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The present work is related to anisotropic cosmological evolution in the metric fðRÞ theory of gravity.
The initial part of the paper develops the general cosmological dynamics of homogeneous anisotropic
Bianchi-I spacetime in fðRÞ cosmology. The anisotropic spacetime is pervaded by a barotropic fluid which
has isotropic pressure. The paper predicts nonlinear growth of anisotropy in such spacetimes. In the latter
part of the paper we display the predictive power of the nonlinear differential equation responsible for
the cosmological anisotropy growth in various relevant cases. We present the exact solutions of anisotropy
growth in Starobinsky inflation driven by quadratic gravity and exponential gravity theory. Semianalytical
results are presented for the contraction phase in quadratic gravity bounce. The various examples of
anisotropy growth in Bianchi-I model universe show the complex nature of the problem at hand.
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I. INTRODUCTION

The issue related to the stability of homogeneous and
isotropic cosmological solutions with respect to small
anisotropy has been studied intensely in theoretical cos-
mology [1–4]. Behavior of small anisotropy has been
studied in cosmological models, using general relativity
(GR), in the contexts of inflation [5–8] and pre-bounce
ekpyrotic contraction phase [9–12]. In the context of
inflation the “no-hair” conjecture asserts that any preex-
isting anisotropy must asymptotically die out in an
inflating universe. Wald has been able to prove the
conjecture for all the Bianchi models except Bianchi-IX
[13] which requires a large cosmological constant to
isotropize the spacetime. In a contracting universe, pro-
vided the universe is dominated by a matter component
mimicking an ultrastiff barotropic fluid, growth of small
anisotropy is suppressed with respect to that of the Hubble
parameter. In the absence of any such fluid in a con-
tracting phase, small anisotropy grows large and domi-
nates over all other matter components. This leads to the
Belinsky-Khalatnikov-Lifshitz (BKL) instability [14],
foiling the bounce. Mathematically, it can be shown that
in presence of a slowly rolling scalar field the isotropic de-
Sitter solution is an attractor for an expanding universe
and in presence of a fast rolling scalar field the isotropic
power law solution (for the scale-factor) is an attractor for
contracting universe. Therefore an inflationary scenario is
usually realized by a slowly rolling scalar field and an

ekpyrotic scenario is usually realized by a fast rolling
scalar field [15–19].
In the present work we have analyzed the evolution of

spacetime anisotropy in fðRÞ gravity,1 where the analysis
becomes significantly more involved than that of models
based on GR. Some attempts in modified, quadratic gravity
[21,22] do discuss about anisotropic cosmologies while
analyzing the past stages of a cosmological system near the
singularity. In these works the authors show that near the
singularity the universe may have an anisotropic mode of
existence. The papers in general do not address a cosmo-
logical bounce scenario. Although previously there have
been some progress in generalizing the no-hair theorem to
incorporate higher order gravity theories [23–26] and some
applications of dynamical system analysis to understand
anisotropic cosmology in higher order gravity [27–29], the
previous attempts missed an important property of aniso-
tropic cosmological dynamics related to nonlinear growth
of anisotropy in the homogeneous and anisotropic Bianchi-I
type of spacetime. In the present paper we first show
analytically that in Starobinsky inflation any initial
anisotropy will rapidly fade away.
It is then shown that in contraction phases in the Bianchi-I

metric where specifying an unique scale-factor for contrac-
tion does not always yield a unique cosmological develop-
ment. This result is possible in fðRÞ cosmology and
in GR one cannot have this property. This nonuniqueness
of cosmological development corresponding to a specific
scale-factor opens up a new problem as cosmological
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1For a general understanding of modified gravity theories one
can look at the review in Ref. [20].
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evolution becomes more complex conceptually and as a
consequence only simple fðRÞ models can be semianalyti-
cally solved. Any fðRÞ model which is a higher order
polynomial in R compared to the quadratic fðRÞ model
requires a complete numerical solution for anisotropy
growth. We show our result in quadratic fðRÞ model, which
is gravitationally unstable if it has to accommodate
a cosmological bounce. Our work may be taken as an
effective toy model which is used to crack a formidable
problem in cosmological dynamics. To our understanding
the above mentioned topics are discussed for the first time in
full generality in the present paper.
We also present some preliminary results of nonlinear

anisotropy growth in exponential gravity models. The
exponential gravity model has two exact solutions. One
exact solution is a bouncing solution in presence of matter
and the other exact solution is a expanding universe
solution at a de-Sitter point. In these cases the anisotropy
generation equation turns out to be a transcendental
equation. We present some simple solutions in this case,
probing the nature of growth of small initial anisotropy.
The material in the paper is organized in the following

way. The second section discusses about the basics of
Bianchi-I spacetimes and sets the notations and conven-
tions followed throughout the paper. In Sec. III we present
the general formalism of homogeneous and anisotropic
cosmological dynamics in metric fðRÞ cosmology. This
part contains important results. In this section for the first
time one comes across the complex nature of anisotropy
development. In Sec. IV we present the results related to
nonlinear anisotropy growth in quadratic fðRÞ theory
induced inflation and cosmological bounce. Section V
presents the results of anisotropy growth for some exact
results in exponential gravity. The next section is the
concluding section where we summarize the results
obtained in the paper.

II. THE ANISOTROPIC BIANCHI-I METRIC
AND ITS PROPERTIES

For our analysis, we have used the metric for Bianchi-I
spacetime,

ds2 ¼ −dt2 þ a21ðtÞdx21 þ a22ðtÞdx22 þ a23ðtÞdx23; ð1Þ

where a1ðtÞ, a2ðtÞ and a3ðtÞ are the different scale-factors,
whose relative differences specify the amount of anisotropy
in the evolving universe. Existence of such anisotropic
cosmological models in higher order gravity theories have
been extensively studied in literature [30–33]. In most of
the earlier attempts the authors have tried to find out the
nature of anisotropic spacetimes using various forms of
anisotropic metric and using various forms of gravitational
Lagrangians. In the present paper we show that the previous
attempts have missed a vital ingredient in anisotropic
expansion/contraction. The effect we discuss is clearly

visible in Bianchi-I spacetime, but we think similar effects
may be present in other anisotropic cosmological models.
In this paper we will assume the presence of a perfect

hydrodynamic fluid, in the Bianchi type-I spacetime,
whose energy-momentum tensor (EMT) is given by
Tμν ¼ ðρþ PÞuμuν þ Pgμν, where ρ is the energy-density
and P specifies isotropic pressure of the perfect fluid. The
4-velocity of the fluid element is given by uμ, which being a
timelike vector is normalized as uμuμ ¼ −1. Although the
spacetime metric is anisotropic the fluid which pervades the
spacetime is assumed to be isotropic. In this paper we will
assume a barotropic equation of state for the perfect fluid,
P ¼ ωρ, where ω specifies the barotropic ratio.
One can rewrite the form of the anisotropic metric, given

in Eq. (1), in terms of the (geometric) average of the three
scale-factors given by aðtÞ ¼ ½a1ðtÞa2ðtÞa3�1=3. The three
different scale-factors in terms of the geometric average
scale-factor can be written as, aiðtÞ ¼ aðtÞeβiðtÞ, where
i ¼ 1, 2, 3.2 The time dependent functions βiðtÞ specify the
anisotropy in the metric and they are constrained as

β1 þ β2 þ β3 ¼ 0: ð2Þ

Using the above relations one can now rewrite the metric
given in Eq. (1) as

ds2 ¼ −dt2 þ a2ðtÞ½e2β1ðtÞdx21 þ e2β2ðtÞdx22 þ e2β3ðtÞdx23�:
ð3Þ

In this notation one can define the Hubble parameter, as an
arithmetic average, and its time-derivative as

HðtÞ≡ 1

3

�
_a1
a1

þ _a2
a2

þ _a3
a3

�
¼ _a

a
; _HðtÞ ¼ ä

a
−

_a2

a2
: ð4Þ

Mainly for the sake of brevity, henceforth in this article we
will omit the word average (either geometric or arithmetic)
before scale-factor or Hubble parameter. In the presence of
anisotropy the Ricci scalar turns out to be

R ¼ 6ð _H þ 2H2Þ þ ð _β12 þ _β2
2 þ _β3

2Þ: ð5Þ

In the next section we formulate the anisotropic cosmo-
logical dynamics guided by metric fðRÞ theory. The fact
that the derivatives of the anisotropy parameters are
themselves present in the expression of the Ricci scalar
will make anisotropic cosmological dynamics much more
involved in fðRÞ gravity, compared to the general relativ-
istic case.

2Latin alphabets as i and j run from 1 to 3 where as Greek
alphabets run from 0 to 3.
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III. FORMULATION OF ANISOTROPIC
COSMOLOGICAL DYNAMICS GUIDED

BY METRIC f ðRÞ THEORY

The field equation in fðRÞ gravity is

Gμ
ν ¼ κ

f0ðRÞ
h
Tμ
ν þ Tμ

νðcurvÞ
i
; ð6Þ

where Gμ
ν is the Einstein tensor and Tμ

νðcurvÞ is the energy

momentum tensor due to curvature. Here κ ¼ 8πG, where
G is the Newton’s gravitational constant and is related to
the Planck mass MP via G ¼ 1=M2

P. In the present paper
we will approximately use MP ≈ 1019 GeV. The prime on
the top right-hand side of any function represents the
ordinary derivative of that function with respect to the
Ricci scalar R. In particular

Tμ
νðcurvÞ ≡

1

κ

�
−
�
Rf0ðRÞ − fðRÞ

2
þ□f0ðRÞ

�
δμν

þ gμαDαDνf0ðRÞ
�

ð7Þ

where DμAν is the covariant derivative of the covariant
4-vector Aν and □≡ gαβDαDβ. The 0 − 0 component of
the field equation in fðRÞ theory in an anisotropic space-
time is then given as, G0

0 ¼ − κ
f0ðRÞ ðρþ ρcurvÞ, where

ρcurv ¼
1

κ

�
Rf0ðRÞ − fðRÞ

2
− 3H _Rf00ðRÞ

�
: ð8Þ

The other three equations, specifying the i − j components
become, Gi

j ¼ κ
f0ðRÞ ðTi

j þ Ti
jðcurvÞÞ, where i, j ¼ 1, 2, 3.

Here Ti
j ¼ Pδij stands for pressure of the perfect hydro-

dynamic fluid(s) whose EMT(s) has(have) the same form
as specified in Sec. II. The form of Ti

jðcurvÞ is given as

κTi
jðcurvÞ ¼ −

�
Rf0ðRÞ − fðRÞ

2
− R̈f00ðRÞ − _R2f000ðRÞ

− 2H _Rf00ðRÞ
�
δij − Bi

j
_Rf00ðRÞ; ð9Þ

where the components of the tensor Bi
j are defined as

B1
1 ¼ _β1; B2

2 ¼ _β2; B3
3 ¼ _β3; Bi

j ¼ 0; if; i≠ j:

ð10Þ

In terms of the above quantities one can now write,

Gi
j ¼

κ

f0ðRÞ ðPþ PcurvÞδij − Bi
j
_Rf00ðRÞ; ð11Þ

where

Pcurv ¼
_R2f000 þ 2H _Rf00 þ R̈f00

κ
−
Rf0 − f

2κ
: ð12Þ

In terms of the Hubble parameter and the anisotropy
parameter, the 0 − 0 component of the field equation
becomes

H2 ¼ κ

3f0ðRÞ ðρþ ρcurvÞ þ
1

6

X3
i¼1

_β2i ; ð13Þ

while Eq. (11) becomes

2 _H þ 3H2 − 3H _βi − β̈i þ
1

2

X3
i¼1

_β2i

¼ −
κ

f0ðRÞ ðPþ PcurvÞ þ _βi _R
f00ðRÞ
f0ðRÞ : ð14Þ

Adding the three equations, corresponding to each value of
the index i in the above expression, one gets

2 _H þ 3H2 ¼ −
κ

f0ðRÞ ðPþ PcurvÞ −
1

2

X3
i¼1

_β2i : ð15Þ

If one uses Eq. (13) in the above equation then one gets
_H as

_H ¼ −
κ

2f0ðRÞ ½ð1þ ωÞρþ ðρcurv þ PcurvÞ� −
1

2

X3
i¼1

_β2i ;

ð16Þ

where P ¼ ωρ has been used. In the present case we define
the anisotropy factor x as

x2ðtÞ≡X3
i¼1

_β2i ðtÞ: ð17Þ

For an isotropic universe x2 ¼ 0 for all values of t, implying
that all the βi’s are constant in time. In such a case one can
appropriately make (time-independent) coordinate rescaling
in an appropriate way to make the spacetime look exactly
like the Friedmann-Lemaitre-Robertson-Walker (FLRW)
spacetime. Using Eqs. (2) and (14) and the above definition
of the anisotropy factor one can show that x satisfies the
differential equation:

_xþ
�
3H þ

_f0ðRÞ
f0ðRÞ

�
x ¼ 0; ð18Þ

whose (nontrivial) solution must be like
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x ¼ b
a3ðtÞf0ðRÞ ; ð19Þ

where b is a real integration constant. The above equation
contains the most important theoretical ingredient of the
present paper. The Ricci scalar in the present case can be
written as R ¼ 6ð _H þ 2H2Þ þ x2 which depends on x and
the last equation shows x is a function of R in fðRÞ gravity.
As a consequence of the above relation in fðRÞ gravity, one
cannot define an unique anisotropy dynamics. For any given

fðRÞ gravity, in general multiple time evolutions of the
anisotropy factor x is possible, each corresponding to a
different equation of state for the barotropic fluid. In the
present case the time derivative of the Ricci scalar is

_R ¼ 6ðḦ þ 4H _H −Hx2Þ
ð1þ 2

f00ðRÞ
f0ðRÞ x

2Þ
: ð20Þ

Working out similarly one can write,

R̈ ¼
6ðH…H þ 4HḦ þ 4 _H2Þ − 2

h�
3 _H þ _R2f000

f0 − _f02

f02

�
− 2

�
3H þ _f0

f0

�
2
i
x2

ð1þ 2x2 f00
f0 Þ

: ð21Þ

The above equations show that once we know the form
of x in terms of the scale-factor, we can write the values of
R, _R and R̈ in terms of the scale-factor. The cosmological
dynamics of anisotropic fðRÞ theory is encoded in
Eqs. (16), (19) and the energy-momentum conservation
equation

_ρþ 3Hρð1þ ωÞ ¼ 0: ð22Þ

The specification of ω and this set of three equations and
the initial conditions specifying a, _a, ä, a

…
, b and initial ρ

are enough to specify the anisotropic dynamics in fðRÞ
cosmology if Eq. (19) has an unique root. If Eq. (19) does
not have an unique root then the initial conditions must
have to be enhanced. In the next section we will show when
the above list of initial conditions require to be enhanced.
The first order differential equation in Eq. (18) specifies

the growth of anisotropy in metric fðRÞ gravity models
where spacetime is specified by a Bianchi-I model. From
the form of the equation it is seen that the amount of
nonlinearity in Eq. (18) depends upon time. It can be noted
that x ¼ 0 have some interesting properties. The first thing
to note about this point is that at x ¼ 0 one always has
_x ¼ 0. The other interesting properties about this point are
as follows.
(1) If the system resides at the point x ¼ 0 then it is

impossible to perturb the system to have nonzero
values of x. The system can have x ¼ 0 value only
when b ¼ 0, and b is specified by the initial
condition. Consequently if the initial condition is
such that x ¼ 0 then there will be no anisotropy
growth in the future.

(2) On the other hand if the initial condition is such that
b ≠ 0 then the system will never reach x ¼ 0 unless
a3ðtÞf0ðRÞ diverges in finite time, signifying a
cosmological singularity.

As x cannot be zero in the future if b ≠ 0 in a nonsingular
cosmology, the important parameter which keeps track of

effective anisotropy is given by the factor x2=H2. From
Eqs. (13), (15) and the expression of the Ricci scalar, R, it
can be verified that when x2=H2 ≪ 1 one can safely neglect
the effect of anisotropy in the cosmological dynamics of
Bianchi-I type models.

IV. EVOLUTION OF THE ANISOTROPIC
FACTOR xðtÞ IN QUADRATIC GRAVITY

In this section we will focus on quadratic gravity

fðRÞ ¼ Rþ αR2; ð23Þ

where α is a real number. Although this is a simple form of
fðRÞ but it can be used to model cosmological inflation
as well as cosmological bounce for positive and negative
signs of the constant α respectively.3 In this section we will
determine the evolution of xðtÞ in quadratic gravity. The
technique of evolution of xðtÞ in higher order gravity will
be similar but much more involved. For higher order
polynomial gravity the order of the algebraic equation
yielding the roots of xðtÞ may be five (or higher) and
consequently there does not exist any general algebraic
formalism yielding those roots.
From Eq. (19) one can easily verify that the algebraic

equation specifying xðtÞ in quadratic gravity is a cubic
equation of the form:

x3 þ A1xþ A2 ¼ 0; ð24Þ

where

A1 ¼ 6ð _H þ 2H2Þ þ 1

2α
; ð25Þ

3For bounce one must have α < 0 as shown in [34].
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A2 ¼ −
b

2αa3
: ð26Þ

The discriminant, Δ, specifying the roots and their proper-
ties is given by

Δ ¼ −4A3
1 − 27A2

2: ð27Þ

IfΔ > 0 there will be three distinct real roots, if Δ < 0 then
there will be one real root (and two complex roots) and if
Δ ¼ 0 there can be repeated real roots. The roots of
Eq. (24) are as follows:

x ¼
8<
:

− ð2=3Þ1=3A1

ð−9A2þ
ffiffiffiffiffiffiffi
−3Δ

p Þ1=3 þ
ð−9A2þ

ffiffiffiffiffiffiffi
−3Δ

p Þ1=3
21=332=3

;

ð1�i
ffiffi
3

p ÞA1

22=331=3ð−9A2þ
ffiffiffiffiffiffiffi
−3Δ

p Þ1=3 −
ð1∓i

ffiffi
3

p Þð−9A2þ
ffiffiffiffiffiffiffi
−3Δ

p Þ1=3
24=332=3

:
ð28Þ

In terms of trigonometric functions the above roots can be
represented as,

x ¼

8>><
>>:

2

ffiffiffiffiffiffiffiffi
− A1

3

q
cos

h
1
3
tan−1

� ffiffiffiffiffi
3Δ

p
−9A2

�i
;

−2
ffiffiffiffiffiffiffiffi
− A1

3

q
cos

h
1
3

�
π ∓ tan−1

� ffiffiffiffiffi
3Δ

p
−9A2

��i
:

ð29Þ

In the numerical calculations we will use the above form of
the roots as they are less cumbersome to handle when all
the roots are real. If initially the three roots of Eq. (24) are
all real then one does require a separate initial condition,
specifying a particular initial root out of the three possible
roots, to describe the anisotropic cosmological dynamics
in fðRÞ gravity. On the other hand if there is only one real
root then the added initial condition loses its significance
and the initial conditions as specified in the last section is
enough to describe the cosmological dynamics.
From Eq. (19) it is seen that the anisotropy factor

depends upon a, _a, ä and the integration constant b.
More over from the form of the cubic equation followed
by x it can be easily seen that out of the three roots one
tends to vanishes when b → 0, where as the other two roots
in general do not tend to zero when b becomes arbitrarily
small. If all the roots are real then the root which vanishes
when b vanishes plays an important role as in this case one
can tune the value of the initial anisotropy by tuning the
value of b. When the system admits only one real root then
this root always tends to zero when b tends to zero. In GR,
when one deals with anisotropic Bianchi Type-I cosmol-
ogy, the equation followed by the anisotropy factor is
xðtÞ ¼ b=a3ðtÞ and hence no such complications arise.

A. Starobinsky inflation

We can now apply our formalism to get the first
nontrivial result related to anisotropic cosmological
dynamics in Starobinsky’s model of inflation. In this
model of inflation the universe inflates in absence of any

hydrodynamic fluid. In quadratic gravity inflation the
parameter α appearing in Eq. (23) is always positive which
makes f0 ≡ df=dR > 1. In presence of anisotropy the
inflating spacetime shows very fast growth in the average
scale-factor aðtÞ while the average Hubble parameter
satisfies the condition _H ¼ −ϵH2 where ϵ is a slow-roll
parameter. During inflation ϵ ≪ 1 and this condition
prevails until ϵ ∼ 1 at the end of inflation [35]. In the
excellent review on Starobinsky inflation given in Ref. [35]
the authors use the slow-roll approximation to derive the
properties of the inflating FLRW spacetime. In this paper
we will use the conventions of the above reference but will
not exactly apply slow-roll mechanism. We will use the full
fðRÞ theory equations as discussed in the last section with
specific inflationary initial condition which gives rise to a
rapidly expanding universe. In a later publication we want
to generalize slow-roll conditions in quadratic gravity
inflation in anisotropic Bianchi-I spacetimes.
In this subsection we show that any kind of anisotropy,

if present initially, will be damped during the inflationary
phase in quadratic gravity. We analytically prove our result
for large initial anisotropy, the proof remains the same for
small initial anisotropy. If initially the anisotropy factor was
large then inflation will successfully isotropize the universe
and there will be no remaining anisotropy at the end of
inflation. Although this fact is known to be true in infla-
tionary models based on GR [13], in this article we show
that similar outcome is also expected in quadratic theory
of inflation. First we show that the maximum anisotropy
allowed in quadratic gravity, during inflation, has a
maximum bound:

x ≤
ffiffiffi
6

p
H; ð30Þ

consequently the maximum anisotropy which can be
isotropized is related with the Hubble parameter. To prove
the above assumption one must note that in quadratic
gravity inflation, ρ ¼ 0, and the inflationary phase is
initiated by curvature energy density ρcurv. The anisotropy
energy contribution, in Eq. (13), is non-negative and
consequently for inflation to start initially (when ideally
the anisotropy effect is maximum) ρcurv > 0. The fact that
the curvature energy-density appearing in the constraint
Eq. (13) as:

H2 ¼ κρcurv
3f0ðRÞ þ

x2

6
;

cannot be negative during inflation justifies Eq. (30).
Even if the initial anisotropy present in the universe is

given by the maximum bound of x in Eq. (30) the
anisotropy factor rapidly fades away during quadratic
inflation. To show this we first note that in Starobinsky
inflation A1 > 0, as j _Hj ≪ H2. As a result the discriminant
Δ < 0 implying that there is only one unique real root of
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Eq. (24). This root is given by the top right hand side term
in Eq. (28). From the expression of A2 one can see that it
rapidly diminishes in an inflating universe and one can
assume A3

1 > A2
2 after some time from the onset of inflation.

Assuming that A2 → 0 rapidly after inflation starts one can
easily show that the relevant real root of Eq. (30) tends to
zero during inflation.
We will now present a numerical solution of the

cosmological dynamics during inflation and point out that
the anisotropy factor x2=H2 always remains sufficiently
smaller and at no stages of quadratic inflation x2 ≈H2.
Here we assume that inflation starts at, ti ¼ 106, in Planck
units. In this unit system the actual value of a quantity is
obtained by multiplying the value of the physical quantity
by a particular power of Plank mass MP. The specific
power corresponds to the mass dimension of the physical
quantity. In the present case the actual value of ti is tiM−1

P .
In this article we will assume MP ≈ 1019 GeV and con-
sequently ti ¼ 10−13 GeV−1 expressed in energy units.
Expressed in the seconds ti ≈ 10−37 s and that is 106 times
Planck time expressed in seconds. The value of α is chosen
as α ¼ 1012 which in natural units will be 1012M−2

P .
Phenomenologically one expects quadratic correction to
Einstein gravity at a very early phase of the universe when
H ∼ 1012−13 GeV or more. For this benchmark value of the
H the Ricci scalar R ∼ 1026 GeV2 assuming x2 < H2. If the
quadratic correction αR2 becomes effective at such a value
of R then α ∼ 1=R yielding α ∼ 10−26 GeV−2 ¼ 1012M−2

P ,
justifying our choice of α. The initial Hubble parameter
is chosen to be HðtiÞ ¼ 2 × 10−6 in Planck units, its value
in standard units is 1013 GeV. Inflation ends at tf ≈
ti þ 70 ×HðtiÞ−1 ¼ 36 × 106, which corresponds to
slightly more than 70 e-folds. The consistent inflationary4

initial conditions are written in terms of the initial values of
the slow-roll parameters. The initial slow-roll parameters
are chosen as ϵðtiÞ ¼ − _H=H2 ≈ 7 × 10−3 and ηðtiÞ ¼
Ḧ=ðH _HÞ ≈ 0. The other initial conditions are as:

aðtiÞ ¼ 1; ð31Þ

_aðtiÞ ¼ HðtiÞaðtiÞ; ð32Þ

äðtiÞ ¼
ð1 − ϵÞ _aðtiÞ2

aðtiÞ
; ð33Þ

a
…ðtiÞ ¼

ð1 − ηϵ − 3ϵÞ _aðtiÞ3
aðtiÞ2

: ð34Þ

Although the initial conditions for inflation in the present
section are written in terms of the slow-roll parameters ϵ
and η at initial time we do not evolve ϵ or η with time or use
the slow-roll parameters in any other place in our calcu-
lation. The calculation do not use slow-roll approximation
and the results we present in this subsection are exact
results.
To get a numerical solution, we plug the solution

xða; _a; äÞ into the dynamical equation, Eq. (16). The
resulting dynamical equation for aðtÞ is a fourth order
ordinary differential equation for the case of quadratic
fðRÞ gravity. Looking at the structure of the roots of the
cubic equation, presented in the initial part of the present
section, it is seen that in the present case the coefficient
A1 > 0 and consequently there will be only one real root of
the anisotropy factor xðtÞ. This root continuously tends to
zero as b tends to zero.
We have plotted the numerical results showing the

growth of the Hubble parameter and x, for small and
large relative initial anisotropy, in logarithmic scales in
Fig. 1. Small anisotropy, xsmall, corresponds to b ¼ 10−10

and relatively large anisotropy, xlarge, corresponds to
b ¼ 10−5. For both small and large anisotropies the
scale-factor and the Hubble parameter are approximately
the same showing that the overall inflating nature of the
system does not depend upon the initial anisotropy present
in the system. The inflationary nature of the present system
is shown by the near constant value ofH in Fig. 1. Figure 2
shows the growth of the anisotropy factor x2=H2 in the
two cases corresponding to the two b values as discussed
above. This plot clearly shows that anisotropy rapidly
dies in quadratic gravity inflation. We have numerically
verified that anisotropy gets wiped out after the first two or
three e-folds of inflation and consequently suppression of

FIG. 1. Plot showing evolution of H and x in logarithmic scale
during inflationary phase. Relatively large initial anisotropy xlarge
corresponding to b ¼ 10−5 is shown by the dashed line. Small
initial anisotropy xsmall corresponding to b ¼ 10−10 is plotted by
the dotted line. The Hubble parameter remains approximately the
same in both the cases. Time axis spans from 106 to 2 × 106 and
initial H ∼ 2 × 10−6 (for both the cases of large and small initial
anisotropy). Planck units are used for time and H.

4Here we apply the initial conditions for inflation on the
average scale-factor and Hubble parameter and its derivatives.
By consistent initial conditions we mean that these initial
conditions satisfy all the constraints of quadratic gravity inflation
as discussed in Ref. [35].
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anisotropy happens very efficiently in quadratic inflation.
Here it must be noted that we cannot arbitrarily increase b
as when b > 10−4 the consistency condition in Eq. (30) is
violated and the system does not inflate any more. Our
formalism shows both analytically and numerically that
Starobinsky inflation is safe from initial anisotropy.

B. Contraction in toy model of quadratic bounce

In this subsection we discuss anisotropic contraction
phase in a simple and partly unstable model, guided by
quadratic gravity. The presentation in this subsection is
more like a toy model analysis which shows the complex-
ities of anisotropic contraction in polynomial fðRÞ gravity
models. In general the solution of Eq. (18) becomes a
polynomial equation in x and for higher polynomial
orders (compared to quadratic order) the algebraic equa-
tions do not yield analytic solutions. The quadratic gravity
bounce model, where α < 0 is the simplest polynomial
bounce model, where the intricacies of anisotropy gener-
ation during the contraction phase can be semianalyti-
cally shown.
The issue of anisotropy generation during a contraction

phase is very important as anisotropy may get enhanced
during this phase as it happens in GR based models of
cosmological bounce. We want to see how anisotropy
grows in Bianchi-I models in the contraction phase in
quadratic fðRÞ gravity. In the present case we will assume
the existence of hydrodynamic matter and α < 0 as these
conditions are required for a subsequent bounce [34].
Before we proceed we will like to make some remarks
related to the choice of the sign of α. The negative sign of α
implies that f0ðRÞ is not always positive. We can choose
our dynamical system to be such that it satisfies f0ðRÞ > 0

for some range of R, as done in the present paper. The
importance of negative α quadratic model is that one can
have a cosmological bounce in this restricted regime of R,
where R < 1=ð2jαjÞ for stability. There is another source of
instability in the present case, related to the negative sign of
α. In such models f00 < 0 which may lead to instabilities
first proposed by Dolgov and Kawasaki [36] and later by V.
Faraoni [37]. In the present model one cannot get rid of
Dolgov and Kawasaki instability,5 consequently in light of
the stability issues we will like to interpret the present
model of bounce as a toy model whose sole purpose is to
describe the nonlinear growth of anisotropy. In the a later
section we will apply or formalism in a stable gravita-
tional model.
In GR it is known that anisotropy suppression during

contraction phase requires the presence of an ultrastiff
matter component with ωð¼ P=ρÞ > 1. The presence of an
ultrastiff matter component can produce a slow contraction
phase where preexisting anisotropy is suppressed.6 In the
present case we will see that a power law contraction
phase may suppress initial anisotropy in quadratic fðRÞ
cosmology.
We assume that during the contracting phase t < 0 and

bounce occurs at t ¼ 0. During the contracting phase the
scale-factor decreases as

aðtÞ ∝ ð−tÞn; where 0 < n < 1; ð35Þ

and consequently

H ¼ n
t
:

From physical considerations one can choose α ¼ −1012
in Planck units[34]. Eliminating ρ in Eq. (16) by using
Eq. (13) we get,

ω ¼ ð4 _H þ 6H2 þ x2Þf0 þ 2κPcurv

ðx2 − 6H2Þf0 þ 2κρcurv
: ð36Þ

In the present case the above equation yields the equation
of state for the barotropic matter when one specifies the
particular nature of the scale-factor.
Determining the form of the time evolution of anisotropy

factor reduces to finding the root(s) of Eq. (19). One can
have various phases of anisotropy development during a
cosmological evolution depending upon the roots of
Eq. (19). In this paper we will particularly focus on the
contracting phase of the universe leading to a cosmic
bounce. We present the results for the popular quadratic

FIG. 2. Evolution of the x2=H2 in logarithmic scale for the
cases corresponding to relatively large anisotropy where b ¼
10−5, in dashed curve and relatively small anisotropy, where
b ¼ 10−10, in dotted curve. Time span and initial Hubble
parameter value remains the same as specified in the caption
of Fig. 1.

5In Ref. [38] it was explicitly shown that polynomial fðRÞ
gravity theories which accommodate bouncing solutions cannot
satisfy f0 > 0 and f00 > 0 for all values of Ricci scalar.

6Sometimes this phase of slow contraction under the domi-
nance of a ultrastiff matter is called the ekpyrotic phase [9].
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fðRÞ model which actually accommodates a cosmological
bounce [34,39–41]. The nature of the anisotropic contrac-
tion phase predicted in this model will give a glimpse of the
interesting effects of fðRÞ models of anisotropic contrac-
tion in the Bianchi-I spacetime. The plot in Fig. 3 shows the
nature of the roots at time t ¼ −1010 in Planck units. The
time period of contraction is chosen in such a way that all
the constraints as f0ðRÞ > 0 and ρ > 0 are maintained
during this phase of contraction. As the power law
contraction can never lead to a bounce the constraints
compel us to terminate the power law contraction process
some time before the bounce and in this paper we use the
time interval −1010 ≤ t ≤ −107. The scale-factor during
this time is assumed to be aðtÞ ¼ ð−t=1010Þn such that
aðt ¼ −1010Þ ¼ 1. The nature of the roots show that below
a certain b value and above a certain b value there is only
one real root. Near b ¼ 0 the system admits three real roots
of xðtÞ. We have verified that the nature of the root
structure, as specified in Fig. 3, does feebly depend upon
n in the interval 0 ≤ n ≤ 1. The plot in Fig. 3 shows three
branches in three colors. The middle green (continuous
line) branch smoothly matches to the blue (dotted) branch
above and the red (dashed) one below. The continuous
branch specifies a root of Eq. (24) which is real near b ¼ 0

and gives rise to small values of anisotropy factor x0 ¼
xðt ¼ −1010Þ initially. The dashed and dotted branches
specify the other roots which are large for regions near
b ¼ 0. The connection of the three regions in the figure
with the roots in Eq. (29) are specified in the caption of
Fig. 3. As time evolves the nature of the plot in Fig. 3
changes but the general structure of the plot always remains
qualitatively similar as the one plotted at the initial time.
The dynamics of anisotropy growth depends upon the

parameters b and n. We can specify the region in the b-n
plane which gives rise to decreasing anisotropy. The plot in

Fig. 4 shows such a region in the b-n plane. The plot is
done at t ¼ −1010, the initial time, when the region is most
constrained. In Fig. 5 we show how x2=H2 varies in time
if one uses any value of b, n in the shaded region in Fig. 4.
In particular we have chosen b ¼ 10−12 and n ¼ 1=4.
The above information shows that for some parameter
values a power law contraction can indeed suppress small
anisotropy in quadratic gravity. Physically anisotropy
suppression for some regions in the b-n plane in the
contracting phase is not surprising as both x and H do
increase in time during contraction when b and n belongs to
the shaded region in Fig. 4 (as expected) but H increases

FIG. 3. Plot of initial anisotropy xwith respect to parameter b at
t ¼ −1010. The dashed and the continuous parts correspond to the
(second and third) roots with the minus/plus signs after π in the
second line on the right-hand side of Eq. (29). The dotted part
corresponds to the (first) root on the first line on the right-hand
side of Eq. (29). All the three roots are real near b ¼ 0.

FIG. 4. Region in the b-n plane giving rise to decreasing
x2=H2. Here the abscissa is specified by the b values and the
ordinate is specified by n values.

FIG. 5. Decrease of anisotropy in time when b, n lies in the
shaded region in Fig. 4. The specific b, n value chosen for the plot
is given in the text.
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more than x in time and as a consequence x2=H2 decreases
with time. For some parameter space H can grow faster
than x in time, when anisotropy factor decreases, and for
other parameter values x increases more than H in time
making the contracting universe completely anisotropic.

V. ANISOTROPY GROWTH IN
EXPONENTIAL GRAVITY

Recently it has been shown [42] that one can get
bouncing solutions and expanding universe solutions in
a unstable de-Sitter point in exponential gravity where

fðRÞ ¼ 1

α
eαR; α > 0; ð37Þ

where α is a dimensional, real constant. In the present case
as α > 0 we have f0ðRÞ > 0 and f00ðRÞ > 0 and the theory
remains stable for all values of R. It was shown in Ref. [42]
that exponential gravity do admit some exact solutions.
One exact solution is a bouncing solution and another one
is an expanding universe solution with constant Hubble
parameter which takes place at a de-Sitter point. As we know
two exact solutions in exponential gravity we can investigate
about the growth of anisotropy in these two cases.
In the present case the solution of anisotropy factor is,

x ¼ b
f0ðRÞ ¼

b
a3eαR

¼ b

a3e6αð _Hþ2H2Þ e
−αx2 : ð38Þ

This is a transcendental equation in xðtÞ. The form of the
above equation also shows that there will be only one real
solution at any given time, given graphically by the
intersection of a straight line y ¼ x and a Gaussian
y ¼ b

a3e6αð _Hþ2H2Þ e
−αx2 . The small anisotropy solution can be

obtained analytically. If we want to see how small
anisotropy, defined by all the x values which satisfy
x2 ≪ H2, develop we may approximate the last equation as:

x ∼
b

a3eαRiso
: ð39Þ

where Riso ≡ 6ð _H þ 2H2Þ and a is the average scale-factor.
We discuss the evolution of small anisotropy for the two
exact solutions of exponential gravity which was extensively
discussed in [42].

A. Bouncing solution

Exponential gravity has an exact bouncing solution,
where the scale-factor is given by aðtÞ ¼ eAt

2

where A is
a real constant. Bounce happens in the presence of matter at
t ¼ 0, and the conditions for an exact solution requires
αA ¼ 1=48 and the equation of state of matter ω ¼ −4=3.
In the present case Riso ¼ 12Að1þ 4At2Þ and consequently
for small anisotropy we must have

xðtÞ ¼ b

e1=4
e−4At

2

; ð40Þ

which shows that how the anisotropy factor changes with
time. The real indicator of anisotropy is the ratio x2=H2 and
in our present case

x2

H2
¼ b2

4A2
ffiffiffi
e

p e−8At
2

t2
: ð41Þ

A small anisotropy ratio at t → −∞ remains smaller than
one for some time but then after some finite time x2 ∼H2

and cosmic dynamics is guided by the anisotropy factor
leading to an instability. From our simple analysis we see
that the specific bouncing scenario presented in this section
is unstable under small values of anisotropy.

B. Expansion with constant Hubble parameter
at the de-Sitter point

Exponential gravity has another exact, constant Hubble
parameter solution at a de-Sitter point where Riso ¼ 2=α.
The scale-factor of the universe at the de-Sitter point is
aðtÞ ¼ eHt and this is a vacuum solution when H2 ¼
1=ð6αÞ is satisfied. In the present case small anisotropy
grows as

xðtÞ ¼ b
e2

e−3Ht: ð42Þ

and consequently

x2

H2
¼ 6αb2

e4
e−

ffiffiffiffiffiffiffiffi
ð6=αÞ

p
t: ð43Þ

In this case we see that small anisotropy decreases with
time. This analysis is not complete as we do not know how
large anisotropy behaves in these situations. To tackle the
question of large anisotropy one has to purely rely on
numerical methods.

VI. CONCLUSION

This paper presents the general results for anisotropic
cosmological development in Bianchi-I model in metric
fðRÞ gravity. The initial part of the paper develops the
formalism which can be used to track cosmological
development in homogeneous and anisotropic Bianchi-I
model. The formalism developed is dynamically complete
and can predict the development of all the relevant
cosmological and fluid parameters in cosmological time.
The methods developed in this paper can be applied to
expanding as well as contracting phase of the universe.
As anisotropy reduces in the expanding phase in GR it does
not mean that this rule will be generally followed in fðRÞ
cosmology as the equation predicting anisotropy growth
is nonlinear in nature and may have surprises in store.
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Our preliminary calculations predict that inflation in
quadratic fðRÞ cosmology, in Bianchi-I spacetime, indeed
suppresses anisotropy. The results related to inflationary
models in anisotropic spacetimes in fðRÞ theory are
presented in full detail in the present paper. We first show
that for Bianchi-I type models one can analytically prove
that anisotropy fades away in quadratic gravity inflation.
We numerically show the validity of our analytic proof.
As anisotropy development demands special attention

in the contracting phase in cosmological models based on
GR our aim was to see how the problem translates into
fðRÞ cosmology. In this article we tried to verify whether
anisotropy subsides in the fðRÞ theory driven contraction
phase. The result we obtain is complex and opens up new
areas of research. We have chosen quadratic fðRÞ theory to
illustrate our results as in this case most of the calculations
can be done analytically although the bouncing scenario is
gravitationally unstable. For any other higher order poly-
nomial fðRÞ one has to use numerical methods to deter-
mine the solutions of the differential equation predicting
anisotropy dynamics. Our work shows the qualitative
nature of the cosmological system, guided by quadratic
gravity, undergoing anisotropic contraction and we expect
qualitatively similar but quantitatively much more formi-
dable results for other complicated, gravitationally stable
polynomial fðRÞ cosmologies. Even in the case of quad-
ratic gravity the various results coming out from our
formalism is nontrivial. We have pointed out that even
when we restrict the cosmological dynamics by enforcing
conditions as f0 > 0 and ρ > 0 there appears various

regions in the n, b plane which gives rise to different kind
of anisotropy growth. For some possible cosmological
evolutions we have shown that anisotropy reduces with
time. There exists other possibilities where anisotropy
increases with time during the contraction phase in quad-
ratic gravity.
As quadratic fðRÞ theory cosmological bounce is more

like a toy model because in this case the cosmological
dynamics is unstable we have tried to show the applicability
of our result in stable exponential gravity model which
admits an exact bouncing solution. In this case we have not
presented a general result but have focused on small
anisotropy growth. Our result shows that the exact bounc-
ing solution in the exponential gravity model is unstable
and consequently the cosmological system will tend
towards an instability in the contraction phase. We have
also showed that small anisotropy subsides in the expan-
sion phase at the de-Sitter point in exponential gravity.
The present paper shows that the issue about anisotropy

in Bianchi-I spacetimes in metric fðRÞ gravity is a non-
linear problem which may lead to very complex conditions
in contracting regions of a bouncing model. For polynomial
gravity theories the cosmological contraction process is
much involved and requires full numerical simulation to
find out meaningful results. For expanding cosmologies our
theory has given expected results, the amount of anisotropy
goes down with expansion. But whether anisotropy will
reduce for all kinds of expansion processes requires a more
general proof and we hope we will able to show more
general and formal work in these lines in the near future.
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