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It is well known that the tidal deformability of a compact star carries important information about the
interior equation of state (EOS) of the star. The first gravitational-wave event GW170817 from a binary
compact star merger observed by the LIGO/VIRGO detectors has already put limits on the tidal
deformability and provided constraints on the ultra-high nuclear density EOS. In view of this ground-
breaking discovery, we revisit and extend our previous work [Phys. Rev. D 95, 101302(R) (2017)] which
found that taking the effect of elasticity into account in the calculation of the tidal deformability of compact
star models composed of crystalline color-superconducting (CCS) quark matter can break the universal
I-Love relation discovered for fluid compact stars. In this paper, we present our formulation in detail and
provide more analysis to complement our previous findings. We focus and extend the study of the screening
effect on the tidal deformability, which we found previously for hybrid star models, to various theoretical
two-layer compact star models. Besides solid quark stars and hybrid stars, we also consider 1) solid quark
stars dressed in a thin nuclear-matter crust and 2) quark stars with a fluid quark-matter core in the color-
flavor-locked phase surrounded by a solid CCS quark-matter envelope. We show that the screening effect
of these two-layer models in general depends on the thickness of the envelope and the ratio between the
density gap and the core density at the core-envelope interface. However, for models with a fluid envelope
and a vanishingly small density gap, the screening effect remains strong even as the thickness of the
envelops tends to zero if the quark-matter core has a fairly uniform density. The relevance of our study to
GW170817 is also discussed. We find that quark star models which are ruled out by the observation limits
on the tidal deformability can be revived if the entire quark star is in a CCS phase instead of a fluid phase,
thus complicating putting constraints on the quark star EOSs. In contrast, the screening effect causes the
tidal deformability of a hybrid star with a CCS quark-matter core to agree with that of a corresponding
stellar model with a fluid core to within less than 1% if the core size is less than about 70% of the stellar
radius. The implication is that if a hybrid star EOS model is ruled out by the observation limits on the tidal
deformability, the conclusion will hold no matter whether the quark matter is in a fluid or solid state,
assuming that a large solid core comparable to the stellar radius is not favored in nature. Our study
advocates that the tidal deformability not only provides us with information on the EOS, but may also give
insights into the multilayer structure and elastic properties of compact star models composed of CCS quark
matter.
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I. INTRODUCTION

Compact stars have long been perceived as natural
laboratories of matter at extremely high density and low
temperature, which cannot be attained on Earth. The uncer-
tainties of the equations of state (EOSs) of matter in such
an environment can be constrained through observing
the signals from compact stars. Aside from traditional

observations of electromagnetic signals, gravitational-wave
signals from compact stars first came into play last year. On
17 August, 2017, the Advanced LIGO and Virgo network
made the first successful detection of the gravitational-wave
signal from a binary compact star system, GW170817 [1].
The first analysis of the signal already placed upper bounds
on the tidal deformability, which is a parameter quantifying
the ratio of the induced quadrupole moment of a star to an
external tidal field. This parameter, denoted by λ, was shown
to be encoded in the emitted gravitational-wave signals as a
small correction in the phase of the waveform during the
early stage of binary compact star inspirals. The measur-
ability of λ with gravitational-wave observations has been
studied [2–12]. Since this parameter is sensitive to the
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EOS [13,14], the gravitational-wave signals effectively carry
information of the EOS independent of the electromagnetic
signals. Indeed, based on the GW170817 signal, work has
been done to put constraints on the compact star EOSs
[15–24]. With this ground-breaking first observation, the
prospect of using the tidal deformability to probe the
properties of compact stars in the future is very promising.
One of the open questions that may be explored with

gravitational-wave measurements is the properties of quark
matter in a cold dense environment. It is generally believed
that deconfined quarks may exist inside the core of compact
stars, which corresponds to the high-density and low-
temperature region of the QCD phase diagram [25–29].
At asymptotically high density, QCD predicts that the up,
down and strange quarks in the deconfined quark matter
would pair up equally to form standard Cooper pairs based
on the BCSmechanism and become color superconducting.
This phase of quark matter is called the color-flavor-locked
(CFL) phase [30].
On the other hand, the phase of quark matter at a

relatively lower density within a compact star is uncertain
when the strange quark mass (∼150 MeV) is comparable to
the quark chemical potential (∼400 MeV) since perturbative
QCD is no longer adequate in this regime. It is proposed that
in such conditions quark matter may be in the crystalline
color-superconducting (CCS) phase [31–36], which is a rigid
state of matter expected to have an extremely high shear
modulus about 20–1000 times that of nuclear matter in a
neutron star crust [37]. The exact transition point between the
CFL phase and the CCS phase is highly uncertain and the
possibility of such a transition existing within a compact star
cannot be ruled out [38,39]. The possibility of sequential
QCD phase transitions within compact stars has also been
studied [40].
Moreover, there might be a transition point between the

quark-matter phase to nuclear matter lying within the
density range of a compact star. As a result, several phases
of matter with distinct properties could exist within
compact stars. For instance, “hybrid stars” containing a
quark-matter core and a nuclear-matter envelope have long
been hypothesized to be some of the observed compact
stars [28,29,41,42].
In another scenario where strange matter is the absolute

ground state for strong interactions [43], most of the
hadronic matter is turned into deconfined quark matter
within a compact star. A thin layer of nuclear matter might
exist on the top of the quark matter since the compact star
attracts normal nuclear matter from the surroundings. The
strange quark matter is not in direct contact with the
nuclear-matter crust due to Coulomb repulsion. As a result,
such a model is composed of quark matter dressed in a thin
layer of nuclear matter. The two phases of matter are
separated by a thin layer of electrons [39,44].
While different theoretical possibilities have been pro-

posed, could we tell from observations in what phase(s)

deconfined quark matter (if it exists) can occur in compact
stars? This is certainly a nontrivial question since even the
EOS of traditional neutron stars is still an open question.
Following the successful measurement of the gravitational-
wave signal GW170817 from binary compact stars, we can
now study the properties of compact stars through a
completely new window, in particular using the observation
limits on the tidal deformability as mentioned above. It will
soon be possible to put constraints on those hypothetical
phases within compact stars. Recent studies have already
put bounds on the parameters of hybrid star EOSs with
GW170817 (e.g., Refs. [45,46]). On the other hand, we
proposed in Ref. [47] that the tidal deformability of
compact stars may give us a useful probe of solid quark
stars due to the extreme rigidity of the CCS phase of quark
matter. It is also expected that compact stars containing
crystalline quark matter can produce gravitational waves
through nonaxisymmetric elastic deformations [48–52] and
torsional oscillations of the solid cores [53]. While con-
tinuous gravitational-wave signals from isolated compact
stars have not yet been detected, a significant improvement
for the observational upper limits has been achieved in the
past decade. For instance, the ellipticity of some pulsars has
been constrained to∼10−7 from the first observing run (O1)
of Advanced LIGO [54], the value of which is 5 orders of
magnitude larger than the theoretical upper bound predicted
for solid quark stars [48–52].
Penner et al. [55] first studied the effect of elasticity on

the tidal deformability of neutron stars using polytropic
models with a thin elastic crust to mimic traditional neutron
star models. They concluded that the elasticity of the
neutron-star crust causes a tiny reduction of the tidal
deformability compared to the fluid counterpart. On the
other hand, our previous study [47] revealed that the tidal
deformability of a solid quark star can be up to about 60%
smaller than its fluid-star counterpart. This causes a
significant deviation in the I-Love relation, which relates
the moment of inertia (I) and the tidal deformability
(sometimes quantified by the tidal Love number [56]),
of solid quark stars from the universal relation [57,58]
discovered for fluid compact stars (see Ref. [59] for a
review). As a result, the properties of solid quark stars
containing the CCS quark matter can be constrained from
the I-Love relation if independent accurate measurements
of I [60] and the tidal deformability λ [2] become available
in the future. Besides elasticity, it has also been shown that
the universality of the I-Love-Q relations can break down
for neutron stars with long periods and strong magnetic
fields [61].
In this paper, we extend the study to three types of

composite compact star models containing the CCS phase
quark matter: 1) hybrid stars containing a solid CCS phase
quark-matter core and a fluid nuclear-matter envelope
[51,53,62], 2) dressed quark stars with a solid quark-matter
core in the CCS phase and a thin nuclear-matter crust
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separated by the Coulomb force [39], and 3) two-layer
quark stars with a fluid CFL quark-matter core and a solid
CCS quark matter envelope [38]. These models all contain
two layers with distinct elastic properties. We focus on the
effect on the tidal deformabilities induced by the rigid CCS
phase and the influence on such an effect caused by a layer
of different composition. For instance, we have found the
so-called “screening effect” in Ref. [47], where the fluid
envelope of a hybrid star masks the effect of elasticity of the
CCS quark-matter core on the tidal deformability so that
the value of λ for the hybrid star is essentially the same as
that of a stellar model with a fluid quark-matter core.
As mentioned above, the calculation of the tidal deform-

ability of traditional neutron stars with an elastic crust in
general relativity (GR) has been formulated by Penner et al.
[55]. We have formulated the problem ourselves and
rederived the set of equations using a different choice of
variables from those used in Ref. [55] so that the resulting
matter equations can be compared directly to the corre-
sponding Newtonian equations (e.g., Refs. [63,64]) in
elastic layers. We have applied our equations in the
previous study [47] and we present the full set of equations
and the relevant boundary conditions in this paper.
In Sec. II, we present the formulation to compute the

tidal deformability of two-layer compact stars with a solid
component. Section III we present our numerical results for
various two-layer compact star models. In Sec. IV, we study
how the screening effect is affected by the stellar structure
and physical parameters. We also briefly discuss the
relevance of our work to GW170817 in Sec. V. Finally,
we conclude our paper in Sec. VI. Unless otherwise noted,
we use geometric units with G ¼ c ¼ 1.

II. FORMULATION

In this section, we shall present the full formulation of
our calculations. Readers who are more interested in the
physical results may skip this section and go to Sec. III
directly.
The determination of the tidal deformation of a compact

star requires a full general-relativistic treatment. We are
interested in the weak-field regime where the linear
approximation is valid. Extensive studies have been done
on the tidal deformability of compact stars with different
configurations, including the static equilibrium models
composed entirely of fluid [13,14,65–67] and slowly
rotating fluid models [68–70]. Our focus shall be on the
tidal deformability of models with solid layers. The set of
static perturbation equations in the solid crust was first
derived by Penner et al. [55] from the Einstein field
equations in their investigation of the tidal deformation
of polytropic models with a solid crust. In fact, the static
perturbation problem can also be considered as the zero-
frequency limit of the polar pulsation problem, which was
first considered by Thorne and Campolattaro [71] in

relativistic fluid bodies and later formulated for solid bodies
by Finn [72]. In this paper, we provide a new set of
equations that is more suited for comparison with the
Newtonian counterpart, allowing easy verifications and the
possible extension of the Newtonian analytical studies to
relativistic cases.
We derive the set of linearized static perturbation

equations for polar deformations in compact stars to study
the tidal deformation problem starting from the Einstein
field equations and the continuity equations. We focus on
developing a formalism in direct analogy to the conven-
tional Newtonian perturbation equations for solid stellar
models (see e.g., Alterman et al. [73], Saito [74], and
Ushomirsky et al. [75]) by choosing a specific set of
dependent variables with Newtonian counterparts. We have
also spotted some mistakes or typos in the perturbation
equations of Ref. [55] by comparing them with our
equations and others’ work (e.g., Ref. [72]).
The determination of the tidal deformability consists of

three steps. First, we find the equilibrium structure of the
unperturbed compact star model with the Tolman-
Oppenheimer-Volkov (TOV) equations and the EOS.
Then, we solve the linearized static perturbation equations
with the variables from the background configuration. In
this way, we obtain the linear response of the mass elements
within the star under an arbitrary time-independent pertur-
bation. Finally, we calculate the tidal deformability by
solving for the external metric perturbation outside the star
using the solutions of the perturbation problem in the stellar
interior.

A. Equilibrium background

The spacetime metric for a spherically symmetric, static
equilibrium background is given by

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ

The structure of a compact star is governed by the TOV
equations

dνðrÞ
dr

¼ 2eλðrÞ

r2
ðmðrÞ þ 4πr3PðrÞÞ; ð2Þ

dPðrÞ
dr

¼ −
ρðrÞ þ PðrÞ

2
ν0ðrÞ; ð3Þ

dmðrÞ
dr

¼ 4πr2ρðrÞ; ð4Þ

where m is the gravitational mass within a radius r and the
functions P and ρ are the pressure and energy density of a
mass element at a distance r from the center, respectively.
In this context, we also use the prime symbol to denote a
radial derivative. For instance, ν0ðrÞ represents dνðrÞ=dr in
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Eq. (3). For a cold compact star, the zero-temperature EOS
takes a simple form: P ¼ PðρÞ. With this additional
information given, we solve Eqs. (2)–(4) to determine
the equilibrium stellar structure. The function λ is given by

eλðrÞ ¼ 1

1 − 2mðrÞ=r : ð5Þ

B. Static perturbation equations

To calculate the tidal deformability, we must first obtain
the solution to the relativistic static perturbation problem of
the stellar interior with appropriate boundary conditions.
Assume that the star deforms under an external tidal field,
which induces a mass quadrupole moment inside the star.
The perturbations are governed by the linearized Einstein
field equations and the continuity equations

δGαβ ¼ 8πδTαβ; ð6Þ

δðTαβ
;αÞ ¼ 0; ð7Þ

where Gαβ is the Einstein tensor and Tαβ is the stress-
energy tensor. The semicolon represents covariant deriva-
tives. Unless specified otherwise, we use “δ” to denote
Eulerian perturbations.
The perturbations, decomposed in the basis of spherical

harmonics, can be classified into axial modes and polar
modes based on their parities [71,76]. We focus on the
even-parity perturbations in our tidal deformation problem.

1. Fluid perturbation equations

Considering polar perturbations of a static spherically
symmetric background metric in the Regge-Wheeler gauge
[76], the metric perturbation of frequency ω is expressed as

δgab ¼ habðrÞYlmðθ;ϕÞeiωt; ð8Þ

where

habðrÞ ¼

0
BBB@

H0ðrÞeν iωH1ðrÞ 0 0

iωH1ðrÞ H2ðrÞeλ 0 0

0 0 r2KðrÞ 0

0 0 0 r2sin2θKðrÞ

1
CCCA:

ð9Þ

The displacement vector of polar perturbations is given by

ξr ¼ WðrÞ
r

Ylmðθ;ϕÞ; ð10Þ

ξθ ¼ VðrÞ
r2

∂θYlmðθ;ϕÞ; ð11Þ

ξϕ ¼ VðrÞ
r2 sin2 θ

∂ϕYlmðθ;ϕÞ; ð12Þ

where Ylmðθ;ϕÞ is the standard spherical harmonic func-
tion. For static perturbations, we set ω ¼ 0. This leaves
only the diagonal terms nonzero in the perturbed metric. In
a perfect fluid, the perturbed stress-energy tensor is written
in terms of the energy density ρ, pressure P, four-velocity
Uα and their corresponding perturbed quantities

δTα fluid
β ¼ ðδρþ δPÞUαUβ þ δPδαβ

þ ðPþ ρÞðUαδUβ þ δUαUβÞ; ð13Þ

where δαβ represents the Kronecker delta function. From the
linearized Einstein field equations, the perfect fluid prob-
lem is cast into a single second-order differential equation
of H0 [65]:

d2H0

dr2
þdH0

dr

�
2

r
þeλ

�
2mðrÞ
r2

þ4πrðP−ρÞ
��

þH0

�
−
lðlþ1Þeλ

r2
þ4πeλ

�
5ρþ9PþρþP

cs2

�
−ν02

�
¼ 0;

ð14Þ

where cs2 ¼ dP=dρ.

2. Solid perturbation equations

To account for elasticity, we first assume the background
to be in an unstrained state, given that the background shear
only affects the total stress energy by a negligible amount.
In this way shear only contributes at the perturbation level.
Hence, the total stress-energy tensor in Eqs. (6) and (7) is
written as [55,72]

δTαβ ¼ δTbulk
αβ þ δTshear

αβ ; ð15Þ

where the effect of shear is given in the anisotropic stress
tensor δTshear

αβ following a Hookean relationship with the
shear strain tensor δΣαβ and shear modulus μ

δTshear
αβ ¼ −2μδΣαβ: ð16Þ

Following Ref. [77], the shear strain tensor for small
deformations obeys the differential equation

dδΣαβ

dτ
¼ 1

2
ð⊥μ

αUβ;μ þ⊥μ
βUα;μÞ −

1

3
⊥μν⊥αβUμ;ν; ð17Þ

with the projection tensor ⊥μ
ν defined by

⊥μ
ν ¼ δμν þ UμUν: ð18Þ
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Equation (17) was solved to the linear order by Finn [72].
Directly applying the results in Ref. [72], we write down
the strain tensor components represented by the radial and
tangential strain variables, Sr and S⊥ respectively, which
are defined similarly to those in Ref. [72]:

δΣr
r≡SrðrÞYlmðθ;ϕÞ

¼ 1

3

�
H2−Kþ lðlþ1Þ

r2
Vþ2

r
dW
dr

−
�
4

r2
−
λ0

r

�
W

�
Ylm;

ð19Þ

1

r
δΣr

A ≡ S⊥ðrÞ∂AYlmðθ;ϕÞ

¼ e−λ

2r

�
dV
dr

−
2V
r

þ eλ
W
r

�
∂AYlm: ð20Þ

The remaining components are

δΣA
B ¼ VðrÞY ;A

lm ;B −
1

2

�
SrðrÞ −

lðlþ 1Þ
r2

VðrÞ
�
δABYlm;

ð21Þ

where the indices A and B both run over θ and ϕ. The
commas before the indices denote partial derivatives. The

shear strain tensor is guaranteed to be traceless in the above
expressions. The contributions from shear are determined
from the three radial functions SrðrÞ, S⊥ðrÞ and VðrÞ and
the shear modulus μ.
Putting the above metric perturbations and stress-energy

perturbations into Eqs. (6) and (7), we obtain the differ-
ential equations governing the solid polar perturbation
problem.
We define new variables Zr and Z⊥ to represent the

radial components of the total stress in the radial and
tangential directions, respectively:

ZrðrÞ ¼ ΔPðrÞ − 2μSrðrÞ; ð22Þ

Z⊥ðrÞ ¼ −2μS⊥ðrÞ; ð23Þ

where ΔP is the Lagrangian perturbation of pressure. We
also define a variable J:

J ¼ H0
0 − 8πeλðρþ PÞW

r
þ 16πν0μV: ð24Þ

The complete set of perturbation equations is given by

dW
dr

¼
�
1−

2α2
α3

−
rλ0

2

�
W
r
−

r
α3

Zrþ
α2
α3

L1

V
r
−
α2
α3

rK−
1

2
rH2; ð25Þ

dZr

dr
¼

�
P0
�
rν00

ν0
−
rλ0

2
− 2

�
−
4

r
α1
α3

ðα3 þ 2α2Þ
�
W
r2

−
�
rν0

2
þ 4α1

α3

�
Zr

r

þ
�
P0 þ 2

r
α1
α3

ðα3 þ 2α2Þ
�
L1V
r2

þ eλL1

r
Z⊥ þ 1

2
ðρþ PÞH0

0 −
P0

2
H2

−
�
P0 þ 2

r
α1
α3

ðα3 þ 2α2Þ
�
K; ð26Þ

dV
dr

¼ −eλ
W
r
þ 2V

r
−
reλ

α1
Z⊥; ð27Þ

dZ⊥
dr

¼
�
P0 þ 2

r
α1
α3

ðα3 þ 2α2Þ
�
W
r2

−
α2
α3

Zr

r
−
�
−
2α1
r

þ 2α1

�
1þ α2

α3

�
L1

r

�
V
r2

−
�
rλ0

2
þ rν0

2
þ 3

�
Z⊥
r

þ 1

2
ðρþ PÞH0

r
þ α1
α3

ðα3 þ 2α2Þ
K
r
; ð28Þ

dH0

dr
¼ J þ 1

r2
ðν0 þ λ0ÞW − 16πα1ν

0V; ð29Þ
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dJ
dr

¼
�
32πeλ

r2
α1
α3

ðα3 þ 2α2Þ −
3

2r2
ν0ðλ0 þ ν0Þ

�
W − 8πeλ

1

α3
ðα3 þ 2α2ÞZr

−
8π

r2

�
ðρþ PÞeλL1 þ

2α1
α3

ðα3 þ 2α2ÞeλL1 þ 4α1ð1 − eλÞ − 2α1ðrν0Þ2
�
V

− 16πeλðrν0ÞZ⊥ þ
�
L1eλ þ 2ðeλ − 1Þ − r

�
λ0

2
þ 5ν0

2

�
þ ðrν0Þ2

�
H0

r2

þ
�
r
2
ðλ0 − ν0Þ − 2

�
J
r
þ
�
1

r
ðλ0 þ ν0Þ þ 16πeλ

α1
α3

ðα3 þ 2α2Þ
�
K; ð30Þ

where

L1 ¼ lðlþ 1Þ; ð31Þ

and

H2 ¼ H0 þ 32πα1V: ð32Þ

In the above equations, we defined a set of quantities
similar to those in Ref. [78], which studied the nonradial
pulsations in neutron stars with a solid crust with the
Newtonian Cowling approximation, to represent different
elastic moduli in isotropic materials:

8>><
>>:

α1 ¼ μ;

α2 ¼ cs2ðρþ PÞ − 2
3
μ;

α3 ¼ cs2ðρþ PÞ þ 4
3
μ;

ð33Þ

where α2 and α3 represent the relativistic generalization of
the Lamé coefficient and the P-wave modulus defined in
classical elastic theory, respectively (see e.g., Ref. [79]).
The metric perturbation variable K is expressed in terms of
the other perturbation variables by

ðL1 − 2ÞeλK ¼ ½ðν0Þ2 þ ν0λ0 þ 16πeλrP0�W
− 16πeλr2Zr − 16πeλð2þ rν0Þr2Z⊥
þ ½L1eλ − 2þ ðrν0Þ2�H0 þ r2ν0J: ð34Þ

Equations (25)–(28) can be derived solely from the
continuity equation (7). They reproduce the zero-frequency
limit of the equations governing the polar pulsation
in a solid under the relativistic Cowling approximation
given in Ref. [80] if we neglect the metric perturbations.
Meanwhile, Eqs. (29) and (30) are obtained from the
perturbed Einstein field equations (6).
Equations (25)–(30), together with the algebraic rela-

tions forH2 andK [Eqs. (32) and (34)], form a complete set
of perturbation equations in a solid with variables (W, Zr,
V, Z⊥, H0, J). We have checked that our equations are
consistent with the zero-frequency limits of the two sets of

relativistic nonradial pulsation equations for polar modes in
solid compact stars given independently by Finn [72] and
Krüger et al. [81] (see Ref. [82]). We also notice that the
equations for static perturbations in a solid by Penner et al.
[55] are inconsistent with the zero-frequency limits of the
above-mentioned pulsation equations in Refs. [72,81].

C. Boundary conditions

1. Conditions at the stellar center

The set of perturbation equations in a solid has a regular
singular point at the origin. We derive the regular solutions
of the perturbation equations for a solid core near the origin
by expanding the six perturbation variables about r ¼ 0.
The leading power dependences of these variables are
found by solving the indicial equations and the results are
given in Appendix A. Keeping the first two nonzero terms
of the expansion of each variable, which gives a total of
twelve coefficients [Eq. (A1)], we find nine independent
constraints [Eqs. (A4)–(A12)] by substituting the series
expansions into the system of six first-order differential
equations [Eqs. (25)–(30)]. This gives three independent
regular solutions at the origin. For stellar models with a
fluid core, we refer the readers to previous works (e.g.,
Ref. [65]) for the corresponding boundary conditions.

2. Conditions at the interface and stellar surface

Across the solid-fluid interface, the shear modulus
exhibits a jump from a finite value in the solid layer to
zero in the layer of perfect fluid. Furthermore, the phase
transition from quark matter to nuclear matter in hybrid star
models determined by the Maxwell construction has a
density discontinuity. As a result, some of the perturbation
variables are not continuous across the interfaces.
Boundary conditions are imposed to relate the perturbation
variables at the two sides of the interfaces.
The continuity of intrinsic curvature required by the

Einstein field equations (see Ref. [72] for a detailed
derivation) implies that the variables H0, K;W must be
continuous across the interface. The fact that the stress-
energy tensor is nonsingular at any point leads to the
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continuity of Zr and Z⊥ across the perturbed interface [55]
(i.e., the Israel junction condition [83]). From the above
continuity conditions, we clearly see the advantage of using
the function J [see Eq. (24)] as the dependent variable over
using H0

0, as J is continuous across the interface and the
stellar surface while H0

0 is not.
In our formulation, we apply the continuities of

ðW;Zr; Z⊥; H0; JÞ across the solid-fluid interface. In the
statically perturbed fluid layer, the displacement variables
W and V are undetermined except at the interface and
surface. Therefore, we express the radial stress variable Zr
on the fluid side of the interface in terms ofH0 andW. With
the algebraic relation for H0 and δP in a fluid,

δP ¼ 1

2
ðρþ PÞH0; ð35Þ

we explicitly give the continuities of Zr and Z⊥ as

1

2
ðρðfÞ þ PÞ

�
H0 − ν0

W
r

�
¼ ZðsÞ

r ; ð36Þ

ZðfÞ
⊥ ¼ ZðsÞ

⊥ ¼ 0; ð37Þ

where the continuity conditions are imposed at the inter-
face. We use the superscripts “(f)” and “(s)” on the
quantities that are in general discontinuous to indicate
the fluid side and the solid side of the interface, respec-
tively. Equations (36) and (37) are, respectively, the
continuity of the radial and tangential stresses at the
interface, with the relativistic stress variables defined by
Zr and Z⊥ [see Eqs. (22) and (23)]. Equations (36) and (37)
allow us to determine the solution in the solid core up to an
arbitrary constant. The remaining part in the fluid envelope
is an initial value problem from the interface to the stellar
surface.
The stellar surface can be treated as an interface between

the star interior and vacuum. The relevant boundary
conditions are similar to those at the solid-fluid interface.
For a solid-vacuum interface, i.e., at the stellar surface of
bare solid quark stars, the boundary conditions are written
explicitly as

H0ðRþÞ ¼ H0ðR−Þ; ð38Þ

H0
0ðRþÞ ¼ JðRþÞ ¼ JðR−Þ; ð39Þ

ZrðRþÞ ¼ ZrðR−Þ ¼ 0; ð40Þ

Z⊥ðRþÞ ¼ Z⊥ðR−Þ ¼ 0; ð41Þ

where R is the stellar surface, and the plus and minus signs
in the subscripts of R indicate the outer side and inner side
of the stellar surface, respectively. In the bare quark star
models, there are three independent regular solutions of

unknown amplitudes in the star interior. The amplitude of
each of the solutions is fixed up to an arbitrary constant by
Eqs. (40) and (41). After determining the interior solution,
Eqs. (38) and (39) are used to determine the metric
perturbation on the vacuum side of the stellar surface,
which allows us to calculate the tidal deformability.
Note that only Eqs. (38) and (39) are relevant across a

fluid-vacuum interface in determining the tidal deform-
ability as Z⊥ is always zero in fluid (perfect fluid
assumption) and Eq. (40) provides an extra relation
between WðR−Þ and H0ðR−Þ:

ZrðR−Þ ¼
1

2
ρH0 þ P0 W

r

����
R−

¼ 0: ð42Þ

D. Tidal deformability

After obtaining the values of the metric perturbation on
the vacuum side of the stellar surface, the tidal Love
number is calculated using the same method for a fluid
star. The following gives a brief description of the pro-
cedure. We refer the readers to Refs. [13,65,84,85] for more
detailed discussions.
The metric for a static, spherically symmetric stellar

model under a static external tidal field in the far-field limit
was given by Thorne [86]:

−
1þ gtt

2
¼ −

M
r
−
3Qij

2r3

�
xixj

r2
−
1

3
δij

�
þ 1

2
Eijxixj; ð43Þ

where Qij is the quadrupole moment and Eij is the external
tidal field. The tidal Love number, k2, of a static spherically
symmetric star is defined by the relation [65]

Qij ¼ −
2

3
k2R5Eij; ð44Þ

where R is the star radius.
The behavior of H0 in vacuum for the perturbed system

is governed by the equation [65]

H00
0 þ

�
2

r
− λ0

�
H0

0 −
�
lðlþ 1Þeλ

r2
− ðλ0Þ2

�
H0 ¼ 0: ð45Þ

Using the change of variables x ¼ r=M − 1 as in
Refs. [65,71], Eq. (45) is transformed into the standard
associated Legendre equation of order ðl; mÞ with m ¼ 2.
The solutions are the associated Legendre functions Q2

l ðxÞ
and P2

l ðxÞ

H0ðrÞ ¼ c1Q2
l ðxÞ þ c2P2

l ðxÞ: ð46Þ

The asymptotic behavior of the associated Legendre
functions are
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Q2
l ðxÞ ∼

�
M
r

�
lþ1

; ð47Þ

P2
l ðxÞ ∼

�
r
M

�
l
; ð48Þ

respectively. Using Eqs. (43) and (44) in the far-field limit
to determine the coefficients in Eq. (46), we can obtain the
Love number k2 as

k2 ¼
4

15

�
M
R

�
5 c1
c2

: ð49Þ

The value of c1=c2 depends on the solution of H0 and its
derivative on the vacuum side of the stellar surface. Using
the interior solution and the relevant boundary conditions
(38) and (39), we can express Eq. (49) in terms of
the compactness C ¼ M=R and the dimensionless param-
eter y [65]:

k2 ¼
�
8C5

5
ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�

�
f2C½4ð1þ yÞC4 þ ð6y − 4ÞC3 þ ð26 − 22yÞC2 þ 3Cð5y − 8Þ − 3yþ 6�

þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� logð1 − 2CÞg−1; ð50Þ

where y is defined by the values of H0 and its derivative on
the vacuum side of the stellar surface,

y ¼ r
H0

0ðrÞ
H0ðrÞ

����
r¼Rþ

: ð51Þ

In the following discussion, we mainly quantify the tidal
deformability with the quantity, λ̄, namely the “normalized
tidal deformability,” defined by

λ̄ ¼ 2

3
k2

�
R
M

�
5

; ð52Þ

which appears in the discussion of the universal I-Love-Q
relations in fluid compact star models [57,58].

III. NUMERICAL RESULTS

In Ref. [47], we reported that the deviation of the tidal
deformability of solid quark stars composed entirely of
CCS phase quark matter from a fluid quark star with the
same background profile can potentially be as large as 60%
in λ. In the following, we shall study the tidal deformability
of three different types of composite models and compare
the results with that of solid quark stars.

A. Hybrid stars with a solid quark-matter core
and a fluid nuclear-matter envelope

In this study, we describe quark matter with the phe-
nomenological model proposed by Alford et al. [87]. The
EOS is given by the grand potential per unit volume, ΩQM:

ΩQM ¼ −
3

4π2
a4μ4q þ

3

4π2
a2μ2q þ Beff ; ð53Þ

where μq is the average quark chemical potential of
the mixture of up, down and strange quarks. a4ð≤ 1Þ
is a parameter used to model the nonperturbative QCD

corrections,with a typical value of around 0.7 (seeRef. [88]).
a2 depends on both the strange quark mass and color-
superconducting gap to take account of the free energy
correction due to quark masses and quark pairing. Beff is the
effective bag constant related to the vacuum pressure. A
hybrid star consists of a nuclear-matter envelope in addition
to the quark-matter core. We choose the EOS model APR
[89] to describe the nuclear matter. The phase transition
between the core and the envelope is determined with the
Maxwell construction (see Refs. [53,87]). The resulting
model has a finite density gap at the core-envelope interface.
On the other hand, a bare quark star contains quark matter
only and is described by the phenomenological EOS.
Besides the EOS, we also need the shear modulus μ in

our calculations. The shear modulus of the CCS quark
matter is given approximately by [37]

μ ¼ 2.47 MeV fm−3
�

Δ
10 MeV

�
2
�

μq
400 MeV

�
2

; ð54Þ

where the value of the gap parameter Δ is expected to lie
within the range 5–25 MeV.
An interesting phenomenon found in our previous study

[47] is that a fluid envelope is able to strongly screen out the
effect of elasticity of the solid core if the density gap at the
core-envelope interface is small compared to the core
density. In particular, the tidal deformability of a solid
quark star can deviate from that of a fluid quark star by up
to 60%, while the difference between a hybrid star with a
CCS solid core and that with a fluid core is only around 1%
for the particular hybrid star model investigated in
Ref. [47]. This demonstrates that even though the elastic
CCS quark matter can have a significant impact on the tidal
deformability of bare quark stars, a fluid envelope on the
surface may cancel this effect. In this section, we further
investigate the screening effect in hybrid stars with different
EOS models to understand how such an effect can affect
hybrid stars with different internal structures.
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Using the hybrid star EOS described above, with the
parameters listed in Table I for the quark matter EOS (53),
we construct three hybrid star models (HS1–HS3) of
1.4 M⊙ with a solid core and compare their normalized
tidal deformabilities, which were first constructed in
Ref. [53] in the study of torsional oscillations of hybrid
stars with CCS quark matter. For comparison, we also
consider a solid bare quark star model, abbreviated as
“SQS” in the following, constructed with the same set of
EOS parameters as that of the quark matter EOS for the
core of HS2. The mass of SQS is also 1.4 M⊙. The density
profiles of the three hybrid star models are given in Fig. 1.
The models have similar radii but HS1 has the largest
quark-matter core while HS3 has the smallest. This allows
us to qualitatively study the influence of the size of the CCS
core on the screening effect.
Figure 2 compares the fractional deviation of the

normalized tidal deformability, jλ̄ − λ̄fluidj=λ̄fluid, of the bare
solid quark star and the three hybrid star models with
different gap parametersΔ for the CCS phase (i.e., different
shear moduli), where λ̄fluid is the normalized tidal deform-
ability of the corresponding fluid model with the same EOS

but a zero shear modulus. This illustrates the large differ-
ence in the effect of elasticity on the tidal deformability
between a solid quark star and hybrid stars. Figure 2 also
shows that the fractional deviation for hybrid stars
decreases drastically by orders of magnitude as the thick-
ness (as well as the mass) of the fluid envelope increases
(from HS1 to HS3), which indicates a stronger screening
effect as one might expect. Our results show that the
screening effect in our hybrid star models is very strong,
with a fractional deviation smaller than the 0.01 level, as
long as the CCS core size is smaller than about 70% of the
stellar radius.
It is noted that the fractional deviation of HS1 is about

50% of that of SQS. One might naively expect it to reduce
to similar values as that of the SQSmodel if the thickness of
the fluid envelope is further reduced. However, this is not
the case. In fact, we find that the screening effect does not
necessarily vanish even when the thickness (and hence the
mass) of the fluid envelope approaches zero. Showing this
phenomenon with the hybrid star EOS is not easy as the
core-envelope transition cannot be freely adjusted while
keeping the other parameters, like the mass and the radius,
unchanged. In particular, the core-envelope transition and
hence the thickness of the envelope are fixed by the
Maxwell construction. Therefore, we shall carry out further
studies with some “toy models” that allow us to adjust the
structures in Sec. IV.
Finally, we end this subsection by showing the I-Love

relations of the hybrid stars (HS1–HS3) together with the
solid quark star (SQS) using Δ ¼ 25 MeV in Fig. 3. It
extends our previous study in Ref. [47] with more focus on
hybrid star models with very different internal structures.
The quantity Ī is the normalized moment of inertia, as
defined in Refs. [57,58], given by

TABLE I. The parameters of the phenomenological EOS model
for quark matter inside the core of the hybrid star models. The
EOS of the nuclear-matter envelope is APR [89] for all three
models. The last two columns refer to the parameters of the
corresponding hybrid star models with 1.4 M⊙, adapted from
Ref. [53]. Me and M are the mass of the fluid envelope and the
total mass of the hybrid star, respectively. λ̄Δ¼25 MeV denotes the
normalized tidal deformabilities of the hybrid stars with the gap
parameter Δ ¼ 25 MeV.

EOS a4 a1=22 (MeV) B1=4
eff (MeV) Me=M λ̄Δ¼25 MeV

HS1 0.85 100 160 0.190 106.354
HS2 0.8 100 160 0.749 206.504
HS3 0.9 200 150 0.991 243.856

FIG. 1. The density profiles of the hybrid star models of
1.4 M⊙. All the models have a density gap of around 20% of
the central densities at the core-envelope interface.

FIG. 2. The fractional deviation in the normalized tidal deform-
ability against the gap parameter,Δ, of the hybrid stars HS1, HS2,
HS3 and solid quark star SQS. The parameter, λ̄fluid, here is the
normalized tidal deformability of the fluid counterpart of that
model with the same EOS but composed entirely of fluid as
defined in the main text. The theoretical range of Δ is bounded by
two vertical dashed lines.
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Ī ¼ I=M3; ð55Þ

where I is the moment of inertia and M is the mass of the
compact star. The deviation in Ī of HS1 from that of the
universal curve for fluid compact stars is around 5%.
Nevertheless, its deviation is still much smaller than that
of the solid quark star due to the screening effect.
Therefore, hybrid star models with a very large solid core
like HS1 are in principle distinguishable from pure fluid
compact stars using the I-Love relation, if Ī and λ̄ can be
measured to a high accuracy in the future. On the other
hand, the screening effect due to the fluid envelope of a
hybrid star with a small solid core makes it very difficult to
distinguish such a model from a pure fluid model using the
I-Love relation alone.

B. Dressed quark stars with a solid CCS quark-matter
core and a thin layer of nuclear-matter crust

Another model of quark stars is a two-layer model
composed of quark matter dressed in a thin layer of
nuclear-matter crust [44], which is called the “dressed
quark star” (e.g., in Ref. [90]) or the “nonbare quark star”
[39]. We will stick to the former term when referring to this
model within this paper. Based on the strange matter
hypothesis [43], the major component of this model is
the absolutely stable strange matter [44]. At the surface of
the quark-matter core, a thin layer of nuclear matter with
densities below the neutron drip point may exist as a
conventional neutron star crust with a layer of electrons
only a few hundred fm thick [44] separating the charged
nuclear matter from the quark matter inside. This model is
different from the hybrid stars in Sec. III A since there is no
quark matter–nuclear matter transition inside the star.
Essentially the quark matter phase is the true ground state
and the matter within the star exists in this phase, except

that the nuclear-matter crust is in a metastable state without
direct contact with the quark matter inside. In our inves-
tigation of tidal deformation, the thin electron layer is
insignificant and we do not include it in the calculation. In
contrast to the nuclear-matter envelope of hybrid stars, the
nuclear-matter crust in the dressed quark star has a very low
density and there is a density gap with a ratio of 103 to the
density of the base of the nuclear-matter crust at the
interface. Moreover, the nuclear-matter crust is a solid
with much lower shear modulus than the CCS quark matter
inside. The density profile is given in Fig. 4, showing the
quark-matter core with nearly constant density and the
nuclear-matter crust with a steep profile.
In the study of torsional pulsation modes of the dressed

quark stars [39], in which the nuclear-matter crust is
assumed to be an ionic solid, it was found that most of
the oscillation mode energy is concentrated within the crust
since the much more rigid CCS phase quark matter in the
interior absorbs only a small faction of energy. The solid
nuclear-matter crust cracks more easily than the standard
neutron star crusts during a glitch. This shows the signifi-
cance of the nuclear-matter crust despite its low mass
content compared to the whole star.
We calculate the effect of the thin nuclear matter on the

tidal deformability of a dressed quark star. We assume the
quark matter to be entirely in the CCS phase. We have
employed the same EOSmodel as for the SQS in the quark-
matter core (see Sec. III A). For the layer of nuclear matter,
we employ the EOS of Ref. [91], where the matter is
assumed to exist as a crust of neutron-rich nuclei. For a
nuclear-matter crust, we estimate the shear modulus of the
crust with the formula [92]

μ ¼ 0.1194
niðZeÞ2

Ri
; ð56Þ

where ni is the number density of ions, Z is the atomic
number of the nuclei, e is the electron charge and Ri is the

FIG. 4. The density profile of the dressed quark star model. The
CCS quark-matter core (solid lines) occupies more than 95% of
the total radius. The nuclear-matter crust is indicated by
dotted lines.

FIG. 3. The I-Love relation of the hybrid star models
(HS1–HS3) and solid quark star model (SQS) with gap parameter
Δ ¼ 25 MeV are shown together with the fitting formula of the
universal relation in fluid compact stars given by Yagi and
Yunes [57,58].
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mean radius of the ions. This gives a shear modulus of
1.47 × 1028 erg cm−3 at the base of the crust.
The dressed quark star model is labeled as “DQS.” The

quark matter–nuclear matter transition is set at a pressure of
7.141 × 1029 dyn cm−2 so that the bottom of the nuclear
crust has the same density as that of the neutron drip point
(taken to be 4.2 × 1011 g cm−3). The quark-matter core has
a radius of 9.00 km and the nuclear-matter crust is 0.21 km
thick. We compare the normalized tidal deformabilities of
three DQS models with different gap parameters Δ with
those of SQS in Fig. 5. We find that the thin layer of solid
nuclear-matter crust with a low density changes the values
of the tidal deformabilities by very little, with less than 5%
for the models with Δ ¼ 25 MeV. As the gap parameter of
the quark-matter core increases, the tidal deformability of
DQS deviates more from those of SQS models. This is
because the effect of elasticity of the solid nuclear-matter
crust becomes less important when the shear modulus of
the CCS phase increases, thus making the nuclear-matter
crust “fluid-like” in terms of elastic properties. This causes
a screening effect similar to the case caused by the fluid
envelope in hybrid stars (Sec. III A).
We also calculate the tidal deformability of dressed

quark stars with a fluid nuclear-matter crust and compare
it with that of dressed quark stars with a solid crust in
Table II. The normalized tidal deformability of the model
with a fluid crust is labeled as λ̄fc. The tidal deformabilities
of the two models agree to within 0.01%.
In conclusion, the nuclear-matter crust of the dressed

quark star poses a screening effect on the solid quark-matter
core. However, it is much less significant than that in a
hybrid star. Also, such an effect does not depend on
whether the nuclear-matter crust is solid or fluid as shown
in Table II. As we shall see in Sec. IV, the weakness of
screening is caused by the large density gap at the core-
envelope interface. Hence, the tidal deformability of
dressed quark star models with a solid quark-matter core

in the CCS phase is nearly the same as that of bare solid
quark star models. In Sec. IV, we shall demonstrate how the
density gap can affect the screening effect.

C. Two-layer quark stars with a fluid CFL quark-
matter core and a solid CCS quark matter envelope

If the high-density environment of the bare quark star
core favors the CFL phase quark matter, the star might be
composed of a fluid CFL core and a rigid envelope of CCS
quark matter [38]. However, the exact CFL-CCS transition
point is unknown and cannot be determined without
knowing the strange quark mass and the gap parameter
Δ. Therefore, we treat the transition point as a free
parameter and study a series of quark star models with a
fluid CFL core and a solid CCS envelope, focusing on the
effect of the envelope on the tidal deformability of the
model. This represents an investigation of the different kind
of “screening effect” in this model compared to that in the
hybrid stars. Specifically, we now ask whether the solid
envelope changes the tidal deformability of the two-layer
model with a fluid core considerably regardless of its
thickness.
Using the phenomenological EOS of quark matter (53),

we construct three two-layer quark star models, with
different transition pressures between the CFL and CCS
phases using the parameters a4 ¼ 0.8, a1=22 ¼ 100 MeV,
and B1=4

eff ¼ 160 MeV as shown in Table III. We label the
models from “CFL-CCS1” to “CFL-CCS3” according to
the transition point between the CFL and CCS phases. The
mass of each model is fixed at 1.4 M⊙. We have applied the

FIG. 5. The normalized tidal deformabilities of the dressed
quark stars (DQS) and bare solid quark stars (SQS) with different
gap parameters Δ are plotted. The point with Δ ¼ 0 MeV
corresponds to the models with a fluid quark-matter core.

TABLE II. A comparison of the normalized tidal deformabil-
ities of a dressed quark star with a solid nuclear-matter crust (λ̄)
and that of a corresponding model with a fluid crust (λ̄fc). The
DQS models are fixed at 1.4 M⊙.

Δ λ̄ λ̄fc % difference (%)

5 103.699 103.699 0
15 87.347 87.348 1 × 10−3

25 65.770 65.774 6 × 10−3

TABLE III. Two-layer quark star models constructed with the
EOS parameters a4 ¼ 0.8, a1=22 ¼ 100 MeV, and B1=4

eff ¼
160 MeV are listed. The CFL-CCS transition pressure, Pt, is
listed for each of the models. The fractional core radii, Rc=R, are
also given. For the last two columns, the mass of each model is
fixed at 1.4 M⊙ and the normalized tidal deformabilities of the
models with the gap parameter Δ ¼ 25 MeV are also listed.

EOS Ptð1035 dyn cm−2Þ Rc=R λ̄Δ¼25 MeV

CFL-CCS1 0.73 0.75 93.140
CFL-CCS2 1.62 0.50 74.623
CFL-CCS3 2.394 0.25 64.977
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same set of phenomenological EOS parameters to describe
the CFL core and the CCS envelope here, assuming that the
EOSs of these two phases do not differ significantly. This
two-layer model was previously studied in Ref. [38] for the
electromagnetic signals emitted from bare quark stars
through torsional oscillations. Similar models have also
been discussed in Ref. [93] for studying the r-mode
instability of bare quark stars with a transition between a
kaon-condensed CFL phase [94,95] and the CCS phase,
except that the transition point is determined microscopi-
cally by comparing the free energies of these two phases.
Among the three two-layer quark stars, CFL-CCS1 has the
largest fluid core and CFL-CCS3 has the smallest one.
In Fig. 6, the fractional deviations in the normalized tidal

deformability of the two-layer quark star models and that of
the bare solid quark star are plotted against the gap
parameter. Compared to the hybrid stars in the previous
subsection, the deviations for two-layer quark stars are
generally larger. The tidal deformability of the two-layer
quark star model with Rc=R ¼ 0.25, CFL-CCS3, is almost
indistinguishable from that of the solid quark star. For
comparison, CFL-CCS1, the model with Rc=R ¼ 0.75, has
a large deviation in tidal deformability compared to that of
SQS for a different gap parameter Δ. In general, the tidal
deformability of a two-layer quark star with a CCS
envelope approaches the value of that of a bare solid quark
star as the thickness of the envelope increases, unlike the
case of a two-layer model with a fluid envelope and a solid
core which shall be discussed in Sec. IV.
Figure 7 illustrates the I-Love relations of the two-layer

quark star models with different CFL-CCS transition
pressures. The gap parameter is fixed at 25 MeV. Since
we employ the same EOS for the CFL phase and the CCS
phase, these models have the same density profiles as the

SQS model. The transition is thus characterized by the
position at which the shear modulus changes sharply from
zero in the fluid CFL phase to an extremely large value in
the solid CCS envelope. The models with mass 1.4 M⊙ are
marked by red crosses in the figure. As shown in Fig. 7, the
I-Love relation of the two-layer quark star can deviate from
the universal I-Love relation by a significant amount
depending on the size of the CFL core. This depends on
the transition pressure between the CFL and CCS phases as
well as the gap parameter. In contrast to the cases of hybrid
stars, the deviation is now more sensitive to the transition
point of the fluid-solid interface. This is attributable to the
difference in behavior of the screening effect caused by a
fluid envelope and that caused by a solid envelope.

D. Summary

Here we briefly summarize the numerical findings in this
section. We have studied the tidal deformabilities of three
kinds of two-layer compact star models containing the CCS
phase quark matter. We focus on the reduction in the
influence of the core on the tidal deformability caused by
the outer layer, which we refer to as the screening effect.
(1) Hybrid stars: For our stellar models with a typical

density gap at the core-envelope interface which is
comparable to the core density, we find that the
screening effect is very strong as long as the CCS
core size is smaller than about 70% of the stellar
radius. Let us also point out that the rather uniform
density profile of the quark-matter core in our
models also contributes to the strong screening
effect in hybrid stars. This shall be discussed in
Sec. IVA.

(2) Dressed quark stars: The solid nuclear-matter crust
has a screening effect similar to that caused by the

FIG. 7. The I-Love relation of the two-layer quark star models
tabulated in Table III and solid quark star models (SQS) with gap
parameter Δ ¼ 25 MeV are shown together with the fitting
formula of the universal relation in fluid compact stars given
by Yagi and Yunes [57,58]. The two-layer quark star models with
mass 1.4 M⊙ presented in Table III are indicated with red crosses.

FIG. 6. The fractional deviation in the normalized tidal deform-
ability against the gap parameter, Δ, of two-layer quark stars
(CFL-CCS1, CFL-CCS2, CFL-CCS3) and a solid quark star
(SQS). The curve for the solid quark star is represented by dots
and it nearly overlaps with that of CFL-CCS3. The models are all
fixed at 1.4 M⊙. The range of Δ we consider is bounded by two
dashed lines.
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fluid nuclear-matter envelope of a hybrid star, except
that the effect is much weaker. The tidal deform-
ability of this model is slightly higher than that of a
bare solid quark star with identical mass as a result
of the screening effect of the crust. We shall illustrate
in Sec. IV that it is due to the large density gap of the
ratio 103 compared to the base of the nuclear-matter
crust at the core-crust interface.

(3) Two-layer quark stars (CFL-CCS): In contrast to the
case of hybrid stars, the screening effect in this
model depends more sensitively on the transition
point between the solid envelope and fluid core. As a
result, the I-Love relation for these models can
deviate significantly from the universal relation
for pure compact stars.

IV. FACTORS AFFECTING THE SCREENING
EFFECT

The previous results demonstrate the screening effect in
two-layer compact star models containing the CCS phase
quark matter, together with a study of the general depend-
ence of the effect on the relative thickness between the
envelope and inner core. In this section, we shall use a
series of “toy models,” including polytropic models and
incompressible models, to study the factors affecting the
screening effect in more detail.
For illustration, we use a polytropic model (P¼ kρ1þ1=n)

and an incompressible model (ρ ¼ ρ0, where ρ0 is a
constant), where k is a constant and n is the polytropic
index. The values of the EOS parameters are fixed at
k ¼ 180 km2, n ¼ 1 and ρ0 ¼ 1015 g cm−3. The shear
moduli of the solid phase in both the polytropic model
and the incompressible model are set to a constant value of
2.87 × 1034 erg cm−3, which is close to that of the CCS
phase quark matter with gap parameter Δ ¼ 25 MeV. We
also employ a two-layer quark star model, labeled as “two-
layer QS,” constructed with the EOS model given in
Sec. III A, but with a core-envelope transition between
CCS quark matter and fluid quark matter at an adjustable
radius Rc. Again we choose the EOS parameters for quark
matter as a4¼ 0.8, a1=22 ¼ 100MeV, and B1=4

eff ¼ 160 MeV.
The screening effect has been studied inNewtonian theory

with a two-layer incompressible model featuring a solid core
and a fluid envelope of different densities [63,64,96]. It
depends on several parameters of the internal structure,
including the density gap across the interface, the relative
sizes of the envelope and the crust, and the shear modulus of
the solid core. We expect the dependence to be similar in
compact stars. In the following, we numerically study the
effects of these factors within the framework of GR.

A. Core size

The screening effect in models with a solid core and
a fluid envelope is somewhat surprising. Within the

linearized theory, we find that the screening effect does
not vanish even when the fluid envelope is very thin as long
as the density of the envelope is nonzero. It is analogous to
the electrostatic shielding effect of a perfect conductor
enclosing a dielectric material (see e.g., Ref. [97]). When a
dielectric material is exposed to an external electric field, a
polarization is induced within it. However, if it is com-
pletely surrounded by a perfectly conducting shell, it does
not feel the external electric field since the electric field
from the induced charges on the conducting shell surface
completely cancels out the external electric field. Such a
screening effect is independent of the thickness of the
perfect conductor shell. In the case of the tidal deformation
problem, a perfect fluid layer responds to the external tidal
field with an induced quadrupole moment, which drasti-
cally cancels out the external field on the solid core. The
case of complete screening can be shown analytically in
Newtonian incompressible models (see Appendix B).
We now study the special features of the screening effect

due to the envelope by comparing two different kinds of
compact star models: one with a solid core surrounded by a
fluid envelope, while the other model is the reverse
situation with a solid envelope on top of a fluid core. In
these two situations, screening simply means the reduction
of the effect of the core on the tidal deformability due to the
existence of an outer envelope. To simplify the discussion,
we study models without a density gap at the core-envelope
interface. We define a screening factor, δλ̄=ðδλ̄Þmax, of each
model, with

δλ̄ ¼ jλ̄ − λ̄�j; ð57Þ

ðδλ̄Þmax ¼ λ̄fluid − λ̄solid; ð58Þ

where λ̄ is the normalized tidal deformability of the two-
layer compact star, and λ̄fluid and λ̄solid are that of the
corresponding single-layer fluid model and solid model,
respectively. Here, a single-layer model refers to one with
the same background profile [e.g., PðrÞ, ρðrÞ] as the two-
layer compact star, except that the whole star is composed
entirely of either fluid or solid. λ̄� is that of the reference
model, which is a single-layer compact star composed of
the same phase as the core of the two-layer model, i.e.,
either λ̄fluid or λ̄solid. Hence, δλ̄=ðδλ̄Þmax ranges from 0 (no
screening) to 1 and it indicates how strong the screening
effect by the envelope on the core is. For instance, when the
normalized tidal deformability of the two-layer model with
a fluid core and a solid envelope is the same as that of the
fluid model, i.e., λ̄ ¼ λ̄fluid ¼ λ̄�, the screening factor
vanishes and there is no screening in this situation.
In Fig. 8, the screening factor of different two-layer

models with a fluid core and a solid envelope reduces from
1 to 0 as Rc=R increases for all three models. It illustrates a
gradual decrease in the screening effect in these models as
the solid envelope gets thinner. In particular, this situation
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applies to the case of traditional neutron stars with a thin
solid nuclear-matter crust.
In Fig. 9, we observe strong screening in all three models

when Rc=R is less than 0.75, with the screening factor
extremely close to 1. As Rc=R increases, the screening
factor of the polytropic star starts to decrease and even-
tually reaches zero as Rc=R ¼ 1. Meanwhile, the screening
factors of the incompressible star and quark star stay at a
value near 1. The screening effect is still very significant
even when Rc=R approaches 1 for the incompressible
model and quark star model, both of which have finite
surface densities. The two-layer quark star model has a
slightly weaker screening effect than the incompressible
star. This highlights the special feature of the screening
effect of a fluid envelope on a solid core, which is not very
sensitive to the thickness of the fluid envelope, especially
for stellar models with a finite surface density. Moreover,
the screening effect does not vanish as long as the fluid
envelope has a significant density compared to the solid
core for the incompressible star and quark star.

From the different behaviors of the screening factor
between the polytropic model and the other two models
when Rc=R tends to 1, we see that the uniformity of the
density profiles also contributes to the screening effect. In
the two-layer quark star model, the density at the surface of
the solid core is at least a quarter of its central density as
Rc=R approaches 1. For comparison, the density of the
solid core in a polytropic model can be several orders of
magnitude smaller than the central density if the core-
envelope interface is close to the surface. This causes a
significant drop in the screening effect when Rc=R is larger
than about 0.8 as shown in Fig. 9. This result is similar to
the case of hybrid star models studied before where the
screening effect is weakened as the solid-core size increases
(see Figs. 1 and 2).

B. Density gap

In this subsection, we illustrate the effect of a density gap
at the core-envelope interface on the screening effect. This
can qualitatively explain the large difference between the
screening effect in hybrid stars and that in dressed quark
stars. While a screening effect is observed in dressed quark
stars, the effect is not as significant as that in hybrid stars.
This is due to the tremendous difference between the ratios
of the density gap to the stellar core density at the interface
in the two models. In this subsection, we compare the
change in the screening factor as we adjust the density gap
of a two-layer incompressible model with a solid core and a
thin fluid envelope. We calculate the tidal deformabilities of
models with an incompressible solid core surrounded by a
very thin fluid envelope with adjustable density ρf.
Numerically, it can be implemented by replacing the

boundary conditions at the stellar surface of a single-layer
solid star with the conditions at the core-envelope interface
of a two-layer model, and setting Rc ¼ R. Although it
might not be valid to employ linear theory to calculate the
tidal deformations in these models with such a thin fluid
layer as the nonlinear terms start to dominate when the
deformation is comparable to the fluid layer thickness, it
still serves as a reference of how the screening effect would
depend on the density gap for realistic models with a
thicker fluid envelope. Note that it is not possible to isolate
the effect of the density gap as the only changing factor for
models with a thick fluid envelope. Instead, factors like the
thickness of the fluid envelope and the nonuniformity of the
density profile might dominate over the effect of the density
gap. For this reason, we compare the dependence of the
screening factor on the density gap in such a thin-envelope
limit so that we can isolate the density gap as the only
changing parameter without altering the stellar structure.
We adjust the density of the fluid envelope ρf and plot

the screening factor, δλ̄=ðδλ̄Þmax, against Δρ=ρc for three
models of different compactness in Fig. 10, where ρc is the
uniform solid-core density and Δρ=ρc is defined by

FIG. 9. The screening factor plotted against the fractional core
radius of the two-layer models with a solid core and a fluid
envelope. The models contain no density gap at the interface.

FIG. 8. The screening factor plotted against the fractional core
radius of the two-layer models with a fluid core and a solid
envelope. The models contain no density gap at the interface.
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Δρ
ρc

¼ ρc − ρf
ρc

: ð59Þ

Although the fluid envelope of our model is very thin, it
still induces a rather strong screening effect if the density
gap is small. We can see the significant decrease in the
screening effect when Δρ is increased. In Fig. 10, the
screening factor δλ̄=ðδλ̄Þmax decreases gradually towards 0
as the density gap increases for models with different
compactness. This indicates that as long as ρf is not too
low, the thin fluid envelope can still have a significant
screening effect on the solid core. Figure 10 shows clearly
how the screening effect is weakened as the density gap is
increased.

C. Compactness

Figure 10 also shows that, for a given density gap, the
effect of relativity also weakens the screening effect. To
further study the effect of relativity, we use the incom-
pressible model without a density gap at the core-envelope
interface. It is known in the Newtonian limit that the fluid
envelope of a two-layer incompressible model without a
density gap can perfectly screen out the external tidal field
on the solid core (see Appendix B). This has been studied
previously in Refs. [63,64,96]. In the following, we
numerically show that increasing the compactness can
reduce the effect of screening in our general-relativistic
incompressible model.
In Fig. 11, the screening factor of two-layer incompress-

ible models with a solid core and a fluid envelope is plotted
against the fractional core radius. The models have different
compactness as indicated in the legend of Fig. 11. It is noted
that the effect of relativity becomes important at the high
end of Rc=R. In particular, for Rc=R≳ 0.7, the screening
factor decreases rapidly as the compactness increases.

While the incompressible model in the Newtonian limit
(C ¼ 0) has a screening factor equal to 1 within numerical
accuracies, the one with maximum compactness (C ¼ 0.44)
has a screening factor of around 0.75 as Rc=R → 1. This
demonstrates that the effect of GR causes a reduction in the
screening effect.
Figure 11 gives a qualitative understanding of how

strongly GR can influence the screening effect. From the
figure, the reduction in the screening effect is very small,
with a magnitude within 2%, for typical compact stars of
compactness around 0.2. Hence, the effect of GR on the
screening effect is not significant for typical compact star
models.

V. IMPLICATIONS FROM GW170817

On 17 August, 2017, the Advanced LIGO and Virgo
network made the first direct detection of gravitational
waves from a binary compact star merger, GW170817 [1].
The correlated electromagnetic signals in different fre-
quency bands were also detected (see Ref. [98] and the
references therein). From the LIGO and Virgo observa-
tions, an upper bound on the normalized tidal deformability
of a 1.4 M⊙ star is approximated to be 800 in a low-spin
scenario [1]. This upper bound has already been used to put
constraints on EOSs (see, e.g., Refs. [15–24]).
We have shown that elasticity can reduce the tidal

deformability significantly in certain models containing a
CCS phase, including the solid quark stars [47], dressed
quark stars with a CCS core and quark stars containing a
CFL core and a CCS envelope. Hence, the constraints on
EOS parameters for fluid quark stars discussed in Ref. [17]
need to be reconsidered if the quark matter is in a crystalline
phase such as the CCS phase that we focus on in this paper
or the quark-cluster model proposed in Ref. [99]. As an
illustration, we take our quark-matter EOS [see Eq. (53)]
with parameters a4 ¼ 0.7, a1=22 ¼ 0 and B1=4

eff ¼ 135 MeV.
The normalized tidal deformability of a 1.4 M⊙ fluid quark

FIG. 11. The screening factor, δλ̄=ðδλ̄Þmax, against the fractional
core radius of incompressible stars with different compactness.

FIG. 10. The screening factor, δλ̄=ðδλ̄Þmax, against Δρ=ρc of
two-layer incompressible models with solid core densities of
1015 g cm−3 and fluid envelope densities ρf . The fluid envelope is
set to be very thin so that we can freely adjust the density gap
without altering the overall background profile.

TWO-LAYER COMPACT STARS WITH CRYSTALLINE … PHYS. REV. D 99, 023018 (2019)

023018-15



star constructed with this EOS is λ̄ ¼ 974, which is ruled
out by the upper bound λ̄ ¼ 800 obtained from GW170817.
However, for a solid quark star with the same mass and
EOS, the normalized tidal deformability can decrease
below 800 if the gap parameter is larger than 9 MeV as
shown in Fig. 12.
During inspiral, the solid layer(s) of the compact stars

can be melted if the stress from the tidal field is too large.
Postnikov et al. [14] estimated the frequency of the
gravitational-wave signals at which the solid quark matter
crust reaches the threshold strain and breaks. For a 1.4 M⊙
quark star with a solid crust with shear modulus
4 × 1032 erg cm−3, the frequency at the breaking point is
about 12 Hz, which is outside the best sensitivity region of
Advanced LIGO and Virgo at around 100 Hz [100,101].
However, the shear modulus of the CCS phase quark matter
strongly depends on the gap parameter which spans a wide
range from 5 to 25 MeV phenomenologically. Assuming
the gap parameter is 25 MeV, the shear modulus would be
about 2 × 1034 erg cm−3 for a 1.4 M⊙ solid quark star with
EOS parameters a4 ¼ 0.7, a1=22 ¼ 0, and B1=4

eff ¼ 135 MeV.
The corresponding breaking frequency would then be about
180 Hz following the estimation method in Ref. [14]. As a
result, the quark matter may still be in the solid phase
when the emitted gravitational-wave signal is detected
during the inspiral if the gap parameter is near its theoretical
upper bound.
In obtaining the breaking frequency, we assume a

breaking strain of 0.1 for CCS solid quark stars. This
value is similar to that for a neutron star crust obtained from
molecular dynamics simulations [102]. Since the high
breaking strain of a neutron star crust is mainly due to
the high pressure in the system, we assume that solid quark
stars would have a similar breaking strain due to the high

pressure in both systems (see also Ref. [52]). We also note
that our analysis following Postnikov et al. [14] requires the
estimation of the maximum quadrupolar deformation Qmax
attainable by the star, which is based on Newtonian gravity
with the Cowling approximation. Including the effects of
relativity may reduceQmax for solid quark stars by at most a
factor of ∼2 [52]. Since the breaking frequency is propor-
tional to

ffiffiffiffiffiffiffiffiffiffi
Qmax

p
[see Eq. (20) of Ref. [14] ], it may reduce

to about 130 Hz if relativity is taken into account in our
estimation.
On the other hand, we expect that the tidal deformability of

a hybrid star model containing a CCS quark-matter core
would be very close to that of a hybrid star with a fluid core
due to the screening effect, assuming that the solid core size is
smaller than about 70% of the stellar radius (see Sec. III A).
As a result, if a hybrid star EOS model is ruled out by the
observational upper bound on the tidal deformability, the
conclusionwill hold nomatterwhether thequarkmatter is in a
fluid or solid state, assuming that a large solid core compa-
rable to the stellar radius is not favored in nature.

VI. CONCLUSION

In this paper, we studied the tidal deformability of
compact star models containing the extremely rigid CCS
phase quark matter. We have presented a formulation to
determine the tidal deformability of two-layer compact
stars with a solid component. Comparing to previous work
on this subject (e.g., Ref. [55]), our formulation is written in
terms of a different set of matter variables so that the
resulting equations can be compared directly to their
Newtonian counterparts. We have applied our formulation
to study four different compact star models: 1) solid quark
stars composed entirely of CCS quark matter [47]; 2)
hybrid stars with a nuclear matter fluid envelope on top of a
CCS quark-matter core [51,53,62]; 3) dressed solid quark
stars with a thin nuclear matter solid crust [39]; and 4) two-
layer quark stars with a fluid CFL quark-matter core
surrounded by a CCS quark-matter envelope [38]. We
focused on the screening effect on the tidal deformability
due to the envelope of various two-layer compact star
models, which screens off the influence of the elastic or
fluid property of the core.
Our results show that the screening effect in hybrid stars

is strong as long as the size of the solid quark-matter core is
less than about 70% of the stellar radius. For instance, the
fractional deviation in the normalized tidal deformability of
a hybrid star, with a solid core with radius about half of the
stellar radius from the corresponding pure fluid model is
below 1%.
On the other hand, the screening effect in dressed solid

quark stars with a thin nuclear-matter crust featuring a large
density gap at the core-crust interface is very weak. Further
analysis in Sec. IV B showed that the large density gap is
the reason for the weakness of the screening effect. In other
words, if the density gap is zero, the screening effect would

FIG. 12. The normalized tidal deformability, λ̄, of a 1.4 M⊙

solid quark star with a4 ¼ 0.7, a1=22 ¼ 0 and B1=4
eff ¼ 135 MeV.

As the gap parameter Δ ¼ 0 MeV, i.e., for a fluid quark star, λ̄
exceeds the upper bound of 800 [1]. For Δ > 9 MeV, λ̄ is within
the upper bound.
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become so strong that the tidal deformability of the model
would deviate a lot from that of a solid quark star with the
same background profile.
We have also found that the screening effect in two-layer

quark star models with a fluid CFL core surrounded by a
CCS solid envelope is different from hybrid stars in terms
of the dependence on the thickness of the core and
envelope. Compared to the case of hybrid stars, the
screening effect of two-layer quark stars is more sensitive
to the position of the transition between the fluid core and
solid envelope.
Besides, we also investigated how the screening effect in

two-layer compact stars is affected by the core size, the
density gap at the core-envelope interface and the compact-
ness of the stars. First, we adjusted the core size of two-
layer models without a density gap at the interface to study
its influence on the screening effect. For models with a fluid
core and a solid envelope, the screening effect gradually
changes with the core size. The screening factor, defined in
Sec. IV, reduces from 1 to 0 (no screening) as the core size
increases from 0 to the stellar radius. On the contrary, the
screening effect of models with a solid core and a fluid
envelope shows a much weaker dependence on the core
size. We also found that for models with a rather uniform
density profile, the screening factor remains close to 1 for
any core size between 0 and the stellar radius, which
indicates strong screening regardless of the core size. For
polytropic models with a solid core and a fluid envelope,
the screening factor remains close to 1 for a core size less
than 0.75 times the stellar radius.
We also showed that the screening factor of a two-layer

incompressible model with a solid core and a thin fluid
envelope reduces gradually to 0 as the density gap at
the core-envelope interface increases from 0 to 100% of the
core density. This indicates that the density gap at the
interface is an important factor to affect the screening
effect. It specifically explains the weak screening effect in
dressed quark stars.
The effect of GR on the screening effect is also studied

by varying the compactness of our stellar models. A slight
reduction of the screening factor is found in two-layer
incompressible models as the compactness increases from
the Newtonian limit (i.e., compactness equals 0), to the
highly relativistic case (compactness equals 0.44). However,
the reduction in the screening factor is not significant as
long as we are considering the typical range of compactness
of around 0.2.
Our numerical investigation suggests that the screening

effect depends crucially on the detailed stellar structure
such as the core size, composition (fluid or solid state) of
the core and envelope, and the density gap at the core-
envelope interface.

Finally, we have demonstrated how quark star models
which are ruled out by the observational limits on the
tidal deformability obtained from GW170817 [17] can be
revived if the entire quark star is in a CCS phase instead of a
fluid phase. This illustrates how the crystalline phase of
quark matter might come into play when one tries to use the
information on the tidal deformability obtained from
gravitational-wave observations to put constraints on
quark-matter EOS models. Our study also advocates that
the tidal deformability not only provides us with informa-
tion on the EOS, but may also give insights into the
multilayer structure and elastic properties of compact star
models composed of CCS quark matter. With the expect-
ation that more compact star mergers will be observed in
the coming decades, the possibility of using the observed
gravitational-wave signals to constrain the various models
of deconfined quark matter will become very promising.

APPENDIX A: REGULAR SOLUTIONS
NEAR ORIGIN

The set of perturbation equations in a solid has a regular
singular point at the origin. To determine the regular
solutions near the origin, we expand the perturbation
variables in power series of r about the origin following
the approach by Finn [72]:

QnðrÞ ¼ rαnðQð0Þ
n þQð2Þ

n r2 þOðr4ÞÞ; ðA1Þ

where n ranges from 1 to 6 and Q1ðrÞ to Q6ðrÞ represents
the set of perturbation variables fWðrÞ; ZrðrÞ; VðrÞ;
Z⊥ðrÞ; H0ðrÞ; JðrÞg in corresponding order. Substituting
the above expressions into the perturbation equations (25)–
(30), the leading power dependences of the regular sol-
utions, α1 to α6, are given by fl; l − 2; l; l − 2; l; l − 1g.
The background variables such as ρ and P are also

expanded in r and are expressed as

ρðrÞ ¼ ρ0 þ ρ2r2 þOðr4Þ; ðA2Þ

PðrÞ ¼ P0 þ P2r2 þOðr4Þ: ðA3Þ

The 12 coefficients of the perturbed variables,Qð0Þ
n andQð2Þ

n

with n ¼ 1;…; 6, are related by nine independent con-
straints. This permits three independent regular solutions at
the origin. We derive the explicit forms of the constraints
and give them as follows:

Wð0Þ ¼ lVð0Þ; ðA4Þ
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�
γP0ðlþ 3Þ þ α1

3
ðlþ 9Þ

�
Wð2Þ ¼ −

1

2
½ρ0 þ ð3γ þ 1ÞP0�Hð0Þ

0 þ 4

9
f18πα1P0ð1 − 6γÞ þ 9lπP0ðρ0 þ P0 − 2α1Þ

þ πρ0½3lðρ0 þ ð1 − 2γÞP0Þ þ 2ðlð3l − 4Þ − 9Þα1�gVð0Þ

þ
�
γP0lþ

α1
3
ðl − 6Þ

�
ðlþ 1ÞVð2Þ; ðA5Þ

ð4lþ 6ÞHð2Þ
0 ¼ −4π

�
−
lð2lþ 3Þ − 15

3
ρ0 þ 3ðlþ 3 − 9γÞP0

�
Hð0Þ

0 −
32π2

3

�
3P0l

��
3þ 1

cs2

�
ðρ0 þ P0Þ − 4α1

�

þ ρ0l

��
1þ 1

cs2

�
ðρ0 þ P0Þ − 6γP0 − α1

�
þ 12α1½−ρ0 þ ð3 − 9γÞP0�

�
Vð0Þ

− 8π½ρ0 þ ð1þ 3γÞP0�½−ðlþ 3ÞWð2Þ þ lðlþ 1ÞVð2Þ�; ðA6Þ

Zð0Þ
r ¼ −2α1lðl − 1ÞVð0Þ; ðA7Þ

Zð2Þ
r ¼ −

�
8π

3
lρ0α3 þ 16πðα3 þ 2α2Þα1

�
Vð0Þ −

1

2
ðα3 þ 2α2ÞHð0Þ

0 ðA8Þ

− ðlα3 þ α3 þ 2α2ÞWð2Þ þ L1α2Vð2Þ;

Zð0Þ
⊥ ¼ − 2α1ðl − 1ÞVð0Þ; ðA9Þ

Zð2Þ
⊥ ¼ −α1

�
−
8π

3
ρ0ðl − 2ÞVð0Þ þWð2Þ þ lVð2Þ

�
; ðA10Þ

Jð0Þ ¼ lHð0Þ
0 − 8πðρ0 þ P0ÞVð0Þ; ðA11Þ

Jð2Þ ¼ ðlþ 2ÞHð2Þ
0 −

8π

3
½16πα1ðρ0 þ 3P0Þ þ 3lðρ2 þ P2Þ�Vð0Þ þ 8πðρ0 þ P0ÞWð2Þ: ðA12Þ

The variables γ and c2s are, respectively, defined by

γ ¼ ρ0 þ P0

P0

�
dP
dρ

�
0

; ðA13Þ

cs2 ¼
�
dP
dρ

�
0

; ðA14Þ

where ðdP=dρÞ0 is the leading term in the Taylor series
expansion of dP=dρ in r about the origin. The expansion
coefficients of ρ and P are related by

P2 ¼ −
4π

3
ðρ0 þ 3P0Þðρ0 þ P0Þ; ðA15Þ

ρ2 ¼
P2

cs2
: ðA16Þ

The three independent regular solutions are constructed
by choosing three independent sets of (Hð0Þ, Vð0Þ, Vð2Þ) in
the above nine constraints, e.g., (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Next, we find the values of Wð0Þ, Wð2Þ and Hð2Þ
0 from

Eqs. (A4)–(A6). This allows us to directly determine the
remaining coefficients from the above relations.
The above set of constraints on the regular solutions are

consistent with those of the zero-frequency limit in the
Newtonian pulsation problem (e.g., Ref. [103]) in the
Newtonian limit. Note that although Finn [72] has derived
the constraints for the regular solutions around the center of
the solid core in the relativistic case, he mistakenly imposed
an additional constraint on the shear stress which in turn
causes Wð0Þ ¼ Vð0Þ ¼ 0, which makes the solutions incon-
sistent with those in the Newtonian limit.
In a fluid core, there is only one regular solution of the

form [65]

H0ðrÞ ¼ a0rl − a0

�
2π

2lþ 3

�
5ρ0 þ 9P0 þ

ρ0 þ P0

cs2

��
rlþ2;

ðA17Þ

where a0 is an arbitrary constant.
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APPENDIX B: PERFECT SCREENING IN
NEWTONIAN INCOMPRESSIBLE MODELS

The screening effect of the tidal deformability of a
Newtonian incompressible star with a solid core and fluid
envelope has been studied analytically in Refs. [63,64,96].
In this Appendix, we shall illustrate the simplest case of
screening where the effect of the external tidal field on the
core is completely screened off by the fluid envelope of a
Newtonian model with uniform density.
In the Newtonian case, the motion of a mass element is

governed by the Poisson equation, the conservation of
momentum and the continuity equation

∇2Φ ¼ 4πρ; ðB1Þ

∂v⃗
∂t þ v⃗ · ∇v⃗ ¼ 1

ρ
∇ · σ −∇Φ; ðB2Þ

∇ · ðρv⃗Þ ¼ ∂ρ
∂t ; ðB3Þ

where Φ is the gravitational potential, v⃗ is the velocity of
the mass element, and σ is the stress tensor in isotropic
solids given by [104]

σ ¼ γP∇ · u⃗I þ μ½∇u⃗þ ð∇u⃗ÞT� − 2μ

3
∇ · u⃗I; ðB4Þ

with I being the identity matrix, u⃗ being the displacement
vector and γ being the adiabatic index. The perturbed scalar
quantities, δQ, are expanded in the basis of spherical
harmonics:

δQðr; θ;ϕÞ ¼
X
lm

δQlmðrÞYlmðθ;ϕÞ; ðB5Þ

where δQlmðrÞ is the radial component of the term in the
multipole expansion of order fl; mg. In the following, we
shall drop the subscripts fl; mg on these functions as we
focus on a particular order.
The gravitational potential perturbation is governed by

the perturbed Poisson equation (e.g., Ref. [105])

∇2½δΦðrÞYlmðθ;ϕÞ� ¼ 4πδρðrÞYlmðθ;ϕÞ ¼ 0: ðB6Þ

Note that in our case of an incompressible model, δρ ¼ 0.
Hence, the gravitational potential depends only on the
overall shape of the star (i.e., the interface/surface boundary
condition) and the external tidal field.
We have assumed that the elastic stress contributes only

at the perturbation level. The momentum conservation
equation is derived using the standard strain tensor for

an isotropic solid and the Hookean strain-stress rela-
tion. The spheroidal component (of even parity) of the
deformation vector of a mass element is denoted by
ξ⃗ ¼ ξrðrÞYlmðθ;ϕÞr̂þ ξ⊥ðrÞr∇Ylmðθ;ϕÞ. The linearized
momentum conservation equation for spheroidal deforma-
tions is hence given by

∇
��

δP
ρ

þ δΦ
�
Ylmðθ;ϕÞ

�
þ μ

ρ
∇ ×∇ × ξ⃗ ¼ 0: ðB7Þ

The perturbed continuity equation for spheroidal modes is
given by (e.g., Ref. [105])

∇ · ðρξ⃗Þ ¼ δρðrÞYlmðθ;ϕÞ ¼ 0: ðB8Þ

Equation (B6) does not depend on the other perturbed
quantities such as ξ⃗ and can be solved alone to give a
regular solution

δϕðrÞ ¼ Arl; ðB9Þ

where A is some arbitrary constant. Hence, Eqs. (B7)
and (B8) are left with two regular solutions, i.e., two
undetermined constants. As a result, the perfect screening
of the external tidal field on the solid core is easily realized
by considering the fact that the two boundary conditions at
the core-envelope interface are homogeneous in ξr and ξ⊥
when the density gap across the interface is zero:

�
ΔPþ 2μ

dξr
dr

�
Rc−

¼ ½ΔP�Rcþ ; ðB10Þ

μ

�
r
dξ⊥=r
dr

þ ξr
r

�
Rc−

¼ 0; ðB11Þ

where we use the subscripts “þ” and “−” to denote
different sides of an interface at radius Rc, e.g.,
Rcþ ¼ limδ→0þðRc þ δÞ.
It can be shown that Eq. (B10) gives a homogeneous

equation of ξrðRc−Þ and ξ⊥ðRc−Þ when there is no density
gap, which in turn gives the trivial solution ξr ¼ ξ⊥ ≡ 0
within the solid core when combined with the other
homogeneous relation, Eq. (B11), since ξrðRc−Þ and
ξ⊥ðRc−Þ are left with two degrees of freedom. This leads
to the result λ̄≡ 1=ð2C5Þ, independent of the solid core
radius, which exactly equals the normalized tidal deform-
ability of a Newtonian fluid incompressible star. This is the
so-called perfect screening, where the effect of the external
tidal field on the solid core is completely screened off by
the deformed fluid envelope.
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