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Apartado Postal 70-543, CdMx 04510, México
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The effect of magnetic fields in the equations of state (EoS) of compact objects is the splitting of the
pressure in two components, one parallel and the other perpendicular to the magnetic field. This anisotropy
suggests the necessity of using structure equations considering the axial symmetry of the magnetized
system. In this work, we consider an axially symmetric metric in spherical coordinates, the γ-metric, and
construct a system of equations to describe the structure of spheroidal compact objects. In addition,
we connect the geometrical parameter γ linked to the spheroid’s radii, with the source of the anisotropy.
So, the model relates the shape of the compact object to the physics that determines the properties of the
composing matter. To illustrate how our structure equations work, we obtain the mass-radii solutions
for magnetized white dwarfs. Our results show that the main effect of the magnetic field anisotropy in
white dwarfs structure is to cause a deformation of these objects. Since this effect is only relevant at low
densities, it does not affect the maximum values of magnetized white dwarf’s masses, which remain
under Chandrasekhar limit.
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I. INTRODUCTION

Magnetic fields are present in almost all stars during their
stellar evolution, becoming huge in the final stage, when
they turn into compact objects. Measurements of periods
and spin down of soft-gamma repeaters (SGR) and x-ray
luminosities of anomalous x-ray pulsars (AXP) [1], support
the idea of the existence of magnetars: neutrons stars
with surface magnetic fields as large as 1014 − 1016 G
[2]. In the case of white dwarfs (WDs), observed surface
magnetic fields range from 106 G to 109 G [3]. Although
the inner magnetic fields cannot be observed directly, their
bounds can be estimated with theoretical models based on
macroscopic and microscopic analysis. The maximum
magnetic fields are around 1013 G for WDs [4,5] and
about 5 × 1018 G for neutron stars [6].
From a microscopic point of view, a magnetic field

acting on a fermion gas breaks the spherical symmetry
and produces an anisotropy in the quantum-statistical
average of the energy-momentum tensor. The effect of
this anisotropy is the splitting of the pressure into two

components, one along the magnetic field—the parallel
pressure Pk—and another in the transverse direction—the
perpendicular pressure P⊥—, so that Tμ

ν ¼ diagðE;−P⊥;
−P⊥;−PkÞ. Consequently, a gas of fermions under the
action of a constant and uniform magnetic field has an
anisotropic—axially symmetric—equation of state (EoS)
[7]. For this reason, when modeling the structure of
magnetized compact objects, one should consider axial
symmetry instead of the spherical symmetry used when
solving the Tolman-Oppenheimer-Volkoff (TOV) equations.
Our first attempt addressing this issue, on Refs. [4–6],

was to consider a metric in cylindrical coordinates
ðt; r;ϕ; zÞ to obtain Einstein’s field equations following
the procedure described in Ref. [8]. This model lead us to
obtain some information about the effects of the magnetic
field in terms of the shape—prolateness or oblateness—of
the compact object as well as upper limits for the values of
the magnetic field that can sustain these stars (Bu ≃ 1013 G
for WDs [4]). However, since we assumed that all the
magnitudes depend only on the radial coordinate r, we
were unable to determine the total mass.
Therefore, we return to spherical coordinates. Let us

remark that anisotropies in the energy-momentum tensor
are admitted in spherical symmetry as long as the tensor has
the form Tμ

ν ¼ diagðE;−pr;−pt;−ptÞ, where pr is a radial
pressure and pt is a tangential one [9,10]. However, this is
not compatible with the anisotropy due to magnetic fields.
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Thus, we are going to use an axially symmetric metric
in spherical coordinates to account for the magnetic
anisotropy of the system.
Hence, in this work, we start from a metric with a γ

parameter associated to the deformation of the stars. This
metric was previously presented in [11,12] and allows to
obtain a set of structure equations that generalize the TOV
equations to axially symmetric objects. The novelty of our
treatment consists in computing the total mass as for a
spheroidal object and proposing an ansatz to relate γ with
the ratio between the central pressures, which connects the
physics of the system with its geometry.
As an example and test case, we solve these anisotropic

structure equations for magnetized WDs for different
values of the magnetic field: 1012 G, 1013 G and 1014 G,
which cover both the weak and the strong magnetic field
regimes. Motivated by the interest they have risen as
potential sources of super-Chandrasekhar WDs [13], we
tackle strongly magnetized WDs (B≳ Bu). Our results
support that weakly magnetized WDs are more realistic,
which reinforces the existence of the previously obtained
threshold Bu.
In Sec. II we present magnetized WDs EoS and discuss

the magnetic field effects on the energy density and
pressure. Section III is devoted to TOV solutions while
the anisotropic structure equations are presented in Sec. IV.
Corresponding numerical results for magnetized WDs
and their discussion can be found in Sec. Vand concluding
remarks in Sec. VI.

II. EOS FOR MAGNETIZED WHITE DWARFS

Typical WDs are composed by carbon or oxygen atoms.
The role of the different particles conforming these atoms
in the star’s physics depends on their masses. Due to its
relative low mass, only the degenerated gas of relativistic
electrons determine the pressure that compensates the
gravitational collapse of the star. The heavier neutrons
and protons behave nonrelativistically, and contribute
mainly to the mass and energy density.
The pressures and the energy density of the electron gas

in magnetized WDs are obtained starting from the thermo-
dynamical potential [7]1:

ΩðB;μ; TÞ ¼ −
eB
2π2

Z
∞

0

dp3

X∞
l¼0

gl½εl þ T ln ð1þ e−ðεl−μÞ=TÞ

× ð1þ e−ðεlþμÞ=TÞ�; ð1Þ

being εl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2jeBjlþm2

p
the electron spectrum in a

magnetic field. In Eq. (1) the magnetic field B is supposed
uniform, constant and in the z direction, l stands for the
Landau levels and the factor gl ¼ 2 − δl0 includes the spin

degeneracy of the fermions for l ≠ 0. T is the absolute
temperature, μ the chemical potential, m is the electron
mass and e its charge.
Note that, in general, the thermodynamical potential on

Eq. (1) can be divided in two contributions

ΩðB; μ; TÞ ¼ ΩvacðBÞ þΩstðB; μ; TÞ: ð2Þ

The second term, ΩstðB; μ; TÞ, arises from statistical
considerations and reads

ΩstðB; μ; TÞ ¼ −
eB
2π2

Z
∞

0

dp3

X∞
l¼0

gl

× ½T ln ð1þ e−ðεl−μÞ=TÞð1þ e−ðεlþμÞ=TÞ�:
ð3Þ

When studying WDs, since the surface temperatures
detected are much smaller than the Fermi temperature, it is
accepted to consider the degenerate limit for the fermion
gas (T → 0) to compute the thermodynamical potential
[14,15]. In that case, the statistical term becomes

ΩstðB;μ;0Þ ¼−
eB
2π2

Z
∞

0

dp3

X∞
l¼0

glðμ− εlÞΘðμ− εlÞ; ð4Þ

where ΘðζÞ is the unit step function. From the expression
(4), we obtain

ΩstðB; μ; 0Þ ¼ m2

4π2
B
Bc

Xlmax

l¼0

gl

�
μpF − ε2l ln

�
μþ pF

εl

��
; ð5Þ

where lmax ¼ I½μ2−m2

2eB �, I½z� denotes the integer part of z and
the Fermi momentum is pF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ε2l

q
.

On the other hand, the term ΩvacðBÞ in Eq. (2):

ΩvacðBÞ ¼ −
eB
2π2

Z
∞

0

dp3

X∞
l¼0

glεl; ð6Þ

does not depend on the chemical potential nor on the
temperature and corresponds to the vacuum. This contri-
bution presents an ultraviolet divergence that must be
renormalized [16]. Depending on the value of B with
respect to the critical magnetic field for electrons, Bc ¼
m2=e ¼ 4.4 × 1013 G (Schwinger field),2 the renormaliza-
tion of Ωvac leads to one of the following expressions
corresponding to the weak ðB < BcÞ and strong magnetic
field (B > Bc) limits [17]

1All expressions in this section are in natural units, where
ℏ ¼ c ¼ 1.

2The magnetic field at which the cyclotron energy of the
electrons is comparable to its rest mass.
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Ωvac
w ðBÞ ¼ −

m4

90ð2πÞ2
�
B
Bc

�
4

; B < Bc ð7aÞ

Ωvac
s ðBÞ ¼ m4

24π2

�
B
Bc

�
2

ln
B
Bc

; B > Bc: ð7bÞ

As pointed out previously, the maximum magnetic field
estimated for WDs interiors is around 1013 G, a value that
is of the same order of Bc. In astrophysical scenarios the
energy scales are determined by the temperature and the
density. Then, for WDs in the zero temperature limit,
the parameter that will set the relative relevance of
magnetic field effects on the system is the density. If
we consider typical values of densities for WDs and
magnetic fields in weak regime, the system is character-
ized by the relation eB ≪ m2 ≪ μ2. In this case, the
vacuum contribution in Eq. (7) can be neglected when
compared to the statistical one in Eq. (5). Therefore, the
thermodynamical potential of the electron degenerate
system can be approximated to ΩðB; μ; 0Þ ¼ ΩstðB; μ; 0Þ
when working below the Schwinger magnetic field.
In this regime, the distance between Landau levels

ð∼eBÞ is small and we can consider the discrete spectrum
as a continuum. This allows us to replace the sum over l
in Eq. (5) by an integral through the Euler-MacLaurin
formula [18]

eB
2

X∞
l¼0

glfð2eBlÞ

≈ eB
Z

∞

0

fð2eBlÞdlþ eB
2
fð∞Þ

þ
X∞
k¼1

22k−1

ð2kÞ! ðeBÞ
2kB2k½f2k−1ð∞Þ − f2k−1ð0Þ�; ð8Þ

where fð2eBlÞ ¼ ðμ − εlÞΘðμ − εlÞ and the coefficients Bn
stand for the Bernoulli numbers (B2 ¼ 1=6). Then, we can
expand Eq. (4) onto the second power on eB, and take
the classical limit by means of the change of variables
p2⊥ ¼ 2eBl ¼ p2

x þ p2
y, with p⊥dp⊥ ¼ eBdl [19]. Hence,

we get the statistical part of the thermodynamical potential
as follows

ΩstðB; μ; 0Þ ¼ −
m4

12π2

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m2

�
μ2

m2
−
5

2

�

þ 3

2
ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

�

þ
�
B
Bc

�
2

ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

��
: ð9Þ

From Eq. (9) we note that, in the weak magnetic field limit,
the statistical part of the thermodynamical potential is
expressed as a sum of two nonmagnetic terms at μ ≠ 0

and T ¼ 0, plus a third term that depends also on the
magnetic field.
Matter inside compact stars must be in stellar equilib-

rium. So, we must impose charge neutrality and baryon
number conservation to the energy density and the
pressures. With these considerations, the magnetized
WDs EoS—the pressures as a parametric function of the
energy density—becomes

E ¼ Ωþ μN þmN
A
Z
N þ B2

8π
; ð10aÞ

Pk ¼ −Ω −
B2

8π
; ð10bÞ

P⊥ ¼ −Ω − BMþ B2

8π
; ð10cÞ

where N ¼ −∂Ω=∂μ is the electron particle density and
M ¼ −∂Ω=∂B the magnetization. Here, the thermody-
namical potential Ω is given by Eq. (2), with Ωvac as in
Eq. (7) and Ωst from Eq. (5) or Eq. (9) according to the
value of B. The term NmNA=Z included in Eq. (10a)
considers the contribution of the nucleons to the energy
density.3

The last term in Eqs. (10) is the Maxwell contribution to
the pressures and energy density, PB⊥¼EB¼−PB

k ¼B2=8π.
Contrary to the case of neutron stars and quark stars [20],
where the energy density and pressures are of the same
order, WDs energy densities are three orders higher than
the pressures. Therefore, the value delimiting when the
Maxwell term becomes relevant is determined by the
pressure, with PB⊥ comparable to the statistical pressures
for magnetic fields higher than 1.78 × 1011 G.4

Anyhow, we explore the parametric EoS given in
Eqs. (10) and tackle two cases, the first one neglecting
the Maxwell contribution (upper panel of Fig. 1) and the
second one considering it (lower panel), for magnetized
WDs with a carbon/oxygen composition at B ¼ 0,
B ¼ 1012 G, B ¼ 1013 G and B ¼ 1014 G. Note that at
higher densities there is no appreciable difference between
the perpendicular and the parallel pressures while at low
densities the anisotropy starts to be noticeable, being the
perpendicular pressure curve softer (harder) than the
parallel one in the case without (with) Maxwell term.

III. MAGNETIZED WDS TOV SOLUTIONS

The magnetized WDs EoS obtained in previous
section can be used to solve the standard isotropic TOV
equations. In Fig. 2, we present the mass-radius curves
obtained considering the pairs ðE;PkÞ and ðE;P⊥Þ as

3mN ¼ 931.494 MeV ∼mn;p and A=Z is the number of
nucleons per electron (A=Z ¼ 2 for carbon/oxygen WDs).

4The magnetic energy density becomes relevant at 1014 G [21].
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independent EoS, as well as the corresponding nonmag-
netized curve [4].
Despite the small differences between the pressures, the

fact of using one or the other leads to different mass-radius
relations for less dense systems. Figure 2 shows that softer
EoS produces smaller radius,whichmeans the TOVsolutions
with lower values of pressures yield lower values of radii,
as it is the case for the perpendicular (parallel) pressure
when neglecting (considering) the Maxwell contribution.
In the latter case (bottom panel of Fig. 2) perpendicular
pressures solutions exist only for high densities and cannot

be distinguished from the corresponding parallel pressures
curves. These results highlight the importance of a model
properly considering the anisotropy in the system.
In the first attempt to address the anisotropic structure,

we used cylindrical symmetry and obtained also that the
pressures parallel and perpendicular inside the stars go to
zero for different values of equatorial radius, where lower
central pressures give lower radii [4].

IV. γ-METRIC AND STRUCTURE EQUATIONS
FOR MAGNETIZED COMPACT OBJECTS

We devote this section to construct a general model
suitable to study the structure of axially deformed compact
objects. Our model is based on Refs. [11,12,22], where the
authors show that a deformed compact object with axial
symmetry can be described by the metric

ds2 ¼ −½1 − 2MðrÞ=r�γdt2 þ ½1 − 2MðrÞ=r�−γdr2
þ r2 sin θdϕ2 þ r2dθ2; ð11Þ

where γ ¼ z=r parametrizes the polar radius z in terms of
the equatorial one r. Considering the fact that using
smaller pressures in TOV equations leads to smaller radii
as well as our interest in the effects on the structure
equations coming from the magnetic field and the related
anisotropy, we propose to interpret γ as the ratio between
the parallel and perpendicular central pressures, Pk0 and
P⊥0

respectively

γ ¼ Pk0
P⊥0

: ð12Þ

This assumption is a first attempt to consider the
anisotropy of the magnetized gas properly and allows
us to connect the geometry with the physics of the system,
implying that the shape of the star is only determined by
the anisotropy of the EoS in its center. So, we are
neglecting the fact that the star’s deformation (i.e., the
difference between the polar and the equatorial radii) also
depends on the inner profiles of the anisotropic pressures.
The approximation yields reasonable results for small
deformations, i.e., γ close to 1, as can be seen in Sec. V
for typical densities and magnetic field values of WDs.
However, a more advanced calculation should take into
account the variation of the parameter γ throughout the
star, just as if considering a nested set of shells with
constant value of γ.
Starting from this metric, the energy-momentum tensor

of the magnetized gas and using the mass of a spheroid to
compute the star’s mass, we obtain the following structure
equations

dM
dr

¼ 4πr2
ðEk þ E⊥Þ

2
γ; ð13aÞ
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n 
cm

-2
]
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1.0e+28
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n 
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-2

] B=0
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P||  B=1014 G

without Maxwell term

with Maxwell term

FIG. 1. EoS for magnetized WDs at fixed values of the
magnetic field for B ¼ 0, B ¼ 1012 G, B ¼ 1013 G and B ¼
1014 G (in CGS units). In the upper panel Maxwell term is
neglected while in the lower panel it is considered.
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FIG. 2. Isotropic TOVequations solutions for the perpendicular
and parallel pressures independently at 1012 G, 1013 G and
1014 G compared to the isotropic B ¼ 0 curve. The anisotropy
becomes important in the low density regime.
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dPk
dz

¼ 1

γ

dPk
dr

¼ −
ðEk þ PkÞ½r2 þ 4πr3Pk − r

2
ð1 − 2M

r Þγ�
γr2ð1 − 2M

r Þγ
;

ð13bÞ

dP⊥
dr

¼ −
ðE⊥ þ P⊥Þ½r2 þ 4πr3P⊥ − r

2
ð1 − 2M

r Þγ�
r2ð1 − 2M

r Þγ
; ð13cÞ

which describe the variation of the mass and the pressures
with the spatial coordinates r, z for an anisotropic axially
symmetric compact object. Note that these equations are
coupled through the dependence with the energy density
and the mass.
Since the parallel pressure has its maximum central value

at z ¼ 0 and goes to zero at the surface, we assume it
depends just on the z ¼ γr coordinate. The perpendicular
pressure, on the contrary, is zero at r ¼ 0, therefore
depending on the radial coordinate.
In general terms, the solutions of Eqs. (13) are computed

similarly to how it is done usually for the TOV equations.
In this case, we start from a point in the center with
E0 ¼ Eðr ¼ 0Þ, Pk0 ¼ Pkðr ¼ 0Þ and P⊥0

¼ P⊥ðr ¼ 0Þ
taken from the EoS on Eq. (10). The equatorial and polar
radii of the star, R and Z ¼ γR, are respectively defined by
PkðZÞ ¼ 0 and P⊥ðRÞ ¼ 0, while the mass of the star is
M ¼ MðRÞ. In practice, this condition is established by the
lower central pressure, which determines the value of the
corresponding radius (R if P⊥0

and Z if Pk0), from where
the other radius can be computed by means of γ.
There is also a remarkable difference with respect to the

solution of standard TOV equations in the manner we
compute the energy density from the EoS during the
integration process. To clarify this point, let us denote as
c1ðμÞ, c2ðμÞ the 2D parametric curves given by

c1ðμÞ ¼ ðEðμÞ; PkðμÞÞ ð14aÞ

c2ðμÞ ¼ ðEðμÞ; P⊥ðμÞÞ ð14bÞ

with EðμÞ, PkðμÞ and P⊥ðμÞ defined by Eqs. (10). Given P̃k
and P̃⊥, obtained in one integration step of Eqs. (13), two
parametric values μ̃k and μ̃⊥ are computed interpolating
Eqs. (10b) and (10c) respectively. The corresponding points
in the curves (14a) and (14b) are c1ðμ̃kÞ ¼ ðẼk; P̃kÞ and
c2ðμ̃⊥Þ ¼ ðẼ⊥; P̃⊥Þ, where Ẽk ¼ Eðμ̃kÞ and Ẽ⊥ ¼ Eðμ̃⊥Þ.
Hence, in the next integration step, we update the right-
hand side of Eq. (13c) using the point c1ðμ̃kÞ with E ¼ Ẽk
and Pk ¼ P̃k. Similarly, we update Eq. (13b) with c2ðμ̃⊥Þ
by taking E ¼ Ẽ⊥ and P⊥ ¼ P̃⊥.
The use of different values of the energy density when

integrating Eqs. (13c) and (13b) is a consequence of
canceling the dependence on the angular variables and
assuming that P⊥ evolves in the equatorial direction and Pk

in the polar one and a warning about the fact that for a
complete description of the anisotropic object one should
consider a full tridimensional treatment.
The existence of two energies at each integration step

introduces the puzzle of selecting which of them should be
used to compute the total mass. Note that, since we are
dealing with an anisotropic object the mass density is also
anisotropic. Along the equatorial direction the mass density
is equal to

dM ¼ 4πγr2Ekdr; ð15Þ

while in the polar direction it reads

dM ¼ 4π
z2

γ2
E⊥dz: ð16Þ

In Eqs. (15) and (16) we have used the parallel and the
perpendicular energy density in regard of the differentiation
direction. Now, taking into account that z ¼ γr, Eq. (16)
can be transformed into

dM ¼ 4πγr2E⊥dr: ð17Þ

Adding Eqs. (15) and (17), we get

dM
dr

¼ 4πγr2
Ek þ E⊥

2
: ð18Þ

Equation (18) indicates that, if we do not want to lose
the information about the mass density anisotropy, we
must update the right-hand side of Eq. (13a) with the
average energy density E ¼ ðẼk þ Ẽ⊥Þ=2. Note that small
differences between Ẽk and Ẽ⊥ during the integration
process imply that the change between the pressures is
not being drastically amplified so that the ratio Pk=P⊥
remains close to its value at the star’s center and the ansatz
is then justified. This can be checked numerically by
computing the variation with r of the relative difference
between the parallel and perpendicular energies. For all
the most deformed cases we consider (solutions in Table I),
we obtained that jẼ⊥ − Ẽkj=E0 ≲ 10−3.
The combination of the structure equations in Eqs. (13)

with the ansatz given by Eq. (12) allows us to describe the
internal variations of the mass and the pressures of a
magnetized compact object. It is important to remark that
by setting B ¼ 0, the model automatically yields P⊥ ¼ Pk
and γ ¼ 1. This means that we recover the spherical TOV
equations from Eqs. (13) and thus, the standard non-
magnetized solution for the structure of compact objects.
In what follows, we study the solutions of Eqs. (13) for

magnetized WDs EoS, even though these structure equa-
tions describe any anisotropic axially deformed compact
object provided that it is spheroidal.
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V. MAGNETIZED WDS NUMERICAL RESULTS
AND IMPORTANT REMARKS

In this section we validate the anisotropic model pro-
posed in Sec. III by integrating Eqs. (13) for the EoS of
magnetized WDs. The numerical results are shown in
Figs. 3–6.
Figure 3 displays the mass vs the equatorial (R)—the

transverse and parallel ones—for B ¼ 1012 G, B ¼ 1013 G
and B ¼ 1014 G compared to the nonmagnetized solution.
We have considered the solutions with and without the
Maxwell contribution to the pressures and the energy
density. For all values of the magnetic field at the highest
central densities and smallest radii, the masses reach values
close to the Chandrasekhar limit of 1.44 M⊙ [14,15,23].
Also, note that in the B ¼ 0 case, the relation R ¼ Z is
fulfilled and the curve is identical to the corresponding one
in Fig. 2, as it should be, since Eqs. (13) reduce to the
isotropic TOV equations.
Moreover, without (with) the Maxwell contribution, an

analysis of the solution at biggest radii, which corresponds
to the lowest central densities, lead us to obtain a certain

value of mass where the polar radius is higher (lower) than
the equatorial one. So, the corresponding star is a prolate
(oblate) object, as it is portrayed in the variation of γ as a
function of the central density E0 (Fig. 6), where the
limiting values are shown for each case in Table I. This
result also illustrates the relation among the ansatz in
Eq. (12) with the central density and the radius of the stars.
The existence of two values of mass for a given

equatorial radius in the upper panel of Fig. 3 can be
understood as a deformation effect for low enough densities
with respect to the magnetic energy of the system. If
comparing to the corresponding curve of mass as a function
of energy density in the lower panel on Fig. 4, we can see
that the two masses come from stars with different central
densities, so that the lower density star corresponds to the
lower mass.
In the latter case, the magnetic field plays an important

role, producing a higher deformation on the star. This can
also be explained by the balance of the forces at stake, the
magnetic, the gravitational and the one from the pressure
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Maxwell term is neglected while in the lower panel it is considered.
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TABLE I. Values of γ, central energy density, equatorial and polar radii and mass for the most deformed configurations, which
determine the onset of instability at 1012 G, 1013 G and 1014 G, in all cases ignoring and considering Maxwell term.

B [G] Maxwell term γ E0 [g cm−3] R [km] Z [km] M [M⊙]

1012 Without 1.0033 1.03519 × 106 9988.1 10021.0 0.379
1.4864 2.79605 × 104 6973.6 10365.3 0.017

With 0.7267 4.40397 × 106 5778.9 4199.4 0.657

1013 Without 1.1802 1.80308 × 106 5096.4 6014.7 0.248
With 0.8259 1.62578 × 108 2141.1 1768.3 1.054

1014 Without 1.0289 4.97109 × 108 1928.5 1984.2 1.122
With 0.8458 5.34925 × 109 699.8 591.9 1.135
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exerted by the electron gas. For a given magnetic field,
at the lowest densities, the particles can be more easily
arranged in the direction of B, so that the star is more
deformed than another one with higher density and mass.
Therefore, the magnetic field effects becomes relevant at

the low and intermediate energy density regime with
respect to the value of the magnetic field considered and
can be practically neglected for high densities. In conse-
quence, the main effect is the deformation of the magnet-
ized low density WDs. Relating this result with Fig. 2, we
realize that the deformation could be seen on the TOV
solution, but the loss of information due to the isotropic

approximation was preventing any further conclusion on
this matter.

A. Stability and super-Chandrasekhar masses

An important remark about the previous solutions is the
fact that once again, we do not obtain masses above the
Chandrasekhar limit [4].
For the solutions obtained with the Maxwell term, at

each value of the magnetic field, there is a minimum mass
below whose corresponding central energy density the
relation dM=dE0 < 0 is satisfied (lower panel of Fig. 4).
This defines an onset for the central energy density below
which solutions are unstable (upper panel of Fig. 7). Table I
shows the corresponding data. Note that as the magnetic
field increases, the onset density and mass become higher.
In the case without the Maxwell contribution, however,

we can not make this analysis, since the mass vs central
energy density curves do not display a region where
dM=dE0 < 0 (upper panel of Fig. 4) for the densities
relevant to this work. Nevertheless, the effect of fewer
central densities that can account for stable configurations
as B increases remain, because the compromise of γ
parameter close to 1 must be respected. In this regard,
note in Table I that for 1012 G without Maxwell contribu-
tion there is almost no deformation (γ ¼ 1.0033) at E0 ∼
106 g cm−3 while for ∼104 g cm−3 we get γ ¼ 1.48, which
is an unphysical solution below the energy density range of
interest (see corresponding curves in Figs. 3–6).
One conclusion that comes out of such analysis is that

if we move towards higher values of the magnetic field, of
the order of 1015 − 1018 G, which are precisely the values
employed in the works obtaining super-Chandrasekhar
masses (Ref. [13] for instance), not only the effect of
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the magnetic field is magnified, but also the densities
corresponding to stable objects go above the WDs den-
sity range.

VI. CONCLUSIONS

In this work, we have obtained the structure of non-
isotropic compact objects starting from a γ-metric and
computing the mass as for a spheroid. As a result, we get a
set of equations that describe the structure of an axially
symmetric deformed object, provided it is spheroidal.
In the process to obtain the structure equations, we have

neglected the dependence of the quantities with the angular
coordinates. This means that when integrating the equa-
tions there is a lack of information and the total mass must
be computed averaging the energy densities in the polar
and equatorial direction. Then, a complete description of
an axially symmetric object would require to consider
dependence with all coordinates, which brings the necessity
of more sophisticated numerical relativity techniques.
However, the structure equations we present have the
advantage of providing relevant information about the
axially symmetric system at a low computational cost.
As we were interested in the anisotropies coming from

magnetic fields effects on compact objects, we have
connected the parameter γ, which relates the radii of the
spheroid, with the source of the anisotropy through the ratio
between the central pressures, thus linking the physics
determining the properties of the matter that composes the
star to its shape. For the validity of the ansatz, γ parameter
must be close to 1 to produce slight modifications in the
energy densities and obtain physical results.
In order to illustrate our model we solved the modified

structure equations to obtain magnetized WDs structure
considering magnetic field values of 1012 G, 1013 G and
1014 G and densities from 106–1011 g=cm3. Solutions were

presented ignoring and considering the Maxwell term in
pressures and energy densities. If this contribution is
included, it wins over the matter term and inverts the
behavior of perpendicular and parallel pressures. This
choice allowed us to have two sets of EoS, one where
γ > 1, and the other one with γ < 1.
Due to the constant character of the Maxwell contribu-

tion, the net effect it produces when considered in the
pressures and energy density are: to change the form of the
deformation of stable configurations from prolate to oblate;
to increase the deformation and to shift towards higher
energy densities the region when the magnetic field effects
become relevant.
Our results show that the effect of the magnetic

anisotropy on the EoS is relevant at the low and
intermediate density regime with respect to the magnetic
field in both cases. Besides, the magnetic field does not
affect maximum values of WDs’ masses. The observed
effect is the prolate/oblate deformation of stable mag-
netized WDs configurations with respect to the corre-
sponding central densities solutions in absence of
magnetic field.
As γ-structure equations are general, they can be useful

to study other types of magnetized compact objects.
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