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We show that the weakly interacting massive particle scenario of proton-philic spin-dependent inelastic
dark matter (pSIDM) can still provide a viable explanation of the observed DAMA modulation amplitude
in compliance with the constraints from other experiments after the release of the DAMA/LIBRA-phase2
data and including the recent bound from COSINE–100, that uses the same NaI target of DAMA.
The pSIDM scenario provided a viable explanation of DAMA/LIBRA-phase1 both for a Maxwellian
WIMP velocity distribution and in a halo–independent approach. At variance with DAMA/LIBRA-phase1,
for which the modulation amplitudes showed an isolated maximum at low energy, the DAMA/LIBRA-
phase2 spectrum is compatible to a monotonically decreasing one. Moreover, due to its lower threshold, it
is sensitive to WIMP–iodine interactions at lowWIMP masses. Due to the combination of these two effects
pSIDM can now explain the yearly modulation observed by DAMA/LIBRA only when the WIMP velocity
distribution departs from a standard Maxwellian. In this case the WIMP massmχ and mass splitting δ fall in
the approximate ranges 7 GeV ≲mχ ≲ 17 GeV and 18 keV≲ δ≲ 29 keV. The recent COSINE–100
bound is naturally evaded in the pSDIM scenario due to its large expected modulation fractions.
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I. INTRODUCTION

About one quarter of the total mass density of the
Universe [1] and more than 90% of the halo of our
Galaxy are believed to be constituted by dark matter
(DM) and weakly interacting massive particles (WIMPs)
are one of the most popular candidates to compose it. The
scattering rate of DM WIMPs in a terrestrial detector is
expected to present a modulation with a period of one year
due to the Earth’s revolution around the Sun [2].
The DAMA collaboration [3–5] has been measuring

for more than 15 years a yearly modulation effect in their
sodium iodide target. Such effect has a statistical signifi-
cance of more than 9σ and is consistent with what is
expected from DM WIMPs. However, in the most popular
WIMP scenarios the DAMA modulation appears incom-
patible with the results from many other DM experiments
that have failed to observe any signal so far.

This has lead to extend the class of WIMP models. In
particular, one of the few phenomenological scenarios that
have been shown to explain the DAMA effect in agreement
with the constraints from other experiments is proton–
philic spin-dependent inelastic dark matter (pSIDM) [6,7]
for WIMP masses 10 GeV≲mχ ≲ 30 GeV and a mass
splitting 10 keV≲ δ≲ 30 keV.
Recently the DAMA collaboration has released first

result from the upgraded DAMA/LIBRA-phase2 experi-
ment [8]. Compared to the previous data the two most
important improvements are that now the exposure has
almost doubled and that the energy threshold has been
lowered from 2 keV electron–equivalent (keVee) to
1 keVee. Moreover, an important difference with the result
of DAMA/LIBRA-phase1 is that the new DAMA/LIBRA-
phase2 spectrum of modulation amplitudes no longer
shows a maximum, but is rather monotonically decreasing
with energy.1 Moreover, several direct WIMP searches have
improved their bounds, including the COSINE–100 col-
laboration [13] that has recently published an exclusion plot
about a factor of two below the DAMA region using 106 kg
of NaI, the same target of DAMA, assuming an elastic,
spin-independent isoscalar WIMP nucleus interaction and a
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1With the new DAMA data the goodness of fit of a standard
spin-independent interaction and a Maxwellian velocity distri-
bution has considerably worsened compared to DAMA-phase1
[9,10]. This can be alleviated assuming nonrelativistic effective
interactions [11] or two–component DM models [12].
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WIMP Maxwellian velocity distribution. In light of these
differences in the present paper we wish to update the
assessment of pSIDMwith the new DAMA/LIBRA-phase2
data, both in a scenario where the WIMP speed distribution
fðvÞ is given by a standard Maxwellian and using a halo-
independent approach where fðvÞ is not fixed.
In the present paper we will show that pSIDM can still

provide a viable explanation of the modulation effect after
DAMA/LIBRA-phase2. In particular, while the pSIDM
scenario was able to explain DAMA/LIBRA-phase1 both
for a Maxwellian fðvÞ and in a halo-independent approach
[6,7] in the present paper we will show that for a
Maxwellian WIMP velocity distribution it provides a poor
fit to the new DAMA data and for a range of the pSIDM
parameters in tension with the null results of other DM
searches. On the other hand in a halo-independent approach
the pSIDM scenario is still viable. Moreover, we will show
that the recent COSINE–100 bound is naturally evaded in
the pSDIM scenario due to its large expected modulation
fractions.
The paper is organized as follows. In Sec. II, we outline

the main features of the pSIDM scenario; in Sec. III A, we
analyze the DAMA data adopting a standard Maxwellian
for the WIMP velocity distribution; in Sec. III B, we
analyze the DAMA data in a halo-independent approach.
In the Appendix, we provide some details on how the
experimental constraints on pSIDM have been obtained.

II. THE PSIDM SCENARIO

The most stringent bounds on an interpretation of the
DAMA effect in terms of WIMP–nuclei scatterings are
obtained by detectors using xenon (XENON1T [14],
PANDAX–II [15], LUX [16]) and germanium (CDMS
[17–20]) whose spin is mostly originated by an unpaired
neutron while, on the other hand, both sodium and iodine in
DAMA have an unpaired proton. This implies that if the
WIMP particle interacts with ordinary matter predomi-
nantly via a spin-dependent coupling which is suppressed
for neutrons it can explain the DAMA effect in compliance
with xenon and germanium bounds [21,22]. Actually,
present limits from xenon detectors require to tune the
neutron/proton coupling ratio cn=cp to a small but non-
vanishing value [6]. In the following we will adopt the
xenon-phobic combination cn=cp ¼ −0.028, that mini-
mizes the xenon spin-dependent response using the nuclear
structure functions in [23].2 This scenario is still con-
strained by droplet detectors and bubble chambers (COUPP
[24], PICASSO [25], PICO-60 [26])) which all use nuclear

targets with an unpaired proton (19F and/or 127I). As a
consequence, this class of experiments rules out a DAMA
explanation in terms of WIMPs with a spin-dependent
coupling to protons [6,22,27].
In Ref. [6], inelastic dark matter [28] (IDM) was

proposed to reconcile the above scenario to fluorine
detectors. In IDM, a DM particle χ1 of mass mχ1 ¼ mχ

interacts with atomic nuclei exclusively by up–scattering
to a second heavier state χ2 with mass mχ2 ¼ mχ þ δ. A
peculiar feature of IDM is that there is a minimal WIMP
incoming speed in the lab frame matching the kinematic
threshold for inelastic upscatters and given by:

v�min ¼
ffiffiffiffiffiffiffi
2δ

μχN

s
; ð1Þ

with μχN the WIMP–nucleus reduced mass. This quantity
corresponds to the lower bound of the minimal velocity
vmin (also defined in the lab frame) required to deposit a
given recoil energy ER in the detector:

vmin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNER
p

����mNER

μχN
þ δ

����; ð2Þ

with mN the nuclear mass. In particular, indicating with
v�Na
min and v�Fmin the values of v�min for sodium and fluorine,

and with vesc the WIMP escape velocity, constraints from
WIMP–fluorine scattering events in droplet detectors and
bubble chambers can be evaded when the WIMP mass mχ

and the mass gap δ are chosen in such a way that the
hierarchy:

v�Na
min < vlabesc < v�Fmin; ð3Þ

is achieved, since in such case WIMP scatterings off
fluorine turn kinematically forbidden while those off
sodium can still serve as an explanation to the DAMA
effect. So the pSIDM mechanism rests on the trivial
observation that the velocity v�min for fluorine is larger than
that for sodium.

III. ANALYSIS

The expected rate in a given visible energy bin E0
1 ≤

E0 ≤ E0
2 of a direct detection experiment is given by:

R½E0
1
;E0

2
�ðtÞ ¼ MTexp

Z
E0
2

E0
1

dR
dE0 ðtÞdE0

dR
dE0 ðtÞ ¼

X
T

Z
∞

0

dRχTðtÞ
dEee

GTðE0; EeeÞϵðE0ÞdEee

Eee ¼ qðERÞER; ð4Þ
with ϵðE0Þ ≤ 1 the experimental efficiency/acceptance.
In the equations above ER is the recoil energy deposited

2The value cn=cp ¼ −0.028 minimizes the XENON1T rate in
the ROE 3 PE < S1 < 70 PE [14] for the Maxwellian case (using
the nuclear form factors of Ref. [23]). In the spin-dependent case,
the momentum dependence of the form factors is mild, so that this
value is optimal in all the parameter space relevant to the pSIDM
scenario.
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in the scattering process (indicated in keVnr), while Eee
(indicated in keVee) is the fraction of ER that goes into the
experimentally detected process (ionization, scintillation,
heat) and qðERÞ is the quenching factor, GTðE0; Eee ¼
qðERÞERÞ is the probability that the visible energy E0 is
detected when a WIMP has scattered off an isotope T in the
detector target with recoil energy ER,M is the fiducial mass
of the detector and Texp the live–time exposure of the data
taking.
In Eq. (4) the differential recoil rate dRχTðtÞ=dER is

given by:

dRχT

dER
ðtÞ ¼

X
T

NT
ρWIMP

mWIMP

Z
vmin

d3vTfðv⃗T ; tÞvT
dσT
dER

; ð5Þ

where ρWIMP is the local WIMP mass density in the
neighborhood of the Sun (in the following we will assume
the standard value ρWIMP ¼ 0.3 GeV=cm3), fðv⃗T ; tÞ is the
WIMP velocity distribution (whose boost in the Earth rest
frame induces a time dependence), NT the number of the
nuclear targets of species T in the detector (the sum over T
applies in the case of more than one target), while

dσT
dER

¼ σ0
Emax
R

¼ 2mT

4πv2T

�
1

2jχ þ 1

1

2jT þ 1
jMT j2

�
; ð6Þ

with mT the mass of the nuclear target, jχ ¼ 1=2 the spin of
the WIMP, Emax

R ¼ 2μ2χT=mTv2T and σ0 the pointlike WIMP-
nucleon cross section. In the following, for the calculation of
the squared amplitude jMT j2 wewill use the spin-dependent
nuclear form factors from [23]3 for all nuclei with the
exception of caesium and tungsten, for which we follow the
same procedure adopted in Appendix C of [29].
In particular, in each visible energy bin, DAMA is

sensitive to the yearly modulation amplitude Sm, defined
as the cosine transform of R½E0

1
;E0

2
�ðtÞ,

Sm;½E0
1
;E0

2
� ≡ 2

T0

Z
T0

0

cos

�
2π

T0

ðt − t0Þ
�
R½E0

1
;E0

2
�ðtÞdt; ð7Þ

with T0 ¼ 1 year and t0 ¼ 2nd June, while other experi-
ments put upper bounds on the time average S0:

S0;½E0
1
;E0

2
� ≡ 1

T0

Z
T0

0

R½E0
1
;E0

2
�ðtÞdt: ð8Þ

A. Maxwellian analysis

In this section, we assume that the WIMP velocity
distribution in the Galactic rest frame is a standard isotropic
Maxwellian at rest, truncated at the escape velocity vesc,

fgalðuÞ ¼
1

π3=2v30Nesc
e−u

2=v2
0Θðvesc − uÞ: ð9Þ

Here u is the WIMP speed in the Galactic rest frame, v0 the
galactic rotational velocity at the Earth’s position, Θ is the
Heaviside step function, and

Nesc ¼ erfðzÞ − 2ze−z
2

=π1=2 ð10Þ

with z ¼ vesc=v0. The WIMP speed distribution in the
laboratory frame can be obtained with a change of reference
frame. It depends on the speed of the Earth with respect to
the Galactic rest frame, which neglecting the ellipticity of
the Earth orbit, is given by

vEðtÞ ¼ ½v2⊙ þ v2⊕ þ 2v⊙v⊕ cos γ cos½ωðt − t0Þ��1=2: ð11Þ

In this formula, v⊙ is the speed of the Sun in the Galactic
rest frame, v⊕ is the speed of the Earth relative to the Sun,
and γ is the ecliptic latitude of the Sun’s motion in the
Galaxy. We take cos γ ≃ 0.49, v⊕ ¼ 2πð1 AUÞ=ð1 yearÞ≃
29 km=s, v⊙ ¼ v0 þ 12 km=s, v0 ¼ 220 km=s [30], and
vesc ¼ 550 km=s [31].
The velocity integral in Eq. (5) for the truncated

Maxwellian distribution is computed from the expression
of the speed distribution. We have obtained S0 and Sm by
expanding it to first order in v⊕=v⊙.
To check how well pSIDM with a Maxwellian distri-

bution fits the DAMA/LIBRA-phase2 data Sexpm;k � σk in [8],
we perform a χ2 analysis constructing the quantity

χ2ðmχ ; δ; σ0Þ ¼
X14
k¼1

½Sm;kðmχ ; δ; σ0Þ − Sexpm;k�2
σ2k

; ð12Þ

where we consider 14 energy bins of width 0.5 keVee from
1 to 8 keVee.
The global minimum of χ2ðmχ ; δ; σ0Þ for pSIDM occurs

atmχ ¼ 12.1 GeV, δ ¼ 18.3 keV, σ0 ¼ 7.95 × 10−35 cm2,
and its value is χ2min ¼ 13.19 (p-value ¼ 0.28 with 14 − 3

degrees of freedom, which is an indication of a good fit).
Themodulation amplitudes predictedby the pSIDMscenario
are compared to the combined data of DAMA/NaI [32],
DAMA/LIBRA-phase1 [3,4] and DAMA/LIBRA-phase2
[8] in Fig. 1.
The 5-σ best-fit DAMA region in the (mχ–σ0) plane for

the pSIDM scenario is compared to the corresponding
90% C.L. upper bounds from other DM searches in Fig. 2
(see the Appendix for some details on how such constraints
have been obtained). In the same plot, the IDM mass
splitting is fixed to the absolute minimum of the χ2,
δ ¼ 18.3 keV. As can be seen from such figure the
DAMA effect is in strong tension with the upper bounds
from PICO60, KIMS and PICASSO. On the other hand,
COSINE-100 [13], that using the same NaI target of3i.e., for the NREFT operator O4 in the notation of [23].

PROTON-PHILIC SPIN-DEPENDENT INELASTIC DARK … PHYS. REV. D 99, 023017 (2019)

023017-3



DAMA has recently published an exclusion plot about a
factor of two below the DAMA modulation region in the
case of an elastic, spin-independent (SI) isoscalar WIMP–
nucleon interaction, does not exclude the pSIDM scenario.
This is due to the modulation fractions that in the pSIDM
model are higher than in the elastic case even for the case
of a Maxwellian. In fact inelastic scattering is sensitive to
the high–speed tail of the velocity distribution due to
the condition vmin ≥ v�min. In particular, the modulation
residual measured by DAMA are at the level of SDAMA

m ≃
0.02 events=kg=day=keVee [8], while we estimate a bound

from COSINE–100 SCOSINE0 ≲ 0.13 events=kg=day=keVee
after background subtraction (see the Appendix) on the
nonmodulated component of the signal. This implies
SDAMA
m =SDAMA

0 ¼SDAMA
m =SCOSINE0 ×SCOSINE0 =SDAMA

0 ≳0.12,
including a factor SCOSINE0 =SDAMA

0 ≃ 0.8 due to a difference
between the energy resolutions and efficiencies in the two
experiments. For a standard Maxwellian WIMP velocity
distribution in the SI elastic case the predicted modulation
fractions SDAMA

m =SDAMA
0 are below such bound (for in-

stance, for mχ ¼ 10 GeV we find values of SDAMA
m =SDAMA

0

that range between ≃0.05 and ≃0.12 for Eee < 3 keVee).
In the pSIDM case, however, the modulation fractions are
all above such value. For instance, for mχ ¼ 10 GeV and
δ ¼ 18 keV all the modulation fractions for Eee < 6 keVee
(i.e., in the range of the DAMA signal) are above 0.4. This
also explains why COSINE–100 does not constrain the
pSIDM scenario in the halo-independent approach of the
next section.
We have also performed a combined fit including the

upper bounds from such experiments with the addition of
COUPP and XENON1T and COSINE–100, finding χ2min ¼
41.1 with a p–value 1.5 × 10−3 and 18 dof. Including v0
and uesc as nuisance parameters in the χ2 (we assume v0 ¼
ð220� 20Þ km=s [30] and uesc ¼ ð550� 30Þ km=s [31])
does not improve the fit (we find χ2min ¼ 41.0). This
confirms that, at variance with the analyses of Ref. [6,7],
after the release of the DAMA/LIBRA-phase2 data, the
pSIDM scenario in the Maxwellian case is ruled out. There
are two reasons for this. The first reason is that while the
DAMA/LIBRA-phase1 data were only sensitive to scatter-
ing events off sodium, the DAMA/LIBRA-phase2 data
have a lower threshold and are now also sensitive to
scattering events off iodine for E0 < 2 keVee at low
WIMP masses. This makes it more difficult to fit the
model to the data since, in the pSIDM scenario, the scaling
between the cross sections off iodine and sodium is fixed
(the parameter cn=cp, that would allow to change such
scaling is locked to the combination that suppresses the
response on xenon). Moreover, in the scenario described
in Sec. II, a minimal value of the mass splitting parameter δ
is required in order to comply with the condition of Eq. (3),
which, at the same time automatically implies that the
recoil energy E�

R ≡ ERðv�Na
min Þ, and so a single maximum of

the modulation amplitude spectrum, falls inside the range
of the DAMA signal [6] [the energy E�

R maximizes the
velocity integral in Eq. (15)]. Indeed, the DAMA/LIBRA-
phase1 data showed a single maximum in the 2.5 keVee <
E0 < 3 keVee energy bin in the measured modulation
amplitudes [3,4], implying an acceptable fit for the
pSIDM model. On the other hand, the DAMA/LIBRA-
phase2 data show an energy spectrum of the modulation
amplitudes more compatible to a monotonically decreasing
one, closer to what expected for elastic scattering. As a
consequence of this, the DAMA/LIBRA-phase2 χ2 pulls to

FIG. 2. The 5-σ best-fit DAMA region for the pSIDM scenario
is compared to the corresponding 90% C.L. upper bounds from
other DM searches for a Maxwellian WIMP velocity distribution.
In the plot, the IDM mass splitting is fixed to δ ¼ 18.3 keV,
which corresponds to the absolute minimum of the χ2.

FIG. 1. DAMA modulation amplitudes as a function of the
measured ionization energy E0 for the absolute minimum of the
pSIDM model in the case of a Maxwellian WIMP velocity
distribution. The points with error bars correspond to the
combined data of DAMA/NaI [32], DAMA/LIBRA-phase1
[3,4] and DAMA/LIBRA-phase2 [8].
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low values of the δ mass splitting (indeed, the Maxwellian
best-fit configuration mχ ¼ 12.1 GeV, δ ¼ 18.3 keV falls
below the halo-independent compatibility region discussed
in the next section and shown in Fig. 4), entering in conflict
with the requirement of Eq. (3).4

B. Halo-independent analysis

In the halo-independent approach [33], the expected rate
in a direct detection experiment is recast in the form [34]

R½E0
1
;E0

2
�ðtÞ ¼

Z
∞

0

dvminη̃ðvmin; tÞR½E0
1
;E0

2
�ðvminÞ; ð13Þ

where the dependence on astrophysics is contained in the
halo function,

η̃ðvmin; tÞ ¼
ρχ
mχ

σ0ηðvmin; tÞ; ð14Þ

and the WIMP velocity distribution is contained in the
velocity integral,

ηðvmin; tÞ ¼
Z

∞

vmin

dv
fðv; tÞ

v
; ð15Þ

while the response function R½E0
1
;E0

2
�ðvminÞ is given by

R½E0
1
;E0

2
�ðvminÞ ¼

X
T

NT
v2T
σ0

dσT
dER

×
Z

E0
2

E0
1

dE0ϵðE0ÞGTðE0; EeeðvminÞ: ð16Þ

Notice that, for a standard spin-dependent interaction,
the scattering amplitude in Eq. (6) does not depend on vT so
the term v2T in the equation above cancels out in the product
v2TdσT=dER. Due to the revolution of the Earth around
the Sun, the velocity integral η̃ðvmin; tÞ shows an annual
modulation that can be approximated by the first terms of a
harmonic series,

η̃ðvmin; tÞ ¼ η̃0ðvminÞ þ η̃1ðvminÞ cos ½ωðt − t0Þ�; ð17Þ

with the only requirement that jη̃1j ≤ η̃0. In this approach,
measured rates Ri

½E0
1
;E0

2
� (with i ¼ 0, 1) are mapped into

suitable averages of the two halo functions η̃i. Averages
η̃i½vmin;1;vmin;2� (i ¼ 0, 1) usingRðvminÞ in Eq. (16) as a weight
function can then be directly obtained from the experi-
mental data Ri

½E0
1
;E0

2
� as [34]

η̃i½vmin;1;vmin;2� ¼
R∞
0 dvminη̃

iðvminÞR½E0
1
;E0

2
�ðvminÞR

∞
0 dvminR½E0

1
;E0

2
�ðvminÞ

¼
Ri
½E0

1
;E0

2
�R

∞
0 dvminR½E0

1
;E0

2
�ðvminÞ

; ð18Þ

The result of such procedure is shown in Fig. 3, where
the determinations of η̃1½vmin;1;vmin;2� from DAMA/LIBRA-
phase2 data are shown with error bars for the benchmark
point mχ ¼ 11.4 GeV, δ ¼ 23.7 keV.
The velocity intervals ½vmin;1; vmin;2� are defined as those

velocity intervals where theweight functionR½E0
1
;E0

2
�ðvminÞ is

sizeably different from zero. In particular, to determine the
vmin interval corresponding to each detected energy interval
½E0

1; E
0
2� in DAMA we choose to use 68% central quantile

intervals of the response function; i.e., we determine vmin;1

and vmin;2 such that the areas under the function
R½E0

1
;E0

2
�ðvminÞ to the left of vmin;1 and to the right of vmin;2

are each separately 16% of the total area under the function.
This gives the horizontal width of the crosses corresponding
to the rate measurements in Fig. 3. On the other hand, the
horizontal placement of the vertical bar in the crosses
corresponds to the average of vmin, i.e., vminðvertical barÞ ¼
½R∞

0 dvminvminR½E0
1
;E0

2
�ðvminÞ�=½

R
∞
0 dvminR½E0

1
;E0

2
�ðvminÞ�. The

extension of the vertical bar shows the 1σ interval around the
central value of the measured rate.
To compute upper bounds on η̃0 from upper limits Rlim

½E0
1
;E0

2
�

on the unmodulated rates, we follow the conservative
procedure in Ref. [33]. Since η̃0ðvminÞ is by definition a
nondecreasing function, the lowest possible η̃0ðvminÞ func-
tion passing through a point ðv0; η̃0Þ in vmin space is the
downward step function η̃0θðv0 − vminÞ. The maximum
value of η̃0 allowed by a null experiment at a certain
confidence level, denoted by η̃limðv0Þ, is then determined
by the experimental limit on the rate Rlim

½E0
1
;E0

2
� as

FIG. 3. Measurements of η̃1½vmin;1;vmin;2� (DAMA/LIBRA) and
upper bounds η̃lim (same experiments as in Fig. 2) for pSIDM in
the benchmark point mχ ¼ 11.4 GeV, δ ¼ 23.7 keV.

4On the other hand, a fit of the DAMA/LIBRA-phase1 data
below 8 keV to the pSIDM scenario yields χ2min ¼ 8.6 with 12-3
dof, mχ ¼ 12.8 GeV, σ0 ¼ 4.5 × 10−34 cm2 and δ ¼ 23.6 keV,
in agreement with the requirement of Eq. (3).
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η̃limðv0Þ ¼
Rlim
½E0

1
;E0

2
�R v0

0 dvminR½E0
1
;E0

2
�ðvminÞ

: ð19Þ

The corresponding upper limits at 90% C.L. are shown as
continuous lines in Fig. 3 for the same experiments shown
in Fig. 2.
For the specific benchmark mχ ¼ 11.4 GeV, δ ¼

23.7 keV shown in Fig. 3 one can see that pSIDM cannot
be ruled out as an explanation of the DAMA/LIBRA effect
since in all the energy range of the signal one has

jη̃1½vmin;1;vmin;2�j ≪ η̃lim. The same benchmark is represented
by a starred point in Fig. 4 and lies inside the closed contour
where the compatibility factor defined as [6]

DðmDM; δÞ≡max
i

�η̃1½vimin;1;v
i
min;2� − σi

miniη̃limðvi0Þ
�
; ð20Þ

is less than unity. In the equation above, ½vimin;1; v
i
min;2� and

vi0 represent intervals and averages of vmin for each of the
i ¼ 1…14 DAMA/LIBRA bins below E0 ¼ 8 keVee,

while σi is the 1–σ fluctuation on η̃1½vimin;1;v
i
min;2�. In particular,

the requirement DðmDM; δÞ < 1 ensures that within the
solid closed contour of Fig. 4 no 1–σ interval of the

quantities η̃1½vmin;1;vmin;2� obtained from the DAMA/LIBRA
data lies completely above any of the upper bounds η̃lim. In
Fig. 4, we also provide additional dashed closed contours
which correspond to an alternative, more accurate defini-
tion of the compatibility factor: once the averages of

the modulated halo function η̃1 are determined from the

DAMA data, we determine a minimal set of averages of the
unmodulated halo function η̃0 complying with the con-
dition that η̃0 is a nonincreasing function of vmin and that
jη̃1j < ξη̃0 with ξ ≤ 1 (ξ ¼ 1 corresponding to 100%
modulation). We then use the η̃0’s to calculate for different
values of ξ the expected rate Rexp

n ðmDM; δ; ξÞ for each
experiment exp and energy bin n. Indicating with Rexp;lim

n

the corresponding 90% C.L. upper bound, we adopt as a
compatibility factor

D0ðmDM; δ; ξÞ≡max
exp;n

Rexp
n ðmDM; δ; ξÞ

Rexp;lim
n

; ð21Þ

where, again, D0 < 1 indicates compatibility. As long as
ξ ¼ 1,D andD0 yield similar results (implying that, although
the DAMA result requires all the η̃1’s the bound is driven by
only one of the corresponding η̃0’s). In particular, from Fig. 4
one can see that in a halo-independent approach the pSIDM
scenario can explain the DAMA/LIBRA data for 7 GeV≲
mχ ≲ 17 GeV and 18 keV≲ δ≲ 29 keV. As expected,
when ξ < 1 (smaller modulation fractions) the compatibility
region in Fig. 4 shrinks. Inside the smallest dashed contour
of Fig. 4 D0 eventually reaches a plateau with minimum
value slightly lower than 0.1, implying the compatibility of
modulation fractions as low as ≃0.1.

IV. CONCLUSIONS

We have shown that the weakly interacting massive
particle scenario of proton-philic spin-dependent inelastic
dark matter (pSIDM) can still provide a viable explanation
of the observed DAMA modulation amplitude in compli-
ance with the constraints from other experiments after the
release of the DAMA/LIBRA phase-2 data. The pSIDM
scenario provided a viable explanation of DAMA/LIBRA-
phase 1 both for a Maxwellian WIMP velocity distribution
and in a halo-independent approach. At variance with
DAMA/LIBRA-phase1, for which the modulation ampli-
tudes showed an isolated maximum at low energy, the
DAMA/LIBRA-phase2 spectrum is compatible to a mono-
tonically decreasing one. Moreover, due to its lower
threshold, it is sensitive to WIMP–iodine interactions at
low WIMP masses. Due to the combination of these two
effects pSIDM can now explain the modulation observed
by DAMA/LIBRA only when the WIMP velocity distri-
bution departs from a standard Maxwellian. In this case the
WIMP massmχ and mass splitting δ fall in the approximate
ranges 7 GeV≲mχ ≲ 17 GeV and 18 keV≲ δ≲ 29 keV.
The recent COSINE–100 bound is naturally evaded in the
pSDIM scenario due to its large expected modulation
fractions, because inelastic scattering is sensitive to the
high–speed tail of the velocity distribution.
We conclude by pointing out that strictly speaking our

analysis can only lead to the conclusion that in the pSIDM
scenario it is not possible to rule out a DAMA explanation

FIG. 4. In the region inside the closed solid contour, the
compatibility parameter D defined in Eq. (20) is less than unity,

implying that no 1–σ interval of the quantities η̃1½vmin;1;vmin;2�
obtained from the DAMA/LIBRA data lies completely above
any of the upper bounds η̃lim. Inside the dashed closed contours
the alternative compatibility factor D0 defined in Eq. (21) is less
than unity for different values of the maximal modulation fraction
ξ. The starred point corresponds to the benchmark shown in
Fig. 3.
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in terms of WIMPs in a halo-independent way. On the other
hand, the problem of inverting the halo function η̃1 to obtain
a velocity distribution fðvÞ that, due to the boost from the
Galactic to the lab rest frames, leads to the correct time and
energy dependence of the DAMA signal is a complex and
highly degenerate one that would require a dedicated
analysis beyond the scope of our paper. Moreover, due
to the very strong existing limits from null searches the
pSIDM scenario requires considerable tuning, such as a
large suppression of the spin-independent coupling, a
specific range of the Galactic escape velocity according
to Eq. (3) and the tuning of the cn=cp couplings ratio. As a
consequence pSIDM appears challenging both from the
point of view of particle physics model–building and of that
of astrophysics. However, in spite of these challenges, at
the very least the pSIDM scenario can be considered as a
proof of concept of the fact that the parameter space of
WIMP direct detection is wider than usually assumed and
that experimentally an explanation of the DAMA signal in
terms of WIMPs has not yet been completely probed.
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APPENDIX: EXPERIMENTS

With the exception of the recent COSINE-100 result
[13], we fix the experimental input (exposure, energy
resolution, quenching factors, efficiency, measured count
rates, etc.) for both the DAMA/LIBRA experiment and for

other DM searches as described in Appendix B of [29] and
Appendix A of [35]. Recently [13] the COSINE–100
collaboration has published a bound about a factor of
two below the DAMA region using 106 kg of NaI, the
same target of DAMA. Such result assumes an elastic, spin-
dependent isoscalar WIMP nucleus interaction for a WIMP
Maxwellian velocity distribution with standard parameters,
and relies on a Montecarlo [36] to subtract the different
backgrounds of each of the eight crystals used in the
analysis. In Ref. [13] the amount of residual background
after subtraction is not provided, and depends on the
expected signal shape, so should not in principle be used
to constrain a signal with a spectral shape different from the
specific scenario adopted in Ref. [13]. However, especially
in the halo-independent case, for which the expected
spectral shape cannot be used to constrain the background,
we deem that using the same residual background of
Ref. [13] should lead to an optimistic estimate of the
bound. So we have assumed for COSINE–100 a constant
background b at low energy (2 keVee < Eee < 8 keVee),
and we have estimated b by tuning it to reproduce the
exclusion plot in Fig. 4 of Ref. [13] for the isoscalar spin-
independent elastic case. The result of our procedure yields
b ≃ 0.13 events=kg=day=keVee, which implies a subtrac-
tion of about 95% of the background. We have then used
the same value to calculate the bounds for pSIDM. We take
the energy resolution σ=keV ¼ 0.3171

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eee=keVee

p þ
0.008189Eee=keVee averaged over the COSINE–100 crys-
tals [37] and the efficiency for nuclear recoils from Fig. 1 of
Ref. [13]. Quenching factors for sodium and iodine are
assumed to be equal to 0.3 and 0.09, respectively, the same
values used by DAMA.
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