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We propose a new mechanism by which dark matter (DM) can affect the early and late Universe. The hot
interior of a macroscopic DM, or macro, can behave as a heat reservoir so that energetic photons and
neutrinos are emitted from its surface and interior, respectively. In this paper, we focus on the spectral
distortions (SDs) of the cosmic microwave background before recombination. The SDs depend on the
density and the cooling processes of the interior and the surface composition of the macros. We use neutron
stars as a model for nuclear-density macros and find that the spectral distortions are mass independent for a
fixed density. In our work, we find that, for macros of this type that constitute 100% of the dark matter, the μ
and y distortions can be near or above the detection threshold for typical proposed next-generation
experiments such as PIXIE.
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I. INTRODUCTION

In the standard ΛCDM model of cosmology, dark matter
(DM) comprises ΩDM ∼ 0.27 of the total energy density of
today’s Universe. From observations of the cosmic micro-
wave background (CMB) and cosmic structures, we know
this DM must be “cold” (i.e., nonrelativistic) and “dark”
(i.e., interact rarely with ordinary matter and radiation)—
hence cold dark matter (CDM). It must also interact rarely
with itself.
The microscopic nature of CDM is still unknown;

however, the absence of a suitable Standard Model (SM)
particle has driven the widespread belief that the DM is a
beyond the Standard Model (BSM) particle and a con-
comitant decades-long search for such particles in purpose-
built DM detectors and among the by-products of collisions
at particle accelerators.
The ongoing infertility of such particle DM searches,

whether for weakly interacting massive particles or axions,
suggests that other candidates return to serious consider-
ation. Two such candidates have long histories: so-called
“primordial” black holes (PBHs) and composite baryonic
objects of approximate nuclear density and macroscopic
size, which we will refer to as “macros” [1], although that

term properly includes macroscopic candidates of any
density and composition.
This paper is focused on macros and, specifically, on

observational consequences of the presence of nuclear-
density macros in the early Universe. These have the
particular virtue that they may be purely SM objects built
of quarks or baryons. In this case, they must have been
formed before the freeze-out of weak interactions at t ≃ 1 s
and the subsequent onset of big bang nucleosynthesis
(BBN), if the success of the standard theory of BBN in
predicting light-element abundances is to be preserved
(although see [2]).
Witten first suggested [3] that DM could be composites

of up, down, and strange quarks assembled during the QCD
phase transition. Subsequent proposals have included
purely SM objects made of quarks [4] or baryons [5,6]
of substantial average strangeness. A variety of BSM
variations also exist (e.g., [7]). Several authors have
focused on the observational consequences [1,8,9].
Macros share with PBHs an important distinction from

particle DM candidates: They achieve their low interaction
rates by being massive and, therefore, of much lower
hypothetical number density. The nonobservation of approx-
imately nuclear-density macros through the tracks they
would have left in ancient mica [1] demands mX ≳ 55 g.
Limits on larger macro masses have been obtained from
gravitational microlensing (mX ≲ 2 × 1020 g) [10–12] and
femtolensing (excluding 1017 ≲mX ≲ 2 × 1020 g). These
limits as quoted assume that the DM consists of macros
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of a single mass—an unlikely situation for a composite
object.Macroscopic bound states of fermions (e.g., quarks or
baryons) cannot be formed by the gravitational collapse of
adiabatic fluctuations in the radiation-dominated era. They
would arise typically from nonadiabatic fluctuations [3,13]
or topological defects [14] (e.g., from phase transitions) that
enhance the fermion abundance relative to that of the
radiation. Although there are stringent constraints on kaon
or pion condensates, hyperons, and strange quark matter
inside observed 2 M⊙ or heavier neutron stars [15,16], these
states may (or may not) be found in lighter neutron stars.
Moreover, these exotic hadronic or quarkmatter equations of
state are theoretically allowed; hence, one should not
abandon the possibility of their playing a role in the structure
of macros, which are certainly not the end points of ordinary
stellar evolution. The mass functions of macros are model
dependent and therefore difficult to predict [13]. We do not
discuss further the origin of themacros but concern ourselves
with their detection.
Cosmological constraints on macros, whether from

the CMB or large-scale structure, do not yet impinge on
generic nuclear-density objects.
The presence of dense assemblages of quarks or baryons

from before BBN through today would undoubtedly have
as-yet-unexplored observational consequences, no matter
the specific mechanism of their formation or stabilization.
Novel physics peculiar to such macros, with potential
observational consequences, include:

(i) slow prerecombination cooling of the macro com-
pared to the ambient plasma—
(a) distorting the spectra of the cosmic microwave

and neutrino backgrounds (CMB and CNB,
respectively),

(b) heating the postrecombination Universe, or
(c) contributing to the cosmic infrared background;

(ii) production of nuclei (including heavy nuclei) through
(a) inefficiency in macro assembly at formation,
(b) evaporation, sublimation, or boiling, especially

soon after macro formation, or
(c) macro-macro collisions;

(iii) formation of binary macros, with potential
gravitational-wave and electromagnetic signals;

(iv) DM self-interactions, especially in high-density
environments such as galactic cores; and

(v) enhanced thermal and dynamical coupling of dark
matter to baryons and photons.

These primary processes could have important secondary
consequences, including implications for early star forma-
tion, assembly of supermassive black holes, and 21-cm
emissions [17].
In this work, we focus our attention on the very first of

these: the effect on the CMB and CNB of macroscopic
objects that generically cool by volume emission of neu-
trinos and surface emission of photons. (BSM candidates
may have additional cooling mechanisms.)

By considering a specific example of a baryonic
macro—a neutron star (NS)—as a macro, we demonstrate
that the weak coupling of neutrinos to baryons and the
inefficiency of surface cooling by photons generically lead
the macros to remain significantly hotter than the ambient
plasma through the epoch of recombination. Both energy
and entropy are therefore injected into the plasma in the
form of photons and neutrinos well after the time when
thermal or statistical equilibrium can be restored. The CMB
and CNB spectra are thereby distorted.
In this first work, we characterize the distortion in

terms of the traditional μ-type (photon-number excess) and
y-type (photon-energy excess) spectral distortions (SDs)
of the CMB and by ΔNeff, the increase in the effective
number of neutrino species. However, because the temper-
ature of the macros can remain far above that of the
ambient plasma, and because the cooling is ongoing
through and after recombination, neither μ nor y will
fully capture the shape of the resulting distortion. This will
be considered in future work, as will the angular fluctua-
tions in the distortion, its correlation with other observ-
ables, and other potential consequences of baryonic macro
DM, as listed above.
The magnitude of SDs caused by macros is controlled, of

course, by their abundance but also by their specific
internal physics. For NS material, this includes the thick-
ness and insulating properties of the nondegenerate crust;
the equation of state of the neutrino-emitting core, in
particular, the presence or absence of a superconducting
phase, and its detailed properties.
For a solar-mass NS, known or anticipated properties

result in μ- and y-type distortions of the CMB that are
potentially above the threshold of detection by feasible
next-generation SD experiments and ΔNeff that are not.
These specific conclusions will change for other micro-
physical models of macros but may be instructive of what
to expect and why. To our knowledge, this is the first study
of the radiative cooling of DM and the CMB spectral
distortions it may cause.
The CMB has been measured [18] to have a black-

body (BB) spectrum with an average temperature of
2.7255� 0.0006 K. Some deviation from a BB is predicted
due to energy injection and absorption mechanisms
[19–25], especially the damping of acoustic modes after
they have entered the horizon, also known as Silk damping
[19,22,26–33]. At very high redshifts, z > zμ ≡ 2 × 106,
distortions would be wiped out by an efficient photon
number and energy-changing interactions. For 5 × 104 ≲
z≲ 2 × 106, number-changing mechanisms are inefficient,
and photon injection results in a finite chemical potential
in the Bose-Einstein distribution of photons, a so-called
μ distortion. At lower redshifts, z≲ 5 × 104, energy redis-
tribution by Compton scattering becomes inefficient, lead-
ing to y-type distortions. The intermediate era, z ≈ 104–105,
is also characterized by i-type distortions [34].
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The only macroscopic objects of nuclear density known
to exist in nature are NSs formed as end points of stellar
evolution. These appear to have masses below 2.2 M⊙
[35,36], well below the total mass within the horizon at
z ∼ 109 (or even 1012, the epoch of quark confinement and
chiral symmetry breaking). We therefore use an ordinary
NS as a proxy for a macro. We take the macro’s central
density to be ρX ≃ ρN ≡ 2.8 × 1014 g=cm3, which we refer
to as the nuclear density. Although microlensing limits
preclude all the DM being NSs, the macro mass function
could include a sizable contribution from them.
Neutron stars theoretically are stable down to

ð0.09–0.19ÞM⊙ [37–40] but do not appear to arise as the
end points of the evolution of main-sequence stars below
∼1.2 M⊙. If formed in the early Universe, these would be
larger and of lower average density than poststellar neutron
stars. This motivates us to consider NS-like macros of
somewhat lower-than-nuclear density.
The discovery of a NS with MNS < 1.2 M⊙ would be

exciting evidence for early-Universe macro formation.
Smaller-still composite baryonic objects require non-

gravitational stabilization, whether within the SM through
the incorporation of strange quarks or baryons [3,5,6] or by
more exotic BSM mechanisms. Such SM or BSM baryonic
composites may also exist in the mass range that includes
stable NSs.
The paper is organized as follows. In Sec. II, we discuss

the neutrino and photon emission processes that cool the
macro. In Sec. III, we calculate the SD created by photon
emission from the surface of macros. In Sec. IV, we present
our conclusions. We provide a derivation for the photon
luminosity of the macro and describe the neutrino cooling
processes in more detail in the Appendixes.

II. COOLING OF MACROS

In this section, we provide expressions for the neutrino
and photon luminosities from the interior and surface of the
macro, respectively. We then arrive at the temperature
dependence of the interior of the macro.
Except for the inner core, the composition of which is

still under debate, a NS is composed of neutrons, protons,
electrons, and heavy ions. After formation, it cools down
via neutrino emission from the interior and photon emis-
sion from the surface.
Neutrino cooling occurs through three processes:

(i) direct Urca (DUrca)

n → pþ e− þ ν̄e; e− þ p → nþ νe

takes place at high temperatures, when neutrons and
electrons are nondegenerate, but may also be important
below the degeneracy temperature; (ii) modified Urca
(MUrca) in the neutron and proton branches

nþn→ nþpþe−þ ν̄e; nþe−þp→ nþnþνe;

nþp→pþpþe−þ ν̄e; pþe−þp→ nþpþνe

is dominant at T < 109 K, when neutrons and electrons are
degenerate; (iii) nucleon Cooper pair (CP) cooling

Ñ þ Ñ → CPþ νþ ν̄

(where Ñ is a quasinucleon) is most efficient for
0.98Tc ≳ T ≳ 0.2Tc, with neutrons in the NS interior
become superconducting at Tc [41].
The luminosity of these neutrino-cooling processes is

Li
ν ¼ 1045CiðMX=M⊙ÞðρX=ρNÞ−1=3 erg=s ð1Þ

for i ¼ DU;MU;CP.MX is the mass of the macro. ρX is the
density of the core, and it partly characterizes our ignorance
of the precise properties of the macro. T dependence is
encoded in

Ci ¼

8>><
>>:

5.2ðTX
9 Þ6RD i ¼ DU

ð3.0RM
n þ 2.4RM

p Þ10−6ðTX
9 Þ8α i ¼ MU

7.1 × 10−6ðρX=ρNÞ−1=3ðTX
9 Þ7aF i ¼ CP:

TX is themacro’s internal temperature; the subscript 9will be
used for a temperature in units of 109 K. In the above
equation, α≃2ð1þm2

π=p2
FðnÞÞ−2−0.3ð1þm2

π=p2
FðnÞÞ−1 þ

0.07, where pFðnÞ ¼ 340ðρX=ρNÞ1=3 MeV=c is the neu-
trons’ Fermi momentum;RD,RM

n , andRM
p ≤ 1 are reduction

factors due to superfluidity [42,43]; a [44] andF [45] are the
dimensionless factor and the control function, respectively,
both ofwhich dependon the type of superfluidity. The factors
in the above expressions which depend on superfluidity have
been discussed briefly in Appendix B.
The macro photon luminosity is

Lγ ¼ 1045
�
MX=ρX
M⊙=ρN

�
2=3

ðTs
9
4 − TCMB

9
4Þ erg=s; ð2Þ

where Ts is the surface temperature of the macro and TCMB

is the temperature of the ambient plasma.
We assume that the macros have coalesced, and we can

begin following their cooling from when the temperature of
the ambient plasma is 109 K, at z ¼ 3.7 × 108. (This is
after any electroweak and QCD-associated phase transi-
tions [13].) We take the macro to be isothermal at that
moment with the temperature equal to that of the plasma.
The interior electrons, neutrons, and protons will be
degenerate. The cooling of neutron stars below this temper-
ature has been well explored, and we have verified that our
conclusions are insensitive to the details of the macro
cooling before this epoch.
We assume that the macro, like a NS, has a degenerate

isothermal interior containing neutrons, protons, and
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electrons and a nondegenerate “atmosphere” of electrons
and heavy ions. This keeps the interior warm as the ambient
plasma cools. For constant atmospheric photon luminosity
Lγ , the atmospheric density and temperature are related by

ρatm ¼ 1.2 × 1010ρN

�
μðMX=M⊙Þ erg=s

Zð1þWÞLγ

�
1=2

T3.25
9 ; ð3Þ

where μ, Z, and W are the mean molecular weight,
metallicity or mass fraction of elements heavier than
hydrogen and helium, and mass fraction of hydrogen,
respectively. In case of a low-metallicity atmosphere, the
Kramer’s opacity due to bound-free transitions assumed
above will be exceeded by the opacity due to free-free
transitions, which does not vanish for low metallicity. This
means Eq. (3) will not diverge for small Z.
Where the atmosphere meets the interior, the relation

between density ρ� and temperature T� can be found (see
[46], Chap. 4) by equating the electron pressure of the
degenerate interior and the nondegenerate atmosphere

ρ� ¼ 7.6 × 105μeT�
9
3=2 g=cm3; ð4Þ

where μe is the mean molecular weight per electron.
Equating (3) and (4),

Lγ ¼ 8.9 × 1036λðMX=M⊙ÞT�
9
3.5 erg=s; ð5Þ

where λ≡ ð μ
μ2e
Þ 2.0
Zð1þWÞ. In the case of a NS, λ ≈ 1 (see [46],

Chap. 11). We take λ to be a free parameter that, along with
ρX, represents the unknown characteristics of the macros.
We provide a brief derivation of the photon luminosity in
Appendix A.
The macro interior is nearly isothermal, due to the

thermal conductivity of the degenerate electrons. Since
TX ≃ T�, equating the photon luminosity (2) at the surface
to (5) yields the macro’s surface temperature Ts

9ðtÞ.
Starting from its assumed initial isothermal condition at

109 K, the macro cools according to

dUX

dt
¼ −ðLDU

ν þ LMU
ν þ LCP

ν þ LγÞ; ð6Þ

where the internal energy is [see [46], Eq. (11.8.2)]

UX ¼ 6.1 × 1047ðMX=M⊙ÞðρX=ρNÞ−2=3TX
9
2 erg: ð7Þ

We refer the reader to Appendix A for a derivation of the
above equation.
The interior temperature of the macro therefore obeys

d
dt

TX
9 ¼ −8.3 × 10−4 s−1ðρX=ρNÞ1=3TX

9
−1
X
i

Ci; ð8Þ

where the sum over i now includes photons and
Cγ ≡ 8.9 × 10−9ðρX=ρNÞ1=3λðTX

9 Þ7=2.

Neutrino emission via MUrca occurs from the onset,
since we take the initial temperature to be 109 K. Emission
via CP begins below Tc9. We explore two possibilities:
first, no DUrca cooling RD ¼ 0; second, a proton fraction
sufficient to support DUrca, with RD given by Eq. (19)
in Ref. [42].
In practice, SDs are relatively insensitive to the exact

values of these various numerical factors.
In the case where there is negligible DUrca emission,

coolingproceeds in three stages: stage1.—MUrca-dominated
cooling from TX

9 ¼TMU
9 ¼1, at time t9, to TCP

9 ¼0.98Tc9, at
tCP; stage 2.—CP-dominated cooling from TCP

9 to Tγ
9 ≃

0.2Tc9 at tγ; stage 3.—photon cooling below Tγ
9, i.e., after tγ.

(If TCP
9 is high enough, the first stage may be omitted.)

The macro cooling can be followed numerically, but, by
assuming that the dominant cooling mechanism in each
stage is the only one (and taking RM

n ; RM
p ¼ 1), we find

TX
9 ðtÞ≃

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

TMU
9

�
1þ2.7×10−8αTMU

9
6

�
ρX
ρN

�
1=3 t− t9

s

�
−1=6

for 1≡TMU
9 ≥TX

9 ≥TCP
9 ≃0.98Tc9;

TCP
9

�
1þ1.8×10−2aFTCP

9
5
t− tCP

s

�
−1=5

for 0.98Tc9≃TCP
9 ≥TX

9 ≥Tγ
9≃0.2Tc9;

Tγ
9

�
1.0þ1.1×10−11λTγ

9
3=2ðρX=ρNÞ2=3

t− tγ
s

�
−2=3

for 0.2Tc9≃Tγ
9 ≥TX

9 :

ð9Þ

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2 Recombination 17

8.7 3.0 0

μ era i era y era

lo
g(

T
/K

)

log(t/s)

log(1+z)

Interior (No CP)

Surface (No CP)

Interior (Tc  = 109  K)

Surface (Tc  = 109  K)

Interior (Tc  = 4 x 109  K)

Surface (Tc  = 4 x 109  K)

CMB

FIG. 1. Interior temperature TX and surface temperature Ts of a
macro for MX ¼ M⊙, λ ¼ 1, and ρX ¼ ρN , plotted vs time t and
redshift z. Cooling is without DUrca and both without CP and
with CP for two values of Tc. The ambient photon temperature
TCMB is shown for a comparison, and the eras when μ and y
distortions occur are indicated.
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The above relations can also be expressed in terms of redshift
z, using the time-redshift relation z ¼ 4.9 × 109ðt=sÞ−1=2.
The times (and thus redshifts) at which the interior temper-
ature TX falls to Tγ depend on detailed properties of the
macro, such as its central density ρX and the composition
parameter λ. In Fig. 1, we plot the central and surface
temperatures of the macro, as well as the CMB temperature

as a function of the time for a representative value of these
parameters.
In the presence of DUrca cooling, stage 1 is DUrca

dominated until TX
9 becomes Tγ

9 ¼ 0.1Tc9 at tγ . In this case,
during stage 1 (now TDU

9 ≡ 1)

TX
9 ðtÞ¼TDU

9

�
1þ0.017ðTDU

9 Þ4RD

�
ρX
ρN

�
1=3 t− t9

s

�
−1=4

:

ð10Þ
For convenience, we provide Tables I and II, where we
describe the various temperatures and times that appear in
Eqs. (9) and (10).

III. SPECTRAL DISTORTIONS BY MACROS

The prerecombination contributions to μ and y distor-
tions of the CMB can be approximated by�

μ

y

�
¼

Z
dtJ bb

�
1.4J μ

1
4
J y

�
1

c2ργ
_Q: ð11Þ

The window functions given in Refs. [22,47,48] are

J yðzÞ ¼ 1 − J μðzÞ ≈ ½1þ 4.7 × 10−13z2.58�−1;
J bbðzÞ ≈ exp ½−ðz=zμÞ5=2�: ð12Þ

The CMB energy density ργ ≈ 7.0 × 10−34zðtÞ4 g=cm3,
while the rate at which energy density is injected into
the photon distribution by macros of density nX is

TABLE II. Definitions of various times ti, that appear in
Eqs. (9) and (10). These time values were obtained by solving
Eq. (9) for the most dominant cooling process.

Description

t9 Cosmic time at which TX
9 ¼ 1

tCP Cosmic time at which CP cooling dominates
tγ Cosmic time at which photon cooling dominates

TABLE I. Definitions of various temperatures, Ti
9, that appear

in Eqs. (9) and (10). For i ¼MU, DU, CP, the temperature values
were determined by comparing the luminosities of various
processes given by Eq. (1).

Description

TX
9

Interior temperature of macro
TCMB
9

CMB temperature
TMU
9

Temperature of macro at onset of MUrca
TDU
9

Temperature of macro at onset of DUrca
TCP
9

Temperature of macro at onset of CP cooling

10-12

10-11

10-10

10-9

10-8

10-7

10-2 10-1 100 101 102

PIXIE limit

NS

μ

λ

0.1ρN

ρN

10ρN
10-12

10-11

10-10

10-9

10-8

10-7

10-2 10-1 100 101 102

PIXIE limit

NS

Tc  = 109   K Tc  = 4 x 109   K

μ

λ

0.1ρN

ρN

10ρN

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-2 10-1 100 101 102

PIXIE limit

NS

Tc  = 109   K Tc  = 4 x 109   K

μ

λ

0.1ρN

ρN

10ρN

10-11

10-10

10-9

10-8

10-7

10-2 10-1 100 101 102

PIXIE limit

NS

y

λ

0.1ρN

ρN

10ρN
10-11

10-10

10-9

10-8

10-7

10-6

10-2 10-1 100 101 102

PIXIE limit

NS

Tc  = 109   K Tc  = 4 x 109   K

y

λ

0.1ρN

ρN

10ρN
10-11

10-10

10-9

10-8

10-7

10-2 10-1 100 101 102

PIXIE limit

NS

Tc  = 109   K Tc  = 4 x 109   K

y

λ

0.1ρN

ρN

10ρN

FIG. 2. Top panel: μ distortion as a function of macro surface composition factor λ for three different cooling scenarios. On the left, no
DUrca, no CP; in the middle, no DUrca, with CP; on the right, with DUrca, with CP. Green lines denote ρX ¼ ρN , red lines 0.1ρN , and
blue lines 10ρN . The panels with CP show results for Tc ¼ 109 K (dashed lines) and Tc ¼ 4 × 109 K (solid lines). Bottom panel: As for
the top panel but for y distortion. The vertical dashed line stands for λ ¼ 1, which is similar to a neutron star.
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_Q ¼ nXLγ: ð13Þ

It is useful to rewrite nX ¼ ΩX0ρczðtÞ3=MX with ρc ≃
10−29 g=cm3 and macro DM fraction ΩX0 ≲ 0.24.
In Fig. 2, we plot μ and y (obtained numerically) vs λ for

MX ¼ M⊙, macro densities near the fiducial ρN , and a
variety of cooling scenarios.
We have also calculated the perturbation to the neutrino

energy density, since neutrinos are injected well after weak-
interaction freeze-out at TCMB9 ≃ 10, but the change in Neff
is negligible. This could change if the internal physics of
the macro were radically different.
The predicted y distortion is comparable to the target

sensitivities of anticipated next-generation spectral distor-
tion satellite missions, and the predicted μ distortion is
nearly so. We remind the reader that, since macros are
much hotter than the plasma through much of their history
and stay hot well after recombination, μ and y do not
adequately capture the detectability of the SD signal.
Although we have presented results for MX ¼ M⊙, the

spectral distortions μ and y are mass independent, for fixed
ρX, since Lγ ∝ MX from (5), while nX ∝ M−1

X , and so
_Q ∝ M0

X. The distortions will however depend on ρX, as
well as on the detailed physics of the surface layer (as
parametrized by λ), and the cooling mechanisms operative
in an actual macro.

IV. CONCLUSIONS

We have demonstrated that the presence of macroscopic
DM in the early Universe may lead to observable signatures
in the CMB spectrum. To fully characterize these distor-
tions, the full spectral distortion must be inferred numeri-
cally using the Boltzmann equation—this includes so-
called intermediate distortions, a more complete charac-
terization of the distorted spectrum, and continued con-
tributions to the distortions postrecombination. Also, the
temperature of macros postrecombination may stay much
higher compared to the CMB for an extended period,
implying the presence of hot relics that could be visible as
an associated background radiation or could heat the
postrecombination Universe.
Other signatures can also be anticipated, such as corre-

lations between CMB temperature anisotropies and spectral
distortion anisotropies, the presence of heavy elements in
the prerecombination Universe, and the continued produc-
tion of these elements postrecombination and outside stars.
The unexplored possibilities for observable consequences
of Standard Model DM are yet rich.
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APPENDIX A: PHOTON LUMINOSITY AND
INTERNAL TEMPERATURE OF MACRO

In this Appendix, we derive the temperature dependence
of the Macro given by Eq. (8), following closely the
treatment of Chap. 4 in Ref. [46].
We assume that below the degeneracy temperature of

109 K, the core of the macro is composed of degenerate
neutron-proton-electron plasma and is isothermal. The
atmosphere is composed of a nondegenerate layer. The
energy transfer due to photon diffusion from the hot interior
to the ambient CMB through the atmosphere can be
described by the radiative heat transfer equation assuming
local thermal equilibrium and the steady state. The photon
luminosity Lγ is given by

Lγ ¼ −4πr2
c

3κρatm

d
dr

ðaT4Þ; ðA1Þ

where a is the radiation constant, r is the radial distance
from the center of the macro, and κ, ρatm, and T are the
Rosseland mean opacity, the density, and the temperature of
the atmosphere, respectively.
Opacity κ can be approximated as Kramer’s opacity:

κ ¼ κ0ρatmT−3.5; ðA2Þ

where

κ0 ¼ 4.34 × 1024Zð1þ XÞ cm2 g−1: ðA3Þ
Hydrostatic equilibrium requires that the pressure of the
atmosphere depends on the radius as

dP
dr

¼ −
GmðrÞρatm

r2
; ðA4Þ

where mðrÞ is the mass of the macro within the radius r.
Since the atmosphere is much thinner than the radius of the
core, we can set mðrÞ ¼ MX.
The pressure for a nondegenerate gas is also given by the

ideal gas law:

PðrÞ ¼ ρatm
μmu

kBT; ðA5Þ

where μmu is the mean molecular weight. (mu is the atomic
mass unit.)
Substituting (A5) in (A4), and using (A2) and (A1),

PdP ¼ 5.33ac
πGMX

κ0Lγ

kB
μmu

T7.5dT: ðA6Þ

Assuming a constant luminosity throughout the thin atmos-
phere, we can integrate the above equation with the
boundary condition, P ¼ 0 when T ¼ 0. Thus, we arrive
at the density of the atmosphere given by Eq. (3):
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ρatm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.25ac

πGM
κ0Lγ

μmu

kB

s
T3.25

¼ 1.2 × 1010ρN

�
μðMX=M⊙Þ erg=s

Zð1þWÞLγ

�
1=2

T3.25
9 : ðA7Þ

At the point where the atmosphere meets the core, the
nondegenerate electron pressure of the atmosphere given
by the ideal gas law is equal to the electron degeneracy
pressure of the core:

ρ�kBT�
μemu

¼ 1.0 × 1013
�
ρ�
μe

�
5=3

; ðA8Þ

where μe is the mean molecular weight per electron and ρ�
and T� are the density and temperature, respectively, at this
transition point. Solving for ρ� in the above equation and
equating it with (A7), we get the luminosity of the macro
given by Eq. (5):

Lγ ¼ ð5.7 × 105 erg=sÞ μ

μ2e

1

Zð1þWÞ
MX

M⊙
T3.5�

¼ ð8.9 × 1036 erg=sÞλðMX=M⊙ÞT�
9
3.5: ðA9Þ

From Ref. [49], the heat capacity of the macro at
temperature TX is

Cv ¼
dUX

dTX

				
N;V

¼ π2ðx2 þ 1Þ1=2
x2

NkB

�
kBTX

mc2

�
; ðA10Þ

whereUX, N, and V are the internal energy, total number of
neutrons, and volume of the macro, respectively. In the
above equation, x ¼ pf=mnc is the relativity parameter,
where pf is the Fermi momentum andmn is the mass of the
neutron. Integrating the above equation over TX gives us
Eq. (7) for the internal energy:

UX ¼ ð6.1 × 1047 ergÞ
�
MX

M⊙

��
ρX
ρN

�
−2=3

ðTX
9 Þ2: ðA11Þ

We can use this expression forUX in the left-hand side of
Eq. (6). The right-hand side of Eq. (6) is a sum of the
photon luminosity (A9) and neutrino luminosities that we
will briefly describe in the Appendix below.

APPENDIX B: NEUTRINO EMISSION
LUMINOSITY

In this Appendix, we describe briefly the neutrino
emissions from the macro as given by Eq. (1). A detailed
derivation of (1) is beyond the scope of this paper.
Moreover, the expressions for the luminosities are very
well established and have been studied in great detail
[42,43,45].

The DUrca luminosity [42]

LDU
ν ¼ 5.2×1045ðTX

9 Þ6RD

�
MX

M⊙

��
ρX
ρN

�
−1=3

erg=s; ðB1Þ

where RD is the reduction factor in DUrca rate due to
superfluidity. As an example, we considered the type-AA
superfluidity of neutrons and protons. The RD is given by
Eq. (19) in Ref. [42]:

RD ¼ u
uþ0.9163

SþD;

S¼ 1

I0
ðK0þK1þ0.42232K2Þ

�
π

2

�
1=2

p1=4
s e−

ffiffiffiffi
pe

p
;

I0 ¼ 457π6=5040;

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
p−q

p
120

ð6p2þ83pqþ16q2Þ

−
ffiffiffiffi
p

p q
8
ð4pþ3qÞ ln

� ffiffiffiffi
p

p þ ffiffiffiffiffiffiffiffiffiffiffi
p−q

pffiffiffi
q

p
�
;

K1 ¼
π2

ffiffiffiffiffiffiffiffiffiffiffi
p−q

p
6

ðpþ2qÞ−π2

2
q

ffiffiffiffi
p

p
ln

� ffiffiffiffi
p

p þ ffiffiffiffiffiffiffiffiffiffiffi
p−q

pffiffiffi
q

p
�
;

K2 ¼
7π4

60

ffiffiffiffiffiffiffiffiffiffiffi
p−q

p
;

2p¼ uþ12.421þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ12.350uþ45.171

p
;

2q¼ uþ12.421−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ12.350uþ45.171

p
;

2ps ¼ uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ5524.8uþ6.7737

p
;

2pe ¼ uþ0.43847þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þ8.3680uþ491.32

p
;

D¼ 1.52ðu1u2Þ3=2ðu21þu22Þe−u1−u2 ;
u1 ¼ 1.8091þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21þð2.2476Þ2

q
;

u2 ¼ 1.8091þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22þð2.2476Þ2

q
;

u¼ v21þv22;

w¼ v22−v21;

v1 ¼ v2 ¼ vA ¼
ffiffiffiffiffiffiffiffiffi
1− τ

p �
1.456−

0.157ffiffiffi
τ

p þ1.764
τ

�
; ðB2Þ

where

τ≡ TX

Tc
: ðB3Þ

The MUrca luminosity [43]

LMU
ν ¼ ð3.0RM

n þ 2.4RM
p Þ1039ðTX

9 Þ8α
× ðMX=M⊙ÞðρX=ρNÞ−1=3 erg=s: ðB4Þ

For simplicity, we consider only singlet-state neutron
superfluidity of type A. The associated reduction factors
RM
n and RM

p are given by Eqs. (32) and (37) in Ref. [43]:
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RM
n ¼ a7.5 þ b5.5

2
e3.4370−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3.4370Þ2þv2

p
;

a ¼ 0.1477þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.8523Þ2 þ ð0.1175vÞ2

q
;

b ¼ 0.1477þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.8523Þ2 þ ð0.1297vÞ2

q
;

v ¼
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p �
1.456 −

0.157ffiffiffi
τ

p þ 1.764
τ

�
;

and

RM
p ¼



0.2414þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.7586Þ2 þ ð0.1318vÞ2

q �7

e5.339−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5.339Þ2þð2vÞ2

p
; ðB5Þ

respectively.

The CP cooling luminosity [45]

LCP
ν ¼ 7.1 × 1039 erg=sðTX

9 Þ7aF
× ðMX=M⊙ÞðρX=ρNÞ−2=3 erg=s: ðB6Þ

The function F controls the efficiency of the CP cooling
process. We select F to be FA given by

FAðvÞ ¼ ð0.602v2 þ 0.5942v4 þ 0.288v6Þ
×


0.5547þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0.4453Þ2 þ 0.01130v2

q �1=2

× e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2þð2.245Þ2

p
þ2.245; ðB7Þ

Eq. (34) in Ref. [45]. The factor a in the CP luminosity is a
constant that depends on the nucleon species and super-
fluidity type. It has the maximum value of 4.17 and 3.18 for
triplet states of neutrons and protons, respectively.
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