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Linear-cosmology observables, such as the cosmic microwave background (CMB), or the large-scale
distribution of matter, have long been used as clean probes of dark matter (DM) interactions with baryons.
It is standard to model the DM as an ideal fluid with a thermal Maxwell-Boltzmann (MB) velocity
distribution, in order to compute the heat and momentum-exchange rates relevant to these probes. This
approximation only applies in the limit where DM self-interactions are frequent enough to efficiently
redistribute DM velocities. It does not accurately describe weakly self-interacting particles, the velocity
distribution of which unavoidably departs from MB once they decouple from baryons. This article lays out
a new formalism required to accurately model DM-baryon scattering, even when DM self-interactions are
negligible. The ideal fluid equations are replaced by the collisional Boltzmann equation for the DM phase-
space distribution. The collision operator is approximated by a Fokker-Planck operator, constructed to
recover the exact momentum- and heat-exchange rates and allowing for an efficient numerical
implementation. Numerical solutions to the background evolution are presented and show that the MB
approximation can overestimate the heat-exchange rate by factors of approximately 2–3, especially for light
DM particles. A Boltzmann-Fokker-Planck hierarchy for perturbations is derived. This new formalism
allows one to explore a wider range of DM models and will be especially relevant for upcoming ultrahigh-
sensitivity cosmic microwave background probes.
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I. INTRODUCTION

Possible nongravitational interactions between dark mat-
ter (DM) and standard-model (SM) particles are testable
with cosmological observations, complementing collider
[1], direct-detection [2], and indirect [3] searches. Linear-
cosmology observables, in particular the cosmic microwave
background (CMB), provide especially clean tests of such
interactions, as the underlying physics is, in principle, very
well understood and computationally tractable. In addition
to being sensitive to energy injection from annihilating or
decaying DM [4,5], the CMB is a powerful probe of elastic
scattering betweenDMandSMparticles [6,7]. On one hand,
the resulting heat exchange between theDMand the photon-
baryon fluids can lead to distortions of the CMB blackbody
spectrum [8]. On the other hand, momentum exchange
between the DM and any of the SM fluids (photons,
neutrinos, or electrons and baryons) affects the linear
evolution of initial perturbations and leaves an imprint on
CMB temperature and polarization anisotropies. Heat and
momentum exchange through DM-baryon scattering also
affect the matter power spectrum and derived observables,
such as the Lyman-α forest [9]; they also leave characteristic
imprints on the high-redshift 21 cm brightness temperature
and its fluctuations [10,11].
The first quantitative study of the effect of DM scattering

on CMB anisotropies and the matter power spectrum was

carried out in Ref. [12], specifically for energy-independent
DM-photon interactions. The authors of Ref. [12] modified
Euler’s equations for the photons and the DM, assumed
to be an ideal fluid, by adding a drag term between the
two species, analogous to Compton drag between photons
and the electron-baryon fluid. Shortly after, Ref. [13]
derived analogous equations for DM scattering off baryons
with a velocity-independent cross section. To compute
the heat and momentum-exchange rates, which depend
on the velocity distributions of the interacting particles,
they assumed that DM, like baryons, has a Maxwell-
Boltzmann (MB) distribution. These studies have since
then been extended to a variety of interactions, such as
millicharged DM [14], DM with an electric dipole moment
[15], and DM scattering with neutrinos [16]. The problem
has received increased interest in the last few years,
following the release of Planck’s high-sensitivity and
high-resolution CMB maps [17–19]. Using Markov chain
Monte-Carlo (MCMC) analyses of Planck data, several
groups derived high-precision bounds to the elastic cross
section of DM with SM particles [9,20–26]. Still, even
these most recent studies rely on the simple approximation
that the DM is an ideal thermal fluid.
Even though it is the interactions with SM particles that

dictate the characteristic rates of heat and momentum
exchange, the precise values of these rates are functions

PHYSICAL REVIEW D 99, 023523 (2019)

2470-0010=2019=99(2)=023523(19) 023523-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.023523&domain=pdf&date_stamp=2019-01-23
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.99.023523


of the detailed DM velocity distribution. The latter depends
not only on interactions with SM particles but also on self-
interactions. Indeed, if the DM is efficiently self-interacting,
its velocities get rapidly reshuffled to maximize entropy,
leading to the MB distribution. On the other hand, if DM
self-interactions are sufficiently weak, its velocity distribu-
tion unavoidably departs from MB as it thermally and
kinematically decouples from baryons. This could be the
case, for instance, if DM interactions are due to a small
electric charge or dipole moment or if the interacting
particles make up a subdominant fraction of the total DM
abundance. Therefore, existing linear-cosmology bounds to
DM-SM scattering strictly apply only to strongly self-
interacting DM. What is more, upcoming high-resolution
CMBmissions [27] promise to be sensitive to cross sections
about 20 times weaker than Planck [28]. Should a positive
detection of interacting DM finally be made, it would
be extremely useful to glean even more information on
DM properties, in particular on the strength of its self-
interactions. In this work, we take the first steps in exploring
this new dimension of DM interactions.
To go beyond the ideal thermal fluid approximation, one

must solve the collisional Boltzmann equation for the DM
distribution. In this paper, we study, for the first time, the
collision operator for DM scattering off nonrelativistic SM
particles (in practice, thermal electrons or nuclei) with a
velocity-dependent cross section. It is rather straightfor-
ward to write an exact integral collision operator, but the
resulting integrodifferential Boltzmann equation would
be computationally demanding. We therefore derive a
Fokker-Planck (FP) approximation to the DM-SM collision
operator. While such an approximation has been amply
studied in the context of kinematic decoupling of DM
scattering off relativistic or light SM particles [29–34],
ours is the first work to derive the corresponding FP
operator for scattering with nonrelativistic baryons, for
an arbitrary mass ratio. In that case, the fractional change in
velocity per scattering event need not be small, and one
must give up the standard approach of Taylor expanding the
collision integrand. Instead, we adopt a top-down method
to construct the FP operator: starting from a general,
number-conserving diffusion operator, we enforce that it
satisfies detailed balance and gives the correct momentum
and heat-exchange rates. We show that when the DM
distribution becomes narrow and the diffusion approxima-
tion fails the exact momentum and heat-exchange rates
become closed-form expressions of the DM bulk velocity
and effective temperature, which our FP operator is con-
structed to recover. Our FP operator is therefore the best
possible diffusion approximation to the exact collision
operator. It makes it possible to efficiently solve for the
coupled evolution of DM and SM fluids, which would have
been numerically challenging with an integral collision
operator. The formalism developed here can therefore be
incorporated into future MCMC analyses of precision

linear-cosmology data, with a modest additional computa-
tional cost relative to the standard ideal thermal fluid
approximation.
The rest of this paper is organized as follows. In Sec. II,

we write down the general form of the collision operator for
elastically scattering DM and discuss its most important
properties. In Sec. III, we study the DM velocity drift rate
and diffusion tensor and derive general expressions as well
as specific ones applying to power-law cross sections. In
Sec. IV, we focus on the momentum and heat-exchange
rates and study the regimes where they take on closed-form
expressions. Section V describes the top-down construction
of the FP operator. In Sec. VI, we study the evolution of the
background distribution, which we evolve numerically to
quantify its nonthermal distortions and their impact on the
heat-exchange rate. We lay out the Boltzmann-Fokker-
Planck hierarchy for the evolution of perturbations in
Sec. VII. After discussing limitations and extensions of
our formalism in Sec. VIII, we conclude in Sec. IX.
Appendix A discusses the velocity dependence of DM
scattering with helium nuclei. In Appendix B, we give a
proof that the entropy is the unique functional that increases
for any distribution, in the case of local self-interactions. To
facilitate a quick read through this manuscript, we have
framed the most important equations.

II. GENERAL SETUP AND DEFINITIONS

In this work, we restrict ourselves to nonrelativistic DM
particles χ (which need not be all of the dark matter), with
mass mχ , abundance nχ , and mass density ρχ ¼ mχnχ,
scattering off nonrelativistic scatterers with corresponding
properties ms, ns, ρs. We denote the total mass by
M≡ms þmχ . In practice, scatterers are either χ itself or
standard model nuclei or electrons. We limit ourselves to
elastic scattering and, in particular, do not consider number-
changing interactions. In other words, we assume that the
abundance of χ is already fixed, i.e., that chemical
decoupling occurs much before kinetic decoupling, of
interest here. This standard assumption [35] holds for a
variety of DM models [31,36], though not for all [34]. We
denote background quantities with an overline—for in-
stance, n̄s ∝ a−3 is the background density of s, where a is
the scale factor. Throughout the paper, we use natural
units ℏ ¼ c ¼ 1.

A. Cross section

The interaction is quantified by a differential cross
section dσχs=dΩ. It only depends on the magnitude of
the relative velocity vχs ≡ jvχ − vsj and on the angle
between n̂≡ vχs=vχs and n̂0 ≡ v0χs=vχs, where primes
denote quantities after the scattering event (and recalling
that v0χs ¼ vχs). A particularly relevant quantity is the
momentum-exchange cross section
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σ̄ðvχsÞ≡
Z

d2n̂0
dσχs
dΩ

ð1 − n̂ · n̂0Þ: ð1Þ

In addition to providing general expressions, we shall also
consider power-law dependencies of the form

σ̄ðvχsÞ ¼ σnvnχs; ð2Þ

where n is an (even) integer. The index n ¼ −4 corresponds
to a Coulomb-like interaction, which would arise, for
instance, if the DM had a small electric charge [37], up
to logarithmic corrections. The case n ¼ −2 corresponds to
DMwith an electric dipole moment [15]. Even and positive
power laws n ¼ 0, 2, 4, 6 would arise from the non-
relativistic operators considered in Refs. [38], completing
the set introduced in Ref. [39]. While all of these operators
lead to a power-law cross section with protons, the velocity
dependence for interactions with helium nuclei is, in
principle, more complex for spin-independent operators
[22,24]. However, we justify in Appendix A that for the
physical conditions relevant to cosmological studies non-
pointlike effects are negligible for helium, and the DM-
helium cross section can also be approximated by a power
law in relative velocity.

B. Boltzmann equation and collision operator

We denote by fχðvÞ the probability distribution of DM
velocities, normalized such thatZ

d3vfχðvÞ ¼ 1: ð3Þ

This distribution is m3
χ=nχ times the DM phase-space

density, and the Boltzmann equation for the latter can be
rewritten as

d
dt

ðnχfχÞ ¼ nχC½fχ �; ð4Þ

where t is the proper time and d=dt is the total derivative
along a free-particle trajectory.
The collision operator is the sum over scatterers s of

individual collision operators Cχs. Each one is an integral
operator of the form

Cχs½fχ �ðvχÞ ¼
Z

d3v0χffχðv0χÞΓχsðv0χ → vχÞ

− fχðvχÞΓχsðvχ → v0χÞg; ð5Þ

where Γχsðvχ → v0χÞ is the differential scattering rate per
final velocity volume element. It should be clear that this
operator explicitly conserves the number of DM particles:Z

d3vχCχs½fχ �ðvχÞ ¼ 0: ð6Þ

The differential scattering rate is explicitly given by

Γχsðvχ → v0χÞ ¼ ns

Z
d3vsd3v0sfsðvsÞ

×Mχsðvχ ; vs; v0χ ; v0sÞ; ð7Þ
where fs is the velocity distribution of scatterers, and

Mχsðvχ ; vs; v0χ ; v0sÞ

≡M2msmχ
dσχs
dΩ

× δD

�
1

2
ðmχv02χ þmsv02s Þ −

1

2
ðmχv2χ þmsv2sÞ

�
× δDðmχv0χ þmsv0s −mχvχ −msvsÞ: ð8Þ

Changing integration variables from v0s to v0χs and integrat-
ing over v0χs, we may equivalently write it as

Γχsðvχ → v0χÞ≡ ns

Z
d3vsfsðvsÞvχs

Z
d2n̂0

dσχs
dΩ

× δD

�
v0χ − vχ −

ms

M
vχsðn̂0 − n̂Þ

�
: ð9Þ

In this paper, we will focus on the collision operator due to
scattering with nonrelativistic SM particles, specifically
nuclei or electrons, which we refer to as “baryons,”
following standard abuse of nomenclature. These particles
efficiently scatter with themselves and as a consequence
have a MB distribution. Moreover, they scatter efficiently
with one another and hence have a common mean velocity
Vb and temperature Tb (but of course, different species of
baryons have different mass ms and density ns). Explicitly,
the scatterers’ velocity distribution is

fsðvÞ ¼ Gðv − Vb;Tb=msÞ; ð10Þ
where G is the Gaussian distribution,

Gðw;T=mÞ≡
�

m
2πT

�
3=2

exp

�
−
mw2

2T

�
: ð11Þ

As a consequence, it is easy to show from Eq. (7) that the
differential rates Γχs satisfy the following detailed balance
property:

exp

�
−
mχðv − VbÞ2

2Tb

�
Γχsðv → v0Þ

¼ exp

�
−
mχðv0 − VbÞ2

2Tb

�
Γχsðv0 → vÞ: ð12Þ

This implies that the collision operator conserves the MB
distribution at temperature Tb and mean velocity Vb for the
DM (with mass mχ):

Cχs½Gðv − Vb;Tb=mχÞ� ¼ 0: ð13Þ
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III. VELOCITY DRIFT VECTOR
AND DIFFUSION TENSOR

In this section, we discuss important intermediate quan-
tities: the rates of velocity drift and diffusion. In subsequent
sections, we will relate them to the momentum- and heat-
exchange rates and to the coefficients of the Fokker-Planck
operator.

A. Definitions and general expressions

The velocity drift rate is defined as

dhΔvi
dt

����
v
≡

Z
d3v0Γχsðv → v0Þðv0 − vÞ: ð14Þ

Similarly, the velocity diffusion tensor is

dhΔviΔvji
dt

����
v
≡

Z
d3v0Γχsðv → v0Þðv0 − vÞiðv0 − vÞj:

ð15Þ

Using Eq. (9), we obtain

dhΔvi
dt

����
v
¼ ρs

M

Z
d3vsfsðvsÞv2χs

×
Z

d2n̂0
dσχs
dΩ

ðn̂0 − n̂Þ: ð16Þ

The innermost integral is just −σ̄ðvχsÞn̂, where σ̄ is the
momentum-exchange cross section defined in Eq. (1). We
therefore find

dhΔvi
dt

����
v
¼ −

ρs
M

Z
d3vsfsðvsÞvχsvχsσ̄ðvχsÞ: ð17Þ

Changing integration variables to u≡ vχs, and using
Eq. (10) for the MB distribution fs, we arrive at

dhΔvi
dt

����
v
¼ −

ρs
M

Z
d3uuuσ̄ðuÞGðw − u;Tb=msÞ; ð18Þ

where from here on we use the notation

w≡ v − Vb : ð19Þ

It should be clear from Eq. (18) that the velocity drift is
parallel to w and moreover vanishes for w ¼ 0. It therefore
takes the form

dhΔvi
dt

����
v
¼ −

ρs
M

Aðw;Tb=msÞw; ð20Þ

where, explicitly,

Aðw;T=mÞ≡
Z

d3uu
u · w
w2

σ̄ðuÞGðw − u;T=mÞ; ð21Þ

where we have purposefully left T=m without labels to
keep this expression general.
Similarly, we rewrite the velocity diffusion tensor as

dhΔviΔvji
dt

����
v
¼

�
ms

M

�
2

ns

Z
d3vsfsðvsÞv3χs

×
Z

d2n̂0
dσχs
dΩ

ðn̂0 − n̂Þiðn̂0 − n̂Þj: ð22Þ

In general, this tensor depends on the l ≤ 2 multipole
moments of the differential cross section. Its trace, how-
ever, only depends on the momentum-exchange cross
section:

dhðΔvÞ2i
dt

����
v
¼ 2

�
ms

M

�
2

ns

Z
d3vsfsðvsÞv3χsσ̄ðvχsÞ: ð23Þ

Here, again, this only depend on w ¼ jv − Vbj; explicitly,

dhðΔvÞ2i
dt

����
v
¼ 2

ms

M
ρs
M

Bðw;Tb=msÞ; ð24Þ

where

Bðw;T=mÞ≡
Z

d3uu3σ̄ðuÞGðw − u;T=mÞ : ð25Þ

B. Fluctuation-dissipation relation

Although individually A and B depend on the specific
cross section, one can derive a general relation between the
two. We start by rewriting the Gaussian as

Gðw − u;T=mÞ ¼ e−mw2=2TGðu;T=mÞemu·w=T; ð26Þ

so that we may rewrite AðwÞ and BðwÞ as follows:

Bðw;T=mÞ ¼ e−mw2=2T

Z
duuF ðuÞI0

�
mwu
T

�
; ð27Þ

Aðw;T=mÞ ¼ 1

w
e−mw2=2T

Z
duF ðuÞI1

�
mwu
T

�
; ð28Þ

F ðuÞ≡ 4πu4σ̄ðuÞGðu;T=mÞ; ð29Þ

I0ðXÞ≡ 1

2

Z
1

−1
dμeXμ ¼ sinhX

X
; ð30Þ

I1ðXÞ≡ 1

2

Z
1

−1
dμμeXμ ¼ ðX − 1ÞeX − ðX þ 1Þe−X

2X2
: ð31Þ

Using 2I1 þ XI1
0 ¼ XI0, we find
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BðwÞ ¼ T
m
ð3AðwÞ þ wA0ðwÞÞ þ w2AðwÞ : ð32Þ

This can be thought of as a generalized fluctuation-
dissipation relation (see, e.g., Ref. [40]). In particular, at
w → 0, we find

Bð0;T=mÞ ¼ 3T
m

Að0;T=mÞ: ð33Þ

C. Asymptotic limits

Provided σ̄ is scale free (as is the case for a power-law
cross section, for instance), then it is easy to see that
Aðw;T=mÞ and Bðw;T=mÞ have a characteristic scale
w� ∼

ffiffiffiffiffiffiffiffiffiffi
T=m

p
. For w ≫

ffiffiffiffiffiffiffiffiffiffi
T=m

p
, we have

Aðw ≫
ffiffiffiffiffiffiffiffiffiffi
T=m

p
Þ ≈ wσ̄ðwÞ; ð34Þ

Bðw ≫
ffiffiffiffiffiffiffiffiffiffi
T=m

p
Þ ≈ w3σ̄ðwÞ: ð35Þ

D. Explicit expressions for power-law cross sections

If the cross section is a power law of the form (2), the
coefficients A and B can be expressed in terms of the
confluent hypergeometric function of the first kind:

Aðw;T=mÞ ¼ cnσn

�
T
m

�nþ1
2

αnð
ffiffiffiffiffiffiffiffiffiffi
m=T

p
wÞ; ð36Þ

Bðw;T=mÞ ¼ 3cnσn

�
T
m

�nþ3
2

βnð
ffiffiffiffiffiffiffiffiffiffi
m=T

p
wÞ; ð37Þ

αnðxÞ≡ 1F1

�
−
nþ 1

2
;
5

2
;−

x2

2

�
; ð38Þ

βnðxÞ≡ 1F1

�
−
nþ 3

2
;
3

2
;−

x2

2

�
; ð39Þ

cn ≡ 2
5þn
2

3
ffiffiffi
π

p Γð3þ n=2Þ: ð40Þ

Note that the same hypergeometric functions appear
in the momentum and heating rates if the DM has a MB
distribution [26]—see also Ref. [11] for the case n ¼ −4.
The coefficients A and B are more fundamental quantities,
however, independent of the DM distribution; here, the
relevant temperature and mass are those of the scatterers.
We will show in the next section how they imply the
expressions of Refs. [11,26].

IV. MOMENTUM- AND HEAT-EXCHANGE RATES

While the phase-space density fχ contains the full
information about the DM velocity distribution, it is useful

to write equations for its first few moments. In particular,
the rates of momentum and heat exchange, related to the
first two moments, are most relevant for cosmological
observables.

A. General expressions

We define the DM bulk velocity Vχ and effective
temperature Tχ such that

Vχ ≡
Z

d3vvfχðvÞ; ð41Þ

Tχ ≡ 1

3
mχ

Z
d3vðv − VχÞ2fχðvÞ: ð42Þ

The momentum-exchange rate (per unit volume) is

_Pχ ≡ ρχ _Vχ jχs ¼ −ρb _Vbjχs ≡ − _Pb

¼ ρχ

Z
d3vvCχs½fχ �ðvÞ ð43Þ

¼ ρχ

Z
d3vfχðvÞ

dhΔvi
dt

����
v
; ð44Þ

where, to get the third line, we inserted the collision
operator (5) into Eq. (43) and used the symmetries of
the integrand and the definition (14) of the velocity drift
vector. Note that it is the total baryon density ρb that
multiplies _Vb, even if only a specific species scatters with
the DM. Indeed, baryons quickly share momentum among
all species through frequent interactions. Substituting
Eq. (20), we obtain the following expression for the
momentum-exchange rate:

_Pχ ¼ −
ρsρχ
M

Z
d3vfχðvÞAðw;Tb=msÞðv − VbÞ : ð45Þ

Similarly, the DM heating rate per unit volume is

_Qχ ≡ 3

2
nχ _Tχ jχs

¼ 1

2
ρχ

Z
d3vðv − VχÞ2Cχs½fχ �ðvÞ: ð46Þ

Using the symmetries of the integrand, this can be reex-
pressed in terms of the trace of the velocity diffusion tensor
(15) and of the drift rate (14) as follows:

_Qχ ¼
1

2
ρχ

Z
d3vfχðvÞ

×

�
dhðΔvÞ2i

dt

����
v
þ 2ðv − VχÞ ·

dhΔvi
dt

����
v

�
: ð47Þ

Substituting Eqs. (20) and (24), we arrive at
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_Qχ ¼
ρsρχ
M

Z
d3vfχðvÞ

�
ms

M
Bðw;Tb=msÞ − ðv − VχÞ · ðv − VbÞAðw;Tb=msÞ

�
: ð48Þ

We may similarly define the baryon heating rate
_Qb ≡ 3

2
nb _Tbjχs. Conservation of total energy (arising from

both thermal and bulk motions) implies that

_Qχ þ _Qb þ Vχb · _Pχ ¼ 0 ; ð49Þ

where we used _Pb ¼ − _Pχ . Here, again, it is the total
baryon number density nb that appears in the baryon heat-
exchange rate, for baryons quickly share heat even if only a
specific species scatters with the DM.

B. Case of a MB distribution

If the DM is thermalized by frequent self-interactions, its
distribution is MB:

fχðvχÞ ¼ Gðvχ − Vχ ;Tχ=mχÞ: ð50Þ

In that case, the momentum- and heat-exchange rates can
be reexpressed in terms of the drift and diffusion rates
evaluated at T=m ¼ Tb=ms þ Tχ=mχ , as we show now.
We start by inserting Eq. (17) into Eq. (43), to get

_Pχ ¼ −
ρsρχ
M

ZZ
d3vχd3vsfχðvχÞfsðvsÞ

× vχsvχsσ̄ðvχsÞ: ð51Þ

We rewrite the joint Gaussian distribution of vχ , vs as the
joint Gaussian distribution of the independent variables
vχs ≡ vχ − vs and

vþ ≡
ffiffiffiffiffiffiffiffiffiffiffi
Tbmχ

Tχms

s
ðvχ − VχÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
Tχms

Tbmχ

s
ðvs − VbÞ; ð52Þ

with means Vχb and zero, respectively, and both with
variance

v2th ≡ Tχ=mχ þ Tb=ms: ð53Þ

Changing integration variables to vþ and u≡ vχs and
integrating over the former, we arrive at

_Pχ ¼ −
ρχρs
M

Z
d3uuuσ̄ðuÞGðu − Vχb; v2thÞ: ð54Þ

Comparing with Eqs. (18) and (21), we see that the last
integral is Aðw; v2thÞw, evaluated at w ¼ Vχb, and substitut-
ing T=m → v2th,

_Pχ ¼
ρχρs
M

AðVχb; v2thÞ × ðVb − VχÞ: ð55Þ

We proceed similarly for the heating rate, which we rewrite,
using Eqs. (17) and (23), as

_Qχ ¼
ρsρχ
M

ZZ
d3vχd3vsfχðvχÞfsðvsÞvχsσ̄ðvχsÞ

×

�
ms

M
v2χs − vχs · ðvχ − VχÞ

�
: ð56Þ

We rewrite

vχ − Vχ ¼
ffiffiffiffiffiffiffiffi
TχTb

mχms

q
v2th

vþ þ Tχ=mχ

v2th
ðvχs − VχbÞ ð57Þ

so that the last term in Eq. (56) is

ms

M
v2χs − vχs · ðvχ − VχÞ

¼ Tb − Tχ

Mv2th
v2χs þ

Tχ=mχ

v2th
vχs · Vχb −

ffiffiffiffiffiffiffiffi
TχTb

mχms

q
v2th

vχs · vþ:

ð58Þ

Again, we change variables to vþ, u≡ vχs and integrate
over vþ. Here, again, we can reexpress the result in terms of
the drift and diffusion rates evaluated at w ¼ Vχb, sub-
stituting Tb=ms → v2th:

_Qχ ¼
ρχρs
M2v2th

BðVχb; v2thÞ × ðTb − TχÞ

þ ρχρs
Mv2th

Tχ

mχ
AðVχb; v2thÞV2

χb: ð59Þ

Using Eq. (49), we see that _Qb takes the same expression,
with exchange of χ and s, as it should. The first term in
Eq. (59) corresponds to heat transfer from the hottest to the
coolest component. The second term is a net heating for
both components, due to dissipation of bulk motions into
heat, with efficiency proportional to the thermal velocity
dispersion of each fluid.
If we specialize to power-law cross sections, inserting

Eqs. (36) and (37) into Eqs. (55) and (59), we recover the
expressions derived in Ref. [26] (and Ref. [11] for n ¼ −4).
Once again, Eqs. (36) and (37) are more fundamental
quantities, which do not depend on the DM distribution.
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C. Limiting cases with closed forms

In general, the integrals appearing in the momentum- and
heat-exchange rates (45) and (48) cannot be expressed as
closed forms of Vχ and Tχ . They depend on the full phase-
space distribution fχðvÞ, which must be obtained by
solving the full Boltzmann equation (4). Besides the case
in which fχ is a MB distribution, discussed above, closed
forms may also be obtained if fχ is sufficiently narrow.
Throughout, we assume a scale-free cross section, implying
that w2A00 ∼ wA0 ∼A and similarly for B.

1. Case in which Tχ=mχ ≪ V2
χb

If fχðvÞ ¼ fχðwþ VbÞ is sufficiently narrow relative to
its mean at w ¼ Vχb, we may Taylor-expand A and B
around w ¼ Vχb and obtain, up to corrections of relative
order ðTχ=mχÞ=V2

χb,

_Pχ ≈
ρsρχ
M

AðVχb;Tb=msÞ × ðVb − VχÞ; ð60Þ

_Qχ ≈
ρsρχ
M

�
ms

M
B −

Tχ

mχ
ð3Aþ wA0Þ

�
ðVχb;Tb=msÞ

: ð61Þ

Using the fluctuation-dissipation relation (32), we rewrite
the heating rate as

_Qχ ≈
ρsρχ

M2ðTb=msÞ
BðVχb;Tb=msÞ ×

�
Tb −

M
mχ

Tχ

�

þ ρsρχ
MðTb=msÞ

Tχ

mχ
V2
χbAðVχb;Tb=msÞ: ð62Þ

These expressions hold, provided Tχ=mχ ≪ V2
χb. This

limiting case can then be subdivided into two subcases
(either i or ii):

(i) Tb=ms ≳ V2
χb ≫ Tχ=mχ , in which case the variance

of the relative thermal motion is v2th ≈ Tb=ms.
Hence, Eq. (60) becomes identical to Eq. (55)
obtained under the assumption of a MB distribution.
Neglecting msTχ=ðmχTbÞ in the first term of
Eq. (62), we see that this equation becomes identical
to Eq. (59).

(ii) Tb=ms ≪ V2
χb, in which case we also have Vχb ≫

vth. Then, from Eqs. (34) and (35), BðVχbÞ≈
V2
χbAðVχbÞ ≈ V3

χbσ̄ðVχbÞ, independent of tempera-
ture and valid whether the coefficients are evaluated
at Tb=ms or vth. In that case, again, Eqs. (60) and
(55) are identical, and so are Eqs. (62) and (59),
which both reduce to _Qχ ≈ ðρsρχms=M2ÞV3

χbσ̄ðVχbÞ.

2. Case in which Tχ=mχ ≪ Tb=ms and V2
χb ≪ Tb=ms

If the support of fχ is well within the characteristic scale
of the coefficients A and B; i.e., if both V2

χb and Tχ=mχ are

much smaller than Tb=ms, then, regardless of the relative
ordering of V2

χb and Tχ=mχ , we can again Taylor expand
A and B near w ¼ 0. The momentum and heating rates
are given by Eq. (60) and (62) evaluated at w ¼ 0 and
Tb=ms ≈ v2th. Here, again, we may neglectmsTχ=ðmχTbÞ in
the first term of Eq. (62) and hence find that Eqs. (60) and
(62) are identical to Eqs. (55) and (59), respectively.
To conclude, we have identified two limiting cases in

which Eqs. (55) and (59) still hold, even if the underlying
DM distribution is not MB:

Tχ=mχ ≪ V2
χb

or

V2
χb ≪ Tb=ms and Tχ=mχ ≪ Tb=ms: ð63Þ

In these limiting cases, the momentum- and heat-exchange
rates become closed equations for the DM mean velocity
Vχ and its effective temperature Tχ , regardless of the
underlying velocity distribution, provided it is sufficiently
narrow.

V. FOKKER-PLANCK APPROXIMATION
TO THE COLLISION OPERATOR

A. Motivation

If the DM distribution is not set to MB by self-
interactions, we must explicitly solve for fχ to get the
momentum- and heat-exchange rates when fχ is too broad.
Specifically, the closed-form expressions derived in
Sec. IV C no longer apply when (63) is not satisfied,
i.e., if

V2
χb ≲ Tχ=mχ and Tb=ms ≲ Tχ=mχ : ð64Þ

Conveniently, this corresponds to the regime where the
characteristic change in the DM velocity per scattering
event is smaller than the variance of the DM distribution.
Indeed, during an elastic scattering event χ þ s → χ þ s,
the DM velocity changes by

v0χ − vχ ¼
ms

M
vχsðn̂0 − n̂Þ: ð65Þ

This implies

ðΔvÞ2
Tχ=mχ

∼
�
ms

M

�
2
�
1þ V2

χb þ Tb=ms

Tχ=mχ

�
≲ 1: ð66Þ

This is precisely the regime where the integral collision
operator (5) can be approximated by a diffusion or FP
operator. Such a collision operator is more amenable to
efficient numerical evolution than the full integral operator
(5). Thinking of this approximation in terms of a discretized
distribution function, the exact integral collision operator
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corresponds to a multiplication by a full matrix, while the
FP operator corresponds to a tridiagonal matrix.
Strictly speaking, the diffusion approximation is expec-

ted to be most accurate when the velocity change per
scattering is much smaller than the width of the DM
distribution, i.e., from Eq. (66), when ms ≪ mχ . When
this condition is not satisfied, there is not a well-defined
small parameter in which to expand the integral collision
operator; see, e.g., Ref. [33].
To minimize errors even when scattering is not strictly

diffusive, we will construct the FP collision operator with a
“top-down” approach. Rather than starting from the exact
collision operator and Taylor expanding in Δv (as done,
e.g., in studies of kinetic decoupling of neutralino DM [41]
scattering with relativistic leptons [29–31]), we start from a
general second-order diffusion operator and uniquely
determine all coefficients by demanding that this operator
satisfies essential properties of the exact collision operator.
Specifically, we enforce that the operator conserves DM
number, satisfies detailed balance, and gives the correct
momentum- and heat-exchange rates for a given distribu-
tion fχ . This ensures that we can use the FP operator
through the entire evolution of the DM distribution function
(with a subtle caveat, which we discuss later on). Indeed,
even if the DM distribution is too narrow for the diffusion
approximation to strictly apply, our FP operator is con-
structed in such a way as to give the correct closed-form
expressions for the momentum- and heat-exchange rates
that apply in this case. It therefore leads to the correct
evolution of the bulk momentum and effective temperature,
as well as the correct momentum- and heat-exchange rates,
even if the DM distribution is inaccurately computed.
In summary, either the DM velocity distribution is broad,

in which case the FP approximation is accurate, or it is
narrow, in which case our top-down FP operator still
recovers the correct momentum- and heat-exchange rates.
We defer to future work a quantitative study of the accuracy
of this approximation in the intermediate regime.

B. Top-down construction of the FP operator

We seek to approximate the exact collision operator by a
second-order differential operator of the form [40]

C½fχ �ðvÞ ¼
∂
∂vi

�
1

2

∂
∂vj ½D

ijðvÞfχðvÞ� þ diðvÞfχðvÞ
�
: ð67Þ

This operator explicitly conserves particle number, i.e.,
satisfies Eq. (6). We now determine the vector d and
symmetric tensor Dij so that this approximate collision
operator gives the correct momentum- and heat-exchange
rates and satisfies detailed balance.
Multiplying Eq. (67) by mχv and integrating over

velocities, we find, after integrating by parts,

_Pχ ¼ −ρχ
Z

d3vdðvÞfχðvÞ: ð68Þ

For this expression to be identical to Eq. (44) for any
distribution fχ , it must be that the vector dðvÞ is the
opposite of the velocity drift vector:

dðvÞ≡ −
dhΔvi
dt

����
v
¼ ρs

M
Aðw;Tb=msÞw: ð69Þ

Similarly, multiplying Eq. (67) by 1
2
ðv − VχÞ2 and integrat-

ing over velocities, we find the heating rate

_Qχ ¼
1

2
ρχ

Z
d3v½Dii − 2ðv − VχÞ · dðvÞ�fχðvÞ: ð70Þ

For this expression to be identical to Eq. (47) for any
distribution fχ , it must be that the trace ofDii is the trace of
the velocity diffusion tensor:

D≡Dii ≡ dhðΔvÞ2i
dt

����
v
¼ 2

msρs
M2

Bðw;Tb=msÞ: ð71Þ

To determine the anisotropic components of Dij, we
enforce detailed balance by imposing that the number
flux—the quantity in brackets in Eq. (67)—vanishes
for a MB distribution at temperature Tb and mean velocity
Vb (with mass mχ). This condition is obtained by integrat-
ing Eq. (67) over any finite velocity volume and using
Stokes’s theorem. This constrains the FP coefficients to
satisfy

∂jDij −
mχ

Tb
ðv − VbÞjDij þ 2di ¼ 0: ð72Þ

Isotropy in the rest frame of the scatterers implies that the
tensor Dij only has two independent components, longi-
tudinal and transverse to w ¼ v − Vb, respectively, the
magnitude of which only depends on w:

DijðvÞ ¼ DjjðwÞŵiŵj þD⊥ðwÞðδij − ŵiŵjÞ;

¼ DjjðwÞ
2

ð3ŵiŵj − δijÞ þDðwÞ
2

ðδij − ŵiŵjÞ: ð73Þ

Inserting this expression into Eq. (72), we find that DjjðwÞ
satisfies the following first-order differential equation (see
Ref. [42] for equivalent equations in a very different
context):

w
dDjj
dw

þ 3DjjðwÞ −
mχw2

Tb
Djj ¼ D − 2w · d

¼ 2
ms

M
ρs
M

�
Bðw;Tb=msÞ −

M
ms

w2Aðw;Tb=msÞ
�
: ð74Þ
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Using the fluctuation-dissipation relation (32), we find

DjjðwÞ ¼ 2
ρsTb

M2
Aðw;Tb=msÞ: ð75Þ

We have therefore entirely determined the coefficients Dij

and d and uniquely defined the FP operator.

To summarize, using Eq. (72), the FP operator is

C½fχ �ðvÞ ¼
1

2

∂
∂vi

�
Dij

�∂fχ
∂vj þ

mχ

Tb
ðv − VbÞjfχ

��
; ð76Þ

where the tensor Dij is given by

DijðvÞ ¼ ρsms

M2

�
Bðw;Tb=msÞðδij − ŵiŵjÞ þ Tb

ms
Aðw;Tb=msÞð3ŵiŵj − δijÞ

�
: ð77Þ

The FP operator (76) is an approximation to the full
collision operator, expected to be most accurate when
scattering events typically change the DM velocity by a
small fractional amount. It conserves the DM number and
gives the correct rates of momentum and heat exchange, at
a given distribution function. Finally, it satisfies detailed
balance, i.e., preserves the Maxwell-Boltzmann distribu-
tion at temperature Tb and mean velocity Vb. In this sense,
it is the best possible diffusion approximation to the full
collision operator, even when velocity changes per scatter-
ing are not small. It most notably differs from previously
derived expressions (e.g., Ref. [33] and references therein)
by the velocity dependence and anisotropy of the diffusion
tensor.

VI. BACKGROUND EVOLUTION

A. Homogeneous FP equation

We first study the evolution of the background homo-
geneous and isotropic distribution f̄χ , in the absence of
perturbations. Setting Vb ¼ 0, the FP operator (76)
becomes

C̄½f̄χ �ðvÞ≡ ρsTb

M2v2
∂
∂v

�
v2AðvÞ

�∂f̄χ
∂v þmχ

Tb
vf̄χ

��
; ð78Þ

where all densities and temperatures are background
(homogeneous) quantities and the coefficient A is to be
evaluated at Tb=ms. The Boltzmann equation in the
expanding background is

d
dt

ða−3f̄χÞ≡ ð∂t −Hv∂vÞða−3f̄χÞ ¼ a−3C̄½f̄χ �ðvÞ; ð79Þ

where H is the Hubble rate and we used n̄χ ∝ a−3. The
evolution of the effective temperature is then

1

a2
d
dt
ða2TχÞ¼

mχ

3

Z
d3vv2C̄½f̄χ �ðvÞ

¼−
2ρ̄sTbmχ

3M2

Z
d3vAðvÞ

�
v∂vf̄χþ

mχv2

Tb
f̄χ

�
;

ð80Þ

where we have integrated by parts to get the second
expression.

B. Condition of validity of the MB distribution

We now show that the MB distribution with temperature
Tχ is the solution of the background FP equation if and only
if the diffusion coefficient A is independent of velocity.
We start by defining a MB temperature TMB

χ , the
evolution of which is obtained by substituting a MB
distribution fMB

χ with temperature TMB
χ in Eq. (80). This

is what is usually used as the DM temperature in the
existing literature and in general is not equal to the correct
effective temperature defined in Eq. (42). We find

1

a2
d
dt

ða2TMB
χ Þ ¼ 2ρ̄smχ

M2
AMBðTb − TMB

χ Þ; ð81Þ

where the velocity-independent coefficient AMB is the
following weighted average of Aðv;Tb=msÞ:

AMB ≡
Z

d3v
mχv2

3TMB
χ

fMB
χ ðv;TMB

χ ÞAðv;Tb=msÞ: ð82Þ

This expression can be independently derived from
Eq. (59), setting Vχb ¼ 0,

1

a2
d
dt

ða2TMB
χ Þ ¼ 2ρ̄smχ

3M2v2th
Bð0; v2thÞðTb − TMB

χ Þ

¼ 2ρ̄smχ

M2
Að0; v2thÞðTb − TMB

χ Þ; ð83Þ

where v2th is given by Eq. (53), with Tχ → TMB
χ , and we

used the fluctuation-dissipation relation (33). We conclude
that

BOLTZMANN-FOKKER-PLANCK FORMALISM FOR DARK … PHYS. REV. D 99, 023523 (2019)

023523-9



AMB ¼ Að0;Tb=ms þ TMB
χ =mχÞ: ð84Þ

We now define CMB to be the FP operator obtained by
replacing AðvÞ by AMB in Eq. (78). Let us show that the
MB distribution at temperature TMB

χ is a solution of

a3
dða−3fMB

χ Þ
dt

¼ CMB½fMB
χ �: ð85Þ

The left-hand side is

a3
dða−3fMB

χ Þ
dt

¼ 3

2

d
dt

lnða2TMB
χ Þ

�
mχv2

3TMB
χ

− 1

�
fMB
χ ðvÞ:

ð86Þ

On the other hand, since AMB is independent of v, we may
rewrite the right-hand side as

CMB½fMB
χ �ðvÞ ¼ 3mχρ̄s

M2TMB
χ

AMBðTb − TMB
χ Þ

×

�
mχv2

3TMB
χ

− 1

�
fMB
χ ðvÞ: ð87Þ

We see that Eq. (85) is indeed satisfied for all v, provided
TMB
χ is a solution of Eq. (81).
Let us now define ΔAðvÞ≡AðvÞ −AMB, ΔC½f̄χ �≡

C̄½f̄χ � − CMB½f̄χ �, and Δf̄χ ¼ f̄χ − fMB
χ . Using Eq. (85),

the Boltzmann equation can be rewritten as the following
inhomogeneous partial differential equation for Δf̄χ :

a3
dða−3Δf̄χÞ

dt
− C̄½Δf̄χ � ¼ ΔC½fMB

χ �

¼ mχρ̄sðTMB
χ − TbÞ

M2TMB
χ v2

∂
∂v fv

3ΔAðvÞfMB
χ ðvÞg: ð88Þ

This equation does not admit Δf̄χ ¼ 0 as a solution, unless
the right-hand side vanishes for all v, which is the case
if and only if A ¼ AMB is independent of velocity.
We therefore conclude that the MB distribution is a
solution of the homogeneous Boltzmann-FP equation
if and only if A is independent of velocity. As a conse-
quence, the temperature TMB

χ is in general not equal to the
effective temperature Tχ defined in Eq. (42). More impor-
tantly, the background heat-exchange rate is not correctly
captured by the MB approximation if A is velocity
dependent.

C. Numerical solution during radiation domination

For most cosmological probes of interest, thermal and
kinematic decoupling of the DM occurs deep in the

radiation era given current upper bounds, and we focus
on this epoch here to simplify the problem and gain
intuition. We therefore assume that HðaÞ ¼ H0Ω

1=2
r a−2.

We also assume that DM scatters off a single species s,
with background density ns ¼ ns0a−3. The generalization
to an arbitrary Hubble expansion rate and to multiple
scatterers is straightforward but does not allow one to
write equations in the simple dimensionless form that we
now derive.

1. Thermal approximation

We assume that, up to very small perturbations,
heat exchange with the DM does not noticeably affect
the standard temperature evolution of the photon-baryon
plasma, which is in thermal equilibrium at these redshifts,
with a temperature Tb ¼ T0=a. We specialize to power-law
cross sections of the form (2), with n > −3, so that the DM
is thermally coupled to the baryons at early times and
eventually decouples. We denote by an the characteristic
scale factor at thermal decoupling [8],

a
nþ3
2
n ≡ 2cnσn

ns0
H0Ω

1=2
r

�
M2

msmχ

�n−1
2

�
T0

M

�nþ1
2

; ð89Þ

where cn was defined in Eq. (40). We define the rescaled
scale factor y and dimensionless effective temperature X:

y≡ a=an; X ≡ Tχ=Tb: ð90Þ

We also define the dimensionless heat-exchange rate

Q≡ _Qχ
3
2
n̄χHTb

¼ d
dy

ðyXÞ: ð91Þ

In terms of these variables, Eq. (81) may be rewritten as

dðyXMBÞ
dy

¼
�
1þ ðms=mχÞXMB

1þms=mχ

�nþ1
2 1 − XMB

y
nþ3
2

: ð92Þ

This makes it clear that, for a given n, the evolution of
TMB
χ =Tb is a function of y and ms=mχ only.
We show the numerical solution of Eq. (92) and resulting

dimensionless heat-exchange rate in Fig. 1, for n ¼ 0 and
2, and for ms=mχ ¼ 0.01, 1, 100. We can understand its
asymptotic features as follows.
First, for y ≪ 1, we have XMB → 1 and QMB → 1. More

precisely, we find the asymptotic expansion

XMB ≈ 1 − y
nþ3
2 þ nþ 5þ 4ms=mχ

2ð1þms=mχÞ
ynþ3; ð93Þ
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valid up to corrections of order Oðy3
2
ðnþ3ÞÞ. We use this

expression to initialize our numerical integration of
Eq. (92).
Second, for y≳ 1, we have XMB ∼ 1=y. Once

ðms=mχÞXMB ≪ 1, we find

QMB ≈
y−

nþ3
2

ð1þms=mχÞnþ1
2

; y ≫ maxð1; ms=mχÞ: ð94Þ

If ms=mχ ≫ 1, there is moreover an intermediate regime,

QMB ∼
1

ynþ2
; 1 ≪ y ≪ ms=mχ : ð95Þ

2. Fokker-Planck solution

We rewrite the Boltzmann equation in terms of y ¼ a=an
and dimensionless variables

x≡
ffiffiffiffiffiffi
mχ

Tb

r
v; N ðy; xÞ≡ 4πv3f̄χða; vÞ: ð96Þ

The function N is the distribution of velocities per
logarithmic interval, such that

R
d ln xN ¼ 1. The

Boltzmann equation becomes

y∂yN −
1

2
x∂xN

¼ 1

2

�
mχ

M

�nþ1
2

y−
nþ3
2

× x∂x

�
x2αn

�
x

ffiffiffiffiffiffi
ms

mχ

r �
½∂xðN =x3Þ þ xðN =x3Þ�

�
:

ð97Þ
Again, the evolution of N ðy; xÞ only depends on the index
n and on the mass ratio ms=mχ . The rescaled effective
temperature X ¼ Tχ=Tb is then obtained from

X ¼ 1

3

Z
d ln xx2N ; ð98Þ

and the dimensionless heat-exchange rate Q is again
obtained from Q ¼ dðyXÞ=dy.
We evolve Eq. (97) numerically using a method

similar in spirit to that of Refs. [43,44]: we discretize
the collision operator with a tridiagonal matrix, which
exactly satisfies detailed balance and conserves DM
number; we use a fixed logarithmic time step Δ ln y
and set Δ ln x ¼ Δ ln y=2 so that Hubble redshifting can
be exactly accounted for by simply moving down the
distribution N by one bin at each time step. As a sanity
check, we verified that our code does recover a MB
distribution with temperature TMB

χ when solving Eq. (97)
with the velocity-averaged diffusion coefficient αMB

n ≡
ð1þ ðms=mχÞXÞðnþ1Þ=2. For increased accuracy, we solve
for ΔN ≡N −NMB, as this vanishes initially, and is less
prone to numerical errors.
We find that the amplitude of the distortion fromMB and

the fractional change in heating rate jQ −QMBj=Q both
increase with ms=mχ , as well as with jnþ 1j. For
ms=mχ ≤ 1, we find that the MB approximation reproduces
the heat-exchange rate to better than 15% accuracy for
−2 ≤ n ≤ 4. We emphasize that by no means does this
imply that perturbed quantities are recovered this accurately
by the MB approximation.
For ms=mχ ≫ 1, however, the MB approximation and

FP solution have order-unity differences, in particular for
n ≥ 2. This is illustrated in Fig. 2, in which we show, for
ms=mχ ¼ 100, the departure of the DM distribution from
MB and the resulting heat-exchange rates. Figure 3 shows
the fractional difference in the heat-exchange rate between
the MB approximation and the FP solution, for several
mass ratios and indices n. We see that this difference is
largest around the time of decoupling but remains signifi-
cant all the way to y ∼ms=mχ (corresponding to
Tχ=mχ ∼ Tb=ms), i.e., until long after thermal decoupling
if ms ≫ mχ . At later times, the heating rates eventually
converge, despite the fact that nonthermal distortions to the
DM distribution are largest (see the left panel of Fig. 2).

FIG. 1. Evolution of the rescaled DM temperature X ≡ Tχ=Tb

and dimensionless heat-exchange rate Q≡ _Qχ=
3
2
nχHTb as a

function of the rescaled scale factor y ¼ a=an, in the Maxwell-
Boltzmann approximation.
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This is to be expected from our discussion in Sec. IV C;
once Tχ=mχ ≪ Tb=ms, the heating rate takes on a closed
form, independent of the detailed shape of fχ .
It is noteworthy that, somewhat counterintuitively, the

MB approximation happens to be most accurate for cases in
which decoupling takes the longest. The reason is that the

swiftness of decoupling plays no role in the accuracy of the
MB approximation; it is only dependent on the steepness of
the diffusion coefficient across the width of the DM
distribution. It is also worthwhile to notice that the MB
approximation systematically overestimates the efficiency
of heat exchange.

FIG. 2. For a baryon-to-DM mass ratio ms=mχ ¼ 100, the left column shows the departure of the DM velocity distribution from MB,
for several values of the index n such that σχb ∝ vnχb. The right column shows the corresponding dimensionless heat-exchange rates and
their fractional difference, as a function of a=an, where an is the characteristic scale factor of thermal decoupling. The colored points on
the right column correspond to the times at which the distortion is plotted on the left. We see that the characteristic distortion amplitude
and jΔQj=Q increase with jnþ 1j. For n ¼ 2 and, especially, n ¼ 4, the heat-exchange rates computed in the MB approximation and
with the Boltzmann-Fokker-Planck equation differ by order unity.
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VII. PERTURBATIONS

A. Invalidity of the MB approximation
for perturbations

To study the impact of DM-baryon scattering on the
evolution of perturbation, hence CMB anisotropies and
large-scale-structure observables, we must solve for the
perturbed Boltzmann-Fokker-Planck equation.
Let us first note that, even if the diffusion coefficient is

isotropic and independent of velocity, the MB distribution
is not a solution of the Boltzmann equation as soon as there

are spatial perturbations. To see this, consider the case
in which Dij ¼ Djjδij, where Djj is independent of
velocity. Insert the MB distribution into both sides of
the perturbed Boltzmann equation. Equate the coefficients
of 1 −mχðv − VχÞ2=3TMB

χ , and find the following equation
for the temperature:

1

a2

�
∂t þ

1

a
v · ∇x

�
ða2TMB

χ Þ ¼ mχ

Tb
DjjðTb − TMB

χ Þ: ð99Þ

The advection term v ·∇x implies that the temperature must
depend on the velocity of the nonrelativistic DM, hence that
a MB distribution is not permitted. This would not be the
case if the DM were relativistic; in this case, an aniso-
tropic but still thermal momentum distribution would be
permitted—it is the case, for instance, of CMB photons,
the spectrum of which is a blackbody with a direction-
dependent temperature.
We therefore expect factor-of-a-few differences between

the thermal approximation and the FP equation when
computing the momentum-exchange rate, even for a
nearly velocity-independent diffusion rate. From our study
of the background heat-exchange rates in Sec. VI, we
expect that the fractional difference will be largest around
thermal decoupling at redshift zn¼a−1n and remain signifi-
cant until z∼ðmχ=msÞzn for mχ ≪ms. For mχ ¼ 1 MeV,
the 95% confidence upper limits to the DM-baryon cross
section of Ref. [24] translate to zn ≈ 16 × 104; 8 × 104 for
the operators O7ðn ¼ 2Þ and O3ðn ¼ 4Þ, respectively. This
implies that fractional differences in momentum- and heat-
exchange rates ought to be significant from z ∼ 105 all the
way down to z ∼ 102, i.e., throughout the epochs relevant to
CMB anisotropies, from which these limits are derived. We
therefore expect that the differences between the thermal
approximation and the FP treatment ought to affect upper
bounds and forecasts at the factor-of-a-few level.

B. Boltzmann-Fokker-Planck hierarchy

The most sensible method to numerically solve for the
perturbed DM distribution is to first expand it (in Fourier
space) on the basis of Legendre polynomials, as is usually
done in the study of photons or neutrinos [45]. We define
the perturbation δfχ as

δfχ ≡ ð1þ δχÞfχ − f̄χ ; ð100Þ
where δχ ≡ δnχ=n̄χ . For a given Fourier wave number k, we
then expand δfχ as

δfχðt; k; vÞ ¼
X
l

ilð2lþ 1Þflðt; k; vÞPlðk̂ · v̂Þ: ð101Þ

To write the perturbed Boltzmann equation, we must first
specify a gauge. We adopt the conformal Newtonian gauge
[45], with metric

FIG. 3. Fractional difference in the homogeneous heat-
exchange rate computed in the MB approximation and from
the FP equation, as a function of rescaled scale factor, for n ¼ 0,
2, 4, and for baryon-to-DM mass ratios ms=mχ ¼ 1, 10, 102, 103,
from bottom to top on each panel. For n ¼ 0, the homogeneous
exchange rate does not differ by more than a few percent, while
for n ¼ 4, there are order-unity differences for ms=mχ ≳ 10. For
n ¼ 4, ms=mχ ¼ 103, the curve is truncated at y ¼ 300, beyond
which Q≲ 10−15.
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ds2 ¼ a2½−ð1þ 2ψÞdτ2 þ ð1 − 2ϕÞdx2�: ð102Þ

The time appearing in the Boltzmann equation is the
proper time of comoving observers,1 dt≡ að1þ ψÞdτ.
The Boltzmann equation can then be rewritten in terms
of conformal time τ as

a3
d
dτ

½a−3ð1þ δχÞfχ � ¼ að1þ ψÞC½ð1þ δχÞfχ �: ð103Þ

Let us first compute the right-hand side to linear order in
perturbations,

C½ð1þ δχÞfχ �
¼ C½f̄χ � þ

X
l

ilð2lþ 1ÞC̄½flðt;k; vÞPlðk̂ · v̂Þ�; ð104Þ

where C̄ is the background collision operator, obtained for
Vb ¼ 0 and homogeneous and isothermal scatterers. It is
relatively straightforward to show that

C̄½flðt; k; vÞPlðk̂ · v̂Þ�

¼
�
C̄½fl� −

lðlþ 1Þ
2

D⊥
v2

fl

�
Plðk̂ · v̂Þ: ð105Þ

The term C½f̄χ � has perturbations due to inhomogeneities in
the scatterers’s density and temperature, as well as their
peculiar velocity. The latter is the most delicate to compute,
due to the dependence of the diffusion tensor on Vb. It is
best to first rewrite

f̄χðvÞ ¼ f̄χðv − VbÞ þ ðVb · v̂Þ∂vf̄χ ð106Þ

to linear order in perturbations. We then get

C½f̄χ �ðvÞ ¼
1

2w2

∂
∂w

�
w2Djj

�
∂wf̄χ þ

mχ

Ts
wf̄χ

�	
w¼v−Vb

þ C̄½ðVb · v̂Þ∂vf̄χ �

¼ ð1þ δsÞC̄½f̄χ �ðvÞ þ δTb
δC̄
δTb

½f̄χ �

þ ðVb · v̂Þ
�
C̄½∂vf̄χ � −

D⊥
v2

∂vf̄χ − ∂vðC̄½f̄χ �Þ
	
;

ð107Þ

where δs ≡ δρs=ρ̄s. The last line of Eq. (107) reduces to
1
2
Djj

mχ

Tb
Vb · ∂vf̄χ if the diffusion tensor is isotropic and

independent of velocity, as it should.
Let us now consider the left-hand side of the Boltzmann

equation. To evaluate the total derivative operator d=dτ, we
must first clarify the meaning of v: it is the proper velocity

measured by a comoving observer, i.e., up to corrections of
order v2 and to linear order in metric perturbations,

vi ¼ vi ¼ ð1 − ϕ − ψÞ dx
i

dτ
: ð108Þ

The geodesic equation then translates to

dv
dτ

¼ −aHvþ _ϕv − ∂xψ : ð109Þ

Hence, to linear order, the total derivative operator is

d=dτ ¼ ∂τ þ v · ∂x þ ð−aHvþ _ϕv − ∂xψÞ · ∂v; ð110Þ

where we neglected perturbed quantities multiplying ∂x,
which only acts on perturbations. Putting everything
together, and moreover assuming Vb ¼ ik̂Vb, as is the
case for scalar modes, we arrive at the following hierarchy
of equations for the perturbations:

a3∂τða−3flÞ − aHv∂vfl þ
kv

2lþ 1
½lfl−1 − ðlþ 1Þflþ1�

¼ a

�
C̄ −

lðlþ 1Þ
2

D⊥
v2

��
fl þ

1

3
Vb∂vf̄χδl1

	

þ
�
aðψ þ δsÞC̄½f̄χ � þ aδTb

δC̄
δTb

½f̄χ � − _ϕv∂vf̄χ

�
δl0

þ 1

3
ðkψ∂vf̄χ − aVb∂vðC̄½f̄χ �ÞÞδl1: ð111Þ

This hierarchy is similar to that satisfied by massive
neutrinos [45], with an additional collision term.
The DM hierarchy must be solved simultaneously with

the evolution of baryon perturbations. Baryons are them-
selves always an ideal thermal fluid, described by their
density, bulk velocity, and temperature. The continuity
equation is unchanged, but the momentum equation gets an
additional contribution due to scattering with DM, given by
Eq. (45). This can be rewritten in terms of the dipole part of
the DM perturbation, f1, as follows:

ρ̄b _Vbjχb ¼
ρ̄sρ̄χ
M

Z
d3vvAðvÞ

�
f1ðvÞ þ

1

3
Vb∂vf̄χ

�
: ð112Þ

We see that the full shapes of f1ðvÞ and f̄χ are relevant to
the momentum-exchange rate. Notice that it is ρ̄b that
appears in the left-hand side, as all baryons rapidly share
momentum, but only the mass density of scatterers, ρ̄s, that
appears on the right-hand side.
The baryon temperature Tb ¼ T̄b þ δTb must also be

solved for simultaneously. In addition to adiabatic cooling
and Compton heating, DM-baryon interactions lead to the
following cooling rate, to linear order in perturbations:1This t is therefore not the usual FLRW time coordinate.
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3

2
n̄b _Tbjχb ¼

ρ̄sρ̄χ
M

Z
d3vðf̄χðvÞ þ f0ðvÞÞ

×

�
ms

M
Bðv;Tb=msÞ − v2Aðv;Tb=msÞ

�
:

ð113Þ

Perturbations to this equation2 arise from the monopole of
the perturbed DM distribution f0, as well as perturbations
to Tb inside A and B.
Finally, the system is closed with the Einstein field

equations, sourcing the potentials ϕ and ψ , which also
depend on integrals of the moments fl≤2.
A particular case of the perturbed Boltzmann-FP equa-

tion for neutralino-DMwas first studied in Ref. [29]. In that
case, the DM scatters off relativistic leptons, and the
diffusion tensor is isotropic and independent of velocity.
This allowed the author of Ref. [29] to further expand the
DM distribution function on the basis of eigenfunctions of
the FP operator (see also Ref. [33] and the application in
Ref. [46] with a truncated hierarchy that reduces to ideal
thermal fluid equations). In contrast, no analytic eigen-
functions are available for the velocity-dependent diffusion
tensor that we first study here. One must therefore solve a
system of partial differential equations for the flðτ; k; vÞ
rather than ordinary differential equations for the coeffi-
cients of the eigenfunctions. Still, the numerical burden
should be manageable and not much larger than what is
required to solve the Boltzmann hierarchy for massive
neutrinos. We defer to future work the implementation of
the above Boltzmann-FP hierarchy into a CMB Boltzmann
code as well as the subsequent extraction of limits on DM-
baryon cross sections from CMB anisotropy data.

VIII. LIMITATIONS AND EXTENSIONS

A. Late-coupling scenarios

So far, we have only considered velocity dependences
such that the DM starts thermally and kinematically
coupled to baryons and eventually decouples. For steep
enough negative power laws of velocity, the reverse
happens: the DM starts thermally and kinematically
decoupled and couples to baryons at late time.
A concrete example is a Coulomb-like DM-baryon

interaction, with cross section σ ∝ 1=v4, which could arise,
for instance, for a millicharged DM particle. Because of the
late-time coupling in these scenarios, this is potentially
detectable in 21 cm tomography [10,11]. It has recently
been invoked [47,48] as a possible explanation of the
EDGES 21 cm measurement [49], though this would

require the millicharged particle to only make a small
fraction of the total DM [50–53].
The late thermal decoupling in these scenarios leads to

some modeling challenges. First of all, the bulk relative
velocity between DM and baryons becomes larger than the
baryon thermal motion for z≲ 104 (see Fig. 1 of Ref. [9]),
at least if the former is computed while neglecting the effect
of interactions [26]. As a consequence, relative motions
enter the collision term nonperturbatively, and one cannot
linearize the momentum equation. An approximate treat-
ment of this fundamentally nonlinear effect was proposed
in Ref. [9] and improved upon in Ref. [26], in both cases
within the ideal thermal fluid approximation. It is not clear
how accurate those approximations are, as no reference
exact numerical solution exists to date. It is also not
obvious how they ought to be implemented within the
Boltzmann-FP formalism developed in this work.
In addition, if the DM does not strongly self-interact, the

FP approximation (and, a fortiori, the thermal approxima-
tion) need not be accurate for such late-time coupling
scenarios. To understand this, let us first recall the reason
why the FP approximation is expected to accurately
describe the more standard, early coupling scenarios. In
these cases, the DM distribution fχðvÞ is initially broad (as
the DM starts hot), and collisions with baryons are hence
well described by the FP operator, which allows one to
follow the evolution of fχ from its initial equilibrium form
through decoupling. Once the DM becomes sufficiently
cold and its distribution narrow relative to the characteristic
change in velocity per scattering, the FP approximation no
longer accurately describes the evolution of fχ . However,
the very narrowness of fχ guarantees that momentum- and
heat-exchange rates no longer depend on its exact shape
and become closed expressions of the bulk velocity and
effective temperature. By construction, the FP operator
implies the same closed-form equations, as it is built to give
the exact momentum- and heat-exchange rates for a given
distribution. Therefore, at late time, the Boltzmann-FP
equation is guaranteed to give the correct bulk velocity
and temperature evolution,3 and as a consequence, the
correct momentum- and heat-exchange rates, despite pro-
viding an inaccurate detailed form for fχðvÞ.
Let us now consider the late-coupling scenario. The DM

distribution starts off cold, effectively with zero temper-
ature. As long as it is sufficiently narrow, its temperature
and bulk velocities are correctly evolved by the Boltzmann-
FP equation—again, their evolution equations are identical
to those obtained in the MB approximation. The underlying
distribution fχ , however, is neither a MB distribution nor

2It is worthwhile to point out that none of the linear-cosmology
studies of DM-baryon interactions seems to have considered
perturbations to the baryon and DM temperatures thus far.

3There is a small caveat here: the momentum equation also
depends on the gradient of anisotropic stress, which is not a
closed function of bulk velocity and temperature. It is likely that
this term is always small, as it is suppressed when the DM is
tightly coupled, but we defer its detailed study to future work.
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well described by the solution of the Boltzmann-FP
equation. Once the DM starts recoupling and its distribu-
tion broadens, momentum- and heat-exchange rates
become dependent on the exact shape of fχðvÞ. While
the FP approximation now becomes accurate, it never-
theless starts with inaccurate “initial” conditions for fχðvÞ
at the onset of recoupling, and the subsequent fχ will suffer
from this initial inaccuracy, at least while the DM is
marginally coupled.
To rigorously quantify the inaccuracy of the Boltzmann-

FP equation for late-coupling, weakly self-interacting DM
models, there seems to be no choice but to solve the exact
Boltzmann equation, with the full integral collision oper-
ator. In the meantime, one should keep in mind that
cosmological bounds on such models are uncertain at
the factor-of-a-few level.

B. Self-interactions

Eventually, for full generality, one should simultane-
ously account for DM scattering with baryons and self-
scattering. Here, we briefly discuss the corresponding
collision operator and approximation strategies.
Inserting Eq. (7) into Eq. (5), with s ¼ χ, we see that the

self-interaction collision operator is the quadratic nonlocal
operator

Cχχ ½fχ �ðvÞ ¼ nχ

Z
d3v0d3ud3u0Mχχðv;u; v0; u0Þ

× ½fχðv0Þfχðu0Þ − fχðvÞfχðuÞ�; ð114Þ

where Mχχ is defined in Eq. (8) and is symmetric under
exchange of primed and unprimed variables. This operator
conserves the DM number as well as the total DM
momentum and energy densities.
It has been well known since Boltzmann’s work in

Ref. [54] that such a collision operator increases the
entropy functional

S½fχ �≡ −
Z

d3vfχðvÞ lnðfχðvÞÞ: ð115Þ

We further demonstrate in Appendix B that this is the only
functional (up to additive and multiplicative factors) of fχ
that is increased by the collision operator (114).
For a given total momentum and energy, this functional

is maximized when fχ is the MB distribution. At the order-
of-magnitude level, we expect this equilibrium distribution
to be reached when nχhσχχvi ≫ H. In this limit, the
evolution of the DM distribution amounts to solving for
its mean velocity Vχ and temperature Tχ . If self-interactions
are negligible or marginal; however, its full distribution
function has to be solved for.
It would be useful to also have a diffusion approxi-

mation for the full collision operator (114). The simplest

approximation would be of the form (76), with
ðVb; TbÞ → ðVχ ; TχÞ—through these quantities, the FP
operator would therefore be implicitly nonlinear in fχ .
For this diffusion operator to conserve total momentum and
energy for any distribution fχ , it is relatively straightfor-
ward to see that the diffusion coefficient Dij must be
isotropic and velocity independent so that the FP operator
takes the form

CFP
χχ ½fχ � ¼

D
2

∂
∂vi

�∂fχ
∂vi þ

mχ

Tχ
ðv − VχÞifχ

�
: ð116Þ

Computing the rate of change of entropy with this operator,
we find, after integration by parts,

dS
dt

¼ 3

2
D
mχ

Tχ

�
Tχ

3mχ

Z
d3vfχðvÞ

�∂vfχ
fχ

�
2

− 1

�
: ð117Þ

For two vector functions XðvÞ and YðvÞ, we define the
scalar product

hX;Yi≡
Z

d3vfχðvÞXðvÞ · YðvÞ ð118Þ

and the corresponding norm jjXjj2 ≡ hX;Xi. We may
rewrite Eq. (117) as

dS
dt

¼ 3

2
D
mχ

Tχ

������� v
3

������2������ ∂vfχ
fχ

������2 − 1

�
: ð119Þ

From the Cauchy-Schwarz inequality, we find that

dS
dt

≥
3

2
D
mχ

Tχ

�

v
3
;
∂vfχ
fχ

�
2

− 1

�
¼ 0; ð120Þ

since
D
v
3
; ∂vfχfχ

E
¼ −1, as follows from integration by parts.

Therefore, the FP operator (116) not only conserves the
number, total momentum, and energy; it also leads to an
increasing entropy functional, for any distribution function
fχ . The last step will be to determine the constantD, which,
dimensionally, is of orderD ∼ nχhσχχviTχ=mχ. We defer to
future works a more detailed study of the FP approximation
to self-interactions and its implementation simultaneously
with DM-baryon scattering.

IX. CONCLUSIONS

We have developed a new theoretical formalism to
describe the effect of DM scattering with SM particles
on linear-cosmology observables. We have replaced the
ideal thermal fluid approximation, standard in this context,
by the Boltzmann equation for the DM phase-space density.
This allows one to extend the range of DM models
accurately modeled, to include weakly self-interacting
models, the velocity distribution of which is nonthermal.

YACINE ALI-HAÏMOUD PHYS. REV. D 99, 023523 (2019)

023523-16



We have derived a Fokker-Planck approximation to the
collision operator, enforcing that it recovers the exact
momentum- and heat-exchange rates for any given distri-
bution. This constitutes, to our knowledge, the first
derivation of the FP operator for collisions with non-
relativistic SM particles. This approximation is more
amenable to efficient numerical implementation than the
full integral collision operator. We have discussed the
limitations of this approximation, as well as interesting
extensions, which we shall pursue in future works.
In addition to developing this new formalism, we

have presented numerical solutions of the background
Boltzmann-FP equation, in the limit of negligible DM
self-interactions. We found that the DM velocity distribu-
tion can develop order-unity distortions from the usually
assumed Maxwell-Boltzmann distribution. More impor-
tantly, we established that the background heat-exchange
rate is overestimated in the MB approximation by factors as
large as ∼2–3, especially for light DM particles and for
DM-baryon cross sections with a steep velocity depend-
ence. We will explore the impact of these changes on upper
bounds to the DM-baryon cross section from CMB spectral
distortions [8] in an upcoming publication. We expect
deviations at least as large for the momentum-exchange
rate, relevant for CMB-anisotropy and large-scale-structure
studies. We derived the perturbed Boltzmann-FP hierarchy
that needs to be solved to estimate this rate and defer its
numerical implementation to future work.
This work opens up a new window in the study of DM

properties: instead of implicitly assuming that DM strongly
self-interacts, we consider DM-baryon interactions and
self-interactions as independent phenomenological param-
eters. This will broaden the suite of DM models that can be
accurately modeled and tested. Such a detailed and accurate
theoretical modeling of DM-baryon interactions is crucial
in order to take full advantage of the sensitivity of Planck
and its successors, and this article takes the first steps in this
direction.
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APPENDIX A: POWER-LAW CROSS SECTION
FOR SCATTERING WITH HELIUM

The effect of scattering with a composite nucleus like
helium is encoded by a form factor in the cross section.
This form factor was computed in Ref. [55] within the
effective theory of DM-nucleon interactions. For helium, it
amounts to an exponential suppression of an otherwise
power-law cross section, by a factor exp ½−ð1 − n̂ · n̂0Þv2×
ðμaHeÞ2�, where v is the relative velocity, μ≡mHemχ=
ðmHe þmχÞ is the reduced mass of the DM-helium system,
and aHe ≈ 1.5 fm ≈ 7.6 GeV−1. The characteristic relative
velocity is such that v2 ∼ Tb=mHe þ Tχ=mχ ≤ Tb=μ, since
Tχ ≤ Tb; hence,

v2ðμaHeÞ2 ≲ a2HeμTb ≤ a2HemHeTb ≈
Tb

4 MeV
: ðA1Þ

Therefore, nonpointlike effects in helium-DM scattering
are relevant only at temperature greater than a few MeV.
In practice, CMB anisotropies and spectral distortions are
not sensitive to baryon-DM interactions beyond redshift of
a few million, corresponding to kilo-electron-volt temper-
atures. For the problem of interest, the form factor can
therefore safely be set to unity and the cross section with
helium assumed to be a power law.

APPENDIX B: EXISTENCE AND UNICITY
OF ENTROPY FUNCTIONAL FOR

SELF-SCATTERING

It has been well known since Boltzmann’s work in
Ref. [54] that collisions between particles in a gas increase
the entropy functional [56,57]. In this Appendix, we further
show that, up to a multiplicative constant, this is in fact the
only increasing functional (or H functional) of the form

S½f� ¼
Z

d3vSðfðvÞÞ; ðB1Þ

where S is a continuous and differentiable function. Note
that this is a restricted class of functionals: one could also
consider those of the form

R
d3v1d3v2Sðfðv1Þ; fðv2ÞÞ, etc.

In particular, functionals of the form (B1) do not include the
K functional suggested by Kac [58].
The collision operator arising from particle-particle

scattering is a nonlinear and nonlocal operator of the form
(in the nonrelativistic limit):

C½f�ðvÞ ¼
Z

d3v0d3wd3w0δDðwþ w0 − v − v0ÞδDðw2 þ w02 − v2 − v02ÞΓðw;w0; v; v0Þ½fðwÞfðw0Þ − fðvÞfðv0Þ�: ðB2Þ

Here, detailed balance (or time-reversal symmetry) implies that the collision rate is symmetric under exchange of the first
and last pairs of variables:

Γðw;w0; v; v0Þ ¼ Γðv; v0;w;w0Þ: ðB3Þ
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It is also symmetric under exchanges w0 ↔ w and v0 ↔ v. This collision operator conserves not only the total number of
particles but also their total momentum and energy.
Let us now compute the time derivative of Eq. (B1) under the action of collisions,

dS
dt

¼
Z

Dγ½fðwÞfðw0Þ − fðvÞfðv0Þ� _SðfðvÞÞ; ðB4Þ

Dγ ≡ d3vd3v0d3wd3w0δDðwþ w0 − v − v0ÞδDðw2 þ w02 − v2 − v02ÞΓðw;w0; v; v0Þ; ðB5Þ

where _S ≡ dS=df. Using the symmetries of the integrand, we rewrite this as

dS
dt

¼ 1

4

Z
Dγ½fðwÞfðw0Þ − fðvÞfðv0Þ�½ _SðfðvÞÞ þ _Sðfðv0ÞÞ − _SðfðwÞÞ − _Sðfðw0ÞÞ�: ðB6Þ

We now seek functions S such that the functional S is an increasing function of time for any function f. This implies that it
must satisfy the inequality

½f3f4 − f1f2�½ _Sðf1Þ þ _Sðf2Þ − _Sðf3Þ − _Sðf4Þ� ≥ 0; ∀ ðf1; f2; f3; f4Þ > 0: ðB7Þ

This in turn implies that

_Sðf1Þ þ _Sðf2Þ ≥ _Sðf3Þ þ _Sðf4Þ ∀ ðf1; f2; f3; f4Þ such that f1f2 < f3f4; ðB8Þ

_Sðf1Þ þ _Sðf2Þ ≤ _Sðf3Þ þ _Sðf4Þ ∀ ðf1; f2; f3; f4Þ such that f1f2 > f3f4: ðB9Þ

If the function _S is continuous, it must be that

_Sðf1Þ þ _Sðf2Þ ¼ _Sðf3Þ þ _Sðf4Þ ∀ ðf1; f2; f3; f4Þ such that f1f2 ¼ f3f4: ðB10Þ

In particular, setting one of the fi’s to unity, we find

_SðxyÞ ¼ _SðxÞ þ _SðyÞ − _Sð1Þ; ∀ ðx; yÞ > 0: ðB11Þ

Differentiating with respect to y, and then setting y ¼ 1, we obtain

S̈ðxÞ ¼ const
x

; ∀ x > 0; ðB12Þ

which, upon two integrations, gives us

SðfÞ ¼ −αf lnðfÞ þ βf þ const; ðB13Þ

where α and β are arbitrary constants. For Eq. (B7) to be satisfied, one must have α > 0.
To conclude, we have found that the entropy functional

S½f�≡ −
Z

d3vfðvÞ lnðfðvÞÞ ðB14Þ

is increased by self-collisions. Furthermore, we have shown that this is the only functional of the form (B1) (up to
multiplicative and additive constants) that satisfies this condition.
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