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When a luminous source is extended, its distortions by weak gravitational lensing are richer than a
mere combination of magnification and shear. In a recent work, we proposed an elegant formalism
based on complex analysis to describe and calculate such distortions. The present article further elaborates
this finite-beam approach, and applies it to a realistic cosmological model. In particular, the cosmic
correlations of image distortions beyond shear are predicted for the first time. These constitute new weak-
lensing observables, sensitive to very-small-scale features of the distribution of matter in the Universe.
While the major part of the analysis is performed in the approximation of circular sources, a general method
for extending it to noncircular sources is presented and applied to the astrophysically relevant case of
elliptic sources.
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I. INTRODUCTION

The standard theory of weak gravitational lensing is built
upon a relativistic formalism whereby light beams, and
hence their sources, are infinitesimal [1,2]. In this context,
gravitation acts on photon beams via tidal forces, which by
essence can only produce three classes of effects: con-
vergence, shear, and rotation. In particular, shear, which is a
change in the apparent ellipticity of an image, is the only
distortion that infinitesimal sources can undergo. The weak
shear field and its statistical properties currently represent a
key observable in cosmology.
In a previous article, Ref. [3], hereafter FLU17, we

argued that the infinitesimal-beam approximation is con-
ceptually incorrect when light propagates through matter,
whose distribution always vary on scales that are eventually
shorter than the beam’s cross-sectional diameter, provided
one adopts a sufficient resolution. We addressed this
problem by designing a finite-beam formalism for weak
lensing, which allowed us, in particular, to solve the so-
called Ricci-Weyl dichotomy [4–9]. The results of FLU17
also suggested that cosmic shear observations could be
plagued with non-negligible finite-beam corrections. This
was further investigated in a companion paper [10], here-
after FLU18a; it turns out that finite-beam corrections were

overestimated in FLU17, due to simplistic assumptions on
the distribution of matter in the Universe.
Unlike infinitesimal sources, extended sources can

exhibit more complex distortions than a mere shear.
The notion of flexion [11,12], for example, which char-
acterizes the arciness of an image, has already been
thoroughly investigated in the literature. In the present
article, we propose a simple unified mathematical descrip-
tion of weak lensing beyond shear, thereby generalizing
the theory of flexion, and apply it to a realistic cosmo-
logical model. Furthermore, while the analysis of FLU17
was limited to circular sources only, we show how our
finite-beam formalism can be generalized to noncircular
sources.
The article is organized as follows: in Sec. II, we

summarize the general context, approximations, and equa-
tions of the finite-beam formalism; in Sec. III, we show
how the notion of shear can be extended to higher-order
moments of an image; we compute these higher moments
in a cosmological context in Sec. IV, as well as their two-
point correlations, in the case of circular sources; finally,
we show how to tackle noncircular sources in Sec. V, and
conclude in Sec. VI.
We adopt units in which the speed of light is unity.

Two-dimensional vectors are denoted with bold symbols
(β; θ; λ;…) while underlined quantities (β; θ; λ;…) are
their complex representation: if θ ¼ ðθx; θyÞ, then
θ≡ θx þ iθy.
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II. FORMALISM

This section briefly exposes our finite-beam formalism;
further details about its construction, including physical
motivations, can be found in FLU18a [10]. We consider a
statistically homogeneous and isotropic Universe, filled
with noncompact, spherical, nonrotating, and slowly mov-
ing massive objects (apart from their cosmic recession).
The geometry of the resulting spacetime can be modeled by
the Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric with scalar perturbations,

ds2¼a2ðηÞf−ð1þ2ΦÞdη2þð1−2ΦÞ½dχ2þf2KðχÞdΩ2�g;
ð1Þ

where a denotes the scale factor quantifying cosmic
expansion, K is the background spatial curvature param-
eter, fKð χÞ≡ sinð ffiffiffiffi

K
p

χÞ= ffiffiffiffi
K

p
,Φ is the gravitational poten-

tial generated by the massive objects, and η, χ are
respectively the background conformal time and comoving
radial coordinate.
Let an extended source be made of points which, in

the absence of lensing, i.e., in a strictly homogeneous
Universe, are observed in directions β, as depicted in Fig. 1.
Although β represents an angular difference between
two positions on the observer’s celestial sphere, we will
assume that this angle is small enough for β to be well

approximated by a vector in a plane. In other words, the
source is extended, but small, so that paraxial optics (flat-
sky approximation) is valid. Let us call S the unlensed
contour of the source. If point-lenses are placed at various
positions λk, then the image θ of a point-source at β satisfies
the lens equation

β ¼ θ −
X
k

ε2k
θ − λk
jθ − λkj2

; ð2Þ

where εk denotes the Einstein radius of the lens k. The
Einstein radius of a lens quantifies its capacity to distort
images.
Equation (2) generally has several solutions: a given

point source can be multiply imaged. In this article, we will
restrict to the weak-lensing regime, and only consider the
main image θ of each point β. This regime is equivalent to
considering that the distance between a point source and
any lens is much larger than the Einstein radius of the lens,
jβ − λkj ≫ εk. The source-image displacement is then very
small, and can be approximated as

δθ≡ θ − β ≈
X
k

ε2k
β − λk
jβ − λkj2

: ð3Þ

Because we only consider the main image of each point, the
contour S of the extended source is lensed into a slightly
distorted contour I, as shown in Fig. 1.
The Einstein radius of the lens k reads

ε2k ≡ 4GmkDkS

DOkDOS
¼ 4Gmkð1þ zkÞfKð χS − χkÞ

fKð χSÞfKð χkÞ
; ð4Þ

where mk is the mass of the lens, while DkS, DOk, and DOS
are the angular-diameter distances, respectively, of the
source seen from the lens k, of the lens k seen from the
observer, and of the source seen from the observer; zk
denotes the observed redshift of the lens.
Quite importantly, because we have chosen the back-

ground spacetime to be FLRW, which corresponds to a
Universe homogeneously filled with matter, the mass of the
lenses mk and the corresponding squared Einstein radius,
ε2k, are allowed to be negative. This is due to the fact that
Φ, which drives light deflection with respect to this back-
ground, satisfies a Poisson equation of the form ΔΦ ¼
4πGa2ðρ − ρ̄Þ, where ρ̄ is the mean energy density.
Introducing negative masses is a trick to account for the
presence of −ρ̄ in this equation; see Appendix of FLU18a.
For that reason, when going from a discrete to a continuous
description of the matter distribution in Sec. IVA, the
masses mk of the lenses will be replaced by δρ≡ ρ − ρ̄,
instead of simply ρ.
It is convenient to adopt a complex representation β, θ, λk

of the two-dimensional vectors β, θ, λk. If ðex; eyÞ denotes
an arbitrary orthonormal basis of the flat sky, then

FIG. 1. Top panel: Image I of an extended source S by multiple
weak lenses with Einstein radii; θ denotes the main image of a
point-source β, and εk, λk respectively denote the Einstein radius
and angular position of the lens k. Bottom panel: Geometrical
quantities involved in the lens equation.
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θ ¼ θxex þ θyey ↦ θ ¼ θx þ iθy: ð5Þ

With this notation, the lensing displacement (3) be-
comes [13]

δθ ¼ θ − β ¼
X
k

ε2k
β� − λ�k

; ð6Þ

where a star denotes complex conjugation.
The complex notation is particularly useful for descri-

bing the distortions of an image. Its most straight-
forward application is the calculation of the convergence
κ ¼ ðΩ −ΩSÞ=ð2ΩSÞ, where Ω, ΩS respectively denote the
angular area of the image and the source. From

Ω ¼
Z
intI

d2θ ¼ 1

2i
∳

I
θ�dθ; ð7Þ

one can substitute the complex lens equation, apply the
residue theorem, and find [FLU17]

κ ¼
X
k∈intS

πε2k
ΩS

; ð8Þ

at lowest order in the lensing displacement δθ. This result
shows in particular that, at this order of approximation,
only the lenses enclosed by the light beam—interior
lenses—contribute to its focusing. The case of shear is
comprehensively investigated in FLU18a, showing the
respective roles of interior and exterior lenses. In the
present article, we generalize the analysis of FLU18a by
showing how the complex formalism allows one to
elegantly calculate all the moments of an image, thereby
characterizing their shape with precision.

III. MOMENTS OF AN IMAGE

Measurements of the weak gravitational shear are
historically based on the image quadrupole (or second
moment),

Qab ¼
R
W½IðθÞ�θaθbd2θR
W½IðθÞ�d2θ ; ð9Þ

where IðθÞ is the image surface brightness in the direction
θ, andW is a weighting function. The quadrupole matrixQ
is then used to define the ellipticity1 of the image as [14]

E≡ 2ðQh11i þ iQh12iÞ
trQ

; ð10Þ

where angular brackets Qhabi denotes the traceless part
of Q. In this section, we propose a generalization of Q
and E, in order to characterize distortions of the shape of
extended sources beyond shear.

A. Generalizing the image quadrupole

For any strictly positive integer n, we define the image
moments as

Ma1…an ≡
R
W½IðθÞ�θa1…θand

2θR
W½IðθÞ�d2θ : ð11Þ

While the second moment (quadrupole) characterizes the
ellipticity of the image, the third one (octupole) quantifies
its triangularity, the fourth one (hexadecapole) its squarity,
and so on. In Ref. [15], moments beyond the quadrupole
were dubbed higher-order lensing image’s characteristics
(HOLICs). In Eq. (11), we have set the origin of image
positions θ at the W center of the image, that isZ

W½IðθÞ�θd2θ ¼ 0; ð12Þ

which implies that the first moment (dipole) Ma is zero.
Following FLU17, we assume for simplicity that W is a

top-hat function with an arbitrary brightness threshold, so
that W ¼ 1 within the image, and W ¼ 0 otherwise. The
denominator of Eq. (11) then becomes the angular area Ω
of the image, while the numerator can be turned into a one-
dimensional integral over the contour I of the image,

Ma1…an ¼
1

Ω

Z
intI

θa1…θand
2θ ð13Þ

¼ 1

ðnþ 2ÞΩ
Z
intI

∂ðθa1…θanθbÞ
∂θb d2θ ð14Þ

¼ 1

ðnþ 2ÞΩ ∳ I
θa1…θan detðθ; dθÞ ð15Þ

¼ 1

ðnþ 2ÞΩ
Z

2π

0

θ̂a1…θ̂anθ
nþ2dψ ; ð16Þ

where we used Stokes’ theorem to go from Eq. (14)
to Eq. (15), and in the last line we introduced the norm
θ of θ, and the unit vector θ̂≡ θ=θ with components θ̂ ¼
ðcosψ ; sinψÞ.
The fully symmetric tensor M has, in general, nþ 1

independent components, but this number drops to 2 if we
only consider its trace-free part, Mha1…ani, whose con-
traction of any pair of indices vanishes,

∀ i ≠ j δaiajMha1…ani ¼ 0: ð17Þ

Since the left-hand side of Eq. (17) is a symmetric tensor
with n − 2 indices, the above represents n − 1 independent

1The usual notation for this ellipticity is χ, we chose to call
it E in order to avoid confusions with the comoving radial
coordinate.
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constraints, whence the fact that Mha1…ani has only two
independent components. These can be chosen asMh1…11i
and Mh1…12i. Indeed, any other component will have pairs
of indices with the value 2, which can thus be converted
into pairs of 1 by the trace-free condition, and reshuffled in
order to get either of the two aforementioned components.
From these two independent components, we define the
complex moment

Mn ≡Mh1…11i þ iMh1…12i; ð18Þ

which is a direct generalization of the numerator of the
complex ellipticity (10) of an image.
The final step consists in using that

θ̂h1…θ̂1θ̂1i ¼
cos nψ
2n−1

; ð19Þ

θ̂h1…θ̂1θ̂2i ¼
sin nψ
2n−1

; ð20Þ

where it is understood that the left-hand sides contain n
factors. These relations are relatively well known in the
framework of symmetric-trace free tensors; they can be
proved by induction. The complex representation θ of θ
then naturally arises into the expression of Mn,

Mn ¼
1

2n−1ðnþ 2ÞΩ
Z

2π

0

θnþ2einψdψ ð21Þ

¼ 1

2n−1ðnþ 2ÞΩ
Z

2π

0

θ2θndψ : ð22Þ

Why only consider trace-free moments? In fact,
this is only justified in the case of circular sources.
Consider a circular source with constant radius β, and
write θ ¼ βþ δθ, for each point β ¼ ββ̂ of this circle. Then
the nth moment reads

Ma1…an ¼
βnþ2

ðnþ2ÞΩ
Z

2π

0

θ̂a1…θ̂andψ

þβnþ1

2Ω

Z
2π

0

ðβ̂ ·δθÞθ̂a1…θ̂andψþOðδθ2Þ: ð23Þ

Since δabθ̂aθ̂b ¼ 1, any trace of the nth momentMa1…an is
related to the (n − 2)th moment; hence our interest in the
trace-free part. This rationale, however, does not hold if the
source is not circular, and thus we lose information by
focusing on the trace-free moments in general.
The complex ellipticity (10) is a normalized version of

M2, using trQ to eliminate the direct dependency in the
area of the image. Similarly, we choose to normalize Mn
with

Nn ≡ nþ 1

2nΩ

Z
intI

θnd2θ ¼ 1

2nΩ

Z
2π

0

θnþ2dψ ; ð24Þ

thereby defining the reduced nth moment of the image,

μn ≡Mn

Nn
¼ 2

nþ 2

R
2π
0 θnθ2dψR
2π
0 θnθ2dψ

: ð25Þ

Recall that n > 0, and that by construction μ1 ¼ 0. The first
reduced moment containing information is thus μ2, which
corresponds to the complex ellipticity, E ¼ 2μ2. As will be
further discussed in Sec. III E, μ3 is related to the so-called
G-type flexion [12]. To our knowledge, the moments n ≥ 4
have never been considered in the weak-lensing literature.

B. Expression of the reduced moments in weak lensing

Let us now relate the reduced moments μn to the
properties of the source S and of the lenses which turn
it into the image I . Our goal is to derive an expression of
the form μn ¼ μSn þ δμn, where μSn is the intrinsic reduced
moment of the source, and δμn its observed correction due
to lensing. We start with the complex expression of the lens
equation

θ ¼ β þ δθ; ð26Þ

and expand the integrals of Eq. (25) at first order in δθ,
starting with the numerator. On the one hand, the integrand
reads

θnθ2 ¼ βnβ2 þ βn½ðnþ 1Þβ�δθ þ βδθ��: ð27Þ

On the other hand, we must be careful of the fact that
integration is performed over the polar angle ψ of the image
points θ ¼ θeiψ , which differs from the polar angle φ
of the corresponding source points β ¼ βeiφ. Defining
δψ ≡ ψ − φ, and writing that, at first order in δψ ,
θ ¼ θeiφð1þ iδψÞ ¼ β þ δθ, we find

δψ ¼ Imðβ−1δθÞ: ð28Þ

The integral of Mn thus reads, at first order,

Z
2π

0

θnθ2dψ ¼
Z

2π

0

βnβ2
�
1þ dδψ

dφ

�
dφ

þ
Z

2π

0

βn½ðnþ 1Þβ�δθ þ βδθ��dφ: ð29Þ

Integrating the first term by parts, replacing δψ with its
expression, and rearranging the various terms, we get
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Z
2π

0

θnθ2dψ ¼
Z

2π

0

βnβ2dφ

þ nþ 2

2i

Z
2π

0

δθ�βn
�
dβ
dφ

þ iβ

�
eiφdφ

−
nþ 2

2i

Z
2π

0

δθβn
�
dβ
dφ

− iβ
�
e−iφdφ:

ð30Þ

The final step consists in recognizing, in the last two terms
of Eq. (30), the differential dβ ¼ ðdβ=dφþ iβÞeiφdφ and
its complex conjugate. In other words, we have

Z
2π

0

θnθ2dψ ¼
Z

2π

0

βnβ2dφþ nþ 2

2i
∳

S
δθ�βndβ

þ
�
nþ 2

2i
∳

S
δθ�ðβ�Þndβ

��
: ð31Þ

The calculation of the denominator of Eq. (25), corre-
sponding to the normalization Nn, follows similar lines,
and yields

Z
2π

0

θnþ2dψ ¼
Z

2π

0

βnþ2dφþ 2Re

�
nþ 2

2i
∳

S
δθ�βndβ

�
:

ð32Þ

Gathering Eqs. (31) and (32), we obtain

μn ¼

2
641 − ðnþ 2ÞRe

�
1
2πi ∳

S
δθ�βndβ

�
1
2π

R
2π
0 βnþ2dφ

3
75μSn

þ
1
2πi ∳

S
δθ�βndβ þ

�
1
2πi ∳

S
δθ�ðβ�Þndβ

��
1
2π

R
2π
0 βnþ2dφ

; ð33Þ

which shows how weak lensing affects the reduced multi-
pole of an image at lowest order in light deflection. The
advantage of this expression is that all the lensing effects
are expressed in terms of complex integrals of δθ�. By
virtue of the lens equation, this quantity reads, still at lowest
order,

δθ� ¼
X∞
k¼1

ε2k
β − λk

: ð34Þ

Therefore, μn takes the form

μn ¼
�
1 −

nþ 2

Dn

X
k

ε2kRe½CnðλkÞ�
�
μSn

þ 1

Dn

�X
k

ε2kAnðλkÞ þ
X
k

ε2k½BnðλkÞ��
�
; ð35Þ

swith the four integrals

AnðλÞ≡ 1

2πi
∳

S

βndβ

β − λ
; ð36Þ

BnðλÞ≡ 1

2πi
∳

S

ðβ�Þndβ
β − λ

; ð37Þ

CnðλÞ≡ 1

2πi
∳

S

βndβ

β − λ
; ð38Þ

Dn ≡ 1

2π

Z
2π

0

βnþ2dφ: ð39Þ

Determining μn for a given source S thus consists in
computing the integrals An, Bn, Cn, Dn. While An is
directly integrated via the residue theorem, the last two are
more challenging in general. We will see in Sec. V how to
handle them, and focus on circular sources for the remain-
der of this section.

C. Circular sources

The results which have been obtained so far are fully
general with respect to the shape S of the source. However,
they greatly simplify, and are more easily interpreted, in the
case of circular sources. Thus, from now on and until
Sec. V, we restrict the analysis to circular sources, i.e.,
β ¼ βeiφ where β does not depend on φ. It is easy to see that
all the intrinsic moments of a circular source vanish, μSn ¼ 0
for any n > 1. The moments of the image are then all due to
lensing, and read

μn ¼
1

βnþ2

X
k

ε2kfAnðλkÞ þ ½BnðλkÞ��g: ð40Þ

The residue theorem immediately yields, for the first
integral,

AnðλkÞ≡ 1

2πi
∳

S

βndβ

β − λk
¼

�
λnk if λk ∈ intS

0 if λk ∈ extS;
ð41Þ

so that only the lenses enclosed by the source contribute to
this part of μn (this also holds for noncircular sources).
The Bn integral is less immediately calculated, because

its integrand is not obviously C-differentiable: it depends
on both β and β�. However, since S is a circle, for any
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β ∈ S we can write β� ¼ β2=β, where β2 is a constant
which can be taken out of the integral,

BnðλkÞ≡ 1

2πi
∳

S

ðβ�Þndβ
β − λk

¼ β2n

2πi
∳

S

dβ

βnðβ − λkÞ
: ð42Þ

The residue theorem can now be applied, either directly,
allowing for the fact that the integrand generally has two
poles (at 0 and λk), or after changing the variable to w ¼
β=β which brings one back to Eq. (41). The result is

1

2πi
∳

S

dβ

βnðβ − λkÞ
¼

�
0 if λk ∈ intS

−λ−nk if λk ∈ extS;
ð43Þ

hence this second contribution only depends on the lenses
located outside the source.
Summarizing, the reduced moments of the image of a

weakly lensed circular source read

μn ¼
X
k∈intS

�
εk
β

�
2
�
λk
β

�
n

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
μintn

−
X
k∈extS

�
εk
β

�
2
�
β

λ�k

�
n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
μextn

: ð44Þ

This generalizes the case of shear, γ ¼ μ2, obtained in
FLU18a. The closer a lens is to the contour of the source, in
angle space, the greater its impact on the image moments.
This behavior is enhanced as n is larger, so that large
moments are only sourced by lenses which are very close to
the source in angle space.

D. Relation between reduced moments
and Fourier modes

The geometric meaning of the reduced moments is
clearer when reinterpreted as a combination of Fourier
modes. Consider again a circular source, and let us para-
metrize the displacement δθ ¼ θ − β of its contour with the
polar angle φ of the associated point source β ¼ βeiφ. Since
S is a closed curve, the complex function φ ↦ δθðφÞ is 2π-
periodic, and thus it can be expanded in Fourier
series as

δθðφÞ ¼
X
p∈Z

δθpeiðpþ1Þφ; ð45Þ

δθp ≡ 1

2π

Z
2π

0

δθe−iðpþ1Þφdφ: ð46Þ

Comparing the definition of δθp with the expression (33),
one immediately sees that, for any n > 1,

μintn ¼ δθ�n
β

; and μextn ¼ δθ−n
β

: ð47Þ

This shows that, as far as circular sources are concerned,
interior lenses (i.e., lenses enclosed by the source) only
generate positive Fourier modes of distortion, while
exterior lenses only generate negative Fourier modes, as
already noticed in FLU17. Note however that those modes
are not individually observable, because the polar angle φ
itself is not observable. In other words, measuring a slightly
triangular image shape (μ3) does not tell one whether it is
due to an interior lens (μint3 ¼ δθ�3=β) or an exterior lens
(μext3 ¼ δθ−3=β). The other moments can be used to break
this degeneracy, because the dependence of μintn in the
position of interior lenses is different from the dependence
of μextn in the position of exterior lenses.
Despite the fact that the Fourier modes δθn are not

individually observable, they are convenient for visualizing
the respective effect of interior and exterior lenses on a
circular source. Indeed, the contour of the image

θðφÞ ¼ βeiφ þ
X
p∈Z

δθpeiðpþ1Þφ ð48Þ

can be viewed as a curve drawn by a fictitious device made
of successive wheels with different sizes and spinning with
different angular velocities. Suppose, for example, that
there is only a single nonvanishing mode δθp. Now
consider a wheel with radius β; on the surface of this first
wheel, fix the center of second wheel with radius jδθpj, and
on the surface of this second wheel, attach a pen at angular
position ArgðδθpÞ. Then I is the curve drawn by the pen if
the first wheel rotates with angular velocity ω, thereby
dragging the center of the second wheel spinning with
angular velocity ðpþ 1Þ × ω. The effect of the first four
positive and negative modes is depicted in Fig. 2.
The relation (47) between reduced moments μn and

Fourier modes δθp also provides an alternative way to
compute μn for circular sources. Indeed, the displacement
field δθðβÞ is nothing but a geometric series,

δθ ¼
X
k

ε2k
β� − λ�k

ð49Þ

¼
X
k∈intS

ε2k
β�

1

1 − λ�k=β
� −

X
k∈extS

ε2k
λ�k

1

1 − β�=λ�k

¼
X∞
p¼0

� X
k∈intS

ε2k
β

�
λ�

β

�
p
�
eiðpþ1Þφ ð50Þ

−
X−1
p¼−∞

� X
k∈extS

ε2k
β

�
β

λ�

�
p
�
eiðpþ1Þφ; ð51Þ
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where the Fourier modes δθp≥0, δθp<0, and hence μintn , μextn ,
can directly be read.

E. Relation with flexion and Clarkson’s roulettes

Weak lensing beyond shear has already been investigated
in the literature, notably through the notion of flexion.
The first type of flexion, denoted by F, was first introduced
by Goldberg and Bacon in Ref. [11], and the second type,
denoted G, by Bacon et al. in Ref. [12]. The F -type flexion
is a spin-1 quantity, and is related to the displacement of the
centroid of an image with respect to its contour. The G-type
flexion has spin 3, and can be seen as the triangularity, or
arciness, of the image. While the initial proposition for
flexion measurements relied on shapelets [16,17], another
method, based on the image moments (HOLICs), was
developed in Refs. [15,18,19], thereby extending a first
analysis by other authors [20]. See Ref. [21] for a
comparison of the relative merits of shapelets and moments
for flexion measurements.
In its standard formalism, flexion derives from shear. If

γðαÞ is the shear observed in a direction α, then2

F ≡ −2
∂γ
∂α ; G≡ −2

∂γ
∂α� : ð52Þ

These quantities are easily computed with our formalism:
reintroducing the dependence in the observation direction α
(center of the image) in Eq. (44), and applying it to n ¼ 2
(shear), we indeed have

γðαÞ ¼
X
k∈intS

ε2kðλk − αÞ2
β4

−
X
k∈extS

ε2k
ðλ�k − α�Þ2 ; ð53Þ

and hence

F ¼
X
k∈intS

4ε2kðλk − αÞ
β4

¼ 4μint1

β
; ð54Þ

G ¼
X
k∈extS

4ε2k
ðλ�k − α�Þ3 ¼ −

4μext3

β
: ð55Þ

We thus recover the spin-1 and spin-3 properties of the two
flexions, as well as their geometrical interpretation (see
Fig. 2). The F -type flexion being only due to interior
lenses, we recover the known fact that, outside of any form
of matter, F ¼ 0. Since μ1 ¼ 0 by definition, we conclude
that the F -type flexion is not observable in our framework.
This apparent contradiction with the literature, notably
Refs. [15,21], is due to our restriction to a top-hat weighting
function when calculating the moments Mn, and hence μn.
This choice allowed us to turn the two-dimensional

FIG. 2. Fourier decomposition of the image (black line) of a circular source (gray line) by a couple of lenses (black dots), whose
Einstein radii are indicated with dotted lines. We chose here to go far beyond the weak-lensing regime, jβ − λjmin ¼ 2ε=3, in order to
visually enhance the effect. On the right-hand side, each black line shows the effect of a single Fourier mode p, i.e.,
φ ↦ βeiφ þ δθpeiðpþ1Þφ. By virtue of Eq. (47), for any n > 0, the nth reduced complex moment is given by the combination of
the Fourier modes n and −n, μn ¼ ðδθ�n þ δθ−nÞ=2.

2Differences with the original expressions of Ref. [12] come
from (i) a different convention for shear; (ii) the fact that in this
reference the complex derivative is defined in an unusual way,

∂ ≡ ∂
∂α1 þ i

∂
∂α2 ¼ 2

∂
∂α� :
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problem of the image analysis to a one-dimensional
problem: the analysis of its contour. Albeit mathematically
convenient, this restriction removes a part of the informa-
tion contained in the image, notably the position of its
centroid, which is precisely what F acts on. Furthermore,
in our framework, G ∝ μext3 cannot be observed independ-
ently from its complementary term μint3 , just like shear picks
up contributions from interior lenses. We stress that, by
construction, the standard flexion theory cannot allow for
μint3 , which thus represents an entirely new component.
Let us close this section by discussing the connections

between our approach and the recent work of Clarkson
[22,23]—the so-called roulettes. The roulette formalism
somehow takes a path which is opposite to ours: while we
use the strong-lensing formalism to describe weak lensing
beyond infinitesimal beams (see Sec. II), Clarkson
extended the weak-lensing formalism to describe strong
lensing. We thus expect both approaches to meet midway.
In the roulette approach, the lensing displacement field δθ
is computed via a nonlinear generalization of the geodesic
deviation equation; the result takes the form (notations are
adapted)

δθa ¼
X∞
m¼1

1

m!
Aa

b1…bmθ
b1…θbm; ð56Þ

where Aa
b1…bm is given by an integral of the transverse

derivatives of the Riemann tensor. From the symmetric-
trace-free part of Aab1…bm , one then defines normal modes
which appear to be very similar to the Fourier modes δθp
introduced in Sec. III D and depicted in Fig. 2. This
similarity can be schematically explained as follows: in
the weak-lensing regime, the θs in the right-hand side of
Eq. (56) can be replaced by βs; then, modulo resummation,
the traces of Aa

b1…bm can be absorbed in the terms m − 2,
m − 4, etc. Calling Bahb1…bmi the symmetric-trace-free
tensors obtained after resummation,

δθa ¼
X∞
m¼0

1

m!
Bahb1…bmiβ̂

hb1…β̂bmi ð57Þ

¼
X∞
m¼0

1

m!
Bah1…11i cosmφþ Bah1…12i sinmφ: ð58Þ

Thus, there are combinations B̂m of the components of the
above tensors such that

δθ ¼
X∞
m∈Z

B̂m

m!
eimφ; ð59Þ

whence the correspondence between the Fourier modes δθp
and the normal modes of the roulette formalism.

IV. COSMIC WEAK LENSING BEYOND SHEAR

Just like their apparent ellipticity, the other reduced
moments μn of images of galaxies are observable quan-
tities, whose lensing contribution depends on the under-
lying distribution of matter in the Universe. This section
generalizes what is currently the main observable of weak
lensing—the shear two-point correlation function—to
higher-order moments. For simplicity, the analysis is here
restricted to circular sources, so that the results of Sec. III C
can be applied. Corrections due to noncircularity will be
discussed in Sec. V.

A. From discrete lenses to a continuous
matter distribution

In the previous section, we calculated the effect of a set
of discrete lenses on an image’s reduced moments. The first
step towards cosmology consists in translating those results
in terms of a continuous distribution of matter, described by
a density field ρ, rather than a list of masses and positions.
This first step is identical to the cases of convergence
and shear, and is extensively discussed in FLU18a. The
presentation will thus be slightly more laconic here.
Equation (33) expresses the reduced moments μn as

sums of terms proportional to the lenses’ squared Einstein
radii ε2k ∝ mk. Going from a discrete to a continuous model
consists in turning sums into integrals, as

X
k

mkð…Þ →
Z

d3mð…Þ ¼
Z

δρd3Vð…Þ; ð60Þ

where δρ≡ ρ − ρ̄ is the density relative to the FLRW
background. Remember that the masses mk of the lenses
were allowed to be negative, which explains why their
continuous counterpart is δρ rather than ρ. See Appendix of
FLU18a for further details. Assuming that matter (which
excludes dark energy) is nonrelativistic, we can write
δρd3V ¼ ρ̄0δd3V0, where δ denotes the density contrast,
and a zero subscript indicates the value of a quantity today.
The philosophy of the continuous description is that,

instead of summing over individual lenses with mass mk,
comoving distance χk, and transverse (angular) position λk,
we sum over positions χ, λ and count the mass comprised
in an infinitesimal domain d3V0 about it. Introducing the
polar angle ϕ such that λ ¼ λðcosϕ; sinϕÞ, the volume
element reads

d3V0 ¼ d χ × fKð χÞdλ × fKð χÞλdϕ ð61Þ

in the flat-sky approximation (sin λ ≈ λ). Therefore, if α
denotes the direction of the center of the source, we have
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μnð χS;αÞ ¼ 4πGρ̄0

Z
χS

0

d χð1þ zÞ fKð χS − χÞfKð χÞ
fKð χSÞ

× ðKn � δÞðη0 − χ; χ;αÞ; ð62Þ

which involves in the second line the convolution product

ðKn � δÞðη; χ;αÞ≡
Z
R2

d2λ
ΩS

KnðλÞδðη; χ;αþ λÞ; ð63Þ

with the kernel Kn ¼ Kint
n þKext

n ,

Kint
n ðλÞ ¼ Θðβ − λÞ

�
λ

β

�
n
einϕ; ð64Þ

Kext
n ðλÞ ¼ −Θðλ − βÞ

�
β

λ

�
n
einϕ; ð65Þ

where Θ is the Heaviside function. Since λ spans the
positions of the lenses, Θðβ − λÞ selects matter enclosed by
the light beam, while Θðλ − βÞ selects exterior matter.

B. Effective moments

When many sources are observed in the direction α, it is
customary to calculate their average moment in order to get
rid of the dependence in χS. If pðβ; χ�Þ denotes the joint
probability density of observing a source with unlensed
radius β with comoving distance χ�, then the effective
reduced moment of order n is defined as

μeffn ðαÞ≡
Z

χH

0

d χ�dβpðβ; χ�Þμnð χ�;αÞ; ð66Þ

where χH is the comoving radius of the particle horizon.
For simplicity, we can consider that the intrinsic physical
radius r of a source is independent of its distance from the
observer. For a source at χ�, comoving with the cosmo-
logical background, we have r¼fKðχ�Þβ=ð1þz�Þ, so that

pðβ; χ�Þ ¼ pβðβj χ�Þp χð χ�Þ ð67Þ

¼ fKð χ�Þ
1þ z�

pr

�
fKð χ�Þβ
1þ z�

�
p χð χ�Þ; ð68Þ

where pr is the probability density function of the intrinsic
radius of the sources.
Inserting the expression (62) of μn into Eq. (66),

and inverting integration order as
R χH
0 d χ�

R χ�
0 d χ ¼R χH

0 d χ
R

χH
χ d χ�, we finally find

μeffn ðαÞ ¼ 4πGρ̄0

Z
∞

0

dβ
Z

χH

0

d χð1þ zÞfKð χÞ

× qðβ; χÞðKn � δÞðη0 − χ; χ;αÞ; ð69Þ

with the weighting function

qðβ; χÞ≡
Z

χH

χ
d χ�pðβ; χ�Þ

fKð χ� − χÞ
fKð χ�Þ

; ð70Þ

which generalizes to any moment the results that were
obtained in FLU18a for convergence and shear.

C. Two-point correlations

We now turn to the heart of this section, which is the
definition and calculation of the two-point correlation
functions of the image moments. Let α1 and α2 be two
arbitrary directions in the sky, and suppose that we want to
correlate the n1th moment of an image observed at α1 with
the n2th moment of an image at α2. Just like for shear, two
different correlation functions can be constructed. Call ϕα
the polar angle of the separation vector α≡ α1 − α2

between the two lines of sight; then consider a rotated
version of the effective moments,

μ̃n ≡ μeffn e−inϕα : ð71Þ

We define the two correlation functions as

ξþn1n2ðαÞ≡ hμ̃n1ðα1Þμ̃�n2ðα2Þi ð72Þ

¼ e−iðn1−n2Þϕαhμeffn1 ðα1Þ½μeffn2 ðα2Þ��i; ð73Þ

and

ξ−n1n2ðαÞ≡ hμ̃n1ðα1Þμ̃n2ðα2Þi ð74Þ

¼ e−iðn1þn2Þϕαhμeffn1 ðα1Þμeffn2 ðα2Þi; ð75Þ

where h…i denotes ensemble averaging. The names ξ�n1n2
have been chosen by analogy with cosmic shear: for
n1 ¼ n2 ¼ 2, we indeed recover the standard correlation
functions ξþ and ξ− of weak lensing.
The detailed calculation of ξ�n1n2 is given in Appendix,

but the main steps can be summarized as follows. First
insert the expression (69) of μeffn into Eqs. (73), (75); in
Limber’s approximation, the main quantities to be calcu-
lated are then

hðKn1 � δÞðη; χ;α1Þ × ðKn2 � δÞðη; χ;α2Þi; ð76Þ

hðKn1 � δÞðη; χ;α1Þ × ðK�
n2 � δÞðη; χ;α2Þi: ð77Þ

Second, introduce the Fourier transform of δ and the
associated matter power spectrum

hδðη; k1Þδðη; k2Þi ¼ ð2πÞ3δDðk1 þ k2ÞPδðη; k1Þ; ð78Þ

where δD denotes the Dirac distribution. Third, integrate
over λ1, λ2, as included in the convolution products, which
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yields Bessel functions Jn�1. Finally, integrate over the
azimuthal angle of k, which generates another Bessel
function Jn1�n2 . The final result is

ξþn1n2ðαÞ ¼
1

2π

Z
∞

0

Jn2−n1ðαlÞPn1n2ðlÞldl; ð79Þ

ξ−n1n2ðαÞ ¼
ð−1Þn1
2π

Z
∞

0

Jn1þn2ðαlÞPn1n2ðlÞldl; ð80Þ

where the power spectra Pn1n2 are defined by

Pn1n2ðlÞ ¼
�
3

2
H2

0Ωm

�
2
Z

χH

0

d χð1þ zÞ2

× q̄n1ðl; χÞq̄n2ðl; χÞPδ

�
η0 − χ;

l
fKð χÞ

�
; ð81Þ

with

q̄n≡
Z

∞

0

dβ
4J0nðlβÞ

lβ

Z
χH

χ
dχ�pðβ; χ�Þ

fKðχ�− χÞ
fKðχ�Þ

; ð82Þ

where we replaced 4πGρ̄0 with 3H2
0Ωm=2, H0 being

today’s cosmic expansion rate, and Ωm the cosmological
parameter associated with matter density.
For n1 ¼ n2 ¼ 2, these results are consistent with what is

obtained for shear in FLU18a. Note also that, even though
the original definition of the reduced moments μn is only
valid for n ≥ 1, if we compare Eq. (81) with the results of
FLU18a for convergence, we find

ξκðαÞ ¼
ξ�00ðαÞ

4
; PκðlÞ ¼

P00ðlÞ
4

; ð83Þ

using that J00ðxÞ ¼ −J1ðxÞ.
An instructive special case is when all the sources are

identical, and located at the same distance from the
observer. Then pðβ0; χ0�Þ ¼ δDðβ0 − βÞδDð χ0� − χ�Þ, and

Pn1n2ðlÞ ¼
4J0n1ðlβÞ

lβ
4J0n2ðlβÞ

lβ
P0
κðlÞ; ð84Þ

where P0
κðlÞ is the standard convergence power spectrum

of convergence with infinitesimal sources. Figure 3 illus-
trates the behavior of Pn1n2ðlÞ=P0

κðlÞ for the first n1, n2.
The key piece of information contained in this figure is that,
apart from the autocorrelation of shear (n1 ¼ n2 ¼ 2), all
the power spectra vanish when β → 0, and peak for
l ∼ ða fewÞ=β. The former fact is not surprising: β → 0
corresponds to the infinitesimal-source case, which can
only be focused and sheared; in other words, μn>2 ¼ 0 in
that case, so that the corresponding correlations obviously
vanish.
Now consider a more general case where sources are

distributed in redshift and apparent radius. For that purpose,

we follow the exact same setting as in FLU18a where the
reader can find further details. We consider MilkyWay–like
galaxies, modeled as perfect disks with physical radius
R ¼ 10 kpc, and randomly oriented. For simplicity, we still
proceed as if these sources were circular, but we allow for
their inclination ι with respect to the line of sight by giving
them an apparent radius r such that πr2 ¼ πR2j cos ιj. The
redshift distribution is taken to be the one3 of the Kilo-
Degree Survey (KiDS) (e.g., Ref. [24]), in which sources
are observed for z ∈ ½0; 0.9�. Besides, we generate the
matter power spectrum Pδðη; kÞ with CAMB,4 with
HALOFIT for nonlinear scales. Cosmological parameters
correspond to the Planck 2015 results [25].
The resulting power spectra Pn1n2ðlÞ, for n1, n2 ¼ 2, 3, 4

are depicted in Fig. 4, together with P0
κ for comparison. As

was already suspected from the simple case of Fig. 3, we
see that the power is more localized towards l ∼ β−1 as n1,
n2 increase. The amplitudes of the correlations of moments
beyond shear only become important when the extended-
source corrections to shear (P22 compared with P0

κ)
become significant. This was expected because both effects
have the same physical origin, and involve the same

FIG. 3. Ratio Pn1n2=P
0
κ between the power spectra of the first

reduced moments μn1 , μn2 and the standard convergence power
spectrum P0

κ (with infinitesimal sources), for identical circular
sources with unlensed radius β located at the same redshift. The
top panel shows autocorrelations (n1 ¼ n2); P22=P0

κ ¼ Pγ=P0
κ

approaches 1 for lβ ≪ 1. The bottom panel shows cross
correlations (n1 ≠ n2).

3http://kids.strw.leidenuniv.nl/cosmicshear2016.php.
4https://camb.info.
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characteristic scale—the typical apparent radius of the
sources. This scale is extremely small: the typical angular
radius of a galaxy at z ≈ 0.5 is β ∼ 1 arcsec. This essen-
tially corresponds to the maximal angular resolution of an
ideal lensing survey—i.e., limited by the number of
galaxies that can be observed in the Universe. This
resolution remains far beyond the reach of current surveys
[24,26], for which αmin is on the order of a few arcmin,
corresponding to a maximum l of a few thousands. Note
finally that the common behavior of all spectra of Fig. 4 at
large l corresponds to the common asymptotics of the
Bessel functions,

JnðxÞ ≈
π

4

cosðx − π=4Þffiffiffi
x

p for x ≫ 1: ð85Þ

V. NONCIRCULAR SOURCES

Let us now relax the assumption of circularity of the
sources, and investigate how it may change the observed
moments of their images. Calculations turn out to be much
more challenging, hence, after discussing the most general
case in Sec. VA, we focus on the case of elliptical sources
in Sec. V B, and in particular how it affects shear
measurements in Sec. V C. We also propose a perturbative
approach in Sec. V D

A. General case

Let us go back to the expression (35) of the reduced
moments μn, and to a discrete description of lenses. As
already mentioned at the end of Sec. III B, the difficulty
consists in calculating the four integrals An, Bn,Cn,Dn, and
in particular the first three

AnðλÞ≡ 1

2πi
∳

S

βndβ

β − λ
; ð86Þ

BnðλÞ≡ 1

2πi
∳

S

ðβ�Þndβ
β − λ

; ð87Þ

CnðλÞ≡ 1

2πi
∳

S

βndβ

β − λ
: ð88Þ

From the residue theorem, AnðλÞ ¼ λn if λ ∈ intS and 0
otherwise, regardless of the shape of the source, but such a
direct integration is impossible for Bn, Cn, whose inte-
grands are generally not C-differentiable; this is due to the
presence of β� in both of them.
In the case of circular sources, this issue was circum-

vented using that, for any β on a circle, β� ∝ β−1. For
noncircular sources, however, this trick cannot be applied.
Nevertheless, it is still theoretically possible to map this
general problem back to the circular case. The Riemann
mapping theorem [27] states that, whatever the shape of S,
there exists a biholomorphic5 function

f∶ int C1 → intS ð89Þ

which maps the interior of the unit circle C1 to the interior
of the source S. Consider such a map f, and assume
without loss of generality that it preserves the orientation of
the contours; then we can use it to change variables in Bn,
Cn; for instance, Bn becomes

Bn ¼ ∳
C1

½fðwÞ��nf0ðwÞ
fðwÞ − λ

dw: ð90Þ

Since f is holomorphic, it admits the series expansion

fðwÞ ¼
X∞
p¼0

fpwp: ð91Þ

Let us call f� the function whose coefficients of the Taylor
expansion are f�p. Then, since w ∈ C1, we can use w� ¼
1=w and the integrals Bn, Cn finally become

Bn ¼
1

2πi
∳

C1

½f�ð1=wÞ�nf0ðwÞ
fðwÞ − λ

dw; ð92Þ

Cn ¼
1

2πi
∳

C1

½f�ð1=wÞ�n=2½fðwÞ�n=2f0ðwÞ
fðwÞ − λ

dw: ð93Þ

The integrands of Eqs. (92) and (93) are now explicitly
C-differentiable, and the residue theorem can be applied.
Of course, the real difficulty consists in finding the map f,
whose construction is not specified by the Riemann
mapping theorem. In practice, a possible strategy can

FIG. 4. Realistic power spectra Pn1n2ðlÞ of the first image
moments for a KiDS-like survey, with the standard convergence
power spectrum P0

κ for comparison. Autocorrelation spectra are
indicated by solid lines, and cross-correlation spectra are in-
dicated by dashed lines; otherwise the order of the curves follows
the order of the legend.

5A biholomorphic function is a one-to-one and onto holomor-
phic function whose inverse function f−1 is also holomorphic.
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consist of experimenting the other way around: starting
from known biholomorphic functions f, and generating
sources from them.

B. Elliptical sources

Most sources used in weak-lensing surveys are elliptical;
it is thus relevant to specify the rest of the analysis to
ellipses. An example of Riemann map f from the unit disk
to an ellipse can be found in Ref. [28], but it involves
elliptical functions which are not quite easy to handle.
However, for the problem at hand, we can use a slightly
more convenient method by defining the mapping as
follows:

f∶

(
int C1 → extS

w ↦ β ¼ 1
2
β0eiϑ



w
eξ
þ eξ

w

� ð94Þ

which maps the interior of the unit disk to the exterior of
the ellipse with semimajor axis a ¼ β0 cosh ξ, inclined with
an angle ϑ with respect to the real axis, and semiminor axis
b ¼ β0 sinh ξ (see Fig. 5). This source has complex
ellipticity

ES ¼ a2 − b2

a2 þ b2
e2iϑ ¼ e2iϑ

cosh 2ξ
; ð95Þ

and area

ΩS ¼ πab ¼ π

2
β20 sinh 2ξ: ð96Þ

The circular limit is obtained for ξ → ∞, β0 → 0, while
β0eξ → βc, where βc is the radius of the limit circle. It is
convenient to introduce the notation

β
0
≡ β0eiϑ: ð97Þ

Note that, since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p
¼ β0, the complex numbers�β

0

represent the positions of the ellipse’s two foci.

The function f∶ intC1 → extS is one-to-one and onto. It
maps the unit circle to the contour of the source,
fðC1Þ ¼ S, but flipping orientation: if w runs clockwise
around C1, then fðwÞ runs anticlockwise around S. The
inverse of f is

f−1ðβÞ ¼ w ¼ eξ
β

β
0

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
β
0

β

�
2

s #
: ð98Þ

Substituting f in Eqs. (92) and (93) yields

Bn¼
1

2πi
∳

C1
bnðwÞdw; Cn¼

1
2πi
∳

C1
cnðwÞdw; ð99Þ

with

bnðwÞ ¼
�
β
0

2

�
n ðe−ξw−1 þ eξwÞn
e−ξwþ eξw−1 − 2λ=β

0

×
e−ξw − eξw−1

w
; ð100Þ

and

cnðwÞ ¼
�
β0
2

�
n ½ðe−ξw−1 þ eξwÞðe−ξwþ eξw−1Þ�n2

e−ξwþ eξw−1 − 2λ=β
0

×
e−ξw − eξw−1

w
: ð101Þ

Both integrands bn, cn have a pole of order nþ 1 at w ¼ 0.
They also have poles for the solutions of e−ξwþ eξw−1−
2λ=β

0
¼ 0, i.e., for fðwÞ ¼ λ. Since the only relevant

residues are associated to poles located inside C1, we are
interested in solutions of the equation fðwÞ ¼ λ for
w ∈ intC1. Two cases must be considered:
(1) λ ∈ extS. In this case, since f∶ intC1 → extS is one

to one and onto, there is one and only one solution to
this equation: wλ ≡ f−1ðλÞ.

(2) λ ∈ intS. In that case, there is no solution to fðwÞ ¼
λ within intC1, because λ ∉ fðintC1Þ.

Therefore,

BnðλÞ ¼
�−res0bn if λ ∈ intS;

−ðres0bn þ reswλ
bnÞ if λ ∈ extS;

ð102Þ

and similarly for CnðλÞ; the minus sign before the residues
comes from the clockwise orientation of the integration.
The residues at wλ are quite easily calculated. Consider

for instance the case of bnðwÞ; as w approaches wλ, we have

bnðwÞ ¼
½f�ð1=wÞ�nf0ðwÞ

fðwÞ − λ
∼
½f�ð1=wλÞ�n
w − wλ

; ð103Þ

since f� is generically regular at wλ; whence reswλ
bn ¼

½f�ð1=wλÞ�n. With a similar reasoning we find

FIG. 5. Complex map f from the interior of the unit disk to the
exterior of an ellipse.
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reswλ
cn ¼ ½fðwλÞf�ð1=wλÞ�n2. Replacing wλ with its

expression,

reswλ
bn ¼ e−2inϑ

�
λcosh2ξ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2− β2

0

q
sinh2ξ

�
n
; ð104Þ

reswλ
cn¼ λ

n
2e−inϑ

�
λcosh2ξ−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−β2

0

q
sinh2ξ

�n
2

: ð105Þ

As for the pole at w ¼ 0, since its order is nþ 1, the
corresponding residue can be computed with the formula

res0bn ¼
1

n!
dn

dwn ½wnþ1bnðwÞ�jw¼0; ð106Þ

and similarly for cn. Although bn, cn are rational functions,
we do not believe that there exists any simple formula
for this derivative for an arbitrary n. Nevertheless, it is
straightforward to compute it once n has been specified.

C. Corrections to shear

In the remainder of this section, we focus on the
important case of the complex ellipticity E ¼ 2μ2. With
n ¼ 2, we can explicitly calculate the last residues, and
we get

res0b2 ¼ −ðβ�
0
Þ2e−2ξ

�
sinh 2ξþ e−2ξ

�
λ

β
0

�
2
�
; ð107Þ

res0c2 ¼ −β20

�
1

2
sinh 2ξþ e−2ξ

�
λ

β
0

�
2
�
: ð108Þ

This ends the computation of the complex integrals
involved in the expression (33) of μ2. The last ingredient
is the denominator

D2 ≡ 1

2π

Z
2π

0

β4ðφÞdφ ¼ π

4
β20 sinh 4ξ ¼

2

π

Ω2
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jESj2
p ;

ð109Þ

which only depends on the shape of the source.
Putting everything together, we find that the ellipticity of

the image E ¼ 2μ2 is related to the ellipticity of the source
ES by

E ¼ ES½1 − 2ReðγE�
SÞ� þ 2γ ð110Þ

which, surprisingly enough, has exactly the same form as in
the case of infinitesimal sources—see e.g., Ref. [14]. What
changes is the actual expression of the observed shear γ.
Like for circular sources, γ can be decomposed into a part
due to exterior lenses and a contribution of interior lenses:

γ ¼ γint þ γext; ð111Þ

where, on the one hand,

γext ¼ −
X
k∈extS

�
εk
λ�k

�
2

F

�
β�
0

λ�k

�
; ð112Þ

with FðzÞ≡ 8

z4

�
1 −

z2

2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p �
; ð113Þ

and, on the other hand,

γint ¼
X
k∈intS

ε2k

�
−
2π

ΩS
e−2ξþ2iϑ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jESj2

q �
πλk
ΩS

�
2

þ e−4ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jESj2

q �
πλ�ke

2iϑ

ΩS

�
2
�
: ð114Þ

The circular case is recovered for jESj → 0, ξ → ∞, and
β0 ¼ 0. In that regime, we find

γext → −
X
k∈extS

�
εk
λ�k

�
2

ð115Þ

γint →
X
k∈intS

�
πεkλk
ΩS

�
2

; ð116Þ

where we used FðzÞ → 1 for z → 0, which indeed matches
the expression (44) of μn for n ¼ 2. Corrections due to the
ellipticity of the source can only be important for a
sufficiently extended source. This is obvious for γint, which
only exists if the source is extended, while for γext it is due
to the fact that corrections are controlled by β0.
Figure 6 shows the absolute value jγj of the shear due to a

single lens, depending on the position λ of the lens. As
expected, jγj is larger if the lens is closer to the source’s
contour. Note that γ ¼ 0 on two symmetric points λ ¼
�β

0
=

ffiffiffi
2

p
on the major axis of S. This is where the

FIG. 6. Absolute value of the shear jγj of an elliptical source
caused by a single lens, depending on the position of the lens with
respect to the source (black line). The color scale indicates the
value of jγj in units of the squared Einstein radius ε2 of the lens.
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orientation of γ flips: close to the center, an interior lens
tends to reduce the ellipticity of the source, as seen from the
first term ∝ −e2iϑ of γint; this is an important difference with
the circular case, and it is due to the fact that a lens repels
more strongly the points which are located closer to it. On
the contrary, lenses located closer to the foci tend to
enhance the ellipticity of the source.
For an exterior lens, the first correction with respect to

the circular case can be obtained by expanding the function
F around zero,

FðzÞ ¼ 1þ z2

2
þOðz4Þ; ð117Þ

thus, if γ∘ext denotes the shear due to a lens at λ ¼ λeiϕ acting
on a circular source, then

jγextj − jγ∘extj
jγ∘extj

¼
�
β0
λ

�
2

cos 2ðϕ − ϑÞ þ � � � ð118Þ

so that shear is enhanced if the exterior lens is mostly
aligned with the major axis of the source, and reduced if it
is mostly aligned with its minor axis. This is due to the fact
that tidal forces increase as the distance separating two
points within the light beam increases.
In a cosmological context, the coupling between shear

and intrinsic ellipticity affects the shear power spectrum by
changing the expression of the kernel K2ðλÞ involved in
Eq. (69). Its new expression reads K2 ¼ Kint

2 þKext
2 , with

Kint
2 ðλÞ¼−2e−2ξþ2iϑþπλ2

ΩS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jESj2

q
½e2iϕþe−4ξþ4iðϑ−ϕÞ�

ð119Þ

if λ lies inside the ellipse S, and zero otherwise, whereas

Kext
2 ðλÞ ¼ −

ΩSe2iϕ

πλ2
F
�
β0
λ
eiðϕ−ϑÞ

�
ð120Þ

if λ lies outside the ellipse S, and zero otherwise. These
new kernels, combined with the fact that integration must
be performed inside and outside an ellipse, instead of inside
and outside a circle, makes the calculation of the shear
correlation functions more involved.

D. Quasicircular sources

Another way to characterize the effect of noncircularity,
which also highlights the entanglement between the intrin-
sic shape of a source with its lensing distortions, consists in
performing a perturbative expansion about the circular
case. Let us consider

βðφÞ ¼ β̄½1þ ΔðφÞ�; ð121Þ
where β̄ represents the mean radius of the source, and
jΔj ≪ 1 is a real function, with

Z
2π

0

ΔðφÞdφ ¼ 0: ð122Þ

Recall the general expression (35) of the reduced moments
in weak lensing,

μn ¼
�
1 −

nþ 2

Dn

X
k

ε2kRe½CnðλkÞ�
�
μSn

þ 1

Dn

�X
k

ε2kAnðλkÞ þ
X
k

ε2k½BnðλkÞ��
�
; ð123Þ

where the integrals An, Bn, Cn, Dn are given by Eqs. (36)–
(39). Since Δ has zero mean,

Dn ¼ β̄nþ2 þOðΔ2Þ; ð124Þ

μSn ¼ 2

β̄

Z
2π

0

ΔðφÞeinφdφþOðΔ2Þ: ð125Þ

In what follows, we choose to work at first order in Δ, but
keep cross terms OðΔ × δθÞ. It implies that Cn only needs
to be computed at zeroth order in Δ, i.e., as if the source
were circular with radius β̄,

Cð0Þ
n ðλÞ ¼ 1

2πi
∳

S̄

βndβ

β − λ
¼

�
β̄n if λ ∈ intS;

0 otherwise:
ð126Þ

As already emphasized, An is given by (41) whatever the
shape of the source. What remains to be determined is thus

the expansion of Bn at first order in Δ, Bn ¼ Bð0Þ
n þ Bð1Þ

n .
The zeroth order corresponds to the circular case, given by
Eq. (42); the first order reads

Bð1Þ
n ðλÞ ¼ 1

2πi

Z
2π

0

�
dΔ
dφ

þ iðnþ 1ÞΔðφÞ
�
e−iðn−1Þφ

eiφ − λ=β̄
dφ

þ 1

2π

Z
2π

0

ΔðφÞe−iðn−2Þφ
ðeiφ − λ=β̄Þ2 dφ: ð127Þ

To proceed further, we decompose Δ in Fourier series as

ΔðφÞ ¼
X∞
p¼1

Δpeipφ; ð128Þ

with Δp ¼ Δ�
−p since Δ is a real function. This allows us to

compute the integrals of Eq. (127) and obtain

Bð1Þ
n ðλÞ ¼

8>><
>>:

P∞
p¼nðpþ 1ÞΔp

�
λ

β̄

�
p−n

if λ ∈ intS;

−
P

n−1
p¼−∞ðpþ 1ÞΔp

�
λ

β̄

�
p−n

if λ ∈ extS:

ð129Þ

Gathering all the terms, we conclude that, at first order in Δ
and δθ,
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μn ¼ ð1 − κÞμSn þ μ∘n

þ
X
k∈intS

�
εk
β̄

�
2 X∞
p¼nþ1

ðpþ 1ÞΔ�
p

�
λ�k
β̄

�
p−n

−
X
k∈extS

�
εk
β̄

�
2 Xn−1
p¼−∞

ðpþ 1ÞΔ�
p

�
λ�k
β̄

�
p−n

; ð130Þ

where μ∘n corresponds to the reduced moments in the
circular case, and is given by Eq. (44). In the above
equation, the first term is just the magnification of the
intrinsic reduced moment; the second term is the reduced
moment generated by lensing on a circular source; the last
two terms arise from the coupling between the intrinsic and
lensing moments.

VI. CONCLUSION

In this article, we have seen how the weak lensing
distortions of an extended source can be described by
successive moments beyond shear (see Fig. 2). We deve-
loped a simple and elegant formalism, based on complex
analysis, to calculate those moments, and applied it to a
realistic cosmological model. As a rule of thumb, for circular
sources, the power spectrum of the angular correlation
function between the moments of order n1, n2 > 1 reads

Pn1n2ðlÞ ≈
4J0n1ðlβÞ

lβ
4J0n2ðlβÞ

lβ
P0
κðlÞ; ð131Þ

where Jn are Bessel functions, and β is the typical angular
radius of the sources, while P0

κ denotes the convergence
power spectrum in the infinitesimal-source limit. Higher-
order Bessel functions tend to be more peaked, so that
Pn1n2ðlÞ gets more and more peaked at l ∼ β−1 as n1, n2
increase. Correlations between high-order moments thus
only occur on scales comparable to the source’s size.
Although the correlation of higher-order distortion modes
may seem far fromwhat is currently achievable in astronomy,
new type of sources, such as Einstein rings themselves [29],
could make such features observable in the future.
We also have shown that our formalism can be applied to

noncircular sources, thanks to a variation on the Riemann
mapping theorem, and we illustrated this method to the
astrophysically relevant case of elliptic sources. An impor-
tant conclusion is the entanglement between lensing
moments and intrinsic moments; contrary to what happens
with infinitesimal sources, where the shear γ is independent
from the intrinsic ellipticity of the source, for extended
sources this intrinsic ellipticity directly affects the value of
shear, and of the other distortion modes. This is reminiscent
of the results of Ref. [30] about the impact of image
ellipticities on flexion measurements. The entanglement
grows with the size of the source, and hence becomes
significant precisely when other extended-source correc-
tions become important as well. Therefore, noncircularity

does not change whether finite-beam effects are significant
or not, but it affects their behavior when they are.
This latter conclusion naturally calls for an extension of

the analysis of Sec. IV to elliptical sources. Indeed, since
the correlations of image moments are increasingly sensi-
tive to scales comparable to the beam’s size as the order of
the moment increases, we expect corrections due to the
source’s ellipticity to strongly affect high-order moment
power spectra. If intrinsic ellipticities are randomly ori-
ented, we expect to recover results close to the circular case
on average. However, intrinsic alignments [31,32] might
affect this expectation.
An important restriction of the analysis of this article

resides in our choice of top-hat weighting functionW½IðθÞ� in
the definition of the image moments. This choice was
mathematically very convenient, since it allowedus to convert
an initially two-dimensional problem into a one-dimensional
problem—the analysis of the image contour. However, as
discussed in Sec. III E, it removes part of the information
contained in the image; in particular, it makes the F -type
flexion unobservable. Generalizing the present approach to
any weighting function would thus add great value to the
understanding of weak gravitational lensing beyond shear.
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APPENDIX: CALCULATION OF THE
TWO-POINT CORRELATION FUNCTIONS

OF THE IMAGE MOMENTS

We consider here the distortions of circular sources.
Let α1, α2 be two directions in the (flat) sky, and
α≡ α1 − α2 ¼ αðcosϕα; sinϕαÞ their separation. The
two correlation functions of the n1th and n2th image
moments were defined in Sec. IV C as

ξþn1n2ðαÞ≡ e−iðn1−n2Þϕαhμeffn1 ðα1Þ½μeffn2 ðα2Þ��i; ðA1Þ
ξ−n1n2ðαÞ≡ e−iðn1þn2Þϕαhμeffn1 ðα1Þμeffn2 ðα2Þi: ðA2Þ

1. Introducing the matter power spectrum and
Limber’s approximation

Let us first consider ξ−n1n2, the calculation of ξþn1n2
following essentially the same lines. We start by substitut-
ing the definition of the effective reduced moments as
follows:
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hμeffn1 ðα1Þμeffn2 ðα2Þi ¼ ð4πGρ̄0Þ2
Z

∞

0

dβ1dβ2

Z
χH

0

d χ1d χ2ð1þ z1ÞfKð χ1Þqðβ1; χ1Þð1þ z2ÞfKð χ2Þqðβ2; χ2Þ

× hðKn1 � δÞðη1; χ1;α1ÞðKn2 � δÞðη2; χ2;α2Þi; ðA3Þ

where it is understood that η1 ¼ η0 − χ1 and η2 ¼ η0 − χ2, since the density contrast is evaluated on the (background) light
cone of the observer. By making the convolution products explicit, and inserting the Fourier transform of the density
contrast, we have

hðKn1 � δÞðKn2 � δÞi ¼
Z

d2λ1
πβ21

d2λ2
πβ22

Kn1ðλ1ÞKn2ðλ2Þhδðη1; χ1;α1 þ λ1Þδðη2; χ2;α2 þ λ2Þi ðA4Þ

¼
Z

d2λ1
πβ21

d2λ2
πβ22

d3k1
ð2πÞ3

d3k1
ð2πÞ3 e

iðk1·x1þk2·x2ÞKn1ðλ1ÞKn2ðλ2Þhδðη1; k1Þδðη2; k2Þi ðA5Þ

¼
Z

d2λ1
πβ21

d2λ2
πβ22

d3k
ð2πÞ3 e

ik·ðx1−x2ÞKn1ðλ1ÞKn2ðλ2ÞPδðη1; η2; kÞ; ðA6Þ

where x1 is the spatial position corresponding to χ1, α1 þ λ1, and similarly for x2. In the last line, we introduced the power
spectrum Pδ with

hδðη1; k1Þδðη2; k2Þi ¼ ð2πÞ2δDðk1 þ k2ÞPδðη1; η2; k1Þ; ðA7Þ

we also integrated over k2, and changed the name of k1 to k. We then apply Limber’s approximation: first split the phase of
the complex exponential into a longitudinal part and a transverse part,

k · ðx1 − x2Þ ¼ kjjð χ1 − χ2Þ þ k⊥ · ½fKð χ1Þðα1 þ θ1Þ − fKð χ2Þðα2 þ θ2Þ�: ðA8Þ

Since the configuration for which most correlations occur is j χ1 − χ2j ≪ χ1, χ2 (small angles), the major contribution to
the integral is such that kjj ≪ k⊥; thus, we can approximate k ≈ k⊥ in the matter power spectrum, and integrate over kjj to
get 2πδDð χ1 − χ2Þ. We could also have performed this reasoning in normal space, arguing that a change in jα1 − α2j
produces a much more significant change than a change in χ1 − χ2: the correlations are mostly transverse. Calling
l≡ fKð χ1Þk⊥, we therefore get

hðKn1 � δÞðKn2 � δÞi ¼
δDð χ1 − χ2Þ

f2Kð χ1Þ
Z

d2λ1
πβ21

d2λ2
πβ22

d2l
ð2πÞ2 e

il·ðα1−α2Þþil·ðλ1−λ2ÞKn1ðλ1ÞKn2ðλ2ÞPδ

�
η1;

l
fKð χ1Þ

�
: ðA9Þ

Inserting the above into the definition of ξ−n1n2 , and noticing that the same calculation applies to ξþn1n2 if one turns Kn2 into
K�

n2 , we can put the correlation functions under the form

ξþn1n2ðαÞ ¼ ð4πGρ̄0Þ2
Z
R2

d2l
ð2πÞ2 e

il·ðα1−α2Þ
Z

χH

0

d χð1þ zÞ2gn1ð χ;l;αÞg�n2ð χ;l;αÞPδ

�
η0 − χ;

l
fKð χÞ

�
; ðA10Þ

ξ−n1n2ðαÞ ¼ ð4πGρ̄0Þ2
Z
R2

d2l
ð2πÞ2 e

il·ðα1−α2Þ
Z

χH

0

d χð1þ zÞ2gn1ð χ;l;αÞgn2ð χ;−l;αÞPδ

�
η0 − χ;

l
fKð χÞ

�
; ðA11Þ

with

gnð χ;l;αÞ≡
Z

∞

0

dβ qðβ; χÞ
Z
R2

d2λ
πβ2

eiðl·λ−nϕαÞKnðλÞ: ðA12Þ
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2. Calculation of gn
The next step of the calculation consists in performing the integration over λ in order to get the explicit expression of

gnð χ;l;αÞ. Replacing the kernel Kn ¼ Kint
n þKext

n with its expression, and using polar coordinates for both l and λ, with
λ ¼ λðcosϕ; sinϕÞ and l ¼ lðcosϕl; sinϕlÞ, we haveZ

R2

d2λ
πβ2

eiðl·λ−nϕαÞKnðλÞ ¼
�Z

β

0

λdλ
β2

�
λ

β

�
n
−
Z

∞

β

λdλ
β2

�
β

λ

�
n
� Z

2π

0

dϕ
π
ei½lλ cosðϕ−ϕlÞ−nðϕ−ϕαÞ� ðA13Þ

¼ einðϕl−ϕαÞ
�Z

1

0

dx x1þn −
Z

∞

1

dx x1−n
� Z

2π

0

dϕ
π
eiðxlβ cosψ−nψÞ; ðA14Þ

where we introduced x≡ λ=β and ψ ≡ ϕ − ϕl. The angular integral yields a Bessel function asZ
2π

0

dϕ
π
eiðlβx cosψ−nψÞ ¼ einπ=2

Z
2π

0

dϕ
π
e−iðnψ−lβx sinψÞ ¼ 2inJnðxlβÞ: ðA15Þ

We then use that for any strictly positive n, Z
1

0

dx x1þnJnðxyÞ ¼
Jnþ1ðyÞ

y
ðA16Þ

Z
∞

1

dx x1−nJnðxyÞ ¼
Jn−1ðyÞ

y
; ðA17Þ

to get Z
R2

d2λ
πβ2

eiðl·λ−nϕαÞKnðλÞ ¼ 2ineinðϕl−ϕαÞ
�
Jnþ1ðlβÞ − Jn−1ðlβÞ

lβ

�
; ðA18Þ

and finally we use that Jnþ1ðxÞ − Jn−1ðxÞ ¼ −2J0nðxÞ to conclude that

gnð χ;l;αÞ ¼ −ineinðϕl−ϕαÞ
Z

∞

0

dβqðβ; χÞ 4J
0
nðlβÞ
lβ

: ðA19Þ

3. Final result

The last step of the calculation consists in integrating over the angular part of l in the expressions (A10) and (A11) of
ξþn1n2 and ξ−n1n2 . Substituting the expression (A19) of gn, we can put both correlation functions under the form

ξ�n1n2ðαÞ ¼
1

2π

Z
∞

0

J�ðα;lÞPn1n2ðlÞl dl; ðA20Þ

where

Pn1n2ðlÞ ¼ ð4πGρ̄0Þ2
Z

χH

0

d χð1þ zÞ2q̄n1ðl; χÞq̄n2ðl; χÞPδ

�
η0 − χ;

l
fKð χÞ

�
; ðA21Þ

with q̄n ≡
Z

∞

0

dβ
4J0nðlβÞ

lβ
qðβ; χÞ; ðA22Þ

and

Jþðl;αÞ ¼ in1−n2
Z

2π

0

dϕl

2π
eil·αeiðn1−n2Þðϕl−ϕαÞ ¼

Z
2π

0

dψ
2π

e−i½ðn2−n1Þψ−lα sinψ � ¼ Jn2−n1ðlαÞ; ðA23Þ
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J−ðl;αÞ ¼ ð−1Þn2 in1þn2

Z
2π

0

dϕl

2π
eil·αeiðn1þn2Þðϕl−ϕαÞ ¼ ð−1Þn2

Z
2π

0

dψ
2π

e−i½ð−n2−n1Þψ−lα sinψ � ¼ ð−1Þn1Jn1þn2ðlαÞ;

ðA24Þ

where in the last equality we used J−nðxÞ ¼ ð−1ÞnJnðxÞ. This ends the derivation of the correlation functions of the image
reduced moments.
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