=2
cos 4ϕ0 sin4 θ0: ð2:47Þ

As explained in Sec. II D, the Stokes parameter U can be
obtained from Q with a rotation around the n axis of π=813

U ¼ −C
Z

dΩ0Iðθ0;ϕ0Þ 1

sin4 θ0=2
sin 4ϕ0 sin4 θ0: ð2:48Þ

The Stokes parameter V is defined as the difference
between the intensity polarized R and L, see Sec. II D.
We can build a basis ðeLijðn0Þ; eRijðn0ÞÞ for the incoming
radiation and a basis ðeLijðnÞ; eRijðnÞÞ for the outgoing
radiation, starting from the basis ðþ;×Þ and using
Eq. (2.22). Explicitly

eRijðnÞ ¼
1ffiffiffi
2

p ðeþijðnÞ þ ie×ijðnÞÞ; ð2:49Þ

eLijðnÞ ¼
1ffiffiffi
2

p ðeþijðnÞ − ie×ijðnÞÞ; ð2:50Þ

and analogously for the incoming radiation by replacing
n → n0. The probability that an initially unpolarized
radiation is polarized R (L) after the scattering is given by

E2
R ≡ C½jeRijðn0ÞeijRðnÞj2 þ jeLijðn0ÞeijRðnÞj2�; ð2:51Þ

E2
L ≡ C½jeRijðn0ÞeijLðnÞj2 þ jeLijðn0ÞeijLðnÞj2�; ð2:52Þ

respectively. It is easy to verify that

E2
R ¼ E2

L: ð2:53Þ

It follows that

V ¼ C
Z

dΩ0Iðθ0;ϕ0Þ 1

sin4 θ0=2
ðE2

R − E2
LÞ ¼ 0; ð2:54Þ

the scattering of GW radiation off a massive object does not
generate circular polarization, in full analogy with the
Thomson scattering for electromagnetic radiation.
Summarizing, we found the following Stokes parameters

for the GW radiation along n ¼ ez, after the scattering of
unpolarized radiation off a massive object14

13More precisely,U can be obtained fromQ by projecting on a
polarization basis built from u and v vectors rotated of π=8 in the
plane perpendicular to n.

14Note that the integral over the scattering angle θ0 has a lower
bound θmin proportional to the mass of the scatterer and to the
frequency of the GW scattering off it, see Secs. II B and IV B.
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I ¼ C
Z

dΩ0Iðθ0;ϕ0Þ 8

sin4θ0=2

�
cos8

θ0

2
þ sin8

θ0

2

�
; ð2:55Þ

Q ¼ C
Z

dΩ0Iðθ0;ϕ0Þ 1

sin4θ0=2
½cos 4ϕ0sin4θ0�; ð2:56Þ

U ¼ C
Z

dΩ0Iðθ0;ϕ0Þ 1

sin4 θ0=2
½− sin 4ϕ0 sin4 θ0�; ð2:57Þ

V ¼ 0: ð2:58Þ

The angular factors in square parenthesis in Eqs. (2.56) and
(2.57) can be expanded in a basis of spherical harmonics
with m ¼ �4 and l ≥ 4. It follows that an isotropic
incoming flux of radiation does not generate any net
polarization.
Up to now we have chosen the coordinate system such

that the direction of propagation of the outgoing radiation
was along the z-axis. We now rewrite Eqs. (2.55)–(2.58)
in a coordinate independent (rotationally invariant) way.
First we make use of standard trigonometric identities to
rewrite (2.55)–(2.57) as a functions of cos θ0, sin θ0 only.
Then we introduce two orthonormal vectors in the plane
perpendicular to n, uðnÞ and vðnÞ. For the choice n ¼ ez
they reduce to uðezÞ ¼ ex and vðezÞ ¼ ey. With these
definitions, we have

cos θ0 ¼ n · n0; ð2:59Þ

sinϕ0 ¼ n0 · uðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn · n0Þ2

p ; ð2:60Þ

cosϕ0 ¼ n0 · vðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn · n0Þ2

p : ð2:61Þ

After standard simplifications, we find

IðnÞ ¼ C
Z

d2n0Iðn0Þ 2

½1 − n · n0�2
× ½ð1þ n · n0Þ4 þ ð1 − n · n0Þ4�; ð2:62Þ

QðnÞ ¼ C
Z

d2n0Iðn0Þ 4

½1 − n · n0�2
× ½ðn0 · vnÞ4 þ ðn0 · unÞ4 − 6ðn0 · vnÞ2ðn0 · unÞ2�;

ð2:63Þ

UðnÞ ¼ C
Z

d2n0Iðn0Þ 16

½1−n ·n0�2
× ½ðn0 ·unÞ3ðn0 · vnÞ− ðn0 · vnÞ3ðn0 ·unÞ�; ð2:64Þ

VðnÞ ¼ 0; ð2:65Þ

where we have simplified notation to un ¼ uðnÞ and
vn ¼ vðnÞ. Equations (2.62)–(2.65) determine the Stokes
parameter of the GW radiation scattered by a black hole
into direction n.
Consider the scattering geometry in Fig. 1 where we

neglect lensing effects and the observer receives the
outgoing radiation in the direction e ¼ −n. The Stokes
parameter which can be measured in the direction of
observation e are therefore given by

IðeÞ ¼ C
Z

d2e0Iðe0Þ 2

½1 − e · e0�2
× ½ð1þ e · e0Þ4 þ ð1 − e · e0Þ4�; ð2:66Þ

QðeÞ ¼ C
Z

d2e0Iðe0Þ 4

½1 − e · e0�2
× ½ðe0 · veÞ4 þ ðe0 · ueÞ4 − 6ðe0 · veÞ2ðe0 · ueÞ2�;

ð2:67Þ

UðeÞ ¼ C
Z

d2e0Iðe0Þ 16

½1 − e · e0�2
× ½ðe0 · ueÞ3ðe0 · veÞ − ðe0 · veÞ3ðe0 · ueÞ�; ð2:68Þ

VðeÞ ¼ 0; ð2:69Þ

where e0 ¼ −n0 and ve ¼ vðeÞ ¼ vð−nÞ and ue ¼ uðeÞ ¼
uð−nÞ are orthonormal vectors in the plane perpendicular
to e such that vðe ¼ ezÞ ¼ −ey and uðe ¼ ezÞ ¼ −ex.
The Stokes parameters still depend on the choice of the

directions ve and ue. This can be avoided by expanding the
polarisation into E-mode (gradient type) and B-mode (curl
type) components analogous to the total angular momen-
tum decomposition for the CMB (see e.g., [78]), but we
refrain from this further formal development here.

FIG. 1. Schematic representation of the scattering processes
under study. The observer located in x0 is looking at the sky in the
direction e and receives GW which have scattered out of an
astrophysical object located in x1 ¼ x0 þ eðη0 − η1Þ, coming
from x2 ¼ x1 þ e0ðη2 − η1Þ. Readapted from [63].
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G. Polarization tensor

We split the intensity into an homogeneous and isotropic
contribution and an inhomogeneous and anisotropic one.
For gravitational radiation of (observed) frequency f
impinging on a scattering center at x in the direction e
and at time η, we write

Iðη;x; e; fÞ ¼ Īðη; fÞ þ δIðη;x; e; fÞ: ð2:70Þ

At linear order in δI, the polarization tensor (2.25) is
given by

Pabðη0;x0; e; fÞ

¼
R η0
0 dη1Vðη0; η1Þ

R
d2e0δIðη1;x1; e0; f1ÞSabðe; e0Þ
2Īðη0;x0; fÞ

;

ð2:71Þ

where x1 ¼ x0 þ ðη0 − η1Þe is the position of the scattering
center, see Fig. 1, f1 ¼ ð1þ zðη1ÞÞf and we have defined
the following quantity which depends only on angles

Sabðe;e0Þ

¼ 4

½1− e · e0�2 f4½ðe
0 · ueÞ3ðe0 · veÞ− ðe0 · veÞ3ðe0 · ueÞ�σð1Þab

þ½ðe0 · veÞ4 þ ðe0 · ueÞ4 − 6ðe0 · veÞ2ðe0 · ueÞ2�σð3Þab g:
ð2:72Þ

In Eq. (2.71), Iðη1;x1; e0; f1Þ is the intensity of the
radiation incident on the scattering center in ðη1;x1Þ, from
the direction e0 and at frequency f1. Īðη0;x0; fÞ is the
intensity at the observer (averaged over directions). As we
will explain in the next section, while polarization is
generated only by wavelike effects, the intensity does
not vanish in the geometric optics approximation either
(i.e., even if diffraction is discarded).

III. ANALYTIC EXPRESSIONS FOR
POLARIZATION

We want to derive an expression for the polarization
tensor Pab, Eq. (2.71), for a primordial (cosmological)
background and for an astrophysical background, both in a
cosmological setting (i.e., a Friedmann universe with
structures). The ingredients needed are
(1) the visibility function for different types of scatter-

ing, introduced in Sec. II C;
(2) the intensity of the incoming radiation.

In Sec. III Awewrite the intensity of the incoming radiation
in terms of the energy density of the background. The
energy density at a point ðη1;x1Þ of the space time, and
seen in a direction e1 by a comoving observer in this
position, can be computed by using the Boltzmann
approach detailed in Appendix B.

Our approach is as follows. The intensity of the
background is computed in the geometric optics approxi-
mation, neglecting diffusion effects. In the Boltzmann
equation approach, this corresponds to neglecting the
collision term and solving the Liouville equation with an
emissivity part only. We then use this result to compute
the polarization, generated by diffusion. Polarization is
a purely beyond-geometric optics effect. On the other
hand wavelike effects represent a second order correction
to the intensity and we neglect them in the present
treatment.15

We consider the standard cosmological framework in
which the universe is modeled by a Friedmann-Lemaître-
Robertson-Walker (FLRW) universe with Euclidean spatial
sections and with scalar perturbations. In Newtonian gauge,
the metric gμν is given by

ds2 ¼ aðηÞ2½−ð1þ 2ψÞdη2 þ ð1 − 2ϕÞδijdxidxj�; ð3:1Þ

where the metric of the constant time hypersurfaces is

δijdxidxj ¼ dχ2 þ χ2ðdθ2 þ sin2 θdϕ2Þ; ð3:2Þ

in terms of the comoving radial distance χ. The two
Bardeen potentials are decomposed as

ψ ¼ Ψþ Π; ϕ ¼ Ψ − Π: ð3:3Þ

In the standard ΛCDM model, the matter content at late
time is dominated by cold dark matter (CDM), described by
a pressureless fluid, and by the cosmological constant. It
follows that the Bardeen potentials, ϕ and ψ , are equal, so
that ψ ¼ ϕ ¼ Ψ and Π ¼ 0. We assume that the galaxies
are all comoving with the cosmic flow.16 To first order
in perturbations, the four velocity of the cosmic fluid is
given by

uμ ≡ 1

a
ð1 − ψ ; viÞ≡ ūμ þ δuμ; ð3:4Þ

where vi is the peculiar velocity field. From the matter
conservation equation, the galaxy peculiar velocity can be
related to the gravitational potential through the Euler
equation.

15Writing a set of Boltzmann equations for intensity and
polarization, this approximation would correspond to neglecting
the collision term in the equation for the intensity, to solve this
independently and use the result as a source to the equation for
polarization. This approach is consistent since, as we will see
in Sec. IV, the polarization generated is very small so that we
can neglect the backreaction of polarization on intensity.

16The velocity of galaxies is not biased vðz; eÞ ¼ vCDMðz; eÞ.
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A. The relation between intensity and
the background energy density

As discussed in [56], if we want to describe an
inhomogeneous background, a useful quantity is the energy
density of the background in a given direction, which is
quadratic in the signal, does not depend on phases and has a
nonvanishing correlation function:

ΩGWðeÞ≡ 1

ρc

d2ρGW
d2e

ðeÞ; ð3:5Þ

where ρc is the critical density of the universe and
d2ρGW=d2e is the energy density of the background in
the solid angle d2e around e. It is useful to introduce the
dimensionless energy density per unit of logarithmic
frequency, as

ΩGWðeÞ≡
Z þ∞

0

d log fΩGWðe; fÞ: ð3:6Þ

It follows that

ΩGWðe; fÞ ¼
f
ρc

d3ρGW
d2edf

ðe; fÞ; ð3:7Þ

where d3ρGW is the energy density of the background in the
solid angle d2e around e and in the frequency bin around f.
Using the standard expression for the energy density in
terms of the wave amplitude, see e.g., [79], and recalling
that the definition of energy requires an average over
several periods of the wave, we find

ΩGWðe; fÞ ¼
c2

4Gρc

1

TO
f3
X
A

jh̃Aðf; eÞj2; ð3:8Þ

where the quantity TO comes from the time average and
represents the period of observation of the detector.17 The
derivation of this result can be found in [56]. Using the
definition of intensity, Eq. (2.21), we find

ΩGWðe; fÞ ¼
c2

4Gρc

1

TO
f3Iðe; fÞ: ð3:9Þ

B. Radiation incident on a target

We use the Boltzmann approach described in
Appendix B to compute the energy density at a point

ðη1;x1Þ of the spacetime, from a direction e0 (see Fig. 1 for
a representation of the situation under study). We neglect
collisions. For a cosmological background we find

Ω̄GW½η1; f1� ¼
aðηiÞ4
aðη1Þ4

Ω̄GW½ηi; fi�; ð3:10Þ

and

δΩGW

Ω̄GW
½η1;x1; f1; e0� ¼

δΩGW

Ω̄GW
½ηi;x2; fi�

− 4fϕ½η1;x1� − ϕ½ηi;x2�
− e0 · v½η1;x1� þ e0 · v½ηi;x2�g;

ð3:11Þ

where, to shorten the notation we have defined x2 ≡ x1þ
e0ðη1 − η0Þ. For an astrophysical background, keeping the
leading term in the perturbation part in Eq. (B20)

ΩGW½η1;x1; e0; f1� ¼
f1
4πρc

Z
η1

0

dη0a4ðη0Þn̄Gðη0Þ

× ½1þ δG½η0;x2��

×
Z

dϑGLG

�
1þ zðη0;x2Þ
1þ zðη1;x1Þ

f1;ϑG

�
:

ð3:12Þ

This results coincides with the one obtained in [55,56].
In Eq. (3.12), n̄G denotes the average density of galaxies,
the galaxy overdensity is δG ≡ bδm where b is the bias
function, δm is the matter overdensity and LG is the
effective luminosity of GWof a galaxy, per units of emitted
frequency fG ¼ ð1þ zðη0;x2ÞÞ=ð1þ zðη1;x1ÞÞf1 and ϑG
are a set of parameters effectively describing a given galaxy
(mass, metallicity, etc.). The intensity corresponding to
Eqs. (3.10)–(3.12) can be computed using Eq. (3.9).
We observe that the effective luminosity of a galaxy

has been introduced in [55]: in the galaxy rest-frame, it
represents the sum of the luminosity of gravitational waves
of the various astrophysical sources contained in the galaxy,
averaged with the distribution function of their peculiar
velocity. As shown in [55], at linear order in the peculiar
velocities, the effects of the peculiar motion of a source in
its host galaxy can be neglected on average. The relation
between the effective luminosity and the strain emitted can
be found in Eqs. (79) and (80) of [56].

C. Final result for the polarization tensor

We now rewrite the formal result for the polarization
tensor, Eq. (2.71), in terms of the building blocks already
computed. The visibility function is defined in Eq. (2.13)
and for small optical depth τ ≪ 1 it can be approximated as

17The dependence on TO may appear strange at first, but
note that for a continuous background signal centered around
a frequency f with width Δf one has for TO ≫ 1=f,R TO
0 jhAðtÞj2dt ∝ TO ≃

R jhAðf0Þj2df0 ≃ ΔfjhAðfÞj2 and hence
jhAðfÞj2 ∝ TO. Hence the ratio 1

TO
Iðe; fÞ is independent of

TO. Of course for a short burst, averaging over a long time
period TO is not useful as it dilutes the signal. The adequate
choice of TO for this case is of course the duration of the signal.
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Vðη0; η1Þ ≃ −
∂
∂η1 τðη1Þ≡ −_τðη1Þ; ð3:13Þ

where the derivative of the optical depth is given by
Eq. (2.14). In Eq. (2.71) for the polarization tensor we
found the intensity in terms of the background energy
density by using Eq. (3.9) and we can use it to give us

Ī½η0;x0; e; f� ¼
4Gρc
c2

TOf−3Ω̄GW½η0;x0; e; f�; ð3:14Þ

and

δI½η1;x1; e0; f1� ¼
4Gρc
c2

TOf̄−31 Ω̄GW½η1;x1; f1�

×

�
δΩGW

Ω̄GW
½η1;x1; e0; f1�

− 3
δf1
f̄1

½η1;x1; e0�
�
; ð3:15Þ

where we use that f1 ¼ ð1þ zðη1;x1; e0ÞÞf and split the
frequency into a background and a perturbation part
f1 ¼ f̄1 þ δf1.

18 In a cosmological framework, the per-
turbation of frequency gives a subleading contribution to
Eq. (3.15) and for simplicity we neglect it in the following.
At first order in perturbations the polarization tensor

describing polarization generated by scattering off a given
type (i) of targets is then given by

PðiÞ
abðη0;x0; e; fÞ

¼ −
R η0
0 dη1_τðiÞðη1Þ

R
d2e0δΩGW½η1;x1; e0; f1�Sabðe; e0Þ
2Ω̄GW½η0;x0; e; f�

;

ð3:16Þ
with

_τðiÞðη1Þ ¼ −aðη1ÞnðiÞs ðη1ÞσðiÞs ; ð3:17Þ
where ns is the physical number density of scattering
centers of type i (i.e., stellar mass black holes, super

massive black hole …) and σðiÞs is the corresponding
integrated cross section. Note that we are assuming that
the objects causing diffraction have an isotropic distribu-
tion. Taking into account the angular dependence of the

density of targets, nðiÞs ðη1; eÞ, is a straightforward gener-
alization of our framework; one just needs to replace the
optical depth in Eq. (3.17) with a direction dependent
one τðη1Þ → τðη1; eÞ.
Considering only incoherent scattering, the total polari-

zation is just the sum of the polarization generated by all the
different scattering events (see Sec. IV D).19 The total
polarization tensor is therefore given by

Ptot
abðη0;x0; e; fÞ ¼

X
i

PðiÞ
abðη0;x0; e; fÞ

¼
R η0
0 dη1

P
iðnðiÞs ðη1; eÞσðiÞs Þaðη1Þ

R
d2e0δΩGW½η1;x1; e0; f1�Sabðe; e0Þ

2Ω̄GW½η0;x0; e; f�
: ð3:18Þ

This polarization tensor is a function of the energy density
of the GW background which is given by Eqs. (3.10)–
(3.12) in terms of matter and metric perturbations. Polari-
zation is therefore a stochastic quantity which can be
characterized statistically in terms of its two-point function,
like the energy density of the GW background in [55].
Moreover, it will cross-correlate with GW energy density
and with other cosmological probes such as the galaxy
distribution and weak lensing. We will investigate these
aspects in future work.
We have assumed that the flux of the radiation emitted

by a given object is unpolarized. For a cosmological
background this is a very good assumption since we expect

that þ and × polarization are produced with equal
probability. An astrophysical background is given by the
incoherent superposition of signals with random distribu-
tion of polarization. The average polarization of the back-
ground produced at a given redshift z is therefore vanishing
and the variance is proportional to the inverse of the number
of sources at that redshift. Moreover, as we will see in
Sec. IV, the polarization generated by scattering is much
smaller than the intensity.
If an initial polarization is sufficiently small, we can just

sum it to the polarization generated by interaction with
matter. On the other hand, if the initial polarization is
sizable, one can no longer neglect the backreaction of
polarization on intensity. In this case, in our framework,
one needs to go one step further and compute the intensity a
background acquires after scattering and compute the new
Stokes parameter considering the total intensity in expres-
sions Eqs. (2.66)–(2.69). The procedure can be reiterated.
A more rigorous approach consists in solving a set of
Boltzmann equations for intensity and polarization with a

18Perturbations of frequency are proportional to perturbations
of redshift δf1=f̄1 ¼ δz=ð1þ z̄Þ.

19In Sec. IV Dwewill show that the typical separation between
scatterers (massive structures) is such that for the frequency range
of present and planned GW experiments, multiscattering can be
treated as incoherent.
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collision term which can be derived considering the angular
dependence of the cross section (2.9). This can be done by
determining a scattering matrix for all Stokes parameters
exactly as for the CMB, see e.g., [78]. In the present
approach, however, we assume polarization to be very
small and neglect its backreaction on intensity.

IV. AN ESTIMATE OF THE POLARIZED
GW BACKGROUND

We now want to derive an order of magnitude estimate of
the polarization parameter P, introduced in Eq. (2.26) that a
GW background acquires due to interactions with matter.
We assume that scattering off massive structures is the only
source of polarization. If the GW flux is initially unpolar-
ized, the amount of polarization (averaged over directions)
measured by the observer is proportional to the probability
of scattering and to the amount of anisotropies of the
radiation incident on a scattering center. Using the results of
the previous sections, we can derive an estimate of the
amount of polarization a flux of gravitons produced at z and
received today as

PðzÞ ¼ δΩGW

Ω̄GW
× ½1 − e−τðzÞ�; ð4:1Þ

where the optical depth τ is defined in Eq. (2.10). For
comparison, for the CMB, assuming that all the polariza-
tion is generated by reionization and τrei ¼ 0.08, one finds

Prei
CMB ¼ δT

T̄
× ½1 − e−τðzreiÞ� ≃ 10−6: ð4:2Þ

Two main ingredients enter Eq. (4.1): the fractional
anisotropy of a GW background and the optical depth. This
last ingredient depends on the density of scattering centers
and on the effective cross section of the scattering process.
In this section we derive an order of magnitude estimate for
the optical depth for different types of astrophysical objects
acting as scattering centers. The optical depth will be a
function of the GW frequency 1=λ. For future reference, in
Table I we list the wavelength range of (some) current and
planned GW experiments.

A. Diffraction by compact and extended objects

The metric associated to a compact massive object with
rs ¼ 2MG is the Schwarzschild metric. In Schwarzschild
coordinates ðt; r; θ;ϕÞ the metric can be written as

ḡμνdxμdxμ ¼ −ð1þ 2ΦÞdt2 þ ð1þ 2ΦÞ−1dr2
þ r2dθ2 þ r2 sin θ2dϕ2; ð4:3Þ

with Φ ¼ −GM=r. In Lorenzian coordinates one has

ḡμνdxμdxμ ¼ −
�
1 −MG=ð2ρÞ
1þMG=ð2ρÞ

�
2

dt2

þ
�
1 −

MG
2ρ

�
4

ðdρ2 þ ρ2dθ2 þ ρ2 sin θ2dϕ2Þ;

ð4:4Þ

with

r ¼ ρ

�
1 −

MG
2ρ

�
2

: ð4:5Þ

For such a spacetime the Kretschmann scalar is given by

ffiffiffiffi
K̄

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̄μανβR̄μανβ

q
¼ 2

ffiffiffi
3

p rs
r3

: ð4:6Þ

Using Eq. (2.4) giving the regime of validity of geometric
optics, we find that wavelike effects are expected in a
region

rs ≤ r ≤ Rλ; ð4:7Þ

with

Rλ ≡ ð2
ffiffiffi
3

p
λ2rsÞ1=3: ð4:8Þ

The condition (4.7) can be satisfied if rs ≤ Rλ, which up to
factors of order unity is equivalent to rs < λ. Note that one
needs to include a factor of redshift λO ¼ ð1þ zÞλ so that

λO
pc

≥ 10−13βð1þ zÞ; ð4:9Þ

where β ¼ M=M⊙. We recall that for stellar mass black
holes β ∈ ½5 − 50� while for a super massive black hole
β ∈ ½104 − 109�. Choosing typical values of β for the two
cases, taking into account that most astrophysical sources
are located at z ∼ 1–2 and using the values of λO tested by
present experiments (see Table I) we find that for solar mass
BH, diffraction effects are present in all frequency bands,
while for supermassive BH diffraction is relevant only in
the PTA and (partially) in the LISA bands.
Primordial black holes have a much broader redshift

distribution. For a given frequency band and average mass

TABLE I. Range of wavelengths of different GW experiments
in units of parsec [pc]. We denote the wavelength that we will
take as a reference for order of magnitude estimates by λM.

Experiment λO [pc] λM [pc]

LIGO 10−11 − 10−9 10−10

LISA 10−9 − 10−5 10−7

PTA 10−5 − 10−1 10−3
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β, using Eq. (4.9), one can derive a condition on the redshift
range where polarization is generated through diffusion.20

For a spherically symmetric extended object with radius
R, mass M and constant density ρ, the gravitational
potential is given by

Φ ¼
(
− GM

r ; r > R;

−GM ð3R2−r2Þ
2R3 ; r ≤ R:

ð4:10Þ

The corresponding metric can be written by making use of
Lorenzian coordinates as

gμνdxμdxν ¼ −e2ΦðρÞdt2 þ e−2ΦðρÞðdρ2 þ ρ2dθ2

þ ρ2 sin θ2dϕ2Þ: ð4:11Þ

Note that, to first order in Φ, the difference between
Schwarzschild and Lorentzian coordiates can be neg-
lected. At leading order in rs, one has (in Schwarzschild
coordinates)

R̄μανβR̄μανβ ¼
(
12 r2s

r6 ; r > R;

15 r2s
R6 ; r ≤ R:

ð4:12Þ

The fact that the Kretschmann scalar is discontinuous at
r ¼ R is not surprising since also the density and therefore
the Ricci tensor jump at this value of r. Outside the object,
wavelike effects are present in a region

R < r ≤ Rλ; ð4:13Þ

with Rλ defined in Eq. (4.8). Writing R ¼ αR⊙, M ¼ βM⊙
and setting γ ¼ β=α3, (4.13) can be verified if R ≤ Rλ,
i.e., if

λO >
1ffiffiffi
γ

p ð1þ zÞ10−6 pc: ð4:14Þ

Inside the object, corrections to geometric optics are pre-
sent for

ffiffiffiffiffi
15

p
rs=R3 > λ−2 which also reproduces roughly

condition (4.14). Considering the values of γ listed in
Table II21 and the typical wavelengths for different experi-
ments are given in Table I, we find that most stars produce

diffraction effects in the PTA band, in addition white
dwarfs give contributions in the LISA band while wave-
lengths of the LIGO band are not affected by diffraction
effects from extended objects.

B. Integrated cross section

We have found that for both compact and extended
objects, wave-like effects lead to polarization occurring in a
region defined by the conditions (4.7) and (4.13) respec-
tively. These conditions fix an upper bound on the impact
parameter bmax ¼ Rλ and correspondingly a lower bound
on the deflection angle

θmin ¼
2rs
bmax

≃
�
rs
λ

�
2=3

: ð4:15Þ

Moreover, when dealing with a compact object, absorption
occurs for b < rs and this defines a maximum value for the
scattering angle θmax ¼ 2. This bound is absent in the case
of an extended object. The differential cross section (2.9)
summed over polarizations is given by Eq. (2.5) for s ¼ 2.
The total cross section can be found by integrating (2.5)
over angles with θ ∈ ½θmin; θmax�. The result is

σðλ; rsÞ ¼
2π

3
ðGMÞ2

�
−111 cos θ − 6 cosð2θÞ − cosð3θÞ

− 48sin−2
�
θ

2

�
− 384 log

�
sin

θ

2

��
θmax

θmin

: ð4:16Þ

For rs ≪ λ, θmin is very small and the expression in square
brackets can be approximated by the fourth term, which
yields

σðβ; λO; zÞ ≃ 10−7β2=3
�
λO
pc

�
4=3

ð1þ zÞ−4=3 pc2; ð4:17Þ

where we used λO ¼ ð1þ zÞλ. This approximation is
always well justified for stellar mass black holes and
extended objects: the minimum wavelength we have access
to is λ ≃ 10−11 pc and considering rsðM⊙Þ ≃ 10−13 pc, we
have rsðM⊙Þ=λ ≤ rsðM⊙Þ=λmin ≃ 10−2. For supermassive
black holes, we can have λ ≃ rs and the full expression
(4.16) for the integrated cross section must be used. We will
however make use of (4.17) for a first estimate (the error is
a few percent).

TABLE II. Masses, radii and compactness of different types of
stars [81–85].

Category α ¼ R=R⊙ β ¼ M=M⊙ γ ¼ β=α3

Main sequence 0.1–20 0.1–40 0.01–45
White dwarfs 0.003–0.03 0.17–1.33 6 × 104 − 5 × 107

Super giants 30–1500 8–12 10−9 − 10−4

20For example, assuming that all primordial black holes have
M ∼M⊙, from Eq. (4.9) and using the average value of wave-
length of different experiments (see Table I), we find that in the
LIGO, LISA and PTA band polarization effects are coming from
redshift up to z ≃ 103, z ≃ 106 and z ≃ 1010 respectively. As λO
scales like βð1þ zÞ, this redshift scales like M−1.

21In Table II we consider the average values of masses for main
sequence stars, with β ≤ 40. More massive main sequence stars
(with mass up to∼200 M⊙) exist, but are quite rare, see e.g., [80].
For comparison, we included the range of average radii and
masses of super giants, even if this is a very short lived stage of
stellar evolution.
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We now consider the case of an extended object and an
impact parameter smaller than the size of the object b < R.
We effectively describe wave-like effects in a region (4.14)
inside the object as a process of scattering of GW off a
spherical target of radius b and mass Mb ¼ Mðb=RÞ3. The
scattering angle for such a process is fixed and given by
θ ≈ 2rs=b. In this case the differential cross section (2.5)
can be approximated as

dσ
dΩ

≈ 8ðGMbÞ2
�
b
rs

�
4

: ð4:18Þ

Writing, as before, R ¼ αR⊙ and M ¼ βM⊙, the expres-
sion above can be simplified to

dσ
dΩ

≈ 2 × 10−6
α4

β2

�
b
R

�
10

pc2 ≤ 2 × 10−6
α4

β2
pc2: ð4:19Þ

The integrated cross section is (the integration over angles
is simply an integration over ϕ and gives a factor 2π)

σðα; β; bÞ ≃ 10−5
α4

β2

�
b
R

�
10

pc2: ð4:20Þ

Equations (4.17) and (4.20) are the final results of this
section.

C. Optical depth

For scattering off compact objects and extended objects
with b > R, the integrated cross section Eq. (4.17), is
redshift-dependent. For this case, the optical depths,
Eq. (2.10) for scattering in a matter dominated universe
can be rewritten as

τðzÞ ≃ 6nσ̄ðH0

ffiffiffiffiffiffiffi
Ωm

p
Þ−1½ð1þ zÞ1=6 − 1�; ð4:21Þ

where n is the comoving number density of targets and σ̄ is
the redshift-independent part of the cross section (4.17),

σ̄ ≡ 10−7β2=3
�
λO
pc

�
4=3

pc2: ð4:22Þ

Analogously, for scattering taking place in a radiation
dominated universe we have

τðzÞ ≃ 3nσ̄ðH0

ffiffiffiffiffiffi
Ωr

p
Þ−1

�
1

ð1þ zeqÞ1=3
−

1

ð1þ zÞ1=3
�
;

ð4:23Þ

where zeq is the redshift at equality i.e., equal energy
density in matter and radiation. We will make use of this
last expression only when considering the case of primor-
dial black holes. For scattering off extended objects with
b < R, the integrated cross section (4.20) does not depend

on redshift. The optical depth for this case and for z ≪ zeq
can be written as

τðzÞ ≃ nσðH0

ffiffiffiffiffiffiffi
Ωm

p
Þ−1 2

3
½ð1þ zÞ3=2 − 1�; ð4:24Þ

with σ given by Eq. (4.20). In the following we compute the
optical depth for scattering off different types of astro-
physical objects, namely stellar mass black holes, super-
massive black holes, primordial black holes and extended
objects (stars).
The energy density of baryons in the observed universe

is given by

ρB ¼ ρcΩB ≃M⊙kpc−3: ð4:25Þ

Only about 10% of the total baryonic matter has collapsed
sufficiently to form stars and galaxies; the remaining
90% makes up the gas in clusters and the intergalactic
medium. Denoting the number of stars, stellar mass black
holes (BH) and supermassive black holes (SBH) in a galaxy
by N�, NBH and NSBH, we expect NSBH ¼ 10−8NBH ¼
10−8ð10−3N�Þ. Then, assuming that all stars and stellar
mass black holes have mass equal to the solar mass and
assuming that sources are homogeneously distributed (i.e.,
we neglect the presence of structures in this first step), we
find that the comoving density of stars is22

n� ≈
ρ�
M⊙

¼ 0.1 kpc−3; ð4:26Þ

and for stellar mass black holes and supermassive black
holes, respectively

nBH ≃ 10−4 kpc−3; ð4:27Þ

nSBH ≃ 10−12 kpc−3: ð4:28Þ

Using Eq. (4.17) in Eq. (4.21) we obtain

τBHðz; λOÞ ≃ 10−9
�
λO
pc

�
4=3

½ð1þ zÞ1=6 − 1�: ð4:29Þ

Analogously, for supermassive black holes

τSBHðz; λO;βÞ≃ 10−17β2=3
�
λO
pc

�
4=3

½ð1þ zÞ1=6 − 1�; ð4:30Þ

with β ∈ ½104; 109�.
Next, we consider the possibility that primordial black

holes (PBH) represent a fraction q of the dark matter energy
density, i.e.,

22We are making the assumption 0.1ρB ¼ M⊙ðn� þ nBH þ
βnSBHÞ ≈M⊙n� where β ∈ ½104; 109�.
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ΩPBM ¼ qΩCDM; ð4:31Þ

with q ∈ ½0; 1�. The comoving number density of primor-
dial black holes can be estimated as

nPBH ¼ ρc
ΩCDM

MPBH
q: ð4:32Þ

Writing MPBH ¼ βM⊙ with β < 103 this yields

nPBH ≃
q
β
ðkpcÞ−3: ð4:33Þ

PBH have a broad redshift distribution, which extends up
to very high redshift, see e.g., [86] for a recent review. It
follows that a cosmological background of GW radiation
(produced during or after inflation) can scatter in a broad
redshift range. Inserting Eqs. (4.17) and (4.33) in (4.23), we
find

τcosmo
PBH ðz; λO; βÞ ≃

q

β1=3
10−4

�
λO
pc

�
4=3 1

ð1þ zeqÞ1=3
: ð4:34Þ

For an astrophysical background of GW, we use (4.21)
to find

τastroPBHðz; λO;βÞ≃
q

β1=3
10−5

�
λO
pc

�
4=3

½ð1þ zÞ1=6 − 1�: ð4:35Þ

We turn now to the case of GW scattering off a
distribution of stars. The condition to have diffusion is
given by Eq. (4.14). We use the results in Tables I and II:
diffraction occurs for all the physical values of γ in the PTA
band, in the LISA band a contribution comes only from
scattering off white dwarfs while no effect is present in the
LIGO band. Assuming that all the stars have Solar mass,
the comoving density of stars is given by Eq. (4.26). Then,
in the PTA, replacing (4.26) and (4.17) in (4.21) and
choosing β ¼ 1 ¼ α, we find

τPTA�out ðz; λOÞ ≃ 10−6
�
λO
pc

�
4=3

½ð1þ zÞ1=6 − 1�; ð4:36Þ

for scattering with impact parameter bigger than the size of
the object. For scattering off extended objects with impact
parameter smaller than the object size, the (effective) cross
section describing such a process is given in Eq. (4.20).
Then, in the PTA band, assuming β ¼ 1 ¼ α and plugging
(4.20) and (4.26) in (4.24), we have

τPTA�in ðz; bÞ ≃ 10−5
�

b
R⊙

�
10

½ð1þ zÞ3=2 − 1�: ð4:37Þ

Assuming the impact parameter b to be distributed uni-
formly in ½0; R⊙� and choosing, for the estimate, the
average value hbi ¼ R⊙=2, we find

τPTA�in ðzÞ ≃ 10−8½ð1þ zÞ3=2 − 1�: ð4:38Þ

For the LISA band, denoting as fwd the fraction of stars in
white dwarfs, we find

τLISA�out ðz; λOÞ ≃ 10−6fwd

�
λO
pc

�
4=3

½ð1þ zÞ1=6 − 1�; ð4:39Þ

and23

τLISA�in ðzÞ ≃ 10−8fwd½ð1þ zÞ3=2 − 1�: ð4:40Þ
We emphasize that here we assume that astrophysical

sources have an isotropic distribution. As we will see in the
next Sec. IV D, the average distance between objects in a
structure is such that the multi-scattering of gravitational
waves off massive structures can be considered as incoher-
ent and the total polarization generated through diffusion is
the linear sum of polarization created off different scatter-
ings. It follows that, as long as we are interested in deriving
an estimate of the total polarization generated (averaged
over directions at the observer position), neglecting the
presence of structures is well justified.

D. Coherent and incoherent scattering

Let us consider a distribution of compact objects/stars,
with density n and mean distance d ¼ n−1=3 (i.e., d is the
average distance between objects) and masses Mi. If we
have a wavewith wavelength λ incident on this distribution,
depending on the relative size of λ and d, the process has to
be treated as either coherent or incoherent. To be specific
we have that

(i) if λ ≫ d the scattering is coherent;
(ii) if λ ≪ d the scattering is incoherent.

If the scattering is coherent, then the multiscattering
process can be treated as a single scattering off a target
with massMtot ¼

P
iMi. The total cross section is given by

dσ
dΩ

∝
�X

i
Mi

�
2

G2½…�; ð4:41Þ

where ½…� stays for some angular structure. If the scattering
is incoherent, the total cross section is given by the linear
sum of single cross sections

dσ
dΩ

∝
X
i

ðMiGÞ2½…�: ð4:42Þ

Let us consider a GW passing through a globular cluster.
The number of stars in a globular cluster is N� ≃ 104 − 105

23The local (midplan) mass density of white dwarfs is
ρwd ≃ 0.0065 M⊙ pc−3, see e.g., [87]. Considering that the
average mass of stars is ∼0.5 M⊙ and comparing to the local
density of stars, see e.g., [88], one obtains the local value
fwd ∼ 0.05.
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and the (typical) radius of the cluster RGC ≃ 10 pc. The
average distance between objects is then given by dGC ¼
n−1=3GC ≃ ðVGC=N�Þ1=3 ≃ 1 pc (where VGC is the volume of
the cluster). Comparing with the wavelength we have
access to observationally (see Table I) we always have
dGC > λO > λ: the multiscattering process can be treated as
incoherent scattering (some coherence could be present in
the low frequency part of the PTA range). If we repeat the
same reasoning for a galaxy we get d > dGC (objects are
less densely distributed) and the same conclusion holds,
except maybe close to the galactic center where scattering
however is dominated by the central super massive
black hole.

E. The total amount of polarization

For a given wavelength, the total amount of polarization
produced by diffusion is given by the sum of the polari-
zation produced from scattering off different types of
massive structures. We recall that the condition to have
diffusion effects in the vicinity of a compact object is
given by Eq. (4.9) while the analogous condition for an
extended object is (4.14). Using the results in Tables I
and II, we find that in different frequency bands, dif-
ferent objects are causing diffraction effects which lead
to polarization

(i) PTA band: solar mass BH, supermassive black
holes, any type of star;

(ii) LISA band: solar mass BH, (some) (super)massive
black hole, white dwarfs;

(iii) LIGO band: solar mass BH.
The condition to have scattering off primordial black holes
is more subtle since PBH have a broad redshift distribution.
Considering a vanilla model where all PBH have the same
mass M ¼ βM⊙, for a given observed frequency, the
condition (4.9) gives the maximum redshift at which we
can have diffusion and polarization generation. In particu-
lar, all solar mass PBH (or lighter) up to z ¼ zeq act as
scattering centers and produce polarization of the back-
ground in the entire frequency range of present and planned
GW observatories.
We can now work out an estimate for the polarization

fraction (4.1) for the LIGO, LISA and PTA band. To do so,

we introduce a number of simplifications. For the three
cases, we choose λM from Table I. Moreover, since most
astrophysical sources are expected to be located around
redshift z ¼ 1–2 (see e.g., [89]) we evaluate the visibility
function at z ¼ 1.5. If primordial black holes represent a
fraction q of the total dark matter component, we distin-
guish two cases: scattering taking place in matter domi-
nation and in radiation domination. Obviously, only a
background of cosmological origin can undergo the latter
type of process. In this first approximation, we assume that
the optical depth for scattering off PBH at early times is
redshift independent.24 At late times we assume the
baryonic matter distribution to follow the distribution of
primordial black holes and we consider most of these
targets to be located around z ¼ 1.5. Our results are
summarized in Table III.
The total amount of polarization is given by the sum of

the polarization generated by different scatterings, i.e., the
total parameter (4.1) is given by

P ¼
X
i

Pi ≃
δΩGW

Ω̄GW

X
i

τi; ð4:43Þ

where i labels different types of scatterers. In the last
equality we have used that τ ≪ 1 and δΩGW=Ω̄GW is the
typical amount of anisotropies of a given component of
the background. An estimate of this quantity as a function
of redshift for a cosmological and astrophysical back-
ground can be found in Appendix C. For a cosmological
background, in any frequency range, δΩGW=Ω̄GW ∼ 10−5.
For an astrophysical background the result depends on
frequency, on the astrophysical sources we consider and on
redshift. In the LIGO band the background is dominated by
the contribution from black hole mergers and at z ¼ 1.5
where we assume most of the sources producing scattering
to be located, we have δΩGW=Ω̄GW ∼ 10−3. If we extrapo-
late the LIGO estimate of the astrophysical background to
all frequencies we then have

TABLE III. Optical depth for scattering off different types of massive structures.

PTA (λM ¼ 10−3) LISA (λM ¼ 10−7) LIGO (λM ¼ 10−10)

τBH 10−14 10−19 10−23

τSBH β2=310−22 β2=310−27 0
τ�;in 10−8 fwd10−8 0
τ�;out 10−11 fwd10−16 0
τPBH;astro qβ−1=310−10 qβ−1=310−15 qβ−1=310−19

τPBH;cosmo qβ−1=310−9 qβ−1=310−14 qβ−1=310−18

24At earlier times, the optical depth has a mild redshift
dependence, see Eq. (4.23) which we neglect.
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δΩGW

Ω̄GW
≃
�
10−3; for astrophysical background;

10−5; for cosmological background:
ð4:44Þ

In the LIGO band the dominant contribution to polarization comes from diffusion off PBH and stellar mass
black holes. The total amount of polarization generated is given by

PLIGO ≃
�
10−22ðqβ−1=3 þ 10−4Þ; for astrophysical background;

10−23ðqβ−1=3 þ 10−5Þ; for cosmological background:
ð4:45Þ

In the LISA band, the dominant contribution to polarization generation comes from scattering off white dwarfs and the
amount of polarization generated is given by

PLISA ≃ fwd10−11; ð4:46Þ

for an astrophysical background while for a cosmological background, the result is suppressed by an additional factor 10−2.
In the PTA band, the processes generated more efficiently polarization are scattering off PBH and extended objects.
One finds

PPTA ≃
�
10−11ð1þ 0.01qβ−1=3Þ; for astrophysical background;

10−13ð1þ 0.1qβ−1=3Þ; for cosmological background:
ð4:47Þ

To get a first order of magnitude estimate of the effect, we
consider the simplest scenario of PBH with monochromatic
mass distribution M ¼ M⊙ and q ¼ 0.5, still allowed by
current observational bounds, and we extrapole the local
value fwd ¼ 0.05 at extragalactic scales. The results are
listed in Table IV.
We emphasize that the estimates (4.45), (4.46) and (4.47)

for a cosmological background are robust since the pre-
diction δΩGW=Ω̄GW ∼ 10−5 does not depend on astrophysi-
cal complications and on frequency (see Appendix C). For
an astrophysical background, we are extrapolating the
prediction for δΩGW=Ω̄GW valid in the LIGO band to
lower frequencies. To derive a more realistic estimate of P
for an astrophysical background in the PTA and LISA
band, one has to repeat the analysis of [57] valid for the
LIGO frequency band, and work out the amplitude of
anisotropies at lower frequency, including contributions
from different astrophysical sources. This analysis will be
presented in [90].

V. CONCLUSIONS

In this work, we have discussed the production of
polarization of a stochastic GW background from diffusion
by extended and compact astrophysical objects. We have
provided a framework which can be used to compute the
polarization tensor of a given component of the back-
ground, in any frequency range. The main ingredients of
our approach are the following. We compute the integrated
cross section for scattering off a given massive structure.
Since the geometric optics approximation breaks down in a
region of radius Rλ around the scatterer, the impact
parameter has an upper bound bmax ¼ Rλ and with bmax,
the integrated cross section for a compact (extended) object
depends on the mass (on the compactness) of the object and
on the wavelength of the GW. As a consequence, the optical
depth depends on the abundance of targets, on the proper-
ties of the target and on the wavelength. We have discussed
that, for the wavelength range we have access to in present
and planned GW experiments, the average separation
between scattering centers is much larger than the wave-
length, hence multiscattering can be studied as an incoher-
ent sum of scattering processes. To compute the total
polarization which the GW background acquires due to
interaction with structures, it is therefore sufficient to sum
the polarization generated by different types of scatterings.
In our framework, the back reaction of polarization on

intensity is systematically discarded. More precisely, we
compute the intensity of the GW background measured by
a comoving observer at a given redshift and from a given
direction, using the geometric optics approximation and we
use this result to compute the polarization created from a
scattering event. The geometric optics approximation is not

TABLE IV. Polarization of an astrophysical and cosmological
generated through diffusion off massive structures in different
frequency bands. The estimate has been obtained under the
assumptions of Sec. IV E: PBH with monochromatic mass
distribution and β ¼ 2q ¼ 1 and average fraction of white dwarfs
equal to the local one.

PTA
(λM ¼ 10−3)

LISA
(λM ¼ 10−7)

LIGO
(λM ¼ 10−10)

Pastro 10−11 10−12 10−23

Pcosmo 10−13 10−14 10−24
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suitable to describe the creation of polarization by inter-
action with matter: wave like effects represent a first order
correction to the intensity while they give a zero order
contribution to polarization. Since the polarization created
by scattering is very suppressed with respect to the
intensity, see Sec. IV, neglecting the back reaction of
polarization on intensity is well justified.
We have also assumed that the flux of radiation at

emission is unpolarized. As already discussed, this is a very
good assumption for the case of a cosmological back-
ground, for which we expect that the two polarizations are
generated with equal probability. If the initial (primary)
polarization is sufficiently small, it can be simply added to
the secondary one created during the propagation to the
observer position, neglecting back reaction. A more rig-
orous approach consists in writing a set of Boltzmann
equations for intensity and polarization, with a collision
term that is coupling the system. Writing such a system is
rather straightforward: one needs to use the results of
Appendix B and derive the angular dependence of the
collision term from the angular dependence of the differ-
ential cross section, Eq. (2.9).25

In Sec. IV we have derived an order of magnitude
estimate for the polarization in different frequency bands
for both astrophysical and cosmological GW backgrounds.
In the LIGO band the dominant contribution to the creation
of polarization comes from scattering off stellar mass black
holes or PBH if they exist; in the LISA band scattering off
white dwarfs dominates while in the PTA band from
scattering off stars (or PBH if they exist) is most important.
For an astrophysical background in the LIGO band, in
the scenario in which primordial black holes have a
monochromatic mass distribution with M ¼ M⊙ and con-
stitute half of the total amount of dark matter,26 the amount
of polarization created is suppressed with respect to (energy
density) anisotropies by a factor 10−20 and 10−19 for an
astrophysical and cosmological background, respectively.
An enhancement of this result can be obtained in the case in
which the mass distribution of PBH is not monochromatic

and/or peaked at M ≪ M⊙. Observational bounds on the
relative abundance of PBH for M ≪ M⊙ comes mainly
from the EROS microlensing survey [93] and from the
cosmic microwave background temperature anisotropies
and spectral distortions [94]. However, these bounds have
recently been reinvestigated: EROS limits can easily be
evaded [95–97], e.g., when considering more realistic dark
matter distributions in the galaxy or if most PBH are
regrouped in microclusters. On the other hand, Planck
limits on PBH abundances have been shown to be very
sensitive to the PBH velocity with respect to baryons, while
there is no relevant constraint from CMB spectral dis-
tortions [98,99]. This reopened the low-mass window for
PBH as dark matter candidate.
The generation of polarization is considerably enhanced

at lower frequencies: in the LISA band the suppression
of polarization with respect to anisotropies if ∼10−9 for
both an astrophysical and cosmological background while
for PTA the effect is enhanced by a factor 100 and the
suppression of polarization with respect to anisotropies is
of order 10−7. The estimate in the LISA band is derived
assuming that the average fraction of stars in white dwarfs
at extragalactic scales is the local one. The results for PTA
can be further enhanced in a scenario in which PBH have a
mass distribution peaked at M ≪ M⊙. Just to have a term
of comparison, for the CMB, the amount of polarization
generated is suppressed by a factor ∼10−2 with respect to
temperature fluctuations.
Our results are particularly interesting for a cosmological

GW background. For this case the primary polarization
vanishes and an upper bound on polarization can set upper
bounds on the abundance of unresolved objects in the
universe. For example, setting an upper bound on polari-
zation in the LISA band, would set a bound on the
extragalactic value of fwd, see Eq. (4.46), which we have
set equal to its local value in our estimates. Analogously,
observing in the PTA band, an enhancement of polarization
may provide information on the PHB mass distribution and
abundance in the window M ≪ M⊙.
We emphasize that the aim of the estimates in Sec. IV is

to get an idea of the size of the effect and of the kind of
information that could in principle be extracted if polari-
zation is measured or if stringent upper bounds are
obtained. In particular, in Sec. IV we have introduced
the simplifying hypothesis that the distribution of targets is
isotropic. As explained, this assumption is consistent as
long as we are interested in obtaining an estimate of the
average amount of polarization, integrated over directions
at the detector position. A direction dependent visibility
function can be introduced as in Sec. III C and the more
refined setting of Secs. II and III can be used to derive more
precise results. In particular, since astrophysical objects
acting as targets are embedded in galaxies which in turn
belong to clusters etc., we expect polarization to have a
pronounced directional dependence. Therefore, even if the

25However, an additional complication with respect to the
case of the CMB comes from the fact that, the differential cross
section presents a Rutherford-like small angle behavior with
inverse powers of ð1 − cos θÞ. Therefore, the angular depen-
dence of the collision term would involve an infinite expansion
of Legendre polynomials of the scattering angle, cos θ.

26In Ref. [91], bounds on the abundance of compact objects
from gravitational lensing of type Ia supernovae are derived:
compact objects represent less than ∼40% of the total matter
content in the universe, at 95% confidence-level, thus excluding a
scenario of all dark matter made up by primordial black holes.
Reference [92] criticizes some aspects of Ref. [91] and shows that
all-PBH dark matter scenario in the LIGO band is compatible
with SN lensing constraints. The criticism is then addressed in the
published version of [91], showing the validity of the constraints
previously derived. However, in the case of a monochromatic
mass distribution and no-clustering assumption EROS bounds
[93] hold and disfavor a value q ¼ 1 in this mass range.
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averaged degree of polarization is very small, it may be
much stronger and possibly detectable in the direction of
compact structures or when correlated with matter over-
densities. Detailed evaluations of experimental possibilities
are left for future work. Moreover, as explained in Sec. III,
GW polarization is a stochastic quantity which can be
characterized statistically in terms of its angular power
spectrum and its cross-correlation with intensity, in full
analogy with the CMB polarization. From an observational
point of view, methods are already available to reconstruct a
polarization map of the sky, see e.g., the review [47]. The
algorithm proposed in [100] to reconstruct a sky map of
intensity can also be generalized to polarization. Com-
paring a sky map of polarization with theoretical predic-
tions can be extremely interesting to reconstruct a chart
of the invisible universe. For example, measuring an
overproduction of polarization in a given direction would
be an indication of the presence of a dense structure, e.g., a
cluster (resolved or unresolved) in that direction.
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APPENDIX A: FORMAL RESULTS ON
POLARIZATION TENSORS

We work in transverse traceless gauge (TT). Using a
plane wave expansion we can write a generic GW in TT
gauge as

hTTij ðt;xÞ ¼
Z

df
Z

d2nh̃ijðf;nÞe−2πifðt−n·x=cÞ; ðA1Þ

and the Fourier components of the metric perturbation
hijðt;xÞ can be expanded in terms of either the linear
polarization basis tensors

h̃ijðf;nÞ ¼ h̃þðf;nÞeþijðnÞ þ h̃×ðf;nÞe×ijðnÞ; ðA2Þ

or the circular polarization basis tensors

h̃ijðf;nÞ ¼ h̃Rðf;nÞeRijðnÞ þ h̃Lðf;nÞeLijðnÞ; ðA3Þ

where the circular polarization basis is defined in
Eqs. (2.22) and (2.23). The expansion coefficients h̃R,
h̃L are related to h̃þ, h̃× through

h̃R ¼ 1ffiffiffi
2

p ðhþ − ih×Þ; ðA4Þ

h̃L ¼ 1ffiffiffi
2

p ðhþ þ ih×Þ: ðA5Þ

Summarizing, we write

hTTij ðt;xÞ ¼
X
A

Z
df

Z
d2nh̃Aðf;nÞeAijðnÞe−2πifðt−n·x=cÞ;

ðA6Þ

where the sum is over the two tensors of the polarization
basis, i.e., A ¼ ðþ;×Þ if we are using the linear polariza-
tion basis and A ¼ ðR;LÞ if we are using the circular
polarization basis.

1. General properties of polarization tensors

The polarization tensors eAijðnÞ satisfy

eAijðnÞeBij�ðnÞ ¼ 2δAB: ðA7Þ

Under a rotation of an angle ψ in the plane orthogonal to the
n direction, the polarization basis ðeþij; e×ijÞ transforms as

eþijðn;ψÞ ¼ cos 2ψeþijðnÞ þ sin 2ψe×ijðnÞ; ðA8Þ

e×ijðn;ψÞ ¼ − sin 2ψeþijðnÞ þ cos 2ψe×ijðnÞ: ðA9Þ

while the basis ðeRij; eLijÞ transforms as

eRijðn;ψÞ ¼ e−i2ψeRijðnÞ; ðA10Þ

eLijðn;ψÞ ¼ ei2ψeLijðnÞ: ðA11Þ

The tensors eRij and e
L
ij corresponds to right and left circularly

polarized waves.
Let us construct the basis of polarization tensors

ðe×ijðnÞ; eþijðnÞÞ. We can choose an orthonormal basis in
the plane normal to the direction of propagation n, i.e.,
uðnÞ and vðnÞ. We define

eþijðnÞ ¼ uiðnÞujðnÞ − viðnÞvjðnÞ; ðA12Þ

e×ijðnÞ ¼ uiðnÞvjðnÞ þ viðnÞujðnÞ: ðA13Þ

POLARIZATION OF A STOCHASTIC GRAVITATIONAL … PHYS. REV. D 99, 023534 (2019)

023534-19



Using the fact that v and u are orthonomal, one can verify
that Eq. (A7) is satisfied. We compute the contraction
between polarization vectors relative to different directions
of propagation. We use the shortcut notation eAijðn0Þ ¼ e0Aij .
We have

e0þij e
ijþ ¼ ðu · u0Þ2 þ ðv · v0Þ2 − ðv · u0Þ2 − ðu · v0Þ2;

ðA14Þ

e0×ij e
ij× ¼ 2ðu · u0Þðv · v0Þ þ 2ðv · u0Þðu · v0Þ; ðA15Þ

e0×ij e
ijþ ¼ 2ðu · u0Þðu · v0Þ − 2ðv · v0Þðv · u0Þ; ðA16Þ

e0þij e
ij× ¼ 2ðu · u0Þðv · u0Þ − 2ðv · v0Þðu · v0Þ: ðA17Þ

One can verify that27X
AB

jeAijðn0ÞeijBðnÞj2 ¼ 1þ ðn · n0Þ4 þ 6ðn · n0Þ2: ðA18Þ

APPENDIX B: BOLTZMAN APPROACH

We propose an alternative derivation of the results of
[55,56] using a Boltzmann approach.28We will see that the
geometric optics approximation used in [55,56] corre-
sponds to the zero-collision hypothesis in the Boltzmann
treatment. We also derive result for the anisotropies of a
cosmological background of radiation.
We introduce a distribution function of gravitons

fðxμ; kμÞ, satisfying the following Boltzman equation

L½f� ¼ E½λ� þ C½f�; ðB1Þ

where L≡ d=dη is the Liouville operator and E, C and
emissivity term and collision term respectively. We denote
by λ the affine parameter along the geodesic with tangent
vector kμ so that dη=dλ ¼ k0 ¼ ω. In this Appendix we
denote the frequency by ω, to avoid confusion with the
distribution function.
We introduce two reference frames, a cosmological

reference frame and a reference frame tied to baryons
(and galaxies under the assumption that the galaxy velocity
is unbiased). We then have

eμa ¼ ðuμ; eμiÞ; ðeμaÞG ¼ ðuμ; eμiÞG; ðB2Þ

which are related by a boost of velocity v as

eμa ¼ Λμ
νðeνaÞG; ðB3Þ

see Appendix G of [102] for details on how physical
quantities transform under this boost. If we have a graviton
with 4-momentum ðkμÞ ¼ ωð1; niÞ, its energy and direction
measured in the two frames are related as

ωG ¼ −ðuμkμÞG ¼ ωð1 − n · vÞ; ðB4Þ

niG ¼ ð1þ n · vÞni; ðB5Þ

to first order there is no aberration. The distribution
function does not transform and one has

fðη;x;ω;nÞ ¼ fGðη;x;ωG;nGÞ: ðB6Þ

From now on we therefore omit the subscript G on the
distribution function. We define (in the frame of the
comoving observer)29

ΩGWðη;x;nGÞ≡ 1

ρc

Z
dωGω

3
Gfðη;x;ωG;nGÞ: ðB7Þ

The Liouville operator can be written as

L½λ� ¼ dη
dλ

�∂f
∂η þ ni∂if þ ∂f

∂ logωG

∂ logωG

∂η
�
: ðB8Þ

We observe that since we will be interested in quantities up
to first order in perturbations, we can neglect all aberration
effects in Eq. (B8), setting n ¼ nG. Furthermore, we have
assumed that f has no intrinsic direction dependence so that
the latter only enters via the dependence of ωG on n via

d logωG

dη
¼ d logω

dη
− ni

dvi

dη
: ðB9Þ

1. Astrophysical background

We neglect the collision term in Eq. (B1). We then have

df
dτ

¼ dλ
dτ

E½λ�; ðB10Þ

where τ is the proper time of the observer. We recall that
E½λ� ¼ ðnumber gravitons producedÞ=ðunits of λÞ. It fol-
lows that the quantity on the right-hand side of (B10) is
proportional to the number of gravitons produced per units
of τ. We observe that

27One way to verify this result is to pick up a specific choice for
n, n0 and for the vectors of the polarization basis, expressing the
final result in a coordinate independent way. For example we can
choose n ¼ ðsin θ; cos θ; 0Þ, n0 ¼ ð0; 1; 0Þ and u0 ¼ ex, v0 ¼ ez
and u ¼ ðcos θ;− sin θ; 0Þ, v ¼ ð0; 0; 1Þ. One finds e0þij e

ijþ ¼
1þ cos θ2, e0×ij e

ij× ¼ 2 cos θ and the mixed terms are vanishing.
We then simply insert cos θ ¼ n · n0.

28See also [101] for a first attempt to derive anisotropies from a
Boltzmann approach.

29For practical purposes, we are absorbing a factor 1=ð4πÞ in
the definition of f. To make contact with standard conventions,
we will replace ΩGW → 4πΩGW in the final result.
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dρGW
dτ

¼
Z

dωGω
3
G
df
dτ

¼
Z

dωGω
3
G
dλ
dτ

E½λ�; ðB11Þ

The explicit form of the emissivity function depends on the
physical situation being considered. Comparing with the
astrophysical model of [55] we find

E½λ� ¼
�
dτ
dλ

�
LGðϑG;ωGÞ

nG
ω3
G

; ðB12Þ

where ϑG are a set of parameters effectively describing a
given galaxy (mass, metallicity, etc.). It follows that
Eq. (B1) can be rewritten as

df
dη

¼
�
dτ
dη

�
LGðϑG;ωGÞ

nG
ω3
G

: ðB13Þ

The relation between proper time and conformal time
[55] is

dτ
dη

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pμpνgμν

p dλ
dη

¼ a½1þ ψ − v · n�; ðB14Þ

where pμ is the spatial projection of the graviton 4-vector.
We can now solve Eq. (B13) replacing (B14) and (B8),

and then integrating over energy to find an equation for
ΩGW The equation for the background becomes

Ω̄GWðη0Þ ¼
Z

η0

0

dηaðηÞ5n̄GðηÞ
Z

dηGLGðϑGÞ; ðB15Þ

where we have introduced the integrated luminosity

LGðϑGÞ ¼
Z

dωGLGðωG;ϑGÞ: ðB16Þ

The equation for the perturbed quantity δΩGW can be
written as

∂ηδΩGW þ ni∂iδΩGW þ 4HδΩGW

¼ −4
�
d
dη

ðϕþ n · vÞ − _ψ − _ϕ

�
Ω̄GW

þ n̄Gaðψ − v · nþ δGÞ
Z

dϑGLG: ðB17Þ

This equation can be solved by writing the left-hand side as

ðl:h:s:Þ ¼ a−4
d
dη

ða4δΩGWÞ; ðB18Þ

and after standard manipulations and replacing ΩGW →
4πΩGW, we find

δΩGWðeÞ ¼
1

4πρc

Z
η0

0

dηa5n̄GðηÞ
�
δG þ 4ϕþ ψ − 3e · v þ 4

Z
η0

η
dη0ð _ϕþ _ψÞ

� Z
dϑGLGðϑGÞ: ðB19Þ

The corresponding result per logarithmic frequency can be obtained using Eq. (B16), recalling that ωG ¼ ð1þ zGÞω and
taking into account redshift perturbations is

ΩGWðω; eÞ ¼
ω

4πρc

Z
η0

0

dηa4n̄GðηÞ
�
1þ δG þ 4ψ − 2e · ∇vþ 3

Z
η0

η
dη0ð _ψ þ _ϕÞ

� Z
dϑGLGðωG; ϑGÞ; ðB20Þ

which agrees with the result given in Eq. (67) of [55].

2. A cosmological background

For a GW background of cosmological origin, we solve
(B1) with stochastic initial conditions for the various fields
(and no emissivity). One has

Ω̄GWðη0Þ ¼
aðηiÞ4
aðη0Þ4

Ω̄GWðηiÞ; ðB21Þ

and

δΩGWðη0; eÞ
Ω̄GWðη0Þ

¼ δΩGWðηi; eÞ
Ω̄GWðηiÞ

− 4½ϕ0 − ϕi − e · v0 þ e · vi�

þ 4

Z
η0

ηi

dηð _ϕþ _ψÞ; ðB22Þ

where ηi is the initial time at which the background is
produced. The result per units of logarithmic frequency is
simply

δΩGWðη0; e;ωÞ
Ω̄GWðη0;ωÞ

¼ δΩGWðηi; e;ωÞ
Ω̄GWðηi;ωÞ

− 4½ϕ0 − ϕi − e · v0 þ e · vi�

þ 4

Z
η0

ηi

dηð _ϕþ _ψÞ: ðB23Þ

APPENDIX C: THE AMPLITUDE OF
FLUCTUATIONS

1. Astrophysical background

An order of magnitude estimate of the amplitude of
the anisotropies of the astrophysical background with
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respect to the isotropic component can be obtained by
computing

σ2GWðfÞ≡ hδΩGWðe; fÞδΩGWðe; fÞi
Ω̄2

GWðfÞ
¼ 1

Ω̄2
GWðfÞ

X
l

2lþ 1

2π
ClðfÞ: ðC1Þ

For the second equality we have used that the correlation
function.

Cðf; θÞ ¼ hδΩGWðf; e1ÞδΩGWðf; e2Þi; ðC2Þ

with e1 · e2 ¼ cos θ can be expanded in Legendre poly-
nomials as

Cðf; θÞ≡X
l

2lþ 1

2π
ClðfÞPlðe1 · e2Þ: ðC3Þ

The angular power spectrum has the following expression,
see [55]

ClðfÞ ¼
2

π

Z
dkk2jδΩlðk; fÞj2: ðC4Þ

Here k is the Fourier variable and δΩlðk; fÞ is the l-mode
of the Fourier transform of δΩlðx; fÞ. On large scales it is
simply given by [55]

δΩlðk; fÞ ¼
f

4πρc

Z
ηO

0

dηa5ðηÞn̄GðηÞbδkðηÞjlðkΔηÞ

×
Z

dϑGLGðfG; ϑGÞ; ðC5Þ

where b is the (scale-independent) bias and δk the matter
over density (in Fourier space). We work under the
following hypotheses:
(1) all galaxies have the same integrated luminosity (i.e.,

LGðfÞ does not depend on ϑG);
(2) the luminosity (integrated) does not depend on time,

i.e., the luminosity per units of frequency scales with
a simple redshift factor

LGðfG; ϑGÞ ¼ LGðf; ϑGÞ
df
dfG

¼ ð1þ zGÞ−1LGðf; ϑGÞ; ðC6Þ

(3) the universe is matter dominated, aðηÞ ¼ ðη=ηOÞ2;
(4) δm ¼ δCDM (we neglect baryons).

We focus on subhorizon modes in matter domination, i.e.,
on k ≫ keq, for which

δkðηÞ ¼ δk

�
η

ηeq

�
2

; ðC7Þ

with

δk ¼
9

10
ΦP

k ½−1þ 6 logðkηeqÞ�; ðC8Þ

with the primordial power spectrum given by

ΦP
k ¼ π

ffiffiffi
2

p 2

3
k−3=2

A1=2
S

½1þ 4
15
Rν�

�
k
kref

�ðns−1Þ=2
; ðC9Þ

where Rν is the fraction of neutrinos in radiation Rν ≡
Ων=ðΩν þΩγÞ ¼ α=ð1þ αÞ with α ¼ Neff7=8ð4=11Þ4=3
and Neff ¼ 3.046 is the effective number of neutrino
species, see e.g., [103].30 We use

n̄GðηÞ ¼ nG;O

�
aO
a

�
3

¼ nG;O

�
ηO
η

�
6

: ðC10Þ

and we assume the bias to be scale-independent and to scale
as ∝

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
[105,106]:

b ∼ bO
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p ¼ bO

�
ηO
η

�
; ðC11Þ

with bO ∼ 1. Putting all these ingredients together and
making use of the following asymptotic behavior of the
spherical Bessel function

jlðxÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2lþ 1

r
δ

�
lþ 1

2
− x

�
þOð1=l2Þ; ðC12Þ

Eq. (C5) simplifies to

δΩ̂lðk;fÞ¼
f

4πρc
LGðfÞbOnG;O

1

k

�
ηO
ηeq

�
2
�
η̄

ηO

�
7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ1

r
δk;

ðC13Þ
with

η̄ ¼ ηO −
�
lþ 1

2

�
1

k
; ðC14Þ

which can be approximated to η̄ ¼ ηO for large enough
angular scales. Then

ClðfÞ ¼
�
lþ 1

2

�
−1
�

f
4πρc

LGðfÞbOnG;O
�
2
�
ηO
ηeq

�
4

×
Z
keq

dkjδkj2; ðC15Þ

30All values for the cosmological parameters are those of [104],
explicitly kref ¼ 0.002 Mpc, AS ¼ 2.1986 × 10−9, ns ¼ 0.9652.
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with31

Z
keq

dkjδkj2 ≃ π2
8

9

�
9

10

�
2 1

3 − ns

�
A1=2
S

1þ 4
15
Rν

�2

×

�
kref
keq

�
1−ns

�
ηeq
ηO

�
2

η2O: ðC16Þ

While for the isotropic component we have

Ω̄2
GWðfÞ ≃

1

25

�
f

4πρc
LGðfÞnG;O

�
2

; ðC17Þ

Going back to Eq. (4.17) and using Eqs. (C15)–(C17),
we find

σ2GW ≃ 18πb2O

�
A1=2
S

1þ 4
15
Rν

�2�kref
keq

�
1−ns

�
ηO
ηeq

�
2

∼ 10−4:

ðC18Þ

We can conclude that the relative amplitude of fluctuations
with respect to the isotropic component, for a generic
astrophysical background is of order

δΩGW

Ω̄GW
∼ σGW ≈ 10−2: ðC19Þ

This result applies to any component of the astrophysical
background as long as the luminosity function LG depends

on time only through the redshifted frequency [see
Eq. (C6)], which is the case e.g., for a background of
mergers in the LIGO band. The estimate can be refined by
assuming for each contribution to the background (black
hole mergers, supernovae,…) a specific frequency depend-
ence of the luminosity function. Equation (C19) is in
agreement with the numerical results obtained in [57]
for the case of a background of black hole mergers.
Note that (C19) is an estimate of the amount of

anisotropy today, at η ¼ η0. The analogous quantity at a
different time η1 < η0, can be worked out in a similar
way: in the definition of the energy density (B20), the
integral over time runs up to η1 and Eq. (C13) has to be
evaluated at η̄1 ¼ η1 − ðlþ 1=2Þ=k. For η1 ≫ ηeq, one
has η1=η0 ≫ ðlþ 1=2Þ=ðη0keqÞ≫ ðlþ 1=2Þ=ðη0kÞ, hence
η̄1=η0≃η1=η0 and the final result for the fluctuations is
suppressed by a factor ðη1=η0Þ7 with respect to (C19). In
Sec. IV we consider a simplified framework where most of
astrophysical sources are located at redshift z ¼ 1.5. For
this situation δΩGW=Ω̄GWðη1Þ≃ ðη1=η0Þ7δΩGW=Ω̄GWðη0Þ≃
ða0=a1Þ7=2δΩGW=Ω̄GWðη0Þ≃ 10−3.

2. Cosmological background

The anisotropies of a cosmological GW background are
a tracer of the temperature anisotropies of the CMB. We
therefore expect δΩGW=Ω̄GWðη0Þ ≃ 10−5. If we consider
η1 < η0, the result changes slightly due to the change of
the integration bounds of the integrated Sachs-Wolfe term
in Eq. (B23). As a first approximation, we neglect this
correction, assuming that the value 10−5 stays the same for
any redshift.
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