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In this paper, we investigate the three-dimensional (3D) motion of a test particle in a stationary, axially
symmetric spacetime around a central compact object, under the influence of a radiation field. To this aim,
we extend the two-dimensional version of the Poynting-Robertson effect in general relativity that was
developed in previous studies. The radiation flux is modeled by photons which travel along null geodesics
in the 3D space of a Kerr background and are purely radial with respect to the zero angular momentum
observer (ZAMO) frames. The 3D general relativistic equations of motion that we derive are consistent
with the classical (i.e., non–general relativity) description of the Poynting-Robertson effect in three
dimensions. The resulting dynamical system admits a critical hypersurface, on which radiation force
balances gravity. Selected test particle orbits are calculated and displayed, and their properties are
described. It is found that test particles approaching the critical hypersurface at a finite latitude and with
nonzero angular moment are subject to a latitudinal drift and asymptotically reach a circular orbit on the
equator of the critical hypersurface, where they remain at rest with respect to the ZAMO. On the contrary,
test particles that have lost all their angular momentum by the time they reach the critical hypersurface do
not experience this latitudinal drift and stay at rest with respect to the ZAMO at fixed nonzero latitude.
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I. INTRODUCTION

Matter motion in a gravitational field may be affected,
among others, by radiation forces. The case in which
both the gravity and radiation fields originate in the same
body has been discussed extensively in the astrophysical
context for decades. The Eddington argument, for instance,
describes the outward radial force exerted by momentum
transfer by radiation from a star and determines the con-
ditions under which such a force balances the inward
gravitational force. The corresponding critical luminosity
of a star separates the regime of radial infall from that of
radial escape. It has long been known also that radiation can
remove angular momentum from matter in motion around a

star. Radiation absorbed by a particle is in general reemitted
isotropically in the reference frame of the particle. However
reemission in the star reference frame is (slightly) beamed
along the direction ofmotionowing to relativistic aberration,
such that the particle recoils opposite to its velocity and a
fraction of its angular momentum is transferred to the radi-
ation field. This effect was first studied by Poynting in 1903
[1], based on a classical treatment, and extended to special
relativity by Robertson in 1937 [2]; it has since then been
termed the Poynting-Robertson (PR) effect (or radiation
drag). Both authors had in mind applications to the motion
of comets, dusts, and centimeter-size bodies in the Solar
System, for which Newtonian gravity suffices.1 The Sun is
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1Note, however, that Robertson mentions general relativistic
corrections to inertial terms in describing the perihelion shift in
the quasi-Newtonian orbits [2].
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treated as a pointlike source of gravity and radiation in a flat
Minkowski spacetime, with straight light rays propagating
outward; the test particle moves in a planar orbit and
reradiates energy at the same rate at which it receives it
from the radiation field. Special relativistic equations are
written in the test particle reference frame and then trans-
formed to the reference system of the Sun [2]. More
advanced descriptions of test particle motion under the
influence of PR effects were discussed in some classical
works in the 1950s—1960s [3,4]. A detailed description of
the PR effect in relation to other radiation forces acting on
small particles in the Solar System was given in Ref. [5].
The range of applications of PR drag to astrophysical

problems has grown steadily since the 1980s, coming to
encompass also compact objects, especially neutron stars
(NSs) and black holes (BHs) that accrete matter down to the
very strong gravitational fields in their vicinity. For
instance, Walker et al. [6,7] studied the increase in mass
accretion rate that is caused by PR drag when a bright
thermonuclear flash occurs on the surface of a NS. This has
motivated theory developments involving the PR effect in
which GR is taken into account. The radial motion of test
particles under the influence of a central isotropically
emitting star was first investigated in the full GR in
Ref. [8], and detailed calculations in the Schwarzschild
metric were presented. General relativistic equations of
motion for a fluid in an arbitrary radiation field were
formulated in Ref. [9]. Miller and collaborators [10,11]
investigated the velocity field of accreting matter as
affected by the PR effect in the vicinity of a rotating
NS, by carrying out approximate calculations in the Kerr
metric.
A fully general relativistic treatment of the PR effect in

the context of stationary and axially symmetric spacetimes
was developed by Bini and collaborators [12,13]. Similar to
the classic model of Robertson, these authors consider a
compact object radiating as a pointlike source, with
photons traveling along null geodesics of the background
spacetime (Schwarzschild or Kerr), and test particles
moving in the equatorial plane around the compact object.
Equations of motion are written in the zero angular
momentum observer (ZAMO) frame and then transformed
to the rest reference frame of the compact object. The
relativity of observer splitting formalism is adopted and
permits clearly distinguishing between gravitational and
inertial contributions (see Refs. [14–19] for further details).
The equations are solved numerically, and test particle
trajectories and motion are analyzed for both a purely radial
photon field (null impact parameter) [12] and a photon field
endowed with angular momentum (non-null impact param-
eter) [13].
Recent theoretical works on the extension of PR drag in

GR have included studies of test particle motion in the
Vaidya spacetime [20] and around a slowly rotating
relativistic star emitting isotropic radiation [21], the general

relativistic PR effect on a spinning test particle [22], finite-
size effects [23], and the Lagrangian formulation of the
general relativistic PR effect [19]. More astrophysically
oriented studies of the PR effect in strong gravitational
fields have concentrated on the development of the
Eddington capture sphere concept around luminous stars,
the surface where gravity, radiation, and PR forces balance
[24–28]; the cosmic battery model in astrophysical accre-
tion disks [29,30]; and the dynamical evolution of accretion
disks suddenly invested by a constant radiation filed [31].
Research in this area has acquired further momentum from
the growing body of observational evidence for the PR
effect in matter motion around compact objects, especially
accreting NSs undergoing thermonuclear flashes [32–38].
Virtually all previous works on the general relativistic

properties of the PR effect have been based upon a two-
dimensional (2D) model of the effect, i.e., planar (and
arbitrarily oriented) orbits in spherically symmetric space-
times (e.g., Schwarzschild’s) and equatorial orbits in the
(axially symmetric) Kerr metric. A necessary improvement
consists in developing the three-dimensional (3D) theory of
the PR effect in GR. That would allow us to investigate the
motion of test particles immersed in nonspherically sym-
metric radiation fields (e.g., latitude-dependent fields) and/
or orbiting away from the equatorial plane of the Kerr
metric. That is the aim of the present study, which builds on
the formalism developed in Refs. [12,13]. Our paper is
structured as follows. In Sec. II, we generalize to the 3D
case the previous 2D equations for the PR effect in a
stationary and axially symmetric general relativistic space-
times. We adopt a simple prescription for the radiation,
namely a field with zero angular momentum. In Sec. III,
we define the critical hypersurface on which radiation
force balances gravity and discuss its salient features.
In Sec. IV, we present calculations of selected orbits in
the Schwarzschild and Kerr spacetimes; our concluding
remarks are in Sec. V.

II. SCENARIO AND SPACETIME GEOMETRY

Our scenario for the description of the interaction
between the radiation field and the motion of a test particle
in the extreme gravitational field of a BH, or a NS, is
constituted as follows: we consider the radiation field
coming from an emitting region, located outside of the
event horizon. The test particle motion is determined by its
position in spherical coordinates and its velocity field in the
ZAMO frame. The photon 4-momentum is described by a
pair of polar coordinates (see Fig. 1). In order to derive such
a set of equations, we compute first the quantities in the
ZAMO frame, and then we transform them in the static
observer frame. To deal with the relative motion of two
noninertial observers in GR, we use the relativity of
observer splitting formalism.
We consider a central compact object (BH or NS), the

outside spacetime of which is described by the Kerr metric
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with signature ð−;þ;þ;þÞ [39]. In geometrical units
(c ¼ G ¼ 1), the line element of the Kerr spacetime,
ds2 ¼ gαβdxαdxβ, in Boyer-Lindquist coordinates, para-
metrized by mass M and spin a, reads as [40]

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mra
Σ

sin2θdtdφ

þ Σ
Δ
dr2 þ Σdθ2 þ ρsin2θdφ2; ð1Þ

where Σ≡ r2 þ a2 cos2 θ, Δ≡ r2 − 2Mrþ a2, and ρ≡
r2 þ a2 þ 2Ma2r sin2 θ=Σ. The determinant of the Kerr
metric is g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔ=ρÞgrrgφφgθθ

p ≡ −Σ2 sin2 θ.

A. ZAMO frame

ZAMOs are dragged by the rotation of the spacetime
with angular velocity ΩZAMO ¼ −gϕt=gϕϕ, while their
radial coordinate remains constant. The 4-velocity n of
ZAMOs is the future-pointing unit normal to the spatial
hypersurfaces, i.e., [12,13,15,16],

n ¼ 1

N
ð∂t − Nφ∂φÞ; ð2Þ

where N ¼ ð−gttÞ−1=2 is the time lapse function, gtt ¼
gφφ=ðgttgφφ − g2tφÞ, and Nφ ¼ gtφ=gφφ the spatial shift
vector field. We focus our attention on the region outside
the event horizon, where the time coordinate hypersurfaces
are spacelike, i.e., gtt < 0. An orthonormal frame adapted
to the ZAMOs is given by [41]

et̂ ¼ n; er̂ ¼
1ffiffiffiffiffiffi
grr

p ∂r;

eθ̂ ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ; eφ̂ ¼ 1ffiffiffiffiffiffiffigφφ
p ∂φ: ð3Þ

The relative dual tetrad of 1-forms is given by

ωt̂ ¼ Ndt; ωr̂ ¼ ffiffiffiffiffiffi
grr

p
dr;

ωθ̂ ¼ ffiffiffiffiffiffi
gθθ

p
dθ; ωφ̂ ¼ ffiffiffiffiffiffiffi

gφφ
p ðdφþ NφdtÞ: ð4Þ

All the vector and tensor indeces (e.g., vα; Tαβ) evaluated in
the ZAMO frame will be labelled by a hat (e.g., vα̂; T α̂ β̂),
instead all the quantities (e.g., f) measured in ZAMO frame
will be followed by ðnÞ (e.g., fðnÞ).

B. ZAMO kinematical quantities

Since the accelerated ZAMOs are locally nonrotating,
their vorticity vector ωðnÞ vanishes, but they have a
nonzero expansion tensor θðnÞ. For this reason, it is more
convenient to use the Lie transport (see Refs. [15,19], for
further details). The nonzero ZAMO kinematical quantities
[i.e., acceleration aðnÞ ¼ ∇nn; expansion tensor along the
φ̂-direction θφ̂ðnÞ, also termed the shear vector; and the
relative Lie curvature vector kðLieÞðnÞ] have only nonzero

components in the r̂ − θ̂ plane of the tangent space
[12,13,19]:

FIG. 1. Visual representation of the radiation field–test particle interaction geometry in the Kerr metric. The spatial location of the test
particle is described by Boyer-Linquist coordinates fr; θ;φg. The ZAMO local frame is fet̂; er̂; eθ̂; eφ̂g. The photons of the radiation
field travel along null geodesics of the background spacetime with 4-momentum k. Two photon impact parameters, b and q, are related,
respectively, to the two angles β and ζ, formed in the local ZAMO frame. The test particle moves in the 3D space with a velocity ν,
forming the azimuthal, α, and polar, ψ , angles in the local ZAMO frame.
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aðnÞ ¼ aðnÞr̂er̂ þ aðnÞθ̂eθ̂
¼ ∂ r̂ðlnNÞer̂ þ ∂ θ̂ðlnNÞeθ̂;

θφ̂ðnÞ ¼ θðnÞr̂φ̂er̂ þ θðnÞθ̂ φ̂eθ̂
¼ −

ffiffiffiffiffiffiffigφφ
p
2N

ð∂ r̂Nφer̂ þ ∂ θ̂N
φeθ̂Þ;

kðLieÞðnÞ ¼ kðLieÞðnÞr̂er̂ þ kðLieÞðnÞθ̂eθ̂
¼ −½∂ r̂ðln ffiffiffiffiffiffiffi

gφφ
p Þer̂ þ ∂ θ̂ðln

ffiffiffiffiffiffiffi
gφφ

p Þeθ̂�: ð5Þ

In Table I, we summarize the expressions of such quantities
for the Kerr spacetime.

C. Radiation field

The stress-energy tensor, describing the radiation field,
is modeled as a coherent flux of photons traveling along
null geodesics in the Kerr geometry and acting on the test
particle in the following manner [2,12,13],

Tμν ¼ Φ2kμkν; kμkμ ¼ 0; kμ∇μkν ¼ 0; ð6Þ

where parameterΦ is related to the intensity of the radiation
field and k is the 4-momentum field describing the null
geodesics. The photon 4-momentum, k, and the photon
spatial unit relative velocity with respect to the ZAMOs,
ν̂ðk; nÞ, are, respectively, given by

k ¼ EðnÞ½nþ ν̂ðk; nÞ�;
ν̂ðk; nÞ ¼ sin ζ sin βer̂ þ cos ζeθ̂ þ sin ζ cos βeφ̂; ð7Þ

where β and ζ are the two angles in the azimuthal and polar
direction, respectively (see Fig. 1). The case of sin β > 0
corresponds to an outgoing photon beam (increasing r),
while the case of sin β < 0 corresponds to an incoming
photon beam (decreasing r; see Fig. 1). The photon 4-
momentum in the background Kerr geometry is identified

by two impact parameters ðb; qÞ, which are associated with
two emission angles ðβ; ζÞ, respectively.
Using Eq. (7), the photon energy with respect to the

ZAMO, EðnÞ, is expressed in the frame of a distant static
observer by

EðnÞ ¼ −kðnÞ · n ¼ −k ·
1

N
ð∂t − Nφ∂φÞ

¼ Eþ LzNφ

N
¼ E

N
ð1þ bNφÞ; ð8Þ

where E ¼ −kt > 0 is the conserved photon energy,
Lz ¼ kφ is the conserved angular momentum along the
polar z axis orthogonal to the equatorial plane, and b≡
−kϕkt ¼ Lz=E is the first (azimuthal) photon impact
parameter (constant of motion) [42]; note that all these
quantities are measured by a distant static observer [13].
This impact parameter is associated with the relative

azimuthal angle β, measured in the ZAMO frame [13] (see
Fig. 1). The angular momentum along the polar θ̂ axis in
the ZAMO frame, LzðnÞ, is expressed in the distant static
observer frame by

EðnÞ cos β sin ζ ¼ LzðnÞ ¼ kðnÞ · eφ̂
¼ k ·

∂φffiffiffiffiffiffiffigφφ
p ¼ Lzffiffiffiffiffiffiffigφφ

p : ð9Þ

From such equation, we obtain

cos β ¼ bE
sin ζ ffiffiffiffiffiffiffigφφ

p EðnÞ ¼
LzN

sin ζ ffiffiffiffiffiffiffigφφ
p ðEþ LzNφÞ

¼ bN
sin ζ ffiffiffiffiffiffiffigφφ

p ð1þ bNφÞ : ð10Þ

An equation for ζ is needed to completely determine β.

TABLE I. Explicit expressions of metric and ZAMO kinematical quantities for the Kerr metric.

Metric quantity Explicit expression

N ¼ ð−gttÞ−1=2 ½Δ=ρ�1=2
Nφ ¼ gtφ=gφφ −2Mar=½Σρ�

ZAMO quantity Explicit expression

Radial components
aðnÞr̂ M=½ρ

ffiffiffiffiffiffiffiffiffi
Σ5Δ

p
�fΣ2ðr2 − a2Þ þ a2 sin2 θ½r2ð3r2 − 4Mrþ a2Þ þ a2 cos2 θðr2 − a2Þ�g

θðnÞr̂φ̂ aM sin θ½ðr2 þ a2ÞðΣ − 2r2Þ − 2r2Σ�=½ρ
ffiffiffiffiffi
Σ5

p
�

kðLieÞðnÞr̂ −
ffiffiffiffiffiffiffiffiffiffiffi
Δ=Σ5

p
½rΣ2 þ a2M sin2 θðΣ − 2r2Þ�=ρ

Polar components
aðnÞθ̂ −a2rM sinð2θÞ½r2 þ a2�=½ρ

ffiffiffiffiffi
Σ5

p
�

θðnÞθ̂ φ̂ a2rM sinð2θÞ sin θ ffiffiffiffi
Δ

p
=½ρ

ffiffiffiffiffi
Σ5

p
�

kðLieÞðnÞθ̂ − sinð2θÞ½ðr2 þ a2Þð2a2rMsin2θ þ Σ2Þ þ 2a2rMΣsin2θ�=½2ρ
ffiffiffiffiffi
Σ5

p
sin2θ�
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The photon specific 4-momentum components in the
Kerr geometry are given by [43]

kt ¼ Σ−1ðab − a2sin2θ þ ðr2 þ a2ÞPΔ−1Þ;
kr ¼ srΣ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb;qðrÞ

q
;

kθ ¼ sθΣ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θb;qðθÞ

q
;

kφ ¼ Σ−1ðbcosec2θ − aþ aPΔ−1Þ; ð11Þ

where P≡ r2 þ a2 − ba and the pair of signs sr, sθ
describes the orientation of the radial and latitudinal
evolution, respectively [42]. The radial and latitudinal
effective potentials are, respectively [43],

Rb;qðrÞ ¼ ðr2 þ a2 − abÞ2 − Δ½qþ ðb − aÞ2�; ð12Þ

Θb;qðθÞ ¼ qþ a2cos2θ − b2cot2θ: ð13Þ

Here, q is the second (latitudinal) photon impact parameter
(constant of motion) related to the covariant components of
the photon 4-momentum through the relation [43]

q≡
�
kθ
kt

�
2

þ
�
b tan

�
π

2
− θ

��
2

− a2cos2θ: ð14Þ

1. Impact parameters

We consider here a radiation field which consists of
photons moving in a purely radial direction at infinity (this
is physically admissible because of the asymptotic flatness
of the Kerr spacetime). In this case, we have

k ¼ ∂t þ ∂r: ð15Þ

From Eq. (15), we note that the azimuthal component of the
4-momentum, kφ, vanishes at infinity. Moreover, in order to
simplify the calculations, we assume that the azimuthal
impact parameter of the radiation field, b, takes a null
value, i.e., b ¼ 0. The latitudinal impact parameter, q, can
be calculated from the condition

Θb¼0;qðθÞ ¼ 0; ð16Þ

which results from the absence of latitudinal photon motion
(kθ ¼ 0). From Eqs. (13) and (16), we can express q as a
function of the polar angle θ:

q ¼ −a2 cos2 θ: ð17Þ

This is possible because the latitudinal potential, Eq. (13),
is independent of the radial coordinate and therefore the
polar angle θ along a given photon trajectory is conserved.
Photons with a given value of qmove only in the radial and
azimuthal directions on the surface of the cone with the

vertex located in the coordinates origin and with the vertex
angle θ given by Eq. (17). Note that the azimuthal motion
on finite values of the radial coordinate is caused only by
frame dragging.
The above-defined radiation field significantly simplifies

the integration of test particle trajectories in that only a
single photon beam, described by the constants of motion
b ¼ 0, q ¼ −a2cos2θ, must be considered at the test
particle position. In such a case, the radial potential,
Eq. (12), is always positive above the event horizon: this
proves that the radiation field reaches every position (for all
r and θ) above the event horizon. The second constant of
motion q ranges in the interval ½−a2; 0�. The value q ¼ 0
corresponds to the motion of photons in the equatorial
plane, while the value of q ¼ −a2 corresponds to the
motion of photons along the polar axis on the south or north
direction. We note also that, since q ≤ 0, radiation field
photons can never cross the equatorial plane.
The local components of the photon 4-momentum in the

ZAMO frame are obtained through the following trans-
formation,

kμ̂ ¼ ωμ̂
αkα; ð18Þ

where ωμ̂
α represents the transformation matrix from the

holonomic basis ∂α to the anholomic (tetrad) basis eα̂; see
Eq. (3) for determining its components. The local polar
direction ζ of the photon 4-momentum is given by (see
Fig. 1)

cos ζ ¼ −
kθ̂

kt̂
: ð19Þ

For the considered radiation field (q ¼ −a2cos2θ, kθ ¼ 0),
we simply obtain

kθ̂ ¼ ωθ̂
θkθ ¼ 0: ð20Þ

Consequently from Eqs. (19) and (20), the local polar
direction of the radiation field photons in the ZAMO frame
is always ζ ¼ π=2. From Eq. (9) and b ¼ 0, the local
azimuthal direction β of the photon 4-momentum is
cos β ¼ 0 (see Fig. 1). Therefore, the local azimuthal angle
of the test field photons in the ZAMO frame always takes
the value of β ¼ π=2. We can conclude that in all ZAMO
frames radiation field photons move in a purely radial
direction. The source of the radiation field can thus be
considered as centered in the coordinate origin, (differ-
entially) rotating with a latitude-dependent angular velocity
ΩZAMO and emitting photons only along the radial direction
in the appropriate, locally comoving ZAMO frame.

2. Intensity parameter

Since the photon 4-momentum k is completely deter-
mined by ðb; qÞ, the coordinate dependence of Φ then
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follows from the conservation equations ∇βTαβ ¼ 0.
Exploiting the absence of photon latitudinal motion
(kθ ¼ 0) and symmetries of the Kerr spacetime, these
can be written as

0 ¼ ∇βðΦ2kβÞ ¼ 1ffiffiffiffiffiffi−gp ∂βð
ffiffiffiffiffiffi
−g

p
Φ2kβÞ

¼ ∂rð
ffiffiffiffiffiffi
−g

p
Φ2krÞ: ð21Þ

Therefore, we have

ffiffiffiffiffiffi
−g

p
Φ2kr ¼ NEðnÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gφφgθθ
p

sin ζ sin β

¼ const ¼ EΦ2
0; ð22Þ

where Φ0 is a new constant related to the intensity of the
radiation field at the emitting surface. This equation,
however, does not fix the intensity parameter unambigu-
ously. In fact, the conservation equations will be fulfilled,
even if we multiply the constant expression EΦ2

0 by an
arbitrary function of the θ coordinate. Thus, this condition
determines the class of radiating fields that differ from one
another by the latitudinal dependence of the intensity. A
radiation field which is independent of latitude (and the
whole intensity parameter is thus independent of θ) is a
natural choice, especially in the Schwarzschild limit
because of its spherical symmetry. This can be easily
achieved by multiplying (22) by a factor sin θ, such that
the intensity parameter becomes

Φ2 ¼ Φ2
0 sin θffiffiffiffiffiffiffiffiffiffiffiffiffigφφgθθ

p ≡ Φ2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ a2Þ2 − a2Δsin2θ
p ; ð23Þ

where we have used Eqs. (9) and (10), together with the fact
that Njb tan βj ¼ sin ζ ffiffiffiffiffiffiffigφφ

p for b ¼ 0. In a Schwarzschild
spacetime limit, Eq. (23) thus reads

Φ2 ¼ Φ2
0

r2
; ð24Þ

which matches the spacetime spherical symmetry.

D. Test particle motion

We consider a test particle moving in the 3D space, with
4-velocity U and spatial 3-velocity with respect to the
ZAMOs, νðU; nÞ,

U ¼ γðU; nÞ½nþ νðU; nÞ�; ð25Þ

νðU; nÞ ¼ νr̂ er̂ þ νφ̂ eφ̂ þ νθ̂ eθ̂
¼ ν sinψ sin α er̂ þ ν cosψ eθ̂ þ ν sinψ cos α eφ̂;

ð26Þ

where γðU; nÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kνðU; nÞk2

p
is the Lorentz

factor (see Fig. 1). We use the abbreviated notations

να̂ ¼ νðU; nÞα̂, ν ¼ jjνðU; nÞjj ≥ 0, and γðU; nÞ ¼ γ
throughout this paper. We have that ν represents the
magnitude of the test particle spatial velocity νðU; nÞ, α
is the azimuthal angle of the vector νðU; nÞ measured
clockwise from the positive φ̂ direction in the r̂ − φ̂ tangent
plane in the ZAMO frame, and ψ is the polar angle of
the vector νðU; nÞmeasured from the axis orthogonal to the
r̂ − φ̂ tangent plane of the ZAMO frame (see Fig. 1). The
explicit expression for the test particle velocity components
with respect to the ZAMOs are [12,13]

Ut ≡ dt
dτ

¼ γ

N
; Ur ≡ dr

dτ
¼ γνr̂ffiffiffiffiffiffi

grr
p ;

Uθ ≡ dθ
dτ

¼ γνθ̂ffiffiffiffiffiffi
gθθ

p ; Uφ ≡ dφ
dτ

¼ γνφ̂ffiffiffiffiffiffiffigφφ
p −

γNφ

N
; ð27Þ

where τ is the proper time parameter along U.

1. Relativity of observer splitting formalism

The acceleration of the test particle relative to the ZAMO
congruence, aðUÞ ¼ ∇UU, is given by the formula (see
Eq. (29) in Ref. [19] and references therein),2

aðUÞα ¼ γ2½aðnÞα þ ΓðnÞαβγνðU; nÞβνðU; nÞγ

þ2θðnÞαβνðU; nÞβ� þ dðγνðU; nÞαÞ
dτ

; ð28Þ

where α, β, γ ¼ r̂, θ̂, φ̂ run on the spatial indices of the
metric coordinates.3 Calculating the Christoffel symbols
ΓðnÞαβγ , we have [15,16,19]

ΓðnÞr̂φ̂ φ̂ ¼ ΓðnÞr̂θ̂ θ̂ ¼ −2ΓðnÞφ̂r̂ φ̂
¼ −2ΓðnÞθ̂ r̂ θ̂ ¼ kðLieÞðnÞr̂;

−2ΓðnÞφ̂φ̂ θ̂ ¼ ΓðnÞθ̂ φ̂ φ̂ ¼ kðLieÞðnÞθ̂: ð29Þ

Therefore, Eq. (28) in explicit form becomes

aðUÞr̂ ¼ γ2½aðnÞr̂ þ kðLieÞðnÞr̂ν2ðcos2αsin2ψ
þ cos2ψÞ þ 2ν cos α sinψθðnÞr̂φ̂�

þ γ

�
γ2 sin α sinψ

dν
dτ

þ ν cos α sinψ
dα
dτ

þ ν cosψ sin α
dψ
dτ

�
; ð30Þ

2A complementary approach to the relativity of the observer
splitting formalism is the general relativistic Lagrangian formu-
lation of the PR effect [19].

3Terms CðLieÞðnÞαβγ , CðLieÞðnÞαβ , representing, respectively, the
temporal and spatial constant structures are missing in Eq. (28),
because they vanish in a stationary and axially symmetric
spacetime (see Refs. [15,16,19] for details).
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aðUÞθ̂ ¼ γ2½aðnÞθ̂ þ kðLieÞðnÞθ̂ν2sin2ψcos2α
− kðLieÞðnÞr̂ν2 sinψ sin α cosψ

þ 2ν cos α sinψθðnÞθ̂ φ̂�

þ γ

�
γ2 cosψ

dν
dτ

− ν sinψ
dψ
dτ

�
: ð31Þ

aðUÞφ̂ ¼ −γ2ν2 cos α sinψ ½sin α sinψkðLieÞðnÞr̂

þkðLieÞðnÞθ̂ cosψ � þ γ

�
γ2 cos α sinψ

dν
dτ

−ν sin α sinψ
dα
dτ

þ ν cos α cosψ
dψ
dτ

�
: ð32Þ

From the orthogonality between ðaðUÞ;UÞ, we have

aðUÞt̂ ¼ ν½aðUÞr̂ sin α sinψ þ aðUÞθ̂ cosψ
þ aðUÞφ̂ cos α sinψ �

¼ γ2νfsin α sinψ ½aðnÞr̂þ2ν cos α sinψθðnÞr̂φ̂�

þ cosψ ½aðnÞθ̂þ2ν cos α sinψθðnÞθ̂ φ̂�g þ γ3ν
dν
dτ

:

ð33Þ
E. Radiation test particle interaction

We assume that the interaction between the test particle
and the radiation files takes place through Thomson
scattering, characterized by a constant σ, independent of
direction and frequency of the radiation field. The radiation
force is [8,12,13]

F ðradÞðUÞα ¼ −σPðUÞαβTβ
μUμ; ð34Þ

where PðUÞαβ ¼ δαβ þ UαUβ projects a vector orthogonally
to U, namely on the spatial hypersurfaces or local rest
spaces. The test particle equations of motion then become
maðUÞ ¼ F ðradÞðUÞ, where m is the test particle mass. By
definition, the radiation force lies in the local rest space of
the test particle; to calculated it, we decompose the photon
4-momentum k first with respect to the 4-velocity of the
test particle, U, and then to the previous ZAMO decom-
position, n, i.e., [12,13],

k ¼ EðnÞ½nþ ν̂ðk; nÞ� ¼ EðUÞ½Uþ V̂ðk;UÞ�: ð35Þ

By projecting k with respect to the test particle 4-velocity,
U, we get

PðUÞ · k ¼ EðUÞV̂ðk;UÞ; U · k ¼ −EðUÞ: ð36Þ

Using Eq. (36) in Eq. (34), we obtain

F ðradÞðUÞα ¼ −σΦ2½PðUÞαβkβ�ðkμUμÞ
¼ σ½ΦEðUÞ�2V̂ðk;UÞα: ð37Þ

In this way, the test particle acceleration is aligned with
the photon relative velocity in the test particle local rest
space, i.e.,

aðUÞ ¼ σ̃Φ2EðUÞ2V̂ðk;UÞ; ð38Þ

where σ̃ ¼ σ=m. Hereafter, we use the simplified notation
V̂ðk; UÞ ¼ V̂. Multiplying scalarly Eq. (35) byU and using
Eqs. (7) (i.e., the decomposition of k in the ZAMO frame)
and (25) and (26) (i.e., the decomposition of U in the
ZAMO frame), we find

EðUÞ ¼ γEðnÞ½1 − νðU; nÞν̂ðk; nÞ�
¼ γEðnÞ½1 − νðsin ζ sinψ cosðα − βÞ þ cos ζ cosψÞ�

¼ γ
E
N
½1 − ν sinψ sin α�; ð39Þ

where we have used Eqs. (9) and (10) and the value of the
assumed local angles. Such a procedure is very useful for
determining the spatial velocity V̂:

V̂ ¼
�
EðnÞ
EðUÞ − γ

�
nþ EðnÞ

EðUÞ ν̂ðk; nÞ − γνðU; nÞ: ð40Þ

The frame components of V̂ ¼ V̂tnþ V̂rer̂ þ V̂θeθ̂ þ V̂φeφ̂
are therefore

V̂ r̂ ¼ 1

γ½1 − ν sinψ sin α� − γν sinψ sin α

¼ −γν2
�
1þ sin2ψsin2α
1 − ν sinψ sin α

�
; ð41Þ

V̂ θ̂ ¼ −γν cosψ ; ð42Þ

V̂ φ̂ ¼ −γν sinψ cos α; ð43Þ

V̂ t̂ ¼ νðV̂ r̂ sin α sinψ þ V̂ θ̂ cosψ þ V̂ φ̂ cos α sinψÞ

¼ γν

�
sinψ sin α − ν

1 − ν sinψ sin α

�
; ð44Þ

where the second equality of Eq. (44) is due to the
orthogonality of the ðV̂;UÞ pair and we have simplified
the components of V̂ of the radiation field.

1. General relativistic equations of motion

In order to make the equations of motion for the test
particle moving in a 3D space explicit, Eq. (38), we
consider the ZAMO frame components of the test particle
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acceleration aðUÞ, Eqs. (30)–(33), and the ZAMO frame
components of the radiation force fieldF ðradÞðUÞ, Eqs. (39)
and (41)–(44). The motion of the test particle is completely
defined by the six parameters (r, θ, φ, ν, ψ , α), the first three
describing the position and the last three describing the
velocity field. The displacement field is simply described
by ðUr;Uθ; UφÞ≡ ðdr=dτ; dθ=dτ; dφ=dτÞ. Instead, the
velocity field is connected to Eqs. (38) for determining
ðdν=dτ; dψ=dτ; dα=dτÞ. We note that, using Eq. (33), it is
possible to isolate dν=dτ; indeed, aðUÞt̂ is the energy
balance equation (see discussions in Ref. [19]). Then, by
using the expression of dν=dτ in aðUÞθ̂, Eq. (31), it is
possible to determine dψ=dτ. Finally, using the expressions
of dν=dτ and dψ=dτ in aðUÞr̂, Eq. (30) yields dα=dτ.
Therefore, the general relativistic equations in the Kerr

metric for the 3D motion of a test particle immersed in the
radiation field defined in Secs. II C and II E are the
following six coupled ordinary differential equations of
the first order,

dν
dτ

¼ −
1

γ
fsin α sinψ ½aðnÞr̂ þ 2ν cos α sinψθðnÞr̂φ̂�

þ cosψ ½aðnÞθ̂ þ 2ν cos α sinψθðnÞθ̂ φ̂�g

þ σ̃½ΦEðUÞ�2
γ3ν

V̂ t̂; ð45Þ

dψ
dτ

¼ γ

ν
fsinψ ½aðnÞθ̂ þ kðLieÞðnÞθ̂ν2cos2α

þ 2ν cos αsin2ψθðnÞθ̂ φ̂�
− sin α cosψ ½aðnÞr̂ þ kðLieÞðnÞr̂ν2
þ 2ν cos α sinψθðnÞr̂φ̂�g

þ σ̃½ΦEðUÞ�2
γν2 sinψ

½V̂ t̂ cosψ − V̂ θ̂ν�; ð46Þ

dα
dτ

¼ −
γ cos α
ν sinψ

½aðnÞr̂ þ 2θðnÞr̂φ̂ν cos α sinψ

þkðLieÞðnÞr̂ν2 þ kðLieÞðnÞθ̂ν2cos2ψ sin α�

þ σ̃½ΦEðUÞ�2 cos α
γν sinψ

½V̂ r̂ − V̂φ̂ tan α�; ð47Þ

Ur ≡ dr
dτ

¼ γν sin α sinψffiffiffiffiffiffi
grr

p ; ð48Þ

Uθ ≡ dθ
dτ

¼ γν cosψffiffiffiffiffiffi
gθθ

p ; ð49Þ

Uφ ≡ dφ
dτ

¼ γν cos α sinψffiffiffiffiffiffiffigφφ
p −

γNφ

N
; ð50Þ

where σ̃ ¼ σ=m and the two angles β and ζ are calculated in
terms of the two impact parameters b and q. For
ψ ¼ ζ ¼ π=2, the equations of motion reduce to the 2D
case [12]. Such a set of equations reduces also to the
classical 3D case in the weak field limit (see Appendix).
Following Refs. [8,12,13], we define the relative lumi-

nosity of the radiation field as

A ¼ σ̃Φ2
0E

2: ð51Þ

Equation (51) can be recast in terms of the relative
luminosity A ¼ L∞=LEDD, taking thus the values in
[0, 1], where L∞ is the luminosity of the central source
as seen by an observer at infinity and LEDD ¼ 4πMm=σ is
the Eddington luminosity at infinity. Then, for the
investigated radiation field with zero angular momenta
(b ¼ 0, β ¼ π=2) and without latitudinal photon motion
(q ¼ −a2 cos2 θ, ζ ¼ π=2), the term σ̃½ΦEðUÞ�2 becomes

σ̃½ΦEðUÞ�2 ¼ Aγ2½1 − ν sinψ sin α�2
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − a2Δsin2θ

p : ð52Þ

III. CRITICAL HYPERSURFACE

The system of six differential equations (45)–(50) admits
a critical solution of radial equilibrium, which corresponds
to the axially symmetric hypersurface where radiation
pressure balances the attraction of the gravitational field.
Let us consider a test particle moving purely radially with
respect to the ZAMO frame (α ¼ ψ ¼ �π=2). Then, at the
critical radius rðcritÞ, where the test particle is in rest with
respect to the ZAMO frame (ν ¼ 0, γ ¼ 1), the first
equation of motion, Eq. (45), takes the form

aðnÞr̂ ¼ A

N2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2ðcritÞ þ a2Þ2 − a2ΔðcritÞsin2θ

q : ð53Þ

In the case of pure radial motion (cos α ¼ 0, dα
dτ ¼ 0), the

third equation of motion, Eq. (47), is automatically ful-
filled. If we multiply the second equation of motion,
Eq. (46), by the term ν2, thus removing its divergence,
one can easily see that it is fulfilled in the radial equilibrium
case (cosψ ¼ 0, dψ

dτ ¼ 0, ν ¼ 0). For θ ¼ π=2 (i.e., in the
equatorial plane), relation (53) corresponds to the equilib-
rium condition, Eq. (2.33), derived in Ref. [12], which
gives the values rðcritÞ of the radial coordinate where the test
particle comoves with the ZAMOs in the equatorial circular
orbit. However, relation (53) generalizes this condition also
for the case of test particles with arbitrary polar angle θ and
therefore describes a critical hypersurface which envelops
the central compact object and where the test particles
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comove with the local ZAMOs in bound quasicircular
orbits.4

In the case of a nonzero spin, the critical radius given by
Eq. (53) is a function of the polar angle of rðcritÞ ¼
rðcritÞðA; θÞ (in addition to the relative luminosity A). The
radial equilibrium therefore occurs at the axially symmetric
hypersurface, the shorter axis of which lies in the equatorial
plane and longer axis in the polar direction. This is due to
the properties of frame dragging, as photons (and test
particles) are dragged maximally in the azimuthal direction
in the equatorial plane θ ¼ π=2. Therefore, the radial
component of the photon 4-velocity reaches a maximum
(and thus the radial momentum transfer is largest) along the
polar axis and decreases for increasing polar angles; that is
the reason why the critical hypersurface is elongated along
the polar axis. In the case of zero spin (Schwarzschild
spacetime), the critical hypersurface turns into a sphere
with radius corresponding to the value given by Eq. (2.33)

in Ref. [12]. The left panel of Fig. 2 compares the shape of
the critical hypersurfaces for a high-spin Kerr spacetime
a ¼ 0.9995 and for a Schwarzschild spacetime with a ¼ 0,
where the relative luminosity of the radiating field is in both
cases set to the value of A ¼ 0.8. In the high-spin case, the
critical radius is reqðcritÞ ∼ 5.52M in the equatorial plane and

rpoleðcritÞ ∼ 6.56M at the poles. In the case of a Schwarzschild

spacetime, the radius of the critical sphere is rðcritÞ ∼ 5.56M.
The right panel of Fig. 2 illustrates the shape of the critical
hypersurfaces for the values of the relative luminosity in
the interval 0.5–0.9 and for a constant value of the spin
a ¼ 0.9995.

IV. TEST PARTICLE ORBITS

We have developed the 3D PRTRAJECTORIES code to
integrate the test particles trajectories described by
Eqs. (45)–(50). The integration of the equations of motion
in three spatial dimensions turns out to be substantially
more sensitive to integration errors than the 2D case.
Therefore, we adapted the highly accurate core for the
integration of photon trajectories used in LSDCODE+ [45]

FIG. 2. Left panel: Critical hypersurfaces for the case of high spin a ¼ 0.9995 (orange) and the case of the Schwarzschild spacetime
with a ¼ 0 (blue). For the Schwarzschild case, the critical radius is rðcritÞ ∼ 5.56M, due to ellipsoide shape of the critical hypersurface,

the critical radius in the equatorial plane is reqðcritÞ ∼ 5.52M and at the poles is rpoleðcritÞ ∼ 6.56M. The relative luminosity of the radiating field

takes the value of A ¼ 0.8. Right panel: Critical hypersurfaces for the values of the relative luminosity A ¼ 0.5, 0.7, 0.8, 0.85, 0.87, 0.9
at a constant spin a ¼ 0.9995. The respective critical radii in the equatorial plane are reqðcritÞ ∼ 2.71M, 4.01M, 5.52M, 7.04M, 7.99M,

10.16M, while at poles, they are rpoleðcritÞ ∼ 2.97M, 4.65M, 6.56M, 8.38M, 9.48M, 11.9M.

4A different mechanism that leads to the formation of similar
off-equatorial circular orbits is the interaction of charged test
particles with the magnetic field of a neutron star [44].
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to the case of massive particles. The code implements the
Runge-Kutta method of the eighth order (the Dorman-
Prince method) [46] with an adaptive step. Successful
integration of the 3D trajectory of test particles influenced
by the radiation field (especially in the latitudinal direction)
requires advanced monitoring of integration errors. In the
3D PRTRAJECTORIES code, the proportional integral steps-
ize control algorithm (see Ref. [46] for details) is imple-
mented and easily attains an average relative accuracy of
∼10−14. Such a value allows precise and consistent inte-
gration of 3D trajectories even in the most sensitive parts,
the vicinity of turning points.
We integrated Eqs. (45)–(50) for a set of different

boundary conditions and model parameters. Our results
show that the main qualitative features of the 2D case
examined in Refs. [12,13] remain the same for the
trajectories in three spatial dimensions. Similarly to the
2D case, we can divide the orbits into two distinct classes
depending on the initial radial position rð0Þ ¼ r0: inside
and outside the critical hypersurface. Also in the 3D case, a
test particle trajectory can have only two possible ends;
either (i) it goes to infinity or (ii) it reaches the critical
hypersurface. Moreover, in the presence of (an outgoing)
radiation field, the test particle cannot cross the event

horizon. We compared representative trajectories of test
particles with a polarly and azimuthally oriented initial
velocity for the case of a Schwarzschild spacetime, for the
case of the Kerr metrics with a small spin (a ¼ 0.05) that
approximates the spacetime in the vicinity of NSs, and,
finally, for the case of the Kerr metrics with very high spin
(a ¼ 0.9995) that corresponds to the spacetime in the
vicinity of almost extreme BHs.
In the case of the Schwarzschild metric, our results fully

agree with those from earlier analyses of the 2D case in
which motions are confined to the equatorial plane [12,13]
(note, however, that this can be chosen arbitrarily for
spherically symmetric metrics and radiation fields). The
left panel of Fig. 3 shows examples of 3D trajectories which
reflect the spherically symmetric limit of Eqs. (45)–(50) in
the case of zero spin. The trajectories of test particles
starting from the same location but with initial velocity
oriented polarly and azimuthally are identical except for the
different orientation of the plane on which they lie. In such
a case, the 3D trajectories are easily transformed to the
corresponding 2D trajectories through coordinate rotation.
The left panel of Fig. 3 then shows that in a Schwarzschild
spacetime once the trajectory of a test particle reaches the
spherical critical hypersurface it stops precisely there.

FIG. 3. Left panel: test particle trajectories in a Schwarzschild geometry under the influence of a radiation field with A ¼ 0.8. Test
particles start at r0 ¼ 8M in the equatorial plane with initial velocity ν0 ¼ 0.8 in the azimuthal (red) and polar (green) directions. Right
panel: test particle trajectories in a Kerr geometry with small spin (a ¼ 0.05) under the influence of a radiation field with A ¼ 0.8. A test
particle starts inside the critical hypersurface at r0 ¼ 4M, θ0 ¼ π=4 with initial velocity ν0 ¼ 0.4 in the azimuthal direction. In both
panels, the inner dark surface represents the event horizon, and the blue-gray, partially open surface represents the critical hypersurface.
Gray curves show the geodesic trajectories (i.e., A ¼ 0) for test particles with initial conditions equal to those described above.

VITTORIO DE FALCO et al. PHYS. REV. D 99, 023014 (2019)

023014-10



FIG. 4. Test particle trajectories in a Kerr geometry with small spin (a ¼ 0.05) under the influence of a radiation field with A ¼ 0.8.
Left panel: the test particle starts its motion inside the critical hypersurface at r0 ¼ 4M, θ0 ¼ π=4 with initial velocity ν0 ¼ 0.4 in the
polar direction. The gray curve denotes the geodesic trajectory (i.e., A ¼ 0) with ν0 ¼ 0.4. Right panel: the test particles start their
motion outside the critical hypersurface at r0 ¼ 10M, θ0 ¼ π=4 with initial velocity ν0 ¼ 0.4 in the azimuthal (red curve) and polar
direction (green curve). In both panels, the inner dark surface represents the event horizon, and the blue-gray, partially open surface
represents the critical hypersurface.
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FIG. 5. Test particle trajectories in a Kerr geometry with small spin (a ¼ 0.05) under the influence of a radiation field with A ¼ 0.8.
Left panel: three test particles starting their motion outside the critical hypersurface at r0 ¼ 4M, θ0 ¼ π=4 with initial velocity along the
polar direction and values ν0 ¼ 0.6 (green curve), ν0 ¼ 0.8 (red curve), ν0 ¼ 0.87 (violet curve, escape trajectory). The gray curve
shows corresponding the geodesic trajectory (i.e., A ¼ 0) with initial velocity ν0 ¼ 0.8. The inner dark surface represents the event
horizon, and the blue-gray, partially open (spherical or quasispherical) surface represents the critical hypersurface. Right panel: velocity
profile ν, latitudinal angle θ, and radius r in terms of coordinate time t for the test particle motion with ν0 ¼ 0.8 (red curve in the left
panel). The vertical dashed blue line, T touch, represents the time at which the test particle reaches the critical hypersurface; from there on,
the latitudinal drift on the hypersurface sets in (note the velocity in this stage is much lower than velocities off the hypersurface). The
horizontal dashed red line represents the equatorial plane.
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Note that the presence of even a very small spin
(a ¼ 0.05) breaks the spherical symmetry of the spacetime
geometry and radiation field and introduces qualitatively
new features in test particle trajectories, owing to frame-
dragging effects. In the Kerr case, the test particle, once
captured on the critical hypersurface, gets dragged azimu-
thally at the angular velocity ΩZAMO and undergoes a
latitudinal drift toward the equatorial plane (see Sec. IVA
for a detailed explanation). Hence, the test particle spirals
on the critical hypersurface as it shifts to lower and lower
latitudes. The results of our numerical integrations show
that, besides the angular velocityΩZAMO, the velocity of the
latitudinal drift increases for increasing spins. In fact, for
small spin values, test particles caught on the critical
hypersurface encircle multiple spirals before attaining the
final purely circular equatorial trajectory. Such behavior is
exhibited by test particles of which the motion starts from
the inside (see the right panel of Fig. 3 and left panel of
Fig. 4) as well as the outside of the critical hypersurface
(see Fig. 5 and the right panel of Fig. 4). The behavior of a

test particle beginning its motion near the polar axis in an
outgoing, purely radial direction is illustrated in Fig. 6: the
test particle initially travels outward, reaches the turning
point, and then falls back along a nearly identical trajectory;
after being captured near the pole of the critical hypersur-
face, it drifts toward the equator in tight spiralling trajectory
that spans over most of northern hemisphere of the critical
hypersurface. For a value of the spin (a ¼ 0.9995) close to
that of an extreme Kerr BH, frame dragging is faster and
leads to a faster latitudinal drift, besides a higher ΩZAMO.
Therefore, test particles captured on the critical hypersur-
face at any value of the polar coordinate θ are dragged
quickly to the equatorial plane where they attain a purely
circular trajectory (see Figs. 7 and 8).

A. Orbits bound to the critical hypersurface

In this section, we investigate in greater detail test
particle trajectories bound to the critical hypersurface
and their latitudinal drift toward the equatorial plane. We
first emphasize that the condition for the radial balance of
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FIG. 6. Test particle trajectories in a Kerr geometry with small spin (a ¼ 0.05) under the influence of a radiation field with A ¼ 0.8.
Left panel: the test particle starts its motion outside the critical hypersurface at r0 ¼ 10M, θ0 ¼ π=20 with initial velocity ν0 ¼ 0.4. The
inner dark surface represents the event horizon, and the blue-gray, partially open (spherical or quasispherical) surface represents the
critical hypersurface. Right panel: velocity profile ν, latitudinal angle θ, and radius r in terms of coordinate time t for the test particle
motion with ν0 ¼ 0.4 (red curve in the left panel). The vertical dashed blue line, T touch, represents the time at which the test particle
reaches the critical hypersurface; from there on, the latitudinal drift on the hypersurface sets in (note the velocity in this stage in much
lower than velocities off the hypersurface). The horizontal dashed red line represents the equatorial plane.
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FIG. 7. Test particle trajectories in a Kerr geometry with almost extreme spin (a ¼ 0.9995) under the influence of a radiation field with
A ¼ 0.8. Left panel: three test particles starting their motion outside the critical hypersurface at r0 ¼ 10M, θ0 ¼ π=4with initial velocity
along the polar direction and values oriented toward the north pole ν0 ¼ 0.1 (green curve), ν0 ¼ 0.25 (red curve), and oriented toward
the south pole ν0 ¼ 0.25 (violet curve). The inner dark surface represents the event horizon, and the blue-gray, partially open (spherical
or quasispherical) surface represents the critical hypersurface. Right panel: velocity profile ν, latitudinal angle θ, and radius r in terms of
coordinate time t for the test particle motion with ν0 ¼ 0.1 (green curve in the left panel). The vertical dashed blue line, T touch, represents
the time at which the test particle reaches the critical hypersurface; from there on, the latitudinal drift on the hypersurface sets in (note the
velocity in this stage in much lower than velocities off the hypersurface). The horizontal dashed red line represents the equatorial plane.

FIG. 8. Test particle trajectories in a Kerr geometry with almost extreme spin (a ¼ 0.9995) under the influence of a radiation field with
A ¼ 0.8. Left panel: three test particles starting their motion outside the critical hypersurface at r0 ¼ 10M with initial velocity ν0 ¼ 0.25,
off-equatorial initial position at θ0 ¼ π=4, and in the azimuthal direction corotating (red curve) and counterrotating (green curve) with
respect to the compact object and on the equatorial (θ0 ¼ π=2) in the azimuthal direction corotating with respect to the compact object
(blue curve). Right panel: three test particles starting their motion inside the critical hypersurface at r0 ¼ 4M, θ0 ¼ π=4 with initial
velocity ν0 ¼ 0.4 in the azimuthal direction corotating (red curve) and counterrotating (green curve) with respect to the compact object
and in the outgoing radial azimuthal direction (violet curve). The gray curve shows the corresponding the geodesic trajectory (i.e.,
A ¼ 0) with respect to the red curve. In both panels, the inner dark surfaces represent the event horizon, and the blue-gray, partially open
(spherical or quasispherical) surface represents the critical hypersurface.
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FIG. 9. Off-equatorial circular orbits of test particles with zero angular momentum bound to the critical hypersurface. The red curves
correspond to the case of test particle trajectory starting from the rest (ν ¼ 0, γ ¼ 1) at r0 ¼ 7M, θ0 ¼ π=4, while the violet ones
correspond to the case of the test particle trajectory starting from the rest at r0 ¼ 10M, θ0 ¼ π=4. In the right panel, the trajectories are
plotted for the case of very small spin a ¼ 0.05, while the left panel corresponds to the case of almost extreme spin a ¼ 0.9995. The
relative luminosity of the radiating field takes the value of A ¼ 0.8. The inner black surface denotes the location of the northern
hemisphere of the event horizon. The blue-gray, partially open surface denotes the location of the northern hemisphere of the critical
hypersurface.

FIG. 10. Profiles of r and θ coordinates, r and θ components of 4-velocity (Ur, Uθ), and ψ , α ZAMO local angles as functions of
coordinate time t for the test particles reaching the critical hypersurface with nonzero angular momentum (α ≠ �π=2). The function uθ

has been plotted in a symmetric logarithmic scale. The test particles are emitted outside of the critical hypersurface at r0 ¼ 10M
θ0 ¼ π=4 in the azimuthal direction with the initial velocity ν0 ¼ 0.25. The plots are constructed for the Schwarzschild case with the
zero-spin case (red curves; compare to the left panel of Fig. 3), for the Kerr case with very small spin a ¼ 0.05 (green curves; compare to
the right panel of Fig. 4), and for the Kerr case with the almost extreme-spin case a ¼ 0.9995 (blue curves; compare to the left panel of
Fig. 8). The plots clearly illustrate the behavior in the touching point, where the test particles reach the critical hypersurface. In the Kerr
cases,Uθ is zero, and ZAMO local polar angle ψ takes the value of π=2 at the touching point. Then, during the latitudinal drift, the angle
ψ increases, while the ZAMO local polar angle α decreases as the angular momentum of the test particle is removed. The local angle ψ
reaches the maximum value π. However, when the orbit is stabilized in the equatorial plane and angular momentum is fully removed, the
angle ψ is going back to the value of π=2 (the numerical integration of the trajectory is stopped earlier when spatial velocity is less than
10−20). In the Schwarzschild case, where latitudinal drift does not occur, the angular momentum is removed during the approaching to
the critical hypersurface.
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(outward) radiation force and gravitational attraction given
by Eq. (53) is satisfied also when the test particle reaches
the critical hypersurface with nonzero angular momentum
(with its space velocity vector thus forming an arbitrary
angle α in the azimuthal direction; α ≠ �π=2, ψ ¼ �π=2,
ν ¼ 0, γ ¼ 1). The orbits of the test particles, reaching the
critical hypersurface, can be divided into two classes with
qualitatively different behavior:

(I) Test particles with zero angular momentum achieve
a complete balance of all forces acting at the critical
hypersurface. Such a case corresponds to test par-
ticle trajectories which satisfy the condition ν ¼ 0 at
any rð0Þ ¼ r0 and θð0Þ ¼ θ0 and are thus carried
around by frame dragging in the azimuthal direction,
along with photons of the radiation field. At the
critical hypersurface, such test particles then move
along the purely off-equatorial circular orbits at
constant latitude with angular velocity ΩZAMO (see
Figs. 9 and 10) remaining at rest relative to the
appropriate ZAMO frame.

(II) Test particles that reach the critical hypersurface
while still endowed with residual (nonzero) angular
momentum (not coaligned with the spin axis,
α ≠ �π=2, ψ ¼ �π=2, θ ≠ π=2) attain radial bal-
ance, but the PR effect still operates on them because
the radiation field is not yet directed in the radial
direction in the test particle frame [13]. Such
particles exhibit a latitudinal drift on the critical
hypersurface under the influence of the polar com-
ponents of acceleration and consequently experience
a polarly oriented dissipative force originating from
the interaction with the radiation field [see Eq. (46)].
In the latitudinal drift, the residual angular momen-
tum of the test particle is progressively removed.
Then, in accordance with the reflection symmetry of
the Kerr spacetime, full equilibrium (α ¼ ψ ¼ π=2,
ν ¼ 0, γ ¼ 1) is attained in the equatorial plane,
where latitudinal drift stops, the motion stabilizes in
a circular orbit, and the angular momentum of the
test particle is completely removed (see the right
panel of Fig. 3 and Figs 4–8 and 10).

We note that in the Schwarzschild case the spin and polar
acceleration are absent, and thus latitudinal drift does not
occur (see the left panel of Fig. 3).

V. CONCLUSIONS

We developed a fully general relativistic treatment of the
3D PR effect in the Kerr geometry, therefore extending
previous works describing 2D PR motion in the equatorial
plane of relativistic compact objects. The outgoing radia-
tion field we adopted assumes that photons propagate
radially with respect to the ZAMO frames. Such a boun-
dary condition implies a purely radial propagation of the
photons in any local ZAMO frame and may be considered
as a simple approximation of the radiation field from a

static emitting source very close to the horizon of a
Kerr BH.
The resulting equations of motion for a test particle

moving in the 3D space consist of a system of six coupled
ordinary, highly nonlinear differential equations of first
order. The nonlinearity arises because of the general
relativistic environment, further complicated by the PR
effect, which is a dissipative process and thus always entails
nonlinearity. This set of equations is consistent with the
previous 2D case for both test particles and photons moving
in the equatorial plane [12].
Our analytical and numerical calculations in both the

Schwarzschild and Kerr metric show that 3D PR orbits are
strongly affected by general relativistic effects, including
frame dragging. We have demonstrated the existence of a
critical hypersurface, where the attraction of gravity is
balanced by the outgoing radiation forces. In the case of the
Schwarzschild geometry, the critical hypersurface is a
sphere, on which the test particles are captured and remain
at rest. In the case of the Kerr spacetime (with nonzero
spin), the critical hypersurface is elongated in the polar
direction. Test particles that are captured by it are dragged
at an azimuthal angular velocity ΩZAMO, and, if still
endowed with a residual and offset angular momentum,
they exhibit a latitudinal drift that leads to spiraling toward
the equatorial plane. Analysis of the ν profile shows that the
test particle spatial velocity attains that of the local ZAMO
in an infinite time (see Figs. 5–7). The test particle
approaches the equatorial plane and radius of the hyper-
surface asymptotically. In future works, we plan to relax
some of the simple assumptions of the present study (e.g.,
by adopting more realistic radiation fields) and to inves-
tigate some possible astrophysical applications.
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APPENDIX: CLASSICAL 3D
POYNTING-ROBERTSON EFFECT

The classical radiation drag force was described and
introduced by Poynting (1903) [1] and Robertson (1937)
[2] in the 2D case. We extend the planar motion to the
3D case, written in spherical coordinates, ðr; θ;φÞ. Noting
that the classical drag force can be seen as a viscous effect
depending linearly on the test particle velocity [1,2,19], and
assuming that the radiation propagates radially in the whole
3D space, the test particle equations of motion read

̈r − r _φ2sin2θ − r_θ2 þGM − Ac
r2

¼ −2A
_r
r2
; ðA1Þ

rθ̈ þ 2_r _θ−r _φ2 sin θ cos θ ¼ −A
_θ

r
; ðA2Þ

rφ̈ sin θ þ 2_r _φ sin θ þ 2r_θ _φ cos θ ¼ −A
_φ sin θ
r

; ðA3Þ

where the dot means the derivative with respect to the time,
G is the gravitational constant,M is the mass of the central
object, c is the speed of the light, and A ¼ Sd2=ð6c2ρaÞ is
the luminosity parameter with S being the surface lumi-
nosity density of the compact object and d being the
distance from the Earth to the compact object. The term
−Ac=r2 represents the radiation pressure, and −2A_r=r2 is
the specific angular momentum removed from the test
particle due to the PR drag force.

1. Weak field approximation of the
general relativistic equations

We show here the way in which the 3D general
relativistic equations of motion maðUÞα ¼ FðradÞðUÞα,
Eqs. (45)–(50), reduce to the classical 3D case,
Eqs. (A1)–(A3), in the weak field limit (a → 0, r → ∞,
ν=c → 0). Equations (48)–(50) are by definition

Ur ≡ _r ≈ ν sinψ sin α; Uθ ≡ _θ ≈
ν cosψ

r
;

Uφ ≡ _φ ≈
ν sinψ cos α

r sin θ
: ðA4Þ

The radial components of the ZAMO kinematical quan-
tities reduce to

aðnÞr̂ ≈M
r2

; θðnÞr̂φ̂ ≈ 0; kðLieÞðnÞr̂ ≈ −
1

r
; ðA5Þ

expressed in geometrical units G ¼ c ¼ 1, where the
relative Lie radial curvature reduces to the curvature of
the osculating sphere (see Refs. [12,13,19] for compar-
isons). Instead, for the polar components of the ZAMO
kinematical quantities, we have

aðnÞθ̂ ≈ 0; θðnÞr̂φ̂ ≈ 0; kðLieÞðnÞθ̂ ≈−
1

r tanθ
; ðA6Þ

where the relative Lie polar curvature describes the
longitudinal Euler acceleration [15,16,19]. Now, it is easy
to see how the test particle acceleration, aðUÞα, reduces to
the left members of Eqs. (A1)–(A3). Approximating the
radiation force, FðradÞðUÞα, through linear terms in the
velocity field, we have (see Ref. [19] for comparisons)

FðradÞðUÞr̂ ≈ A
r2
ð1 − 2_rÞ;

FðradÞðUÞθ̂ ≈ −
A
r
_θ;

FðradÞðUÞφ̂ ≈ −
A
r
_φsin2θ; ðA7Þ

which reduce to the right members of Eqs. (A1)–(A3). We
note that the time component of the equations of motion,
maðUÞt ¼ FðradÞðUÞt, reduces to [19]

d
dt

�
ν2

2
þ A −M

r

�
¼ −A

ν

r2
− A

_r2

r2
; ðA8Þ

which represents the energy conservation equation. Indeed,
the left term represents the total mechanical energy, while
the right term corresponds to the dissipated energy.
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