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In the framework of effective field theories with prominent helicity-0 and helicity-1 fields coupled to
each other via a dimension-3 operator, we study the dynamics of inflation driven by the helicity-0 mode,
with a given potential energy, as well as the evolution of cosmological perturbations, influenced by the
presence of a mixing term between both helicities. In this scenario, the temporal component of the helicity-1
mode is an auxiliary field and canbe integrated out in terms of the time derivative of the helicity-0mode, so that
the background dynamics effectively reduces to that in single-field inflation modulated by a parameter β
associated to the coupling between helicity-0 and helicity-1modes.We discuss the evolution of a longitudinal
scalar perturbation ψ and an inflaton fluctuation δϕ, and we explicitly show that a particular combination of
these two, which corresponds to an isocurvature mode, is subject to exponential suppression by the vector
mass comparable to theHubble expansion rate during inflation. Furthermore, we find that the effective single-
field description corrected by β also holds for the power spectrum of curvature perturbations generated during
inflation.We compute the standard inflationary observables such as the scalar spectral indexns and the tensor-
to-scalar ratio r and confront several inflaton potentials with the recent observational data provided byPlanck
2018.Our results show that the coupling between helicity-0 and helicity-1modes can lead to a smaller value of
the tensor-to-scalar ratio especially for small-field inflationary models, so our scenario exhibits even better
compatibility with the current observational data.
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I. INTRODUCTION

Inflation [1,2] provides a causalmechanism for generating
primordial density perturbations responsible for large-scale
structures of the Universe [3]. Moreover, the temperature
anisotropies observed in the cosmic microwave background
(CMB) are overall consistent with the prediction of the
inflationary paradigm [4–6]. It is anticipated that the possible
detection of B-mode polarizations in the future will offer the
opportunity to identify the origin of inflation.
The simplest candidate for inflation is a new scalar field

ϕ beyond the Standard Model subject to a particular
potential VðϕÞ. As long as the field evolves slowly along
a nearly flat potential, the primordial power spectra of
scalar and tensor perturbations generated during inflation
are close to scale invariant [7]. The deviation from scale
invariance, characterized by the spectral index ns and the
tensor-to-scalar ratio r, depends strongly on the assumption
about the inflaton potential. Using the bounds of ns and r
constrained from the CMB data, one can distinguish
between different inflationary models [5,6,8–11].
A cosmological accelerated expansion can be driven not

only by a scalar field but also by a vector field. Indeed,
the accelerated solutions were found in Refs. [12,13] in

traditional vector-tensor theories; however, they are generi-
cally plagued by instabilities [14–16]. In the so-called
generalized Proca theories where an Abelian vector field
with broken Uð1Þ gauge symmetry has derivative self-
interactions and nonminimal couplings to gravity [17–19]
(see also Ref. [20]), the existence of a temporal vector
component A0 can give rise to de Sitter solutions. Indeed,
the generalized Proca theories are very successful for
describing the late-time cosmic acceleration [21,22].
On the other hand, there are also mechanisms for

realizing the cosmic acceleration by using spacelike vector
fields [23,24]. Naively this configuration is not compatible
with an isotropic cosmological background, but the rota-
tional invariance can be preserved by considering three
orthogonal vector fields aligned with three spatial direc-
tions. Indeed, three vector fields Aa

μ nonminimally coupled
to the Ricci scalar R in the form RAa

μAaμ can lead to
inflation [25], but such accelerated solutions are plagued by
either ghosts or Laplacian instabilities [26]. Non-Abelian
gauge fields with SUð2Þ gauge symmetry can also be the
source for inflation without instabilities [27,28], but the
scalar spectral index ns and the tensor-to-scalar ratio r are
not compatible with the CMB data [29,30]. There exists an
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inflationary scenario driven by a nonminimally coupled
non-Abelian gauge field [31], but the tensor perturbation is
subject to ghost instabilities [32].
Efforts have also been made to construct well-behaved

inflationary models in the presence of vector fields but
where, as in the standard case, the main source for the
accelerated expansion is a scalar field ϕ. It is of particular
interest in the case where this field is coupled to an Abelian
vector field Aμ. It is known that, for this type of scenario, a
stable inflationary solution with an anisotropic hair exists
for the coupling of the form f2ðϕÞFμνFμν, where Fμν ¼
∇μAν −∇νAμ is the field strength tensor with a covariant
derivative operator ∇μ [33]. The same coupling has often
been used for the generation of magnetic fields during
inflation [34,35], but in such cases the models need to be
carefully constructed to avoid the backreaction and strong-
coupling problems [36–40].
Moreover, in the presence of a real scalar field ϕ and a

vector field Aμ with derivative self-interactions and non-
minimal couplings to gravity, the general action of scalar-
vector-tensor (SVT) theories was recently constructed by
keeping the equations of motion up to second order [41]. In
particular, the massive vector field with broken Uð1Þ gauge
symmetry is relevant to the cosmological application. In
this case, the vector perturbation is subject to exponential
suppression by the mass of Aμ.
Among the possible interactions between scalar and

massive vector fields, and in particular for inflation, the
coupling Aμ∇μϕ is the simplest one modifying the inflaton
velocity, _ϕ, during the cosmic expansion. This interaction is
not only present in SVT theories but arises in many
effective field theories as one of the lowest-order operators,
once the involved broken gauge symmetries are compen-
sated by the introduction of appropriate Stückelberg fields.
In addition, the vector-field contribution to the total energy
density during inflation is subdominant relative to the
scalar potential VðϕÞ, yet the modification to the inflaton
velocity induced by the vector field can affect the primor-
dial power spectra of scalar and tensor perturbations. See
Ref. [42] for a recent review on the systematic construction
of modified gravity theories based on additional scalar,
vector, and tensor fields (see also [43]).
For the aforementioned type of interaction, Aμ∇μϕ, there

exists a longitudinal scalar perturbation, ψ , arising from Aμ,
besides the inflaton fluctuation δϕ [44–46]. This longi-
tudinal perturbation contributes to the total curvature
perturbation R in a nontrivial way. Therefore, the compu-
tation of the primordial power spectrum, incorporating both
ψ and δϕ, is not as straightforward as in the standard
canonical case. In this paper, we address this problem and
derive the standard inflationary observables such as ns and
r under the slow-roll approximation. We show that, as in
the canonical case, one can relate these observables with
slow-roll parameters but with a rescaling factor β coming

from the helicity-0 and helicity-1 mixing. Using these
general expressions, we then confront several different
inflaton potentials with the recent CMB data provided by
the 2018 results from the Planck Collaboration [6].
This paper is organized as follows. In Sec. II, we discuss

the background inflationary dynamics and show that the
system effectively reduces to that of a single-field inflation.
In Sec. III, we revisit the primordial tensor power spectrum
generated in our scenario and also study the evolution of
vector perturbations during inflation. In Sec. IV, we inves-
tigate how the perturbations ψ and δϕ evolve during inflation
and obtain the resulting power spectrum of total curvature
perturbations. In Sec. V, we compute inflationary observ-
ables and test several inflaton potentials with the latest
Planck 2018 data. Section VI is devoted to conclusions.

II. INFLATION WITH A SCALAR-VECTOR
COUPLING

In many effective field theories, mixings between differ-
ent helicity modes, even with derivative interactions, arise
in a natural way. In massive gravity and massive Proca
theories, the decomposition of helicities yields interesting
couplings among them [17,19,47]—this, in fact, motivated
the construction of SVT theories [41]. The particular
mixing of the form Aμ∇μϕ arises quite naturally and is a
unique coupling that modifies the involved propagators of
scalar and vector fields. As we will see below, one possible
origin of this coupling is the standard Proca mass term,
which modifies the property of the propagator by the mass
parameter.
Let us consider, for instance, the Lagrangian of the

standard Proca field:

LAμ
¼ −

1

4
FμνFμν −

1

2
M2AμAμ: ð2:1Þ

The existence of the mass termM explicitly breaks theUð1Þ
gauge symmetry and therefore the massive spin-1 field
propagates 3 degrees of freedom. Since the gauge invariance
is just a redundancy, one can restore it by introducing a
Stückelberg field ϕ via the field transformation

Aμ → Aμ þ∇μϕ: ð2:2Þ

The initial Lagrangian for the massive spin-1 field (2.1) then
modifies to

LAμ
¼ −

1

4
FμνFμν −

1

2
M2ðAμ þ∇μϕÞðAμ þ∇μϕÞ: ð2:3Þ

Notice that the kinetic term−FμνFμν=4 is notmodified under
this change of variables since it is gauge invariant. Here, the
helicity-0 field ϕ represents the longitudinal mode of the
massive vector field. Written in this form, the standard
Proca theory is now invariant under the simultaneous
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transformations Aμ → Aμ þ∇μθ and ϕ → ϕ − θ. After
canonically normalizing the Stückelberg field ϕ → ϕ=M,
the Lagrangian becomes

LAμ
¼ −

1

4
FμνFμν −

1

2
M2AμAμ −

1

2
∇μϕ∇μϕ

−MAμ∇μϕ: ð2:4Þ

The last term is exactly the couplingwe are interested in. This
Lagrangian constitutes our low energy effective field theory.
In the following, we will consider a soft breaking of the

shift symmetry of the helicity-0 mode and introduce a
scalar potential VðϕÞ of the real scalar field ϕ for the
purpose of realizing a successful inflationary scenario. Bear
in mind that any UV completion will unavoidably intro-
duce the breaking of global symmetry anyway. Our setup
consists in an inflationary scenario in which the inflaton
field ϕ has a derivative interaction with a massive vector
field Aμ of the form Aμ∇μϕ, equivalent to that in Eq. (2.4).
The inflationary period is mostly driven by the scalar
potential VðϕÞ, but the scalar-vector coupling modifies the
dynamics of inflation and the primordial power spectra of
cosmological perturbations. We then focus on the action1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ F þ X1 − VðϕÞ

þ βmMX2 þ βAM2X3

�
; ð2:5Þ

where g is the determinant of a metric tensor gμν, Mpl is
the reduced Planck mass, R is the Ricci scalar, and
F ¼ −ð1=4ÞFμνFμν. The quantity X1 is the scalar
kinetic energy X1 ¼ −ð1=2Þ∇μϕ∇μϕ, while X2 and X3

are defined by

X2 ¼ −
1

2
Aμ∇μϕ; X3 ¼ −

1

2
AμAμ: ð2:6Þ

In the last two terms of Eq. (2.5), M is a positive constant
(mass of the vector field) relevant to the mass scale of
inflation, and βm and βA are dimensionless constants

associated with the scalar-vector mixing and the vector
mass, respectively.
To discuss the background dynamics of inflation, we

consider the flat Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime described by the line element ds2 ¼
−dt2 þ a2ðtÞδijdxidxj, where aðtÞ is a time-dependent
scale factor. The vector-field profile compatible with this
metric is of the form Aμ ¼ ðA0ðtÞ; 0; 0; 0Þ, with a time-
dependent scalar field ϕ ¼ ϕðtÞ. The background equa-
tions of motion in full parity-invariant SVT theories were
already derived in Refs. [44,45]. For the action (2.5), they
are given by

3M2
plH

2 ¼ 1

2
_ϕ2 þ V −

1

2
βAM2A2

0; ð2:7Þ

− 2M2
pl
_H ¼ _ϕ2 þ 1

2
βmM _ϕA0; ð2:8Þ

ϕ̈þ 3H _ϕþ V;ϕ þ
1

2
Mβmð _A0 þ 3HA0Þ ¼ 0; ð2:9Þ

A0 ¼ −
βm

2βAM
_ϕ; ð2:10Þ

where H ≡ _a=a is the Hubble expansion rate, a dot
represents a derivative with respect to cosmic time t, and
V;ϕ ≡ dV=dϕ. From Eq. (2.10), we notice that the temporal

vector component A0 is simply proportional to _ϕ.
Substituting Eq. (2.10) into Eqs. (2.7)–(2.9), we obtain

3M2
plH

2 ¼ 1

2
β _ϕ2 þ V; ð2:11Þ

− 2M2
pl
_H ¼ β _ϕ2; ð2:12Þ

ϕ̈þ 3H _ϕþ V;ϕ

β
¼ 0; ð2:13Þ

where we have defined

β≡ 1 −
β2m
4βA

: ð2:14Þ

The coupling β is different from 1 due to the mixing term
βm. This leads to the modified evolution of ϕ compared to
the standard case (β ¼ 1).
In Refs. [44,45], the authors derived conditions for the

absence of ghost and Laplacian instabilities of linear
cosmological perturbations in the small-scale limit. The
propagation speeds of tensor, vector, and scalar perturba-
tions are all equivalent to that of light for the theory given
by the action (2.5). The no-ghost conditions of tensor and
vector perturbations are trivially satisfied, while the scalar
ghost is absent under the condition

1It is worth emphasizing that this model propagates 6 degrees
of freedom: 2 as in standard GR, 3 from the massive vector field,
and 1 from the scalar field. The Proca Lagrangian in (2.1) written
as (2.4), on the other hand, propagates only 5 degrees of freedom
(including gravity). After introducing the Stückelberg field, the
Proca vector field becomes gauge invariant and the longitudinal
mode of the initial Proca field is transformed into the Stückelberg
field itself. By including a general potential term for the scalar
field, we explicitly break the previously restored gauge symmetry
(or the related shift symmetry of the scalar field) and the theory
propagates one more degree of freedom. This serves just for
illustrative purposes, namely, that the operator Aμ∇μϕ is a
Hermitian operator.
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qs ¼
M2

16
ð4βA − β2mÞ > 0; ð2:15Þ

and hence 4βA > β2m ≥ 0. Then, the coupling (2.14) lies in
the range

0 < β ≤ 1: ð2:16Þ

From Eq. (2.13), the nonvanishing mixing term βm effec-
tively leads to a faster inflaton velocity.
Employing the slow-roll approximations β _ϕ2=2 ≪ V

and jϕ̈j ≪ j3H _ϕj in Eqs. (2.11) and (2.13), it follows that

3M2
plH

2 ≃ V; ð2:17Þ

3H _ϕ ≃ −
V;ϕ

β
: ð2:18Þ

The slow-roll parameter associated with the cosmic expan-
sion rate is given by

ϵ≡ −
_H
H2

≃
ϵV
β
; ð2:19Þ

where we used Eq. (2.12), and we define

ϵV ≡M2
pl

2

�
V;ϕ

V

�
2

: ð2:20Þ

The existence of the nonvanishing mixing term βm breaks
the relation ϵ ≃ ϵV in standard inflation. The field value
ϕ ¼ ϕf at the end of inflation can be derived by the
condition ϵðϕfÞ ¼ 1, i.e.,

ϵVðϕfÞ ¼ β: ð2:21Þ

The number of e-foldings counted to the end of inflation is
given by

N ¼
Z

ϕf

ϕ

H
_̃ϕ
dϕ̃ ≃

β

M2
pl

Z
ϕ

ϕf

V
V;ϕ̃

dϕ̃; ð2:22Þ

where, in the last approximate equality, we again used the
slow-roll approximation. For smaller β, the number of
e-foldings gets smaller with a given initial value of ϕ.
This is attributed to the fact that the inflaton velocity is
effectively increased by the nonvanishing coupling βm.
If we introduce a rescaled field φ defined by

dφ
dϕ

¼
ffiffiffi
β

p
; ð2:23Þ

then Eqs. (2.11)–(2.13) reduce, respectively, to

3M2
plH

2 ¼ 1

2
_φ2 þ V; ð2:24Þ

− 2M2
pl
_H ¼ _φ2; ð2:25Þ

φ̈þ 3H _φþ V;φ ¼ 0: ð2:26Þ

This means that the background dynamics in the presence
of ϕ and A0 ∝ _ϕ is equivalent to the effective single-field
dynamics driven by the scalar field φ. From Eq. (2.23), we
have _ϕ ¼ _φ=

ffiffiffi
β

p
, so the inflaton ϕ evolves faster than the

rescaled field φ for βm ≠ 0.

III. TENSOR AND VECTOR PERTURBATIONS

In this section, we revisit the tensor power spectrum
generated during inflation [44,45] and also discuss the
evolution of vector perturbations in SVT theories given by
the action (2.5).

A. Tensor perturbations

The perturbed line element containing intrinsic tensor
modes hijðt; xiÞ on the flat FLRW background is given by

ds2t ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj; ð3:1Þ

where hij obeys the transverse and traceless conditions
∇jhij ¼ 0 and hii ¼ 0. From Eq. (3.2) of Ref. [44], the
second-order action of hij, for the theory given by Eq. (2.5),
is the same as that in GR, i.e.,

Sð2Þ
t ¼

Z
dtd3x

a3M2
pl

8
δikδjl

�
_hij _hkl −

1

a2
ð∂hijÞð∂hklÞ

�
;

ð3:2Þ
where the symbol ∂ represents the spatial partial derivative.
In Fourier space with the coming wave number k, the
equation of motion of hij is given by

ḧij þ 3H _hij þ
k2

a2
hij ¼ 0: ð3:3Þ

Deep inside the Hubble radius (k=a ≫ H), the tensor
perturbation is in a Bunch-Davies vacuum state, whereas
after the Hubble exit (k=a < H) during inflation, hij soon
approaches a constant. Taking into account two polariza-
tion states, the primordial tensor power spectrum (per unit
logarithmic wave number interval) generated during infla-
tion yields [44]

Pt ¼
2H2

π2M2
pl

����
k¼aH

; ð3:4Þ
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which should be evaluated at the Hubble exit. By using the
slow-roll approximation (2.17), Eq. (3.4) can be expressed
in terms of V as

Pt ≃
2V

3π2M4
pl

����
k¼aH

: ð3:5Þ

B. Vector perturbations

For the vector sector, we choose the perturbed line
element in the flat gauge

ds2v ¼ −dt2 þ 2Vidtdxi þ a2ðtÞδijdxidxj; ð3:6Þ

where the vector perturbation Viðt; xiÞ obeys the transverse
condition ∇iVi ¼ 0. The spatial component of Aμ contains
the intrinsic vector mode Zi and the longitudinal scalar
perturbation ψ , such that

Ai ¼ Zi þ∇iψ ; ð3:7Þ

where Zi obeys the condition ∇iZi ¼ 0. In this section, we
study the evolution of vector perturbations Zi during
inflation, leaving the analysis of scalar mode ψ for Sec. IV.
Without loss of generality, we can choose the compo-

nents of Vi and Zi in the forms Vi ¼ ðV1ðt; zÞ; V2ðt; zÞ; 0Þ
and Zi ¼ ðZ1ðt; zÞ; Z2ðt; zÞ; 0Þ. After integrating out the
nondynamical field Vi, the second-order action of vector
perturbations reduces to [44]

Sð2Þ
v ¼

Z
dtd3x

X2
i¼1

a
2

�
_Z2
i −

1

a2
ð∂ZiÞ2−βAM2Z2

i

�
: ð3:8Þ

Then, in Fourier space, the dynamical perturbation Zi
obeys

Z̈i þH _Zi þ
�
k2

a2
þ βAM2

�
Zi ¼ 0; ð3:9Þ

which can be written as

Z00
i þ ðk2 þ a2βAM2ÞZi ¼ 0; ð3:10Þ

where a prime represents the derivative with respect to the
conformal time τ ¼ R

a−1dt. For the modes satisfying the
condition k2 ≫ a2βAM2, the perturbation is in a Bunch-
Davies vacuum state characterized by Zi ¼ e−ikτ=

ffiffiffiffiffi
2k

p
. On

the other hand, after the mass term a2βAM2 dominates over
k2 during inflation, we solve Eq. (3.9) for Zi under the
conditions that H ¼ constant and that k2=a2 is negligible
relative to βAM2. We then obtain the following solution:

Zi ¼ Aþeλþt þ A−eλ−t; ð3:11Þ

where A� are integration constants, and

λ� ¼ H
2

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4βAM2

H2

r �
: ð3:12Þ

Since βA > 0, the vector mass term leads to the exponential
suppression of Zi after the perturbation enters the region
k2=a2 < βAM2. The term in the square root of Eq. (3.12)
becomes negative for 4βAM2 > H2. Now, we would like to
consider the case in which M is of the same order as the
Hubble expansion rate H during inflation. Then, for the
coupling

βA ¼ Oð1Þ; ð3:13Þ

the condition 4βAM2 > H2 is satisfied. In this case, the
amplitude of Zi decreases as

jZij ∝ e−Ht=2; ð3:14Þ

with damped oscillations. Then, the vector perturbation
decays very fast once it enters the region k2=a2 < βAM2.
Since βAM2 is of the same order as H2, this exponential
suppression starts to occur around the same moment of the
Hubble exit (k2=a2 < H2).
In the following, we focus on the coupling βA of order 1.

Then, the amplitude of vector perturbations at the end of
inflation is completely negligible relative to those of tensor
and scalar perturbations, so we can ignore the contributions
of vector perturbations to the total primordial power
spectrum.

IV. PRIMORDIAL SCALAR POWER SPECTRUM
GENERATED DURING INFLATION

Let us proceed to the derivation of the scalar power
spectrum generated in our model given by the action (2.5).
In doing so, we begin with the perturbed line element on the
FLRW background in the flat gauge:

ds2s ¼−ð1þ2αÞdt2þ2∇iχdtdxiþa2ðtÞδijdxidxj; ð4:1Þ

where α and χ are scalar metric perturbations. We decom-
pose the scalar field ϕ into the background and perturbed
parts as

ϕ ¼ ϕ0ðtÞ þ δϕðt; xiÞ: ð4:2Þ

In the following, we omit the subscript “0” from the
background value of ϕ. The temporal component of Aμ

is expressed in the form

A0 ¼ −A0ðtÞ þ δAðt; xiÞ; ð4:3Þ
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whereas the spatial vector component Ai contains the
longitudinal scalar perturbation ψ as Eq. (3.7).
The second-order action Sð2Þ

s of scalar perturbations was
already computed in full parity-invariant SVT theories [44].
In our theories given by the action (2.5), we show the

explicit form of Sð2Þ
s in Eq. (A1) of the Appendix. Varying

the action Sð2Þ
s with respect to α; χ; δA, we obtain the

equations of motion for these nondynamical perturbations;
see Eqs. (A4)–(A6). After integrating them out from the
action, we are finally left with two dynamical real fields, ψ
and δϕ. In general, any real scalar field X can be expanded
in Fourier series, as

X ¼
Z

d3k
ð2πÞ3 ½XkðtÞaðkÞeik·x þ X�

kðtÞa†ðkÞe−ik·x�; ð4:4Þ

where k is a coming wave number and XkðtÞ is the mode
function in Fourier space. For a quantized field X , the
coefficient aðkÞ and its Hermitian conjugate a†ðkÞ corre-
spond to annihilation and creation operators.
Thus, the second-order action for dynamical perturba-

tions X t ¼ ðψk; δϕkÞ in Fourier space can be written as

Sð2Þ
s ¼

Z
dtd3xa3

�
_X⃗
t
K _X⃗ −

k2

a2
X⃗ tGX⃗ − X⃗ tMX⃗

�
; ð4:5Þ

whereK,G, andM are2 × 2matrices. ThematrixM does not

contain the k2 term.Wenote that the term X⃗ tB _X⃗ appearing in
Ref. [44] has been absorbed into M after the integration
by parts. The nonvanishingmatrix components are given by2

K11 ¼
k2βAM2

2ðk2 þ a2βAM2Þ ; K12 ¼ K21 ¼
βm

2βAM
K11;

K22 ¼
1

2
−

a2β2mM2

8ðk2 þ a2βAM2Þ ;

G11 ¼
βAM2

2
; G12 ¼ G21 ¼

βmM
4

; G22 ¼
1

2
;

M22 ¼
V;ϕϕ

2
−
ð1 − δ2ϕÞV2

;ϕ

6M2
plH

2
−
ð1þ δϕÞ4V4

;ϕ

324βH6M4
pl

; ð4:6Þ

where we used the background Eqs. (2.11)–(2.13) to elimi-
nate _H and ϕ̈.We also introduced the dimensionless quantity

δϕ ≡ βϕ̈

V;ϕ
¼ −

3βH _ϕþ V;ϕ

V;ϕ
; ð4:7Þ

which is smaller than order 1 during inflation. The off-
diagonal componentsK12 andG12 do not vanish for βm ≠ 0.

To study the evolution of perturbations ψk and δϕk in
Fourier space, we introduce the following combination:

δχk ≡ ψk þ
βm

2βAM
δϕk: ð4:8Þ

Varying the action (4.5) with respect to ψk and using the
properties that bothK12=K11 andG12=G11 are equivalent to
βm=ð2βAMÞ, we obtain

1

a3
d
dt

ða3K11
_δχkÞ þ

k2

a2
G11δχk ¼ 0: ð4:9Þ

For k2=a2 ≫ βAM2, we have K11 → βAM2=2 ¼ G11 and
hence Eq. (4.9) reduces to

δ̈χk þ 3H _δχk þ
k2

a2
δχk ¼ 0: ð4:10Þ

This equation is of the same form as Eq. (3.3) for tensor
perturbations, i.e., the equation of motion of a massless
field. For the modes deep inside the Hubble radius
(k2=a2 ≫ H2), the canonically normalized field vk ¼ffiffiffi
2

p
aδχk is in a Bunch-Davies vacuum state characterized

by vk ¼ e−ik
R

dt=a=
ffiffiffiffiffi
2k

p
. Since we are considering the

coupling in Eq. (3.13) with M ≃H during inflation, the
transition to another regime k2=a2 < βAM2 occurs around
the exit of the Hubble radius.
For k2=a2 ≪ βAM2, we have K11 → k2=ð2a2Þ, so

Eq. (4.9) yields

δ̈χk þH _δχk þ βAM2δχk ¼ 0; ð4:11Þ

which is of the same form as Eq. (3.9) after taking the same
limit. On the quasi–de Sitter background (H ≃ constant),
the solution to Eq. (4.11) is given by

δχk ¼ Aþeλþt þ A−eλ−t; ð4:12Þ

where λ� are equivalent to those given in Eq. (3.12).
Analogous to the intrinsic vector mode Zi, the perturbation
δχk starts to be exponentially suppressed after it enters the
region k2=a2 < βAM2.
For the coupling βA satisfying 4βAM2 > H2, the ampli-

tude of δχk decreases as jδχkj ∝ e−Ht=2. Then, the pertur-
bation δχk is vanishing small at the end of inflation, so we
can set δχk ≃ 0 in Eq. (4.8) and hence

ψk ≃ −
βm

2βAM
δϕk: ð4:13Þ

One can notice that, from Eq. (2.10), the relation between
ψk and δϕk is analogous to that between A0 and _ϕ.
The only possibility for avoiding the above strong

suppression is to consider the small coupling βA ≪ 1.

2Unlike Ref. [44], the small-scale limit k2 → ∞ is not taken
here, so that the components of K contain k2-dependent terms.
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In this case, there is a period characterized byH2 > k2=a2 >
βAM2 duringwhich the perturbation δχk is temporally frozen
with the value at the Hubble radius crossing. However, after
the perturbation enters the region k2=a2 < βAM2, δχk starts
to decay according to Eq. (4.12). It is possible to derive the
solution to Eq. (4.11) even for the background where the
scale factor evolves as a ∝ tp, wherep is a positive constant.
In this case the resulting solution is given by jδχkj ∝ t−p=2, so
the suppression of δχk also occurs after inflation whenever
H2 drops below the order of βAM2.
Varying the action (4.5) with respect to δϕk, it follows

that

1

a3
d
dt

½a3ðK22
_δϕk þ K12 _ψkÞ� þ

k2

a2
ðG22δϕk þ G12ψkÞ

þM22δϕk ¼ 0: ð4:14Þ

Now, we employ Eq. (4.8) and its time derivative to
eliminate ψk and _ψk from Eq. (4.14). In doing so, we also
resort to the fact that δχk obeys Eq. (4.9). Then, the
contributions arising from δχk to Eq. (4.14) cancel out,
so that

1

a3
d
dt

ða3K̃22
_δϕkÞ þ

�
k2

a2
G̃22 þM22

�
δϕk ¼ 0; ð4:15Þ

where

K̃22 ≡ K22 −
βm

2βAM
K12 ¼

β

2
; ð4:16Þ

G̃22 ≡G22 −
βm

2βAM
G12 ¼

β

2
: ð4:17Þ

Taking the limit β → 1 in Eq. (4.15) with Eqs. (4.16)
and (4.17), we recover the perturbation equation of δϕk in
standard single-field inflation.
We introduce the canonically normalized field δσk as

δσk ≡ a
ffiffiffi
β

p
δϕk: ð4:18Þ

Then, we can express Eq. (4.15) in the form

δσ00k þ
�
k2 −

a00

a
þ 2a2M22

β

�
δσk ¼ 0: ð4:19Þ

On the quasi–de Sitter background characterized by
H ≃ constant, the conformal time τ ¼ R

a−1dt is approx-
imately given by τ ≃ −ð1þ ϵÞ=ðaHÞ. Applying the slow-
roll approximation (2.17) to the mass termM22 and picking
up next-to-leading order terms in slow roll in Eq. (4.19), we
obtain

δσ00k þ
�
k2 − 2ðaHÞ2

�
1þ 5ϵV − 3ηV

2β

��
δσk ¼ 0; ð4:20Þ

where we used the relation (2.19) and introduced the
second slow-roll parameter

ηV ≡M2
plV;ϕϕ

V
: ð4:21Þ

Neglecting the time variations of ϵV and ηV , the solution to
Eq. (4.20), which recovers the Bunch-Davies vacuum state
(δσk ¼ e−ikτ=

ffiffiffiffiffi
2k

p
) in the asymptotic past (kτ → −∞), is

given by

δσk ¼
ffiffiffiffiffiffiffiffi
πjτjp
2

eið1þ2νÞπ=4Hð1Þ
ν ðkjτjÞ; ð4:22Þ

where Hð1Þ
ν ðkjτjÞ is the Hankel function of the first kind,

and

ν ¼ 3

2
þ 3ϵV − ηV

β
: ð4:23Þ

Using the relations Hð1Þ
ν ðkjτjÞ → −ði=πÞΓðνÞðkjτj=2Þ−ν for

kτ → 0 and Γð3=2Þ ¼ ffiffiffi
π

p
=2, the solution for δϕk long after

the Hubble exit during inflation is

δϕk ¼ i
Hð1 − ϵÞ
k3=2

ffiffiffiffiffi
2β

p ΓðνÞ
Γð3=2Þ

�
kjτj
2

�
3=2−ν

: ð4:24Þ

In the de Sitter limit characterized by ϵV → 0 and ηV → 0,
the solution (4.24) reduces to δϕk → iH=ðk3=2 ffiffiffiffiffi

2β
p Þ.

We introduce the curvature perturbation in a flat gauge
incorporating both the field perturbations δϕk and ψk as [46]

R ¼ −
Hð _ϕδϕk þM2A0ψkÞ

_ϕ2 þM2A2
0

: ð4:25Þ

By using Eq. (2.10) and eliminating ψk on account of
Eq. (4.8), we can write Eq. (4.25) in the form

R ¼ Rϕ þRχ ; ð4:26Þ

where

Rϕ ¼ −
Hδϕk

_ϕ
; Rχ ¼

2βmβA
4β2A þ β2m

HMδχk
_ϕ

: ð4:27Þ

Since δχk is exponentially suppressed by the end of inflation,
we only need to compute the power spectrum ofRϕ. Taking
Eq. (4.15) with the mass term M22 given in Eq. (4.6), the
perturbation Rϕ obeys
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1

a3ϵ
d
dt

ða3ϵ _RϕÞ þ
k2

a2
Rϕ ¼ 0: ð4:28Þ

In the large-scale limit (k2=a2 → 0), we obtain the following
solution:

Rϕ ¼ c1 þ c2

Z
dt
a3ϵ

; ð4:29Þ

where c1 and c2 are integration constants. In slow-roll
inflation, the second term on the right-hand side of
Eq. (4.29) can be identified as a decaying mode. Then,
Rϕ approaches the constant c1 soon after the Hubble exit.
Then, the primordial power spectrum of PRϕ

per unit
logarithmic wave number interval can be computed at
k ¼ aH as

PRϕ
≡ k3

2π2
jRϕj2 ¼

H4

4π2 _ϕ2β

����
k¼aH

; ð4:30Þ

where we used the leading-order solution of Eq. (4.24).
Applying the slow-roll approximations (2.17)–(2.18) to
Eq. (4.30) and neglecting the contribution from δχk to the
total curvature perturbationR, the resulting primordial scalar
power spectrum is given by

PR ≃
βV3

12π2M6
plV

2
;ϕ

����
k¼aH

: ð4:31Þ

In comparison with the canonical picture of single-field
inflation, the coupling β induces different behavior for the
scalar power spectrum.Using the background fieldφ defined
byEq. (2.23), the power spectrum (4.31) can bewritten in the
form PR ¼ V3=ð12π2M6

plV
2
;φÞjk¼aH. This means that, as

long as the perturbation δχk is negligibly small compared to
δϕk at the end of inflation, the effective single-field descrip-
tion in terms of φ also works for curvature perturbations.

V. OBSERVATIONAL SIGNATURES IN CMB

In this section, we compute inflationary observables to
confront our SVT theories with the CMB data of temper-
ature anisotropies and study how they are modified by the
presence of the coupling β.

A. Inflationary observables

In Sec. III, we showed that vector perturbations are
exponentially suppressed relative to scalar and tensor
perturbations at the end of inflation, so we neglect the
contribution of vector modes to the inflationary power
spectra. At the pivot wave number k0 ¼ 0.05 Mpc−1, the
amplitude of curvature perturbations constrained from
Planck 2018 observations is [6]

PR ¼ βV3

12π2M6
plV

2
;ϕ

¼ 2.1 × 10−9: ð5:1Þ

The spectral indices of tensor and scalar perturbations are
defined, respectively, by

nt ≡ d lnPt

d ln k

����
k¼aH

; ð5:2Þ

ns ≡ 1þ d lnPR

d ln k

����
k¼aH

: ð5:3Þ

From Eqs. (3.5) and (4.31), we obtain

nt ¼ −
2ϵV
β

; ð5:4Þ

ns ¼ 1 −
1

β
ð6ϵV − 2ηVÞ; ð5:5Þ

where we used the slow-roll approximations (2.17)–(2.18).
The tensor-to-scalar ratio is given by

r≡ Pt

PR
¼ 16ϵV

β
¼ 16ϵ: ð5:6Þ

From Eqs. (5.4) and (5.6), the following consistency
relation holds:

r ¼ −8nt; ð5:7Þ

which is of the same form as that in standard single-field
inflation. We study how the coupling β modifies the
observational prediction of ns and r. We show that this
modification generally depends on the form of inflaton
potentials.

B. Different inflaton potentials
and Planck 2018 constraints

In the following, we consider three different inflaton
potentials arising in (i) natural inflation, (ii) α attractors,
and (iii) brane inflation. We also discuss whether these
models can be consistent with the latest Planck 2018 data
[6] in the presence of the scalar-vector mixing.

1. Natural inflation

In natural inflation [48], the potential is given by

VðϕÞ ¼ M2M2
pl

�
1þ cos

�
ϕ

f

��
; ð5:8Þ

where f is a mass scale associated with the shift symmetry.
In this case, the observables (5.1), (5.5), and (5.6) reduce,
respectively, to
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PR ¼ f2βM
2ð1þ xÞ2

12π2M2
plð1 − xÞ ¼ 2.1 × 10−9; ð5:9Þ

ns ¼ 1 −
3 − x

f2βð1þ xÞ ; ð5:10Þ

r ¼ 8ð1 − xÞ
f2βð1þ xÞ ; ð5:11Þ

where fβ ≡ ffiffiffi
β

p
f=Mpl and x≡ cosðϕ=fÞ. From Eq. (2.22),

we obtain N ¼ f2β ln½ð1 − xfÞ=ð1 − xÞ�, so that

x ¼ 1 − ð1 − xfÞe−N=f2β ; ð5:12Þ
where xf ¼ ð1 − 2f2βÞ=ð1þ 2f2βÞ is the value of x at the
end of inflation determined by the condition (2.21).
Substituting Eq. (5.12) into Eqs. (5.10) and (5.11), it
follows that ns and r depend on fβ and N. For a given
N, these observables are functions of fβ alone. Hence the
theoretical curve in the ðns; rÞ plane is the same as that in
standard natural inflation. The only difference is that the
coupling f=Mpl is now modified to fβ ¼

ffiffiffi
β

p
f=Mpl. From

Planck 2015 data [5], the coupling is constrained to be
log10ðfβÞ > 0.84 at 95% C.L., i.e.,

f >
6.9Mplffiffiffi

β
p : ð5:13Þ

As in the standard case, the trans-Planckian problem about
the scale f also persists for β < 1. With given values of f, β,
and N, the mass scale M is known from the Planck
normalization (5.9).
The recent Planck 2018 data combined with the data of

B-mode polarizations available from the BICEP2/Keck
field (BK14) and baryon acoustic oscillations (BAO)
indicate that most of the theoretical values of ns and r
in natural inflation are outside of the 95% C.L. observa-
tional contour; see Fig. 8 of Ref. [6]. As shown above, this
situation is not improved by the mixing term βm between
the inflaton and vector fields.

2. α attractors

The α-attractor model [49] is given by the potential

VðϕÞ ¼ 3

4
αcM2M2

pl

�
1 − exp

�
−

ffiffiffiffiffiffiffi
2

3αc

s
ϕ

Mpl

��2
; ð5:14Þ

where αc is a dimensionless constant.3 Starobinsky
inflation [1] characterized by the Lagrangian fðRÞ ¼ Rþ
R2=ð6M2Þ gives rise to the potential (5.14) with αc ¼ 1

after a conformal transformation to the Einstein frame. In
the limit that αc → ∞, the potential (5.14) reduces to that in
chaotic inflation: VðϕÞ ¼ M2ϕ2=2.
For α attractors, the inflationary observables are

PR ¼ 3α2cβM2ð1 − yÞ4
128π2M2

ply
2

¼ 2.1 × 10−9; ð5:15Þ

ns ¼ 1 −
8yð1þ yÞ

3αcβð1 − yÞ2 ; ð5:16Þ

r ¼ 64y2

3αcβð1 − yÞ2 ; ð5:17Þ

where y≡ e−
ffiffiffiffiffiffiffiffiffiffiffi
2=ð3αcÞ

p
ϕ=Mpl . The number of e-foldings is

given by

N ¼ 3

4
αcβ

�
1

y
−

1

yf
þ ln

y
yf

�
; ð5:18Þ

where yf ¼ ð3αcβ − 2
ffiffiffiffiffiffiffiffiffiffi
3αcβ

p Þ=ð3αcβ − 4Þ is the value of y
at the end of inflation.
For αc < Oð10Þ, y is smaller than order 1 during

inflation. In this case, the dominant contribution to N is
the first term in the parentheses of Eq. (5.18), i.e.,
y ≃ 3αcβ=ð4NÞ ≪ 1. Substituting this expression into
Eqs. (5.16) and (5.17), we obtain

ns ≃ 1 −
2

N
; r ≃

12αcβ

N2
: ð5:19Þ

While ns does not depend on β, the scalar-vector mixing
(βm ≠ 0) leads to a smaller value for the tensor-to-scalar
ratio compared to the case β ¼ 1. The Planck normalization
(5.15) gives

M ¼ 1.3 × 10−5Mpl

ffiffiffi
β

p �
55

N

�
; ð5:20Þ

so that M decreases for smaller β.
For αc ≫ Oð10Þ, y approaches 1 with increasing αc.

Expansion of Eq. (5.18) around y ¼ 1 shows that the
number of e-foldings long before the end of inflation is
approximately given by N ≃ 3αcβð1 − yÞ2=8 ≫ 1. In this
regime, the observables (5.16) and (5.17) reduce to

ns ≃ 1 −
2

N
; r ≃

8

N
; ð5:21Þ

which are equivalent to those in standard chaotic
inflation driven by the potential VðϕÞ ¼ M2ϕ2=2 [9].
From Eq. (5.21), the coupling βmodifies neither ns nor r for
αc ≫ Oð10Þ.
In Fig. 1, we plot the theoretical curves in the ðns; rÞ

plane for β ¼ 1 (red dashed) and β ¼ 0.1 (black thin solid)

3We note that the same potential can be derived from Brans-
Dicke theory with the Lagrangian L¼MplϕR=2−V0ðϕ−MplÞ2
after a conformal transformation to the Einstein frame; see
Eq. (109) of Ref. [50]. The observational constraints on this
model were already performed in 2011; see Fig. 3 of Ref. [50].
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forN ¼ 55 and 1 ≤ αc ≤ 106. For αc ≫ Oð10Þ, the observ-
ables converge to the values in (5.21) irrespective of the
coupling β. With decreasing αc, the difference of r between
the two different values of β tends to be significant. In
Starobinsky inflation (αc ¼ 1), e.g., we have r ¼ 3.9 ×
10−4 for β ¼ 0.1. As estimated from Eq. (5.19), this is by 1
order of magnitude smaller than the value r ¼ 3.5 × 10−3

for β ¼ 1. In both cases, the models are inside a 68% C.L.
observational contour constrained from Planck 2018þ
BK14þ BAO data. Interestingly, even if future observa-
tions place the upper limit of r down to 10−3, the model
with αc ¼ 1 can be still rescued by the coupling β.
As we observe in Fig. 1, the scalar spectral index ns for

β ¼ 0.1 and αc ¼ 1 is slightly smaller than that for β ¼ 1
and αc ¼ 1. This reflects the fact that, in the latter case, the
approximation y ≪ 1 we used for the derivation of ns
in Eq. (5.19) is not completely accurate. As the product
αcβ decreases toward 0, the observables approach
ns → 1 − 2=N and r → 0, which are favored in current
CMB observations.
Since the coupling β smaller than 1 can reduce the value

of r, the bound on αc is less stringent compared to the case
β ¼ 1. For β ¼ 1 the observational upper limit is αc <
4.4 × 10 (68% C.L.), while, for β ¼ 0.1, the bound is
loosened: αc < 4.2 × 102 (68% C.L.). Unless αc is very
much larger than 1 to approach the asymptotic values of ns

and r given by Eq. (5.21), the product αcβ is constrained
to be

αcβ ≲ 40; ð5:22Þ

at 68% C.L. The main reason why r is reduced by the
mixing term βm is that the coupling β leads to smaller y ≃
3αcβ=ð4NÞ (i.e., larger ϕ) for αc < Oð10Þ. This effect
overwhelms the coupling β in the denominator of
Eq. (5.17), so that r has the dependence r ∝ αcβ=N2.
In other words, for β < 1, we require that inflation occurs in
the region where the potential is flatter relative to the case
β ¼ 1 to acquire the same number of e-foldings. This
effectively reduces the value of r ¼ 16ϵ for a given N.

3. Brane inflation

Finally, we study brane inflation characterized by the
effective potential

VðϕÞ ¼ M2M2
pl

�
1 −

�
μ

ϕ

�
p
þ � � �

�
; ð5:23Þ

where p and μ are positive constants. The models arising
from the setup of a D-brane and anti-D-brane configuration
have the power p ¼ 2 [51] or p ¼ 4 [52,53]. For the
positivity of VðϕÞ, we require that z≡ ϕ=μ > 1. We
assume that inflation ends around ϕ ≈ μ before the addi-
tional terms denoted by the ellipsis in Eq. (5.23) contributes
to the potential.
The observables (5.1), (5.5), and (5.6) reduce, respec-

tively, to

PR ¼ βM2μ2ðzp − 1Þ3
12π2M4

plp
2zp−2

¼ 2.1 × 10−9; ð5:24Þ

ns ¼ 1 −
pM2

pl½2ðpþ 1Þzp þ p − 2�
μ2z2ðzp − 1Þ2β ; ð5:25Þ

r ¼ 8p2M2
pl

μ2z2ðzp − 1Þ2β : ð5:26Þ

The number of e-foldings is given by

N ≃
βμ2½z2ð2zp − p − 2Þ þ p�

2M2
plpðpþ 2Þ ; ð5:27Þ

where we used the fact that the value of z at the end of
inflation is zf ≃ 1.
Since inflation occurs in the region zp ≫ 1, we pick up

the dominant contributions to Eqs. (5.25)–(5.27). Then we
have zpþ2 ≃M2

plpðpþ 2ÞN=βμ2, and

FIG. 1. Observational constraints on α attractors in the ðns; rÞ
plane. The green contours represent the 68% C.L. (inside) and
95% C.L. (outside) boundaries derived by the joint data analysis
of Planck 2018þ BK14þ BAO at k ¼ 0.002 Mpc−1 [6]. The
red dashed and black thin solid lines correspond to the cases
β ¼ 1 and β ¼ 0.1, respectively, with N ¼ 55 and 1 ≤ αc ≤ 106.
The red and black circles represent Starobinsky inflation (αc ¼ 1)
with β ¼ 1 and β ¼ 0.1, respectively.
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ns ≃ 1 −
2ðpþ 1Þ
ðpþ 2ÞN ; ð5:28Þ

r ≃ 8p2

�
βμ2

M2
pl

� p
pþ2

�
1

pðpþ 2ÞN
�2ðpþ1Þ

pþ2

; ð5:29Þ

which show that the β dependence appears in r but not in
ns. From Eq. (5.28), we obtain ns ¼ 1–3=ð2NÞ, for p ¼ 2,
and ns ¼ 1–5=ð3NÞ, for p ¼ 4; therefore, one can notice
that the value of ns for these models is larger than the one
obtained from Eq. (5.19) for α attractors. From Eq. (5.29),
the tensor-to-scalar ratio has the dependence r ∝ β1=2=N3=2

for p ¼ 2 and r ∝ β2=3=N5=3 for p ¼ 4. In the limit that
p ≫ 1, we have ns ≃ 1–2=N and r ∝ β=N2, so they have
the same dependence of N and β as those in the α attractors
with αc < Oð10Þ. The scalar-vector mixing works to
reduce the tensor-to-scalar ratio compared to the case
β ¼ 1. Unlike α attractors in which the dependence of r
with respect to β depends on αc, the reduction of r induced
by the coupling β occurs irrespective of the values of μ.
In Fig. 2, we plot the theoretical curves in the ðns; rÞ

plane for the brane inflation scenario with β ¼ 1 and β ¼
0.1 for the mass range 10−3=2 ≤ μ=Mpl ≤ 10. We consider
the models with two different powers: p ¼ 2 and p ¼ 4.

For smaller μ, z gets larger and hence the approximate
results (5.28)–(5.29) tend to be more accurate. As estimated
from Eq. (5.28), the scalar spectral index is nearly constant,
i.e., ns ≃ 0.9727 for p ¼ 2 and ns ≃ 0.9697 for p ¼ 4.
The red circle plotted on the line for p ¼ 2 of Fig. 2

corresponds to themodel parametersβ ¼ 1 andμ=Mpl ¼ 10,
in which case themodel is inside the 95%C.L. observational
contour with r ¼ 2.35 × 10−2. From Eq. (5.29), the tensor-
to-scalar ratio decreases for smaller values of β and μ. When
p ¼ 2, β ¼ 0.1, and μ=Mpl ¼ 10, the numerical value of r is
given by 9.53 × 10−3—see the black circle on the line for
p ¼ 2 of Fig. 2. The models with β < 1 and μ≲ 10Mpl are
consistent with the current upper bound of r. For p ¼ 2, the
scalar spectral index is between the 68% C.L. and 95% C.L.
observational boundaries.
The model with p ¼ 4 gives rise to ns smaller than that

for p ¼ 2, so the former model enters the 68% C.L.
observational contour for μ ≲ 10Mpl and β ≤ 1. The red
circle shown on the line for p ¼ 4 of Fig. 2 corresponds to
β ¼ 1 and μ=Mpl ¼ 10, in which case r ¼ 1.25 × 10−2. For
β ¼ 0.1, this value is reduced to r ¼ 3.41 × 10−3. For
smaller β and μ, the tensor-to-scalar ratio approximately
decreases as r ∝ ðβμ2Þ2=3 for p ¼ 4.
We note that the increase of r induced by the coupling

βð< 1Þ in the denominator of Eq. (5.26) is switched to the
decrease of r by the other term z2þ2p ∝ β−ð2þ2pÞ=ð2þpÞ.
Analogous to α attractors with αc < Oð10Þ, this behavior
occurs in small-field inflation in which the variation
of ϕ during inflation does not exceed the order of Mpl.
In α attractors with αc ≫ Oð10Þ, which corresponds to
large-field inflation, the decrease of r induced by β is not
significant. In chaotic inflation (the limit αc → ∞ in α
attractors), both ϵV and ηV are inversely proportional to N,
in which case both ns and r solely depend on N but not on
β. In small-field inflation, ϵV and ηV have different N
dependence with ϵV ≪ jηV j, in which case the explicit β
dependence appears in r.

VI. CONCLUSIONS

This work was devoted to the study of prominent
effective field theories with helicity-0 and helicity-1 fields
in the presence of a dimension-3 operator that couples the
two sectors. We have investigated the implications of this
coupling for inflation driven by the helicity-0 mode with a
given potential energy, paying particular attention to the
evolution of cosmological perturbations. At the back-
ground level, the temporal component of the helicity-1
mode, A0, is just an auxiliary (nondynamical) field, so that
it can be directly integrated out in terms of the time
derivative of the helicity-0 mode. In this way, the back-
ground dynamics resembles that of a single-field inflation
modulated by a parameter β associated with the coupling
between the helicity-0 and helicity-1 modes.

FIG. 2. Observational constraints on brane inflation in the
ðns; rÞ plane for p ¼ 2 and p ¼ 4. The green contours are the
same as those in Fig. 1. The red dashed and black thin solid lines
represent the cases β ¼ 1 and β ¼ 0.1, respectively, with N ¼ 55
and −1.5 ≤ log10ðμ=MplÞ ≤ 1.0. The red and black circles
correspond to log10ðμ=MplÞ ¼ 1.0 with β ¼ 1 and β ¼ 0.1,
respectively.
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We studied the evolution of longitudinal scalar pertur-
bation ψk in the presence of the inflaton fluctuation δϕk.
The perturbation corresponding to the isocurvature mode is
given by the combination δχk ¼ ψk þ βm=ð2βAMÞδϕk. The
existence of the vector-field mass M comparable to the
Hubble expansion rate during inflation leads to the expo-
nential suppression of δχk after the perturbation enters the
region k2=a2 < βAM2. We then explicitly showed that the
power spectrum of the total curvature perturbation, R,
generated during inflation, corresponds to that of an
effective single-field description also corrected by β.
This is possible due to a similar relation between ψk and
δϕk to that of A0 and _ϕ at the background level, obtained in
fact by the suppression of δχk.
After deriving the power spectra of the scalar and tensor

perturbations generated during inflation, we computed their
spectral indices ns and nt as well as the tensor-to-scalar
ratio r to confront our inflationary scenario with CMB
observations. The mixing between helicity-0 and helicity-1
modes leads to modifications on ns and r through the
parameter β, with the same consistency relation r ¼ −8nt
as in the standard canonical case (β ¼ 1).
We computed the observables PR, ns, and r for several

inflaton potentials to explore the effect of coupling β on
CMB. For natural inflation, these observables reduce to
those of the canonical case after the rescaling of the mass
scale f. In small-field inflation like α attractors and brane
inflation, however, the coupling βð< 1Þ can lead to the
suppression of r ¼ 16ϵ compared to the canonical case.
This is attributed to the fact that, for smaller β, the total field
velocity gets larger and hence inflation needs to start from a
region in which the potential VðϕÞ is flatter to acquire the
sufficient amount of e-foldings. Then, the tensor-to-scalar
ratio decreases by the reduction of ϵ on scales relevant to
observed CMB anisotropies.
In α attractors given by the potential (5.14), we showed

that ns and r are approximately given by ns ≃ 1–2=N
and r ≃ 12αcβ=N2 for αc < Oð10Þ. This includes the
Starobinsky inflation as a special case (αc ¼ 1). The
coupling β smaller than 1 leads to the suppression of r,
so that the α-attractor model exhibits even better compat-
ibility with current CMB observations (see Fig. 1). For
αc < Oð10Þ, we obtained the observational bound αcβ ≲
40 (68% C.L.) from the joint analysis based on the Planck

2018þ BK14þ BAO data sets. The similar suppression of
r and the better compatibility with observations have been
also confirmed for brane inflation given by the potential
(5.23). For β < 1, the brane inflation models with p ¼ 2
and p ¼ 4 are inside the 95% C.L. and 68% C.L. obser-
vational contours, respectively, constrained from the
Planck 2018þ BK14þ BAO data; see Fig. 2.
In this work, we focused on the simple mixing term

Aμ∇μϕ as a first step for computing primordial power
spectra generated during inflation, but the further gener-
alization of couplings between ϕ and Aμ is possible along
the lines of Ref. [41]. It will also be of interest to study
potential signatures of such couplings in the CMB bispec-
trum as well as implications in the physics of reheating.
Another direct implication worth studying is the improve-
ment of standard inflationary models with respect to the de
Sitter swampland conjecture in the presence of this mixing
term [54]. These interesting issues are left for future works.
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APPENDIX: SECOND-ORDER ACTION
FOR SCALAR PERTURBATIONS (4.5)

In this Appendix, we show the details for the derivation
of Eq. (4.5). In Eq. (5.4) of Ref. [44], the second-order
action Sð2Þ

s of scalar perturbations was derived in general
SVT theories by choosing the flat gauge. For the specific
theories given in this work by Eq. (2.5), we have

Sð2Þ
s ¼

Z
dtd3xa3ðLϕ

s þ LGP
s Þ; ðA1Þ

where

Lϕ
s ¼ 1

2
_δϕ2 −

ð∂δϕÞ2
2a2

−
1

2
V;ϕϕδϕ

2 − f _ϕð2 − βÞ _δϕþ V;ϕδϕgαþ _ϕβδϕ
∂2χ

a2
−
βmM
2

�
_δϕδA − δϕ

∂2ψ

a2

�
; ðA2Þ
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LGP
s ¼ −2HM2

plα
∂2χ

a2
þ β2m _ϕ2

2β2AM
2a2

�
ð∂αÞ2 þ ∂2δA

A0

αþ ∂2 _ψ

A0

αþ ð∂δAÞ2
4A2

0

−
_ψ∂2δA
2A2

0

þ ð∂ _ψÞ2
4A2

0

�

þ
�
_ϕ2

�
1

2
þ 3β2m

8βA

�
− 3H2M2

pl

�
α2 þ β2m _ϕ2

8βA

�
δA2

A2
0

− 4α
δA
A0

�
−M2βA

ð∂ψÞ2
2a2

: ðA3Þ

Varying the action (A1) with respect to α; χ; δA, we obtain the three constraint equations in Fourier space, respectively, as

_ϕ

�
1þ β2m

4βA

�
_δϕþ V;ϕδϕ −

�
_ϕ2

�
1þ 3β2m

4βA

�
− 6H2M2

pl

�
αþ β2m _ϕ2

2βA

δA
A0

þ k2

a2

�
β2m _ϕ2

2β2AM
2

�
_ψ

A0

þ δA
A0

�
−
β2m _ϕ2

β2AM
2
α − 2HM2

pl χ

�
¼ 0; ðA4Þ

_ϕ

�
1 −

β2m
4βA

�
δϕ − 2HM2

plα ¼ 0; ðA5Þ

βmM _δϕþ β2m _ϕ2

2βA

�
2α

A0

−
δA
A2
0

�
−
k2

a2
1

A0

�
β2m _ϕ2

2β2AM
2

�
_ψ

A0

þ δA
A0

�
−
β2m _ϕ2

β2AM
2
α

�
¼ 0: ðA6Þ

We solve Eqs. (A4)–(A6) for α; χ; δA and substitute them into Eq. (A1). Then, in Fourier space, we obtain the second-
order action (4.5) for dynamical perturbations X t ¼ ðψk; δϕkÞ with the matrix components given by Eq. (4.6).
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