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We investigate the properties of a Bose gas with a conserved charge as a dark matter candidate, taking
into account the restrictions imposed by relic abundance, direct and indirect detection limits, big-bang
nucleosynthesis and large scale structure formation constraints. We consider both the WIMP-like scenario
of dark matter masses ≳1 GeV, and the small mass scenario, with masses ≲10−11 eV. We determine the
conditions for the presence of a Bose-Einstein condensate at early times, and at the present epoch.

DOI: 10.1103/PhysRevD.99.023514

I. INTRODUCTION

Understanding the nature of dark matter (DM) remains
one of the most pressing contemporary issues in astropar-
ticle physics and cosmology. To date, all DM properties
have been inferred from its gravitational effects [1]; other
probes, such as direct [2–5] and indirect [6–8] detection
experiments and LHC measurements [9] have produced
only limits. These constraints have led to a significant
shrinkage of the allowed parameter space in many theo-
retically favored models [10–12], and this has spurred
interest in alternative models involving dark sectors of
varied complexity [13–18].
A large number of models for DM assume a dark sector

that contains one or more dark scalars, which in some cases
are the main contributors to the relic abundance required by
the CMB experiments [19]. Having such scalar relics opens
the possibility of such particles undergoing a transition to a
Bose-condensed phase; in fact, a variety of models of this
kind have been studied in the literature. In some cases the
condensate can appear only in the nonrelativistic regime, as
it happens in axion [20–26] and axionlike [27–51] models,
where the scalars are assumed to be extremely light. The
effects of a Bose-Einstein condensate (BEc) in such cases
have been studied extensively in cosmology [27–41,44,
52–56] and in astrophysics [42–51], especially in the
context of galactic dynamics, where quantum effects of
these very light scalars address the cusp vs core [57] and
“too big to fail” [58] problems when the scalar mass is
∼Oð10−22Þ eV (though simulations including both bar-
yonic and Bose-gas components are still lacking). Recently,
the authors of Ref. [59] investigated the effects of these

light bosons on the Lyman α forest and gave a lower bound
on the scalar mass≳Oð10−20Þ eV that excludes the favored
mass range, though this result is still being debated [60].
A prerequisite for the possible appearance of a BEc is

the existence of a conserved charge, which is associated
with a chemical potential. The simplest model of this
type involves a single complex scalar field χ, and a Uð1Þ
symmetry,

χ → eiαχ; ðα ¼ const:Þ ð1Þ

that leads to the required conservation law. Models without
an exact conservation law can still exhibit a BEc, but only
in the nonrelativistic regime, where particle number plays
the role of a conserved charge; in these cases the con-
densate necessarily disappears as the temperature
approaches the particle mass. In contrast, the presence or
absence of a condensate in models with a conserved charge
is determined by the temperature and density of the gas, in
particular, relativistic gases of this sort can condense if the
density is sufficiently high.
In this paper we will study several aspects of a dark

matter model that obeys Eq. (1) in a flat, homogeneous and
isotropic universe. The thermodynamic parameters then
will include the corresponding chemical potential1 μ
assumed to be non-vanishing. The condition μ ≠ 0 pre-
supposes the presence of a primordial charge whose
possible origin we will not discuss in this paper. We will
consider two mass regions for the mass mbe of the DM
particle: (i) mbe ≥ 1 GeV where the behavior in many
situations is WIMP-like; and (ii) mbe ≲ 2 × 10−11 eV
where the gas can exhibit a condensate at the present epoch.
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1The explicit definition of μ is given in Eq. (3) below; in the
non-relativistic regime it is customary to define a shifted quantity
μ0 ¼ μ −mbe so that condensation corresponds to the condition
μ0 ¼ 0.
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The model we consider has then the Lagrangian

L ¼ j∂χj2 −mbe
2jχj2 − 1

2
λbejχj4 þ ϵjχj2jϕj2 þ Lsm; ð2Þ

where ϕ denotes the SM scalar isodoublet and the last term
represents the standard model Lagrangian; all standard
model particles are invairaint under Eq. (1). We assume
throughout that the model is in the perturbative regime
and that the BE field does not acquire a vacuum
expectation value. If the Higgs potential takes the form
λsmðjϕj − v2Þ2=2, we require (i) ϵ > −

ffiffiffiffiffiffiffiffiffiffiffiffi
λbeλsm

p
to ensure

(tree-level) stability; (ii) ðmbe=vÞ2 > ϵ so that hχi ¼ 0;
hϕi ≠ 0; and (iii) 4π ≳ λsm; λbe > 0, so that the model
remains perturbative.
This is a simple extension of the usual Higgs-portal

models that involve a real scalar field. Various cosmologi-
cal aspects of this type of model have been studied
[27–41,44], with emphasis on the low mass regime.
Here we will be interested in a much wider range of
masses, on the relic abundance and direct detection of dark
matter, and in studying the conditions under which a BEc
can occur. We work to OðλbeÞ: though radiative effects are
small in most cases (especially in the nonrelativistic
regime), they play an important role when obtaining the
conditions for the presence of a BEc in the early universe
(Sec. II) and in deriving the restrictions from big-bang
nucleosynthesis when the DM is very light (Sec. VI).
In the usual Higgs-portal models [61,62], for a given

choice of DM mass, the relic abundance and direct
detection constraints impose, respectively, lower and upper
limits on the DM self coupling constant, and these limits
are consistent only in a restricted range of masses
(55 GeV < mbe < 62 GeV or mbe > 400 GeV) [63]; in
particular, light masses are excluded. The model Eq. (2)
sidesteps some of these constraints because the relic
abundance depends on the mass mbe, the portal coupling
ϵ and μ; the possibility of adjusting the chemical potential
relaxes the constraints on the first two parameters (the more
severe restrictions found in the simplest Higgs-portal
models reappear if one requires μ ¼ 0).
The BE gas may or may not be in equilibrium with the

SM. This is determined by the strength of the coupling ϵ in
Eq. (2) and by the rate of expansion of the universe. As long
as the gas and the SM are in equilibrium, they will have
the same temperature; when the gas and SM are not in
equilibrium they can have different temperatures, but even
then the gas will be in equilibrium with itself and behave as
a regular statistical system. In most publications the relic
abundance is calculated using the Boltzmann equation to
determine the DM abundance through the decoupling era
and into the late universe. We will follow a different
approach based on the Kubo formalism [64,65] that can
be used to describe the decoupling of two statistical
systems; since the Bose gas remains a statistical system

after decoupling such an approach is desirable. For the relic
abundance calculation we will use the naive criterion,
where decoupling occurs when the interaction rate falls
below the Hubble parameter. We do this for simplicity, but
also because the presence of a chemical potential allows us
to adjust the relic abundance to the experimentally required
value, so the full calculation using the kinetics of a Bose gas
is not warranted.
The rest of the paper is organized as follows: in the next

section we discuss the cosmology of a Bose gas to first
order2 in λbe and discuss some aspects of the conditions
under which a condensate is present. We next consider relic
abundance and the decoupling transition (Sec. IV) and
direct detection (Sec. V) in the WIMP regime. We discuss
the low-mass scenario in Sec. VI, including constraints
from large scale structure formation and big-bang nucleo-
synthesis. Section VII contains parting comments and
conclusions, while the Appendices involve some formulas
used in the text.

II. COSMOLOGY WITH A BOSE GAS

As mentioned in the introduction, we will consider the
behavior of a Bose gas in an expanding universe, including
the possibility that a Bose-Einstein condensate (BEc) may
be present in some epoch. We will assume that the rate of
expansion of the universe is sufficiently slow that the gas
will be in local thermodynamic equilibrium.3 To zeroth
order in λbe [defined in Eq. (2)] the thermodynamics
quantities correspond to the well-known expressions for
an ideal Bose gas [66]. The OðλbeÞ can be obtained using
standard perturbative methods; we summarize the results in
Appendix A. In the calculations below we neglect the OðϵÞ
contributions [cf. (A5)], where ϵ is the portal coupling
[cf. Eq. (2)] since they are subdominant for the range of
parameters being considered in this section: mbe ≲mH and
jϵj≲ λbe(see Appendix A).
The occupation numbers for particles and antiparticles

are given by

nþbe ¼ ðeðE−μÞ=T − 1Þ−1 ¼
�
exð

ffiffiffiffiffiffiffiffi
u2þ1

p
−ϖÞ − 1

�−1
;

x ¼ mbe

T
; ϖ ¼ μ

mbe
:

n−be ¼ ðeðEþμÞ=T − 1Þ−1 ¼
�
exð

ffiffiffiffiffiffiffiffi
u2þ1

p
þϖÞ − 1

�−1
; ð3Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and u ¼ jpj=mbe.

Defining [see Eq. (A7)]

δ¼μ2−mbe
2

λbe
; F ¼2

Z
d3p

ð2πÞ32E½n
þ
beþn−be�μ¼mbe

; ð4Þ

2See Appendix A for a summary of the perturbative expansion.
3This is discussed in detail in [40].
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the phase transition line is given by

δ ¼ F : ð5Þ
A condensate will not form if μ2 < mbe

2 þ λbeF ; when
λbe ¼ 0 this reduces to the well-known result that a
condensate is present only if jμj ¼ mbe.
The conserved charge associated with the symmetry of

Eq. (1) is given by

qbe ¼ qðcÞbe þ qðeÞbe

¼ qðcÞbe þmbe
3νbe;

νbe ¼
Z

∞

0

duu2

2π2
ðnþbe − n−beÞ þOðλbeÞ; ð6Þ

where qðe;cÞbe are the charge densities in the excited states and
in the condensate (if present). Without loss of generality we

will assume qðcÞbe ≥ 0; if there is a condensate then μ > 0.
The entropy and energy densities for the Bose gas are

given by

sbe ¼ mbe
3σbe;

σbe ¼
Z

∞

0

duu2

2π2
X
n¼n�be

½ð1þ nÞ lnð1þ nÞ − n ln n� þOðλbeÞ;

ρbe ¼ qbeμþ Tsbe − Pbe

¼ mbeq
ðcÞ
be þmbe

4rbe;

rbe ¼
Z

∞

0

duu2

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
ðnþbe þ n−beÞ þOðλbeÞ: ð7Þ

The OðλbeÞ corrections are given in Eqs. (A10) and
(A12), and though we will use them in the calculations
below, they are not displayed so as not to clutter the above
expressions.
The standard model energy and entropy densities are

approximately given by [67]

ρsm ¼ π2

30
T4g⋆ðTÞ; ssm ¼ 2π2

45
T3g⋆sðTÞ; ð8Þ

where

g⋆ðTÞ ≃
X
bosons

gi

�
Ti

T

�
4

θðT −miÞ

þ 7

8

X
fermions

gi

�
Ti

T

�
4

θðT −miÞ;

g⋆sðTÞ ≃
X
bosons

gi

�
Ti

T

�
3

θðT −miÞ

þ 7

8

X
fermions

gi

�
Ti

T

�
3

θðT −miÞ; ð9Þ

where gi denotes the number of internal degrees of free-
dom, and Ti the temperature for each particle; we assumed
a zero chemical potential for the SM particles.
In the discussion below we repeatedly use the fact that

when the SM and Bose gas are in equilibrium with each
other the ratio qbe=stot is conserved, where stot ¼ sbe þ
ssm is the total entropy. When the SM and Bose gas are
not in equilibrium with each other the ratios qbe=ssm and
sbe=ssm are separately conserved (in this case qbe=stot is
also conserved, but it is not independent of these
quantities).

III. THE BOSE-EINSTEIN CONDENSATE

As noted above, whether the SM and gas are in
equilibrium with each other or not, the ratio Y

Y ¼ qbe
stot

ð10Þ

is conserved [though the (e) and (c) contributions in general
are not]. A condensate will be present whenever the total
charge cannot be accommodated in the excited states, that
is, when Y > YðeÞ:

qðcÞbe ≠ 0 if Y > YðeÞ ¼ νbe
σbe þ ssm=mbe

3

����
δ¼F

: ð11Þ

Now, since ssm > 0, we have the following inequality:

YðeÞ <
νbe
σbe

����
δ¼F

<
νbe
σbe

����
δ¼F ;T→0

¼ ζ3=2
ð5=2Þζ5=2

≃ 0.78: ð12Þ

Therefore, a condensate will be always present if Y > 0.78.
The behavior of YðeÞ for various choices of mbe and λbe

is given in Fig. 1. For large temperatures4 and λbe ¼ 0,
νbe=sbe ∼ 1=T [cf. Eq. (A14)] since the leading particle and
antiparticle contributions to νbe in Eq. (6) cancel; it follows
that YðeÞðλbe ¼ 0Þ → 0 as T → ∞, in particular, in an ideal
gas a condensate would always be present at sufficiently
high temperatures5 [68]. This behavior changes when
λbe ≠ 0: YðeÞ has an mbe-dependent minimum,6 so that a
self-interacting BE gas with a sufficiently small Y will
never condense. If the behavior of YðeÞ to OðλbeÞ is
indicative of the exact result, then YðeÞ diverges as x→0
and the condensate will disappear for sufficiently high
temperatures, this is discussed further in Appendix A.
To clarify this behavior note that in an expanding

universe both the (comoving) volume and temperature

4The Bose gas entropy and charge are not exponentially
suppressed as T → 0 when jμj ¼ mbe þOðλbeÞ.

5This holds whether the SM and Bose gas are in equilibrium
or not.

6For a discussion of the validity of our expressions in this
region see Appendix A.
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change with a, the distance scale in the Robertson-Walker
metric, with T → ∞ as a → 0: a contracting comoving
volume accompanies an increasing temperature. There
are then two competing effects on the Bose gas: the
reduction of volume favors the formation of the con-
densate, while the increase in temperature tends to
destroy it; the above results indicate that when λbe ¼ 0
the volume effect dominates. When λbe ≠ 0 a third effects
comes into play: the repulsive force generated by the
Bose gas self-interactions, which gives rise to the non-
monotonic behavior of YðeÞ.
Because of the exact Uð1Þ symmetry of the dark sector,

the presence of this condensate does not require the gas
to be nonrelativistic (in which case qbe is equals particle
number). We will see later (see Sec. VI) that experimental
constraints allow for the condensate to persist to the present
day only ifmbe is in the pico-eV range; for WIMP scenarios
(mbe ≳1 GeV) the condensate disappears already in the
very early universe.

A. Conditions for a BEc at decoupling

We will show below that for WIMP-like masses
(mbe ≳ 1 GeV) the gas and SM decouple at a temperature
Td, at which point the gas will be nonrelativistic; it then
follows that it will also be nonrelativistic at present. In the
nonrelativistic limit the OðλbeÞ corrections to the expres-
sions below can be ignored since they are smaller than the
OðT=mbeÞ relativistic corrections [see Eq. (A13) and
surrounding discussion in Appendix A]. Then

qbe
ssm

≃
1

mbe

ρDM
ssm

¼ 0.4 eV
mbe

ðT < TdÞ; ð13Þ

where we used the known value of the SM entropy now,
and the fact that for a nonrelativistic gas ρDM ¼ mbeqbe; as

noted in Sec. II, the left-hand side of Eq. (13) is conserved
below Td.
This can be used to determine whether a BEc would have

been present when T ¼ Td: a condensate is present if

qbeðTdÞ
ðmbeTdÞ3=2

>
ζ3=2

ð2πÞ3=2 ≃ 0.166: ð14Þ

using Eq. (13) to eliminate qbeðTdÞ and Eq. (8) for the SM
entropy, this implies

T3=2
d

mbe
5=2 g⋆sðTdÞ >

1

1.06 eV
: ð15Þ

whence, since for a nonrelativistic gas mbe > Td, and since
g⋆s < 106.75, we find (using 3σ errors)

mbe < 1.3 keV: ð16Þ

A condensate can occur at decoupling only for light Bose
particles, which can be difficult to accommodate phenom-
enologically (cf. Sec. VI).

B. Conditions for a BEc to exist at present

Before proceeding with the calculation of the cross
section relevant for direct detection, we study the possibil-
ity that the Bose gas supports a condensate at present. To
this end we note first that a nonrelativistic Bose gas will
have a condensate provided qbeðmbeTÞ−3=2 > ζ3=2ð2πÞ−3=2,
see Eq. (14); denoting the current gas temperature
by Tnow it follows that a condensate will be currently
present if

�
0.0215 eV

mbe

�
5=3

oK > Tnow: ð17Þ

We now use the fact that the conservation of sbe=ssm allows
us to obtain a relation between Tnow and the decoupling
temperature Td. Noting that the gas is non relativistic at Td,
and that a condensate at Tnow implies a condensate was also
present at Td (see Sec. II), we find

4.3 oK

g⋆sðTdÞ1=3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TdTnow

p
; ð18Þ

where we used Eqs. (7) and (8). Combining this with
Eq. (17) and using Eq. (A15),

½g⋆sðTdÞ�2=3Td ≳
�

mbe

0.009 eV

�
5=3

oK; ð19Þ

and since mbe > Td, this gives

FIG. 1. Plot of the Bose charge in the excited states per
entropy when λbe ¼ 0.5 (solid curves) and λbe ¼ 0 (dashed
curves) and for two mass values and mbe ¼ 10 GeV (black
curves) mbe ¼ 10−12 eV (gray curves); the dotted line corre-
sponds to the bound in Eq. (12). For illustration purposes we
assumed the Bose gas and the SM have the same temperature.
The discontinuities are caused by the step functions in Eq. (9)
and x ¼ mbe=T [cf. Eq. (3)].
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9.5g⋆sðTdÞ eV≳mbe ⇒ 88 eV > mbe: ð20Þ

It follows that a WIMP-like Bose gas will not exhibit a
condensate at the present era7 (nonetheless, for complete-
ness we include in Appendix B the expressions for the
cross section when a condensate does occur). The case of
a light Bose gas with a condensate will be considered
in Sec. VI.

C. The BEc transition temperature

For WIMP-like masses we will show (Sec. IV) that the
SM and Bose gas will be in equilibrium down to a
decoupling temperature Td. Below Td the ratios qbe=ssm
and sbe=ssm will be separately conserved, above Td only
qbe=stot is conserved. We will also show that in this case the
gas was nonrelativistic at T ¼ Td and that the relic
abundance constraint reduces to the simple relation qbe ¼
0.4 eVðssm=mbeÞ [cf. Eq. (13)]. Combining these results we
find that the temperature TBEc at which the condensate
forms (the same for the gas and SM since TBEc > Td) is
given by

½2þ g⋆sðTBEcÞ�TBEc ¼
15

2π2

�
5

2
− ln zd þ

mbe

0.4 eV

	
mbe

⇒ TBEc ≃mbe
2

1.9 eV−1

g⋆sðTBEcÞ þ 2
; ð21Þ

where8 z ¼ exp½ðϖ − 1Þx�, and we used the fact that
j ln zj ≪ mbe=ð0.4 eVÞ for all cases being considered. As
noted previously, the OðλbeÞ corrections can be ignored in
these calculations; the subscript d denotes a quantity at
decoupling.
For example, TBEc ∼ 107 GeV if mbe ∼ 1 GeV and

g⋆ðTBEcÞ ∼ 100 (though, of course, the number of relativ-
istic degrees of freedom at these high temperatures may
be much higher); while TBEc ∼ 1.75 TeV if g⋆ðTBEcÞ ¼
106.75 and mbe ∼ 10 MeV. It is worth noting that for the
WIMP-like scenario, the condensate, should it form, would
hold a small fraction of the total energy density of the gas:
using Eqs. (A14) and (A15) and the above conservation
laws we find,

mbeqbe
ρbe

����
T>TBEc

¼ 2þ g⋆sðTÞ − ð5=π2ÞAx
2þ g⋆sðTÞ þ Ax−1

;

A ¼ 3

2

�
5

2
− ln zþ mbe

0.4 eV

	
≃

mbe

0.27 eV
ð22Þ

≃ ð0.27 eVÞ 2þ g⋆sðTÞ
T

for x ≪ 0.4 eV=mbe: ð23Þ

So in the early universe YðeÞ → 0 but ρðeÞbe=ρbe → 1: the
charge resides mainly in the condensate, but the energy is
carried mainly by the excited states.
For an ultralight DM (mbe ∼ 10−12 eV) the situation is

completely different. We discuss this in Sec. VI.

IV. RELIC ABUNDANCE

In obtaining the relic abundance we will follow an
approximate method that will not involve solving the
Boltzmann equation. Instead we imagine the Bose gas
and the SM to be in equilibrium at some early time and
describe their decoupling using the Kubo formalism [64].
As we see below, the BE gas will be non-relativistic, so that
in this section the OðλbeÞ corrections can be ignored (see
Appendix A).
The total Hamiltonian for the system is of the form

H¼HsmþHbe−H0; H0 ¼−ϵ
Z

d3xOsmObe; ð24Þ

where Osm ¼ jϕj2 Obe ¼ jχj2 and ϵ is defined in Eq. (2).
Using the same arguments as in [65], we find that the
temperature difference (and hence a lack of equilibrium)
between the SM and Bose gas obeys

_ϑþ 4Hϑ ¼ −Γϑ; ϑ ¼ Tbe − Tsm; ð25Þ

where H is the Hubble parameter. This expression is valid
when ϑ ≪ Tbe;sm, so the width Γ can be evaluated at the
(almost) common temperature T. We use this expression to
define the temperature Td at which the SM and Bose gas
decouple by the standard condition [67]

T ¼ Td ⇒ Γ ¼ H: ð26Þ

Explicitly we have [65],

Γ ¼
�

1

cbe
þ 1

csm

�
ϵ2G
T

; ð27Þ

where csm; cbe denote the heat capacities per unit volume,
T the common temperature, and

G ¼
Z

β

0

ds
Z

∞

0

dt
Z

d3xhOBEð−is;xÞ _OBEðt; 0Þi

× hOSMð−is;xÞ _OSMðt; 0Þi: ð28Þ

7Since the gas is again nonrelativistic the OðλbeÞ corrections to
the above expressions can be ignored; see Eq. (A13).

8It follows from Eq. (A15) and the conservation laws that z is
constant below Td for a nonrelativistic gas without a condensate.
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The heat capacities are given by

csm ¼ 4π2

30
T3g⋆s;

cbe ¼
�
mbeT
2π

�
3=2

×


 ð15=4ÞLi5=2ð1Þ ðBEcÞ;
ð15=4ÞLi5=2ðzÞ − ð9=4Þ½Li3=2ðzÞ�2=Li1=2ðzÞ ðnoBEcÞ; ð29Þ

where Li denotes the polylogarithmic function, and z ¼ exp½ðμ −mbeÞ=T�.

A. Evaluation of G

In the presence of a condensate we follow [69] and write χ ¼ ½ðA1 þ CÞ þ iA2�=
ffiffiffi
2

p
, where A1;2 denote the fields and C

the condensate amplitude. We also assume that decoupling occurs below the electroweak phase transition so that
jϕj2 ¼ ðvþ hÞ2=2, where v is the SM vacuum expectation value, and h the Higgs field. Substituting in Eq. (28) we find,
after an appropriate renormalization,

GBEc¼
�
v2C2G2−2þ

1

4
C2G2−4þ

1

4
v2G4−2þ

1

16
G4−4

	
μ¼mbe

;

ð30Þ

where

G2−2 ¼
Z

β

0

ds
Z

∞

0

dt
Z

d3x

�
A1ð−is;xÞ

dA1ðt; 0Þ
dt

��
hð−is;xÞ dhðt; 0Þ

dt

�
;

G2−4 ¼
Z

β

0

ds
Z

∞

0

dt
Z

d3x

�
A1ð−is;xÞ

dA1ðt; 0Þ
dt

��
h2ð−is;xÞ dh

2ðt; 0Þ
dt

�
;

G4−2 ¼
Z

β

0

ds
Z

∞

0

dt
Z

d3x

�
A2ð−is;xÞ dA

2ðt; 0Þ
dt

��
hð−is;xÞ dhðt; 0Þ

dt

�
;

G4−4 ¼
Z

β

0

ds
Z

∞

0

dt
Z

d3x

�
A2ð−is;xÞ dA

2ðt; 0Þ
dt

��
h2ð−is;xÞ dh

2ðt; 0Þ
dt

�
: ð31Þ

In the absence of a condensate we have

G =BEc ¼
1

4
v2G4−2 þ

1

16
G4−4; ð32Þ

(G =BEc denotes the expression for G in the absence of a condensate) evaluated at a chemical potential jμj < mbe.

We evaluate theGn−m using the standard Feynman rules for the real-time formalism of finite-temperature field theory (see
e.g., [70]) and the propagators derived in Sec. A. The calculation is straightforward but tedious; to simplify the expressions
we use the following shortcuts:

E ¼ Ek; E0 ¼ Ek0 ; Ē ¼ Ēq; Ē0 ¼ Ēq0 ;

nH ¼ nHðEkÞ; n0H ¼ nHðEk0 Þ; n�be ¼ n�beðĒqÞ; n�be
0 ¼ n�beðĒq0 Þ; ð33Þ

and

dk̃ ¼ d3k
2Ekð2πÞ3

; dq̃ ¼ d3q
2Ēqð2πÞ3

; ð34Þ

where

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mH

2 þ k2

q
; Ēq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbe

2 þ q2

q
; nð�Þ

be ðĒÞ ¼ ½eβðĒ∓μÞ − 1�−1; ð35Þ
and mH denotes the Higgs mass.
Then the Gn−m (for arbitrary μ) are given by
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(i) G4−4

G4−4 ¼ 16πβ

Z
dk̃dk̃0dq̃dq̃0ð2πÞ3δð3Þðkþ k0 þ qþ q0ÞG4−4;

G4−4 ¼
1

2
ð1þ nHÞð1þ n0HÞnþben−be0δðEþ E0 − Ē − Ē0ÞðEþ E0Þ2

þ 1

2
ð1þ nþbeÞð1þ n−be

0ÞnHn0HδðEþ E0 − Ē − Ē0ÞðEþ E0Þ2

þ ð1þ nHÞð1þ nþbeÞn0Hnþbe0δðEþ Ē − E0 − Ē0ÞðE − E0Þ2
þ ð1þ nHÞð1þ n−beÞn0Hn−be0δðEþ Ē − E0 − Ē0ÞðE − E0Þ2; ð36Þ

where the 4 terms represent the processes hh ↔ χχ†, hχ → hχ and hχ† → hχ† respectively; the factors of 1=2 are
due to Bose statistics.

(ii) G2–4

G2−4 ¼ 2πβ

Z
dk̃dk̃0dq̃ð2πÞ3δð3Þðkþ k0 þ qÞG2−4;

G2−4 ¼
1

2
ð1þ nHÞð1þ n0HÞn−beδðEþ E0 − Ē −mbeÞðEþ E0Þ2 þ 1

2
ð1þ n−beÞnHn0HδðEþ E0 − Ē −mbeÞðEþ E0Þ2

þ ð1þ nHÞn0HnþbeδðEþmbe − E0 − ĒÞðE − E0Þ2 þ ð1þ nHÞð1þ nþbeÞn0HδðEþ Ē − E0 −mbeÞðE − E0Þ2;
ð37Þ

these 4 terms represent the processes hh ↔ Cχ† and hC ↔ hχ, where C corresponds to a particle in the condensate
(mass mbe and zero momentum); the factors of 1=2 are due to Bose statistics.

(iii) G4−2

G2−4 ¼ 4πβ

Z
dk̃dq̃dq̃0ð2πÞ3δð3Þðkþ qþ q0ÞG4−2;

G4−2 ¼ ½ð1þ nþbeÞð1þ n−be
0ÞnH þ ð1þ nHÞnþben−be0�E2δðĒþ Ē0 − EÞ; ð38Þ

these 2 terms represent the processes h ↔ χχ†.
(iv) G2−2

G2−2 ¼
1

2
πβ

Z
dk̃dq̃ð2πÞ3δð3Þðkþ qÞG2−2;

G2−2 ¼ ½ð1þ nHÞn−be þ ð1þ n−beÞnHðEÞ�E2δðE −mbe − ĒÞ; ð39Þ
these 2 terms represent the processes h ↔ Cχ†.

In the nonrelativistic limit, where mbe; mH ≫ T we find9

GðNRÞ
2−2

���
μ¼mbe

≃
mH

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3x

p 2uΓe−2x

u2Γ þ ðr2 − 4Þ2 ;

GðNRÞ
2−4

���
μ¼mbe

≃
�

mH

2πrx

�
3
�
2r2x2ρK1ðρÞ þ ζ3

�ðrþ 1Þ2
4r

�	
e−rx;

GðNRÞ
4−2 ≃

�
mH

2π

�
3 4

x2r3

�
e−rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

�
rx
2

�
3
�
r2

4
− 1

�s
θðr − 2Þ þ Li3=2ðzÞ

z
2uΓe−2x

u2Γ þ ðr2 − 4Þ2
	
;

GðNRÞ
4−4 ≃

1

16

mH
5

r3ð1þ rÞ7=2
�
2

πx

�
9=2

e−rx
�
zþ 1

z
e−2x

�
; ð40Þ

9G2−2;2−4 contribute only when there is condensate, so we evaluate then them only for μ ¼ mbe; the expressions for G4−2;4−4 are valid
for all μ.
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where K1, ζ3 and Li denote the usual Bessel, zeta and
polylogarithmic functions, and we defined

r ¼ mH

mbe
; ρ ¼ 4rjr − 1jxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr2 þ 1Þ
p ;

uΓ ¼ r2
Γsm

mH
; z ¼ eβðμ−mbeÞ: ð41Þ

Before continuing it is worth pointing out a slight
difference between the expression for Γ derived from
Eqs. (28) and (27), and the corresponding expression
usually found in the literature (see e.g., [67]):
Equation (27) describes the energy transfer between the
SM and the Bose gas, which leads to the ðE� E0Þ2 factors
in Eqs. (36)–(39). As a result Γ in Eq. (27) has a factor
∼ðmass=TÞ2 compared to the usual expressions, which
determine the change in the DM particle number. Because
of this the decoupling temperature obtained from Eq. (26)
will be somewhat higher than usual; this difference,
however, is not significant given that the criterion
Eq. (26) itself is not sharply defined.

B. The decoupling temperature

For a non-relativistic at T ¼ Td, we have from Eq. (13)

0.4 eV
mbe

ssmðTdÞ≃2

�
mbeTd

2π

�
3=2

coshðμ=TdÞe−mbe=Td : ð42Þ

We will use this expression to eliminate μ in Eq. (26); in
doing this we implement the requirement that the Bose gas
generates the correct DM relic abundance.10

Using then Eq. (42) to eliminate μ, the condition Γ ¼ H
in Eq. (26) provides a relation between Td, mbe and ϵ,
which we plot in Fig. 2. The resonance effects are
broadened below mH=2 due to the effects of the nonreso-
nant term in G4−2 that are proportional to θðr − 2Þ. The
rapid change in curvature observed for mbe ∼ 100 GeV is
produced byG4−4, which dominates Γ for large masses. We
also see that, for the range of couplings being considered,
Td ≲mbe=10 so that the gas is nonrelativistic at decoupling,
as was assumed above.

V. DIRECT DETECTION

We first calculate the cross section for the process
ηχ → ηχ, where η denotes a neutral scalar coupled to the
Bose gas via an interaction

Lη−χ ¼
1

2
gη2jχj2: ð43Þ

The interesting case of nucleon scattering will reduce to the
expressions obtained for η in the nonrelativistic limit (for an
appropriate choice of g), except for a spin multiplicity
factor.
The transition probability is given by

Wi→f ¼ jouthfjiiinj2; ð44Þ

where the initial state consists of an η particle with
momentum p and the Bose gas in state I: jiiin ¼
ain†p j0; Ii (where 0 denotes the perturbative vacuum for
the η); the final state has an η of momentum q and the Bose
gas in a state F: jfiout ¼ aout†q j0;Fi. We require p ≠ q,
since we are looking for non-trivial interactions.
Using the standard Lehman-Symanzik-Zimmermann

reduction formula we find11

outhfjiiin ¼ h0;FjΘp;qj0; Ii;

Θp;q ¼ −
Z

d4xd4x0e−ip·xþiq·x0 ð□x þm2Þ

× ð□x0 þm2ÞT ½ηðxÞηðx0Þ�; ð45Þ

where T is the time-ordering operator and we ignored a
wave-function renormalization factor (wewill beworking to
lowest nontrivial order, where this factor is one). In order to
obtain the cross section, we sum over the final gas states (F)
and thermally average over initial gas states (I); this gives

hWi→fiβ¼
Z

d4xd4x0d4yd4y0eiðp·y−q·y0−p·xþq·x0Þ

×ð□xþm2Þð□x0 þm2Þð□yþm2Þð□y0 þm2Þ
×hT ½ηðx0−iβ;xÞηðx00−iβ;x0Þηðy0;yÞηðy00;y0Þ�iβ;

ð46Þ

where h…iβ indicates a thermal average at temperature 1=β.
hWi→fiβ can be evaluated using standard techniques of the
real-time formulation of finite-temperature field theory12

[70], while the optical theorem relates this quantity to the
desired cross section:

σ ¼ 1

2qbejpj
�
1

V

Z 0 d3q
2Eqð2πÞ3

hWi→fiβ
�
; ð47Þ

where Eq is the energy of the outgoing η, qbe the number
density of Bose gas particles, and V denotes the volume of
space-time; the prime indicates that the region p ≃ q is to be
excluded.

10This calculation can yield jμj > mbe for some choice of mbe
and Td, this only means that such masses and temperatures are
excluded by the relic abundance constraint.

11We work to OðgÞ and assume a non-relativistic gas, so the
OðλbeÞ corrections can be ignored.

12In particular, under T, the complex times in Eq. (46) are later
than the real ones.
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To lowest order in g [see Eq. (43)] we have

hWi→fiβ ¼ g2
Z

d4k
ð2πÞ4 ½D

<ðkþ PÞ�ij½D>ðkÞ�ijjC¼0
;

P ¼ p − q; ð48Þ

where the propagators are given in Eqs. (A22) and (A24),
and C ¼ 0 implements the absence of a condensate. The
evaluation of this expression is straightforward, we find

hWi→fiβ ¼
g2Tfð−P0Þ

2πjPj ln

���� 1þ nþbeðE−Þ
1þ nþbeðEþÞ

1þ n−beðE−Þ
1þ n−beðEþÞ

����;
≃

g2

4πjPjβ e
−βE− coshðβμÞ;

E� ¼ 1

2

�
jPj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4mbe
2

P2

r
∓ P0

	
; ð49Þ

where nð�Þ
be are defined in Eq. (33), and f in Eq. (A22); the

second expression is valid in the nonrelativistic limit.
Substituting this into Eq. (47) gives

σ ¼
�

1ffiffiffi
π

p
u
e−u

2 þ
�
1þ 1

2u2

�
ErfðuÞ

	
σ0;

u ¼ jpj
mH

ffiffiffiffiffiffiffiffi
mbe

2T

r
;

¼
�
1þ 1

2u2
þOðu−5e−u2Þ

	
σ0; ðu → ∞Þ ð50Þ

where σ0 is the T ¼ 0 nonrelativistic cross section, and in
Eq. (47) we used

n ¼ 2

�
mbeT
2π

�
3=2

e−βmbe coshðβμÞ: ð51Þ

The above expression for hWi→fiβ holds also for non-

relativistic nucleons, except for a factor of 2m2
N , where mN

is the nucleon mass. Also, since for the direct-detection

FIG. 2. Values of Td satisfying the decoupling condition Eq. (26)as a function ofmbe for ϵ ¼ 0.001, 0.01, 0.1, 1, 10 (bottom to top curves)
and for low and high values of mbe (top left and top right graphs, respectively), and in the resonance region (bottom graph). The trough at
mbe ≃ 62.5 GeV corresponds to the effects of the Higgs resonance. The shaded region is excluded by the relic abundance constraint.
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reactions the momentum transfer for this process is very
small, the coupling g will be given by

g →
ϵv
m2

H
gN−H ⇒ σ0 ¼

1

8πmbe
2

�
mbemN

mbe þmN

ϵgN−Hv
mH

2

	
2

;

ð52Þ

where v denotes the SM vacuum expectation value, mN the
nucleon mass, and gN−H ≃ 0.0034 the Higgs-nucleon
coupling [12,71,72].
For the range of parameters we consider, the temperature

of the Bose gas at present, Tbe is very small, so that

σ ¼ ϵ2

8πmbe
2

�
mbe=mN

1þmbe=mN

gN−HvmN

mH
2

�
2
�
1þ r2

Tbe

mbev2

�
;

≃ 6.93× 10−34
�

ϵ

1þmbe=mN

�
2
�
1þ m3

N

mbe
3

Tbe

600oK

�
cm2;

ð53Þ

where r is defined in Eq. (41), v ≃ 10−3 is the nucleon-dark
matter relative velocity and, as above, r ¼ mH=mbe.
These results can be compared to the most recent

XENON [4] and CDMSLite [73] constraints, we present
the results in Fig. 3. We find that the leading temperature
correction in Eq. (53) is negligible except for very small
mbe, in this case, however the cross section itself is
very small.
The graphs in Fig. 3 represent the strongest constraints

on the model parameters. If the parameters are allowed by
the direct-detection constraint the model will satisfy the
relic abundance requirement for an appropriate choice
of μ.

VI. BOSE CONDENSATE IN THE SMALL
MASS REGION

As noted above, a condensate can occur when the gas has
sub-eV masses. In this case, however, there are additional
constraints stemming form the possible effects of such light
particles on large scale structure (LSS) formation and on
big-bang nucleosynthesis (BBN). In this section we will
investigate the regions in parameter space allowed by these
constraints assuming that the gas is currently condensed; as
noted in Sec. II this ensures the presence of a condensate in
earlier times.13

For the small masses needed to ensure the presence of a
BEc now (see below) the condition H ¼ Γ used in Sec. IV
[Eqs. (26) and (27)] would require a coupling ϵ orders of
magnitude above the perturbativity limit14 (see Sec. I),
hence in this case the gas is decoupled from the SM during
the BBN and LSS epochs.
LSS formation occurred at redshift zLSS ∼ 3400, when

the matter-dominated era began [67]. To ensure that the
Bose gas does not interfere with the formation of structure
we require it to be non-relativistic at that time; in addition,
since we assume the presence of a BEc at present, a BEc
was also present at the LSS epoch (Sec. III). Then the
conservation of a3sbe gives, using Eq. (A15), a3x−3=2 ¼
constant (a denotes the scale factor in the Robertson-
Walker metric); equivalently,

a2

x

����
now

¼ a2

x

����
LSS

⇒ xnow ¼ ð1þ zLSSÞ2xLSS: ð54Þ

Since the gas must be nonrelativistic during the LSS epoch,
xLSS > 3, so we have

FIG. 3. Left: the curves give the direct-detection cross section Eq. (53) for (lower to upper curves, respectively)
log ϵ ¼ −6;−4.5;−3;−0.5, 1 with the shaded area denoting the region excluded by the XENON and CDMSLite experiments. Right:
the shaded area denotes the region of the mbe − ϵ plane excluded by direct-detection.

13At least as long as x > λbe=8.8, see Eq. (A18).
14To see this we used Eqs. (36)–(39) since the expressions in

Eq. (40) are not valid for the small values of mbe considered here.
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xnow > 3.5 × 107: ð55Þ

In addition, the requirement that a BEc be present now
implies

0.4 eV
mbe

ssmjnow >

�
mbe

2

2πxnow

�
3=2

ζ3=2; ð56Þ

where we used the fact that the gas is currently
nonrelativistic.15

The regions in the mbe − T and mbe − x planes allowed
by Eqs. (55) and (56) are given in Fig. 4 (here T refers to the
gas temperature). It is worth noting that if these conditions
occur at present, most of the gas will be in the condensate:
using Eqs. (13) and (55) the gas fraction in the excited
states is given by

qðeÞbe

qbe

����
now

<
�

mbe

1.82 eV

�
4

; ð57Þ

which is negligible in view of the range of masses being
here considered (see Fig. 4).
We now turn to the BBN constraints. We write the

contributions from the gas to the energy density in the form
of an effective number of neutrino species ΔNν:

ρbejBBN ¼ 3

π2
7

4

�
4

11

�
4=3

ΔNνT4
γ ≃ 0.138ΔNνT4

γ ; ð58Þ

where Tγ ≃ 0.06 MeV denotes the photon temperature
during BBN [74]. Imposing the relic-abundance constraint
Eq. (13) we find, using Eqs. (6) and (7),

ΔNν ¼ 7.2× 10−5þ 7.24
mbe

4

T4
γ
½rbeðxBBNÞ− νbeðxBBNÞ�δ≥F :

ð59Þ
where rbe − νbe corresponds to the energy outside the
condensate.
The limit (see [75]) −0.7 < ΔNν < 0.4 shows that the

first contribution to ΔNν can be ignored. Also, the LSS
constraint mbe < 2 × 10−11 eV (see Fig. 4), implies
ðmbe=TγÞ≲ 10−62, so that the second contribution to
ΔNν is also small except if the gas was ultrarelativistic
during BBN. In this case

ΔNν ≃ 4.76

�
mbe

TγxBBN

�
4
�
1þ 5λbe

16π2

	
; xBBN ≪ 1;

ð60Þ

so the BBN constraint is significant only in the extreme
ultrarelativistic case where xBBN < 10−62.
To examine this possibility we first obtain in Fig. 5 the

regions in the xBBN − xnow plane consistent with the fact
that sbe=ssm and qbe=ssm are conserved, together with the
assumption that a BEc is currently present. The lower
bound in this region corresponds to xBBN ≥ 4.9=

ffiffiffiffiffiffiffiffiffi
xnow

p
;

using this, and the BBN constraint ΔNν < 0.4 in Eq. (60),
we obtain

xnow < 1.1 × 10125
�

mbe

10−11 eV

�
−2
�
1 −

5λbe
32π2

�
; ð61Þ

FIG. 4. Regions of thembe − T and r − x planes where a non-relativistic Bose condensate occurs consistent with the LSS constraint of
Eq. (55). On the left-hand graph the low-T limit results form Eq. (56), while the upper limit is due to Eq. (55).

15The OðλbeÞ corrections can be ignored in this case, see
Appendix A.
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To understand the gap that appears in Fig. 5 consider

the expressions in Eq. (A12): we write sbe ¼ sðeÞbe þ
½λbeC2=ð2mbe

2Þ�sðcÞbe (this defines16 sðe;cÞbe ) and use

C2 ¼ ½qbe − qðeÞbe �=mbe þOðλbeÞ; then, noting that sðeÞbe ≫
sðcÞbe q

ðeÞ
be (which we verified numerically), and using the fact

that sbe=ssm and qbe=ssm are constant, we find

½sðeÞbe =ssm�BBN − ½sðeÞbe =ssm�now
½sðcÞbe �now − ½sðcÞbe �BBN

¼ λbe
2mbe

3

qbe
ssm

>
λbe

2mbe
3

qðeÞbe

ssm

����
now

;

ð62Þ

where the inequality on the right-hand side imposes the
constraint that a BEc is present now. The gap in Fig. 5
corresponds to values of xBBN;now where the denominator
and numerator have opposite signs. For example, if the gas
is nonrelativistic during nucleosynthesis,

1 − ϑðxnow=xBBNÞ3=2
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnow=xBBN

p >
3λbe
40π

ζ23=2
ζ5=2

1

2πxnow
;

ϑ ¼ ssmjnow
ssmjBBN

≃ 6 × 10−26; ð63Þ

in this case the gap corresponds to log xnow ≳ log xBBN≳
−16.8þ log xnow.
The parameter region where the gas exhibits a BEc

now and satisfies both the LSS and BBN constraints are
determined by Eqs. (61), (55) and the allowed xBBN − xnow

and mbe − Tnow regions in Figs. 4 and 5, respectively. It is
worth noting that when λbe ¼ 0 the allowed region in the
xBBN − xnow plane reduces to the dark line in Fig. 5, in
which case the BBN constraint does not impose new
restrictions.
It remains to see whether a gas satisfying Eq. (55) can be

in equilibrium with the SM at an epoch earlier than that of
BBN. Given the small range for mbe and the large values of
xnow, such equilibrium could have occurred only when the
gas was ultrarelativistic, in which environment the presence
or absence of a condensate will have no effect. The
situation then reduces to that of a standard Higgs-portal
model with DM masses in the pico-eV range. Concerning
direct detection experiments it is clear that for the very
small masses being considered in this section the cross
sections will be negligible. We will not consider these
points further.

VII. COMMENTS AND CONCLUSIONS

In this paper we investigated various properties of a
complex scalar model of dark matter and studied the
possible presence of a Bose condensate, which can occur
even in the relativistic regime due to the presence of a
conserved charge, associated an exact “dark” Uð1Þ
symmetry.
We showed that a Bose condensate will be present at

sufficiently early times provided the charge per unit entropy
is above a λbe and mbe-dependent minimum (when mbe >
mH this minimum will also depend on ϵ); for λbe ¼ 0 a
condensate will always form in the early universe. As
T → ∞ one-loop results suggest that the condensate will
disappear despite the vanishing of the comoving volume in
that limit. The constraints derived form large scale structure

10 20 30 40
log(xnow )

-20

-10

10

20

30
log(xBBN )

FIG. 5. Region in the xBBN − xnow plane consistent with the conservation laws, and with the assumption that a BEc is currently present.
We used the expressions in Appendix A and ssmjnow ¼ 2889.2=cm3, ssmjBBN ¼ 4.82 × 1028= cm3 and took λbe ¼ 0.5. When λbe ¼ 0 the
allowed region collapses to the bold dark line in the figure.

16By definition, sðcÞbe contains all terms ∝ C2 [up to a factor of
λbe=ð2mbeÞ] in Eq. (A12); sðeÞbe contains all remaining terms. Note
that sðeÞbe includes OðλbeÞ contributions.
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formation imply that a condensate will persist until the
present only if the dark matter mass is in the pico-eV range.
The model can meet the relic-density constraint for all

masses in the cold dark-matter regime (mbe ≳ 1 GeV)
provided the portal coupling ϵ ≤ 0.1 and for a wide range
of masses; for larger values of ϵ the mass range is somewhat
narrower, see Fig. 2). The limits derived from direct-
detection experiments are much more restrictive allowing
only small couplings and/or small masses (Fig. 3); still the
allowed region in parameter space is considerably extended
compared to the usual Higgs-portal model [63] because of
the presence of a chemical potential that can be adjusted to
ensure the correct relic density.
For WIMP-like masses we have shown above that there

is no condensate for T < Td but that a condensate can form
in the early universe, at least for a period of time; at very
high temperatures the condensate then carries the net
charge of the gas, but most of the energy density is carried
by the excited states (Sec. II). In contrast, for very small
masses, mbe ∼ 10−12 eV the gas can form a condensate
even at present temperatures, while also satisfying the relic
abundance requirement. In this case, however, the Bose gas
and the SM are never in equilibrium (assuming natural
values of the portal coupling ϵ).
Most of the radiative effects in this model are small,

being suppressed not only by powers of λbe, but, in the
nonrelativistic limit, by inverse powers ofmbe=T. We found
two exceptions: first, the above-mentioned condition on the
formation of a condensate in the early universe. Second, the
constraint in Eq. (61) derived from BBN.
We have not discussed indirect detection constraints

because, for WIMP-like masses they will be identical to
those derived for the standard Higgs portal models [76].

APPENDIX A: THERMODYNAMICS
OF A BOSE GAS

In this Appendix we provide for completeness a sum-
mary of the Bose gas thermodynamics. We begin with the
Lagrangian

L ¼ j∂χj2 −m2jχj2 − 1

2
λbejχj4; ðA1Þ

and write χ ¼ ðA1 þ iA2Þ=
ffiffiffi
2

p
. Then the Hamiltonian and

total conserved charge Qbe are given by

H ¼
Z

d3x

�
1

2
π2 þ 1

2
j∇Aj2 þ V

	
;

Qbe ¼ −
Z

d3xðA1π2 − A2π1Þ; ðA2Þ

where πi is the canonical momentum conjugate to Ai.
To include the possibility of a Bose condensate we

replace A1 → A1 þ C; using then standard techniques of

finite-temperature field theory (we use here the Matsubara
formalism) [77] we find that to OðλbeÞ the pressure Pbe is
given by [68,69]

Pbe ¼
μ2 −mbe

2

2
C2 þ 2

3

Z
dp̃p2Fþ þ 1

8
λbeC4

− λbe

�
1

2
C2 þ

Z
dp̃Fþ

�
2

þOðλ2beÞ; ðA3Þ

where

F� ¼ 1

eβðE−μÞ − 1
� 1

eβðEþμÞ − 1
; F̄� ¼ F�jμ¼mbe

;

dp̃ ¼ d3p
ð2πÞ32E ; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmbe

2

q
: ðA4Þ

When one adds the coupling ϵjϕj2jχj2 to the standard
model [see Eq. (2)] there is an additional contribution

ΔPbe ¼ −ϵFH

�
1

2
C2 þ

Z
dp̃Fþ

�
;

FH ¼ mH
2

π2

Z
∞

0

dα
sinh2α

eðmH=TÞ coshα − 1
; ðA5Þ

where FH is generated by the ϕ, when the ϕ acquires an
expectation value FH → v2 þ FH=4. This term is subdomi-
nant whenmH > mbe as we will assume for the most part of
this paper; note also that stability conditions (see Sec. I) do
not allow ϵ to be too large and negative. The total pressure
has additional terms, generated by the standard model;
these terms, however, do not involve C.
Before proceeding we remark on the type of perturbative

expansion we will use: we assume that C is independent of
λbe, and μ to have a λbe dependence

17; we believe this to be
reasonable because, e.g., the condition for the presence of a
BEc when λbe ¼ 0 is μ ¼ mbe, and becomes μ > mbe when
λbe ≠ 0 (see below) that naturally leads to a relation of the
form μ ¼ mbe þOðλbeÞ.
The zero-momentum component C is determined by the

condition that it minimizes the thermodynamic potential
−PbeðC; μ; TÞ:�∂Pbe

∂C
�

¼ λbeC



δ − F −

1

2
C2


þOðλ2beÞ; ðA6Þ

where [F̄� are defined in (A4)]

μ2 ¼ mbe
2 þ λbeδ; F ¼ 2

Z
dp̃F̄þ: ðA7Þ

So there are two cases:

17If, on the other hand μ is assumed to be independent of λbe,
then C ∝ 1=

ffiffiffiffiffiffi
λbe

p
diverges as λbe → 0.
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(1) δ < F : then there is a single extremum, C ¼ 0,
which is a maximum and corresponds to the stable
state; there is no BEc.

(2) δ > F : then there are two extrema: C ¼ 0 which is
now a minimum, and does not correspond to the
stable state, and

C2 ¼ 2ðδ − FÞ þOðλbeÞ; ðA8Þ
which is a maximum and corresponds to the stable
(BEc) configuration.

The transition occurs when δ ¼ F ; approximating F ≃
Fðmbe ¼ 0Þ we find that the critical temperature is

T2
c ≃

6

λbe
ðμ2 −mbe

2Þ; ðA9Þ

which is a known result [68,69].
From Pbe we find the expressions for the charge density

qbe and entropy density sbe to OðλbeÞ:

(i) δ < F :

Pbe ¼
2

3

Z
dp̃p2Fþ − λbe

�Z
dp̃Fþ

�
2

qbe ¼
Z

d3p
ð2πÞ3F− − λbe

�Z
dp̃Fþ

��Z
d3p
ð2πÞ3 p

−2F−

�

sbe ¼
Z

d3p
ð2πÞ3

�
1 − λbe

K2

p2

�X
�
½ðn�be þ 1Þ lnðn�be þ 1Þ − n�be ln n

�
be�; ðA10Þ

where K2 ¼ 4
R
dp̃Fþ.

(ii) δ ¼ F :

Pbe ¼
2

3

Z
dp̃p2F̄þ −

1

4
λbeF

�
F −

2

m

Z
d3pF̄−

�
;

qbe ¼
Z

d3p
ð2πÞ3 F̄− þ 4λbeF

m

�
m
4

Z
d3p
ð2πÞ3

F̄þ − F̄−

p2
þ
Z

dp̃
Eþm=2
Eþm

F̄þ

�
;

sbe ¼
Z

d3p

�
1 − λbe

2F
p2

�X
�
½ðn�be þ 1Þ lnðn�be þ 1Þ − n�be ln n

�
be�μ¼mbe

þ λbeF
T

Z
dp̃



E2 þ p2

p2
ðF̄− − F̄þÞ þ

3E2 þmE −m2

mðEþmÞ F̄−


: ðA11Þ

(iii) δ > F :

Pbe ¼
2

3

Z
dp̃p2F̄þ −

1

4
λbe

�
F2 −

C4

2
−
C2 þ 2F

m

Z
d3pF̄−

	
;

qbe ¼ qðcÞbe þ
Z

d3p
ð2πÞ3 F̄− þOðλbeÞ;

sbe ¼
Z

d3p

�
1 − λbe

2ðC2 þ FÞ
p2

�X
�
½ðn�be þ 1Þ lnðn�be þ 1Þ − n�be ln n

�
be�μ¼mbe

þ λbeðF þ C2=2Þ
T

Z
dp̃



E2 þ p2

p2
ðF̄− − F̄þÞ þ

3E2 þmE −m2

mðEþmÞ F̄−


: ðA12Þ

with qðcÞbe ¼ mbeC2 þOðλbeÞ. The OðλbeÞ corrections to qbe in the BEc phase are obtained from the Oðλ2beÞ terms in
Pbe, fortunately these are not needed.

The curvature of the thermodynamic potential −PbeðC; μ; TÞ at C ¼ 0 equals λbeðF − δÞ ≃ λbeT2=6þmbe
2 − μ2 for large

T [see Eq. (A6)]. In this regime the radiative corrections oppose the formation of a condensate; if this is indicative of the
exact result, the condensate will disappear as T → ∞. The behavior of the critical density (qbe at the transition) is given in
Fig. 6 which also illustrates the effects of the OðλbeT2Þ contributions.
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When the volume V is constant and the total charge in
the system is Qbe the behavior of the condensate as a
function of T can be obtained using standard arguments;
the results are illustrated in Fig. 7 where the critical
temperature TC is defined by requiring qbe ¼ Qbe=V when
δ ¼ F .
In the non-relativistic limit (x ≫ 1) the OðλbeÞ can be

ignored in the phase where there is no condensate. To see
this, consider, e.g., the expression for Pbe:

Pbe ¼
mbe

4

π2x2

�
coshðβμÞK2ðxÞ þ

coshð2βμÞ
4

K2ð2xÞ

−
λbecosh2ðβμÞ

4π2
K2

1ðxÞ þ � � �
	
; ðA13Þ

which shows that the leadingOðλbeÞ corrections are smaller
than the subdominant Oðλ0beÞ contributions. This behavior
is reproduced in all thermodynamic quantities in when
x ≫ 1 and there is no BEc.
We also need the behavior of the thermodynamic

quantities at the transition (when δ ¼ F ) in the ultra-
relativistic (x ≪ 1) and nonrelativistic (x ≫ 1) limits:

x ≪ 1∶ Pbe ¼
π2mbe

4

45x4

�
1þ 15λbe

16π2

	
þ � � �

qbe ¼
mbe

3

3x2

�
1 −

3x
π2

þ λbe
12x2

�
1 −

3

π2
x ln x

�
þ � � �

	

sbe ¼
4π2mbe

3

45x3

�
1þ 5λbe

16π2

	
þ � � �

ρbe ¼
π2mbe

4

15x4

�
1þ 5λbe

16π2

	
þ � � � ðA14Þ

x ≫ 1∶ Pbe ¼
mbe

4ζ5=2
ð2πÞ3=2x5=2

�
1þ ζ7=2

ζ5=2

15

8x
þ � � �

	

þ λbe
mbe

4ζ23=2
ð2πxÞ3 þ � � �

qbe ¼
mbe

3ζ3=2
ð2πxÞ3=2

�
1þ ζ5=2

ζ3=2

15

8x
þ � � �

	

þ 3λbembe
3ζ23=2

2ð2πxÞ3 þ � � �

sbe ¼
5mbe

3ζ5=2
2ð2πxÞ3=2

�
1þ ζ7=2

ζ5=2

21

8x
þ � � �

	

þ 9λbembe
3ζ3=2ζ5=2

128π3x3
þ � � �

ρbe ¼
mbe

4ζ3=2
ð2πxÞ3=2

�
1þ ζ5=2

ζ3=2

27

8x
þ � � �

	

þ λbembe
4ζ23=2

ð2πxÞ3 þ � � � ðA15Þ

where ρbe is the energy density.
In particular, for small x,

qbe
sbe

¼ 15

4π2

�
1−

5λbe
8π2

	�
x−

3x2

π2
þ λbe
12x

�
1−

3

π2
xlnx

�
þ� � �

	
;

ðδ¼ F ;x< 1Þ ðA16Þ
which has a minimum when

xmin ¼
ffiffiffiffiffiffi
λbe
12

r
þ 3λbe

8π2
þ � � � ðA17Þ

The above minimum occurs when theOðλbeÞ corrections
to qbe are of the same size as the Oðλ0beÞ contributions, so
the validity of the expressions for such values of x should
be examined. The leading expression for qbe is ∝

R
d3pF̄−

and behaves as x−2, instead of x−3 as might be expected on
dimensional grounds; such a suppression is not present in
the OðλbeÞ corrections. We argue that a reasonable estimate
of the region where perturbation theory is valid is obtained
by comparing the OðλbeÞ corrections to qbe with a quantity
that does not exhibit the above suppression, such asR
d3pF̄þ. Using this we obtain

FIG. 7. Plot of the condensate density qðcÞbe as a function of T for
constant volume and λbe ¼ 0 (light gray), 0.1 (dark gray) and 0.5
(black), when the critical temperature (see text) TC ¼ 10mbe.
When TC ≪ mbe the OðλbeÞ effects are negligible.

FIG. 6. Plot of the critical density as a function of T for λbe ¼ 0
(light gray), 0.1 (dark gray), and 0.5 (black).
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Z
d3p
ð2πÞ3 F̄þ >

mbe
3λbe

36x4

�
1 −

3

π2
x ln xþ � � �

�

⇒
x

1 − ð3=π2Þx ln x >
λbe
8.8

ðA18Þ

as specifying the lowest value of x for which our pertur-
bative expressions are trustworthy. Since xmin satisfies this
condition, the expression for qbe=sbe can be trusted near the
minimum.

1. χ propagator

The above Hamiltonian and charge operators can be used
to derive the propagator and Feynman rules in the fninte-
temperature real-time formalism, which we use in some of
our calculations. Defining, as usual18

D>
ijðx − x0Þ ¼ hAiðxÞAjðx0Þiβ;

D<
ijðx − x0Þ ¼ hAjðx0ÞAiðxÞiβ; ðA19Þ

(so that D<
ijðx − x0Þ ¼ D>

jiðx0 − xÞ) where

h� � �iβ ¼
trfe−βH � � �g
trfe−βHg : ðA20Þ

Then if,

ρijðkÞ ¼ D>
ijðkÞ −D<

ijðkÞ; D≷
ijðkÞ ¼

Z
d4xeþik:xD≷

ijðxÞ;

ðA21Þ

we have

D<
ijðkÞ ¼ fðk0ÞρijðkÞ; D>

ijðkÞ ¼ −fð−k0ÞρijðkÞ;
fðk0Þ ¼ ðek0β − 1Þ−1: ðA22Þ

A straightforward (though tedious) calculation yields

ρðkÞ¼2πεðk0Þ
�
δðω2−Ω2þÞ−δðω2−Ω2

−Þ
Ω2þ−Ω2

−

	
RðkÞ;

RðkÞ¼
�
k2þμ2−m2−λbeC2=2 −2iμk0

2iμk0 k2þμ2−m2−3λbeC2=2

�
:

ðA23Þ

This has the expected form when μ ¼ 0. For the calcu-
lations in this paper we only need the expression when
λbe ¼ 0:

ρðkÞjλbe¼0 ¼ π
X
s¼�1

ð1� τ2Þεðk0 ∓ μÞδððk0 ∓ μÞ2 − Ē2
kÞ;

ðA24Þ

where Ēk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbe

2 þ k2
p

. This expression is also valid in
the presence of a condensate, when μ ¼ mbe.

2. Higgs propagator and resonant contributions

When the SM and the Bose gas are in thermal equilib-
rium a similar expression can be derived for the Higgs
propagator, however, this approach misses an important
resonant contribution which can occur when mH ¼ 2mbe;
to include it we replace

2πδðp2 −mH
2Þ → 2ΓHmH

ðp2 −mH
2Þ2 þ ðΓHmHÞ2

ðA25Þ

in D≷
H, where ΓH denotes the Higgs width.

APPENDIX B: CROSS SECTION IN THE
PRESENCE OF A CONDENSATE

In this case, writing again χ → ½ðA1 þ CÞ þ iA2�=
ffiffiffi
2

p
we

find, to lowest order,

hWi→fiβ ¼ C2

Z
d4xd4ye−iðp−qÞ:ðx−yÞhTc½A1ðt − iβ;xÞA1ðyÞ�iβ

þ 1

4

Z
d4xd4ye−iðp−qÞ:ðx−yÞ½hTc½A2ðt − iβ;xÞA2ðyÞ�iβ − hA2i2β�; ðB1Þ

where hWi→fi is defined in Eq. (46), V denotes the volume of space time, and we assumed that the incoming momentum p
of the SM particle is different form its outoging momentum q. Now, using Eqs. (A22) and (A24) we find

1

V
hWi→fi ¼ C2D>

11ðPÞjμ¼mbe
þ g2Tfð−P0Þ

2πjPj ln

���� 1þ nþbeðE−Þ
1þ nþbeðEþÞ

1þ n−beðE−Þ
1þ n−beðEþÞ

����
μ¼mbe

; ðB2Þ

where nð�Þ
be are defined in Eq. (33), E� in Eq. (49), and P ¼ p − q. Then

18We follow the conventions of LeBellac [70].
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σ ¼ σð1Þ þ σð2Þ;

σð1Þ ¼ qðcÞbe

2mbejpjqbe

Z 0 d3q
2Eqð2πÞ3

D>
11ðPÞjμ¼mbe

; Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þmη

2

q
;

σð2Þ ¼ 1

2qbejpj
Z 0 d3q

2Eqð2πÞ3
g2Tfð−P0Þ

2πjPj ln

���� 1þ nþbeðE−Þ
1þ nþbeðEþÞ

1þ n−beðE−Þ
1þ n−beðEþÞ

����
μ¼mbe

; ðB3Þ

where Eq is the energy of the outgoing η, qbe the number

density of Bose gas particles, and we used qðcÞbe ¼ mbeC2 for
the number density in the condensate; the prime indicates
that the region p ¼ q should be excluded.
In the nonrelativistic limit, and for mbe ≠ mη, we find

σð1Þ ¼ −
Tn0=n

32πmbep2
ln jfð−E−ÞfðEþÞj;

E� ¼ 2mbep2

mbe
2 þmη

2 � 2mbeĒp
; ðB4Þ

where Ēp is defined in Eq. (35), and f in Eq. (A22). For

T → 0 (so that qðcÞbe → qbe) this reduces to the standard
result, σð1Þ → ½16πðmbe þmηÞ2�−1; also, σð1Þ > 0 for all
parameters of interest.
The evaluation of σð2Þ is more involved. We begin with

the nonrelativistic expression for E�:

E� ¼ mbe þ
1

8mbejPj2
�
jPj2 ∓ mbe

mη
ðp2 − q2Þ

	
2

: ðB5Þ

Then, defining new integration variables

w ¼ jPj
jpj ; z ¼ 1

w

�jqj2
jpj2 − 1

�
mη

mbe
; ðB6Þ

we find

σð2Þ ¼ Tjpj
256π3qbembe

Z
∞

0

dww

×
Z ðwþ2Þmbe=mη

ðw−2Þmbe=mη

dz
expf4lwzg − 1

× ln

���� 1 − expf−lðwþ zÞ2g
1 − expf−lðw − zÞ2g

����; ðB7Þ

where l ¼ βjpj2=ð8mbeÞ. This must be evaluated numeri-
cally for moderate values of l, while for l → ∞, it
gives Eq. (53).
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