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The state of a static spherically symmetric relativistic axionically active multicomponent plasma in the
gravitational, magnetic, and electric fields of an axionic dyon is studied in the framework of the Einstein-
Maxwell-Fermi-Dirac-axion theory. We assume that the equations of axion electrodynamics, the covariant
relativistic kinetic equations, and the equation for the axion field with modified periodic and Higgs-type
potentials are nonlinearly coupled; the gravitational field in the dyon exterior is assumed to be fixed and to
be of the Reissner-Nordström type. We introduce the extended Lorentz force, which acts on the particles in
the axionically active plasma, and analyze the consequences of this generalization. The analysis of exact
solutions obtained in the framework of this model for the relativistic Boltzmann electron-ion and electron-
positron plasmas, as well as for degenerated zero-temperature electron gas, shows that the phenomena of
polarization and stratification can appear in plasma, attracting attention to the axionic analog of the known
Pannekoek-Rosseland effect.
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I. INTRODUCTION

The effect of electric polarization of the equilibrium
multicomponent plasma in the external gravitational field
has been known since the 1920s due to the classical works
of Pannekoek [1] and Rosseland [2]. This effect was
described first in the context of electric polarization of
the nonrelativistic electron-ion isothermal plasma in the
external Newtonian gravitational field. Since the rest mass
of the ion exceeds the electron mass, the profile of the ion
density in the gravitational field designed with respect to
altitude differs from the profile of the electron density, thus,
violating the local electric neutrality of the equilibrium
isothermal plasma. As a consequence, the compensating
electric field known as the Pannekoek-Rosseland electric
field appears in the plasma. This model became very
convenient for various applications to Earth’s solar and
pulsar plasmaphysics in nonrelativistic and relativistic
versions for weak and strong gravitational fields (see,
e.g., Refs. [3–8] and references therein).
All the known calculations of the Pannekoek-Rosseland

electric field in plasma are based on the Faraday-Maxwell
version of electrodynamics. Nowadays, there exists serious
interest in astrophysical applications of its extension, the
axion electrodynamics, which takes into consideration
massive pseudo-Goldstone bosons [9–11] interacting with
photons. These light bosons (axions in modern terminology)

are the most probable candidates for dark matter particles
[12–23], and their contribution into the Universe energy
balance is estimated to be about 23%. There are two
constitutive elements in the axion electrodynamics: first,
the electromagnetic field with the vector potential Ak,
second, the pseudoscalar field ϕ. The simplest Lagrangian
of interaction between the pseudoscalar field and photons
was introduced in Ref. [24]; its modifications and new
applications have been considered in many works (see,
e.g., Refs. [25–28]). In Refs. [29–31], various aspects of
the theory of the axionically active relativistic plasma were
studied; in particular, the propagation of transversal electro-
magnetic waves with subluminal phase velocity, which
cannot exist in the standard plasma but can appear due to
the axion-photon coupling, was described.
Monopoles in the axion environment become dyons due

to the Witten effect [32]. The influence of this effect on the
dyon-axion dynamics was studied in Ref. [33], and further
applications and history of the investigations of the axion-
monopole coupling in the QCD context are discussed in
Ref. [34]. Wilczek [26] has discussed the idea of an axionic
dyon in the context of axion electrodynamics. In such an
object, the pseudoscalar (axion) field produces the radial
electric field in the presence of the radial magnetic field.
Later, this model was studied in the framework of the full-
format Einstein-Maxwell-axion theory in the context of
a description of horizons of axionic black holes [35].
In Ref. [36], it was shown that the axionic dyon can
possess a regular electric field equal to zero at the center.
The next step is to use the model of the axionic dyon as a
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“theoretical laboratory” for modeling of physical processes
in the exterior of this object, under the assumption that the
axionic dyon can possess strong gravitational, magnetic,
and electric fields.
In this paper, we consider the polarization of relativistic

plasma taking into account the axionic analog of the
Pannekoek-Rosseland effect in the plasma surrounding
the axionic dyon. The idea is the following. Let us imagine
the magnetic monopole with strong radial magnetic field,
pseudoscalar (axion) field, and relativistic multicomponent
plasma in the object exterior. The axion-photon interactions
produce the radial electric field [26], thus, inducing the
plasma polarization of the first type. Also, the multi-
component plasma is polarized in the strong gravitational
field of the monopole; it is the polarization of the second
type. We use the term axionically active plasma in analogy
with the well-known term magnetoactive plasma. In the
magnetoactive plasma, the interaction of charged particles
with the magnetic field is known to lead to various
sophisticated phenomena. In the axionically active plasma,
the axion-photon coupling is assumed to be the source of
new effects in plasma.
A number of questions arise when we consider the

physical sense of such a model. The first series of questions
concerns the profile of the resulting electric field in the
polarized plasma. Is the mutual compensation of the
electric fields of the first and second types possible?
Does the plasma stratification resulting from this polari-
zation exist? What is the typical size of the electric stratum
in the polarized plasma? Does the backreaction of the
plasma polarization on the pseudoscalar field play an
essential role in the formation of the axion density profile
in the vicinity of the dyon?
The second series of questions is focused on the

polarization of electron-positron plasma, which can sur-
round the object with a strong magnetic field. The
classical Pannekoek-Rosseland effect in the electron-
positron plasma is absent, since the masses of the electrons
and positrons coincide. However, the dyon possesses a
radial electric field induced due to the axion-photon
coupling; thus, the electron-positron plasma has to be
inevitably polarized. One of the questions arising in this
context is about the plasma reaction: Can the cumulative
effect lead to a self-compensation of the electric field, or, on
the contrary, to the plasma stratification?
The third series of questions is connected with the

problem of axionic modification of the Lorentz force.
The Lagrangian describing the axion electrodynamics
contains two invariant terms: 1

4
FmnFmn and 1

4
ϕF�

mnFmn

(see Ref. [24]). The first one is constructed using the
Maxwell tensor Fmn, while the second term includes the
dual Maxwell tensor (pseudotensor) F�

mn multiplied by
the pseudoscalar ϕ. We formulate the hypothesis that the
force, which acts on the plasma particles in the electro-
magnetic and axion fields (the axionically extended Lorentz

force), can be represented using the linear combination
Fmn þ νϕF�

mn instead of pure Fmn. The parameter ν is
equal to zero if the true force is the pure Lorentzian one,
and ν ¼ 1 if there exists an equivalence between these two
terms Fmn and ϕF�

mn. We make the calculations for both
cases ν ¼ 0 and ν ¼ 1, keeping in mind that the predic-
tions of theory could be tested, and the true value of the
parameter ν be estimated from astrophysical observations.
We analyze the state of the static spherically symmetric

equilibrium plasma configuration in the framework of
Einstein-Maxwell-Fermi-Dirac-axion theory. This means
the following: The gravitational field in the dyon exterior
is presented by the Reissner-Nordström solution to the
Einstein equations; the electric and magnetic fields are the
solutions to the equations of axion electrodynamics with
the sources generated by the plasma and axion field; the
distribution functions for the components of plasma are
the solutions to the relativistic covariant kinetic equations;
the pseudoscalar (axion) field is described by the solution
to the master equation with electromagnetic source. To be
more precise, we consider the plasma in an equilibrium
state and introduce the covariant relativistic version of
the Fermi-Dirac distribution function. Then, as the first
limiting case, we study the Boltzmann plasma; the second
limiting case is the degenerated electron gas with the
temperature T0 ¼ 0.
When we consider the potential of the pseudoscalar

(axion) field, we obey the following logic. The term (axion)
given in parentheses means that we deal with pseudo-
Goldstone bosons, and the appropriate field potential is
the specific periodic potential VðPÞ ¼ V0½1 − cosð 2πϕΦðξÞÞ�.
When we use the term pseudoscalar field, we keep in mind
a more general idea, that the field ϕ plays the role of a
pseudoscalar dilaton in analogy with the known scalar
dilaton so that the scalar ϕF�

mnFmn that appeared in
Ref. [24] is considered the direct analog of the scalar
ψFmnFmn introduced inRef. [37]. For this idea, themodified
Higgs-type potential VðHÞ ¼ 1

2
γ½ϕ2 −Φ2ðξÞ�2 seems to be

appropriate. In both cases, the basic value Φ is not the
constant; it is the function of the modulus ξ ¼

ffiffiffiffiffiffiffiffiffi
ξkξ

k
p

of the
timelike Killing vector ξk, which characterizes the static
spacetime formed by the axionic dyon. The scalar ξ pre-
determines the structure of the equilibrium distribution
functions of plasma particles entering the formula for
effective local equilibrium temperature. We choose these
potentials for modeling, since both potentials—periodic and
of the Higgs type—possess the following important proper-
ties: When ϕ ¼ ΦðξÞ, the potentials themselves and their
derivatives vanish, V jϕ¼Φ ¼ 0, ∂V∂ϕjϕ¼Φ

¼ 0.

We consider the electrodynamic equations, the kinetic
equations, and the equation for the pseudoscalar (axion)
field to be nonlinearly coupled; the gravitational field in
the dyon exterior is assumed to be fixed.
The paper is organized as follows. In Sec. II, we establish

the model, represent the distribution functions as solutions
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to the extended kinetic equations (see Sec. II A), derive key
equations for the electromagnetic (see Sec. II B) and pseu-
doscalar (axion) (Sec. II C) fields, as well as present two
specific submodels with ν ¼ 1 and ν ¼ 0 (see Sec. II D),
which admit the decoupling of the set of master equations.
In Sec. III, we study the reference model in which the
plasma response vanishes, the electric field is predetermined
by the axionically deformed magnetic field, and the pseudo-
scalar field coincides with the basic value ϕ ¼ ΦðξÞ. In
Sec. IV, we consider in detail the models of axionically active
relativistic Boltzmann electron-ion plasma. In Sec. V, we
study the axionically active Boltzmann electron-positron
plasma. In Sec. VI, we analyze the polarization of a degen-
erated zero-temperature electron gas. Section VII contains a
discussion and conclusions.

II. THE MODEL

The Einstein-Maxwell-Fermi-Dirac-axion model under
consideration can be indicated as the two-level hierarchical
model, which contains gravitational, pseudoscalar (axion),
electromagnetic fields, and a relativistic multicomponent
plasma. The first (basic) level of this hierarchical stair
is occupied by the gravitational field. The spacetime is
assumed to be spherically symmetric and static, and it
is predetermined by the matter, magnetic, and electric field
inside the object: The gravity field outside of the object is
assumed to be known and to be described by the metric

ds2 ¼ c2NðrÞdt2 − 1

NðrÞ dr
2 − r2ðdθ2 þ sin2θdφ2Þ: ð1Þ

The standard metric coefficientNðrÞ in the outer region can
be modeled using the Reissner-Nordström solution [38]

NðrÞ ¼ 1 −
rg
r
þ r2μ
r2

; ð2Þ

where rg ¼ 2GM
c2 is the Schwarzschild radius, and r2μ ¼ Gμ2

c4 ,
where μ is the magnetic charge of the monopole. When
rg > 2rμ, there are two horizons for this metric:

Nðr�Þ ¼ 0 ⇒ r� ¼ 1

2
rg

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4r2μ
r2g

s #
: ð3Þ

We assume that the radius of the object r0 exceeds the
radius of outer horizon rþ; we consider the plasma and
electromagnetic field in the region r > r0 > rþ. The
spacetime with such a metric admits the existence of the
timelike Killing vector ξi ¼ Bδi0, where B is arbitrary
constant. The modulus of the four-vector ξi can be
expressed in terms of the metric function NðrÞ as follows:

ξðrÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmnξ

mξn
p

¼ B
ffiffiffiffiffiffiffiffiffiffi
NðrÞ

p
: ð4Þ

Three coupled elements are arranged on the second level
of the hierarchical stair: the plasma, pseudoscalar, and
electromagnetic fields. We assume these elements inherit
the symmetry of the surrounding gravitational field; below,
we formulate mathematically this requirement.

A. Relativistic axionically active plasma in
the equilibrium state: Kinetic description

1. Covariant relativistic kinetic equations for
the multicomponent plasma

For the description of the state of relativistic multi-
component plasma, we use the set of covariant kinetic
equations [39–41]

pi

mac
∇̂ifa þ

∂
∂pi ðF i

afaÞ ¼
X
b

Iab: ð5Þ

Here, fa is the eight-dimensional distribution function
describing the particles of the sort “a”; the four-vector
pi stands for the particle momentum, and this quantity is
considered to be a random variable in the kinetic approach.
The term ma relates to the particle mass; this quantity
depends on the sort index a. The Cartan derivative

∇̂i ¼ ∇i − Γj
ikp

k ∂
∂pj ð6Þ

contains the standard covariant derivative ∇i and symmet-
ric Christoffel symbols Γj

ik ¼ Γj
ki. The term Iab describes

the integrals of collision between particles of sorts a and b
(see, e.g., Ref. [39] for details).

2. Remark about the extension of the Lorentz force

The four-vector F i
a in Eq. (5) presents the force, which

acts on the particle of the sort a. Here we use the extended
Lorentz force, which has the form

F i
a ≡ ea

mac2
½Fi

k þ νϕF�i
k�pk: ð7Þ

In Eq. (7), ea is the electric charge of particles of the sort
a, Fmn is the Maxwell tensor, F�ik ≡ 1

2
ϵikmnFmn is its dual

tensor, and the Levi-Cività (pseudo)tensor ϵikmn ¼ Eikmnffiffiffiffi−gp

contains the absolutely skew-symmetric symbol Eikmn

and the square root of the determinant g ¼ det gik. The
function ϕ describes the dimensionless pseudoscalar
(axion) field. The quantity ν is the dimensionless parameter.
When ν ¼ 0, we deal with the standard Lorentz force; when
ν ¼ 1 the extended Lorentz force (7) is symmetric with
respect to replacement Fik with ϕF�

ik; when 0 < ν < 1, this
parameter can be absorbed by the pseudoscalar field ϕ, and
we deal, effectively, with the case ν → 1. For arbitrary ν, the
effective force is of the gyroscopic type; i.e., the divergence
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∂
∂pi F i

a is equal to zero identically. This fact means that there

are two equivalent representations

∂
∂pi ðF i

afaÞ ¼ F i
a

�∂fa
∂pi

�
ð8Þ

of the force terms in the kinetic equations (5). There are
at least three motives to consider the generalization of the
standard Lorentz force.

Intrinsic symmetry of the vacuum Faraday-Maxwell
electrodynamics in the Minkowski spacetime.—This topic
is well documented (see, e.g., Ref. [42]). When we formally
replace the Maxwell tensor Fik with the dual tensor
−F�

ik, the vacuum electrodynamic equations ∇kFik ¼ 0

and ∇kF�ik ¼ 0 convert to one another. Moreover,
when we search for the potential Ai from the equation
∂iAk − ∂kAi ¼ Fik, and thus are faced with six equations
for four unknown functions, the Jacobi relationships
∂ðlFikÞ ¼ 0 → ∇kF�ik ¼ 0 guarantee their compatibility.
In turn, when we try to find a dual potential Ai using
six equations ∂iAk − ∂kAi ¼ F�

ik, the corresponding first
series of integrability conditions take the form ∂ðlF�

ikÞ ¼
0 → −∇kFik ¼ 0, thus, guaranteeing the existence of the
vector field Ai. This intrinsic symmetry is the first hint for
the Lorentz force generalization.

Hypothesis about the hidden chirality of the electrodynamic
vacuum.—When one considers the physical vacuum as a
quasimedium, one deals with the electromagnetic field
strength Fmn and the field induction Hik. In the framework
of linear electrodynamics, these two quantities are linked
by the constitutive equationsHik ¼ CikmnFmn, where Cikmn

is the linear response tensor (see, e.g., Ref. [43] for details).
In order to describe the electrodynamic vacuum, one can
decompose the quantity Cikmn as

Cikmn ¼ 1

2μ0
δikpqgmpgnq þ 1

2
ϕ0ϵ

ikmn ð9Þ

using two fundamental geometric objects: the Kronecker
tensor δikpq and the Levi-Cività tensor ϵikmn. In the standard
system of units, the magnetic permeability of vacuum is
equal to 1, μ0 ¼ 1; the magnetoelectric constant ϕ0 is
unknown so thatHik ¼ Fik þ ϕ0F�ik. When ϕ0 is constant,
the electrodynamic equations

∇kHik ¼ 0; ∇kF�ik ¼ 0 → ∇kFik ¼ 0;

∇kF�ik ¼ 0 ð10Þ

ignore the presence of ϕ0; i.e., the vacuum magnetoelec-
tric constant is doomed to be hidden, thus, providing
potentially the chirality of the electrodynamic vacuum.
When we consider the axionically active vacuum with the

pseudoscalar (axion) field ϕ instead of the constant ϕ0,
this hidden chirality of the vacuum becomes explicit [43].
This removal of degeneration is the second hint to
introduce the generalization of the Lorentz force, and
this ansatz allows us to consider the pseudoscalar eaϕ
as a pseudoelectric charge, which appears in Eq. (7) in
front of the dual Maxwell (pseudo)tensor F�ik.

Hypothesis about the axionically induced magnetic
conductivity.—The effect of electric conductivity is well
known; it can be described in terms of electric current
Ii ¼ σEi, which is proportional to the electric field four-
vector Ei ≡ FikUk. Here, Uk is the macroscopic velocity
four-vector attributed to the (quasi)medium, and σ is the
electric conductivity parameter. When we deal with the
axion electrodynamics of conductive medium, electrically
neutral as a whole, we can rewrite the first subsystem of the
master equations as follows:

∇kHik ¼ −
4π

c
Ii → ∇kFik ¼ −

4πσ

c
FikUk − F�ik∇kϕ;

ð11Þ
(see, e.g., Refs. [24,27,28,43]). Since the gradient four-
vector ∇kϕ contains the longitudinal part UkDϕ≡
UkUl∇lϕ, and since the four-vector Bi ¼ F�ikUk
describes the magnetic induction in the medium, we
can consider the pseudoscalar c

4πDϕ as the parameter of
axionically induced magnetic conductivity in analogy
with the electric conductivity σ.
Based on these three examples extracted from macro-

scopic electrodynamics, we assume that the dynamics of
charged particles described on the microscopic level can be
characterized by the extended Lorentz force including the
product of the dual Maxwell tensor and of the pseudoscalar
(axion) field (7). Of course, it is our ansatz and the
experimental (or observational) data that could clarify only
whether the extra parameter ν is nonvanishing. Finally, we
like to add that in Ref. [44], we considered a series of
versions of description of the axionically modified Lorentz
force; we studied the generalizations of the Bargmann-
Michel-Telegdi model and the nonminimally extended
forces. In this work, we restrict ourselves by the model
with the force (7).

3. Collision integrals and equilibrium state

We consider below elastic collisions between relativistic
fermions only. The corresponding collision integrals are
assumed to be in the following standard form:

Iab ¼
Z Z Z

dP0dQdQ0Wðp; qjp0; q0Þδðpþ q − p0 − q0Þ

× fnaðpÞnbðqÞ½1 − naðp0Þ�½1 − nbðq0Þ�
− naðp0Þnbðq0Þ½1 − naðpÞ�½1 − nbðqÞ�g: ð12Þ
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Here, the symbol p relates to the momentum four-vector pk

of the particle of the sort a before the collision; p0 relates to
the momentum after collision; the symbol q corresponds to
the particle of the sort b. The particle number functions
naðpÞ are proportional to the distribution function fa ¼
h−3ρana with the Planck constant h and degeneration factor
ρa ¼ 2sa þ 1 (below we use ρa ¼ 2 for fermions with the
spin sa ¼ 1

2
). The quantity Wðp; qjp0q0Þ describes the

probability of the event that the collision of the pair of
fermions with momenta p and q gives the pair with
momenta p0 and q0. As usual, we assume that

Wðp; qjp0; q0Þ ¼ Wðq; pjp0; q0Þ ¼ Wðp0; q0jp; qÞ: ð13Þ

The symbol dP denotes the invariant measure of integration
in the momentum space

dP≡ d4p
ffiffiffiffiffiffi
−g

p
δ½pkpk −m2

ac2�HðpkVkÞ; ð14Þ

where the (δ) function provides the normalization rule for
the momentum four-vector, and the Heaviside function
HðpkVkÞ with a macroscopic medium velocity Vk provides
the only positive part of the particle energy to be included in
the integral (see, e.g., Ref. [39] for details).
In the equilibrium state, when Iab ¼ 0, we obtain that na

is the known Fermi-Dirac function

naðx; pÞ ¼
1

eU þ 1
; ð15Þ

containing the function

U ≡ −MaðxÞ þ ξkðxÞpk ð16Þ

linear in the particle four-momentum. The quantity U
includes the set of functions MaðxÞ depending on the sort
index. The four-vector ξkðxÞ is unique for all sorts of
particles [39]. The function (15) turns the left-hand side of
Eq. (5) into zero when

1

2
pipkð∇iξk þ∇kξiÞ

þ pk

�
−

∂
∂xk Ma þ

ea
c
ξiðFik þ νϕF�

ikÞ
�
¼ 0: ð17Þ

When all particles are massive, the first term, quadratic in
the particle momenta, vanishes if

Lξgik ¼ ∇iξk þ∇kξi ¼ 0; ð18Þ

where Lξgik is the Lie derivative of the metric tensor. In
other words, ξk has to be associated with the Killing vector
[38]. In order to provide the convergence of all macroscopic
moments of the distribution functions, we require, as usual,
this vector to be timelike, ξkξk > 0. Keeping in mind the

physical sense of the parameters in the distribution func-
tions, we have to choose the multiplier B in the modulus of
the Killing vector as follows [see Eq. (4)]:

ξi ¼ c
kBT0

δi0: ð19Þ

The parameter kB is the Boltzmann constant, and the
parameter T0 has the dimensionality of temperature.
Then, we rewrite the second term in U (16) in the form

ξkpk →
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ac2 þ p2
p
kBTðrÞ

ð20Þ

using the normalization condition gikpipk ¼ m2
ac2 and

two definitions. First, we introduce the local temperature
TðrÞ ¼ T0ffiffiffiffiffiffiffi

NðrÞ
p ; in fact, this quantity plays the role of a

“geometric temperature” since it appears as a scalar
reciprocal to the modulus of the timelike Killing vector.
Second, we define the square of spatial momentum

p2 ≡ 1

N
ðprÞ2 þ r2ðpθÞ2 þ r2 sin2 θðpφÞ2 ð21Þ

and write the component p0 of the particle four-momentum
as

p0 ¼ Np0 ¼
ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ac2 þ p2

q
: ð22Þ

The second necessary condition, which follows from
Eq. (17),

∂Ma

∂xk ¼ ea
c
ξiðFik þ νϕF�

ikÞ ð23Þ

links the scalarsMa with the Maxwell tensor, its dual, and
the axion field. For each sort index, the set (23) contains
four equations for the determination of one quantity Ma;
these four equations are compatible when the commutator
of derivatives vanishes

∂ ½j∂k�Ma ¼ 0: ð24Þ

We assume that the axion field inherits the symmetry of the
spacetime, and thus, £ξϕ ¼ 0. In terms of the Lie deriva-
tive, Eq. (24) with Eq. (23) can be written in the covariant
form

£ξ½Fjk þ νϕF�
jk� ¼ νξl½∇lðF�

jkϕÞ þ∇jðF�
klϕÞ þ∇kðF�

ljϕÞ�:
ð25Þ

In the absence of the axion field, i.e., when ϕ ¼ 0, we
obtain from Eq. (25) the well-known requirement
£ξFjk ¼ 0, which means that the Maxwell tensor also
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inherits the spacetime symmetry. In the general case,
Eq. (25) extends the symmetry inheritance condition by
involving the pseudoscalar field in this relationship. When
we deal with the spherically symmetric static field con-
figuration, the functions Ma are considered to depend on
the radial variable only; thus, the compatibility condition
(24) becomes trivial, and the four equations (23) can be
reduced to one if only two quantities are nonvanishing,
F0r ≠ 0 and F�

0r ≠ 0. In other words, the Maxwell tensor
Fik has only two nonvanishing components F0r and Fθφ,
which describe the radial static electric and magnetic fields
of the axionic dyon, respectively. We use the same ansatz as
in Ref. [26]:

Fθφ ¼ μ sin θ; F0r ¼ −A0
0ðrÞ: ð26Þ

Here and below, the prime denotes the derivative with
respect to the indicated argument. Keeping in mind that
for the metric (1) we obtain

ffiffiffiffiffiffi−gp ¼ r2 sin θ, we can see that
for given field configuration the first subset of Maxwell
equations ∇kF�ik ¼ 0 is satisfied identically:

∇kF�ik ¼ 1

2r2 sin θ
∂kðEikmnFmnÞ

¼ 1

r2 sin θ
½δi0∂rFθφ þ δiφ∂θFr0� ¼ 0: ð27Þ

According to the formula (23), for this field configuration
there exists only one nontrivial equation for determination
of the quantity Ma, namely,

M0
aðrÞ ¼ −

ea
kBT0

�
A0
0ðrÞ þ

νμ

r2
ϕðrÞ

�
: ð28Þ

The solution to Eq. (28) is

MaðrÞ ¼
M̃aðr�Þ
kBT0

−
ea

kBT0

�
A0ðrÞ − A0ðr�Þ

þ νμ

Z
r

r�

dz
z2

ϕðzÞ
�
; ð29Þ

where the specific value of the radial variable r� appears as
a constant of integration (as an example, one can use the
radius of the object, r� ¼ r0). Thus, the Fermi-Dirac
equilibrium distribution functions (15) with (16) can be
reconstructed using Eqs. (29) and (20). The symbol
M̃aðr�Þ stands for the chemical potential of the ensemble
of particles of the sort a on the sphere with radius r�.
Let us consider two cases in more detail: the relativistic

Boltzmann plasma and degenerated electron plasma with
temperature equal to zero.

4. Equilibrium distribution functions for
a relativistic Boltzmann plasma

When we deal with a relativistic Boltzmann plasma, the
quantity eU in Eq. (15) is much bigger than 1, and the
distribution function can be presented in the following
standard form:

fðeqÞa ¼ AaðrÞ exp
�
−
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ac2 þ p2
p
kBTðrÞ

�
; ð30Þ

where the functionsAaðrÞ are introduced instead ofMaðrÞ
by the rule

lnAaðrÞ ¼ MaðrÞ; ð31Þ

AaðrÞ ¼ Aaðr�Þ exp
�
−
ea½A0ðrÞ − A0ðr�Þ�

kBT0

�

× exp

�
−
eaνμ
kBT0

Z
r

r�

dz
z2

ϕðzÞ
�
: ð32Þ

The first moments of the distribution functions

N i
a ¼

Z
dPfðeqÞa pi ð33Þ

are calculated using integration over the invariant volume in
the momentum space dP (14). The macroscopic velocity
Vi in the Heaviside function in Eq. (14) is presented as

Vi ¼ ξi

ξ ¼ δi0N
−1
2. Clearly, the integrals (33) vanish if i ¼ r,

i ¼ θ, i ¼ φ because of the symmetry of the equilibrium
distribution functions with respect to pr, pθ, and pφ,
respectively. Thus, the first moments N i

aðrÞ have the
structure

N i
aðrÞ ¼ δi0

4πAaðrÞffiffiffiffiffiffiffiffiffiffi
NðrÞp Z

∞

0

p2dp exp

�
−
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ac2 þ p2
p
kBTðrÞ

�
:

ð34Þ

The last integration with respect to p gives

N i
aðrÞ ¼ δi0

N aðr�Þffiffiffiffiffiffiffiffiffiffi
NðrÞp �

λaðr�Þ
λaðrÞ

��
K2½λaðrÞ�
K2½λaðr�Þ�

�

× exp

�
ea½A0ðr�Þ − A0ðrÞ�

kBT0

�

× exp

�
−
eaνμ
kBT0

Z
r

r�

dz
z2

ϕðzÞ
�
: ð35Þ

Here, λaðrÞ≡ mac2

kBTðrÞ is the dimensionless function of the

radial variable, which gives the ratio between rest energy
mac2 and local thermal energy kBTðrÞ. The term
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K2ðλÞ≡ 1

3
λ2

Z
∞

0

dz sinh4ze−λ cosh z ð36Þ

relates to the McDonald function (see, e.g., Refs. [39,45]).
The quantity N aðr�Þ describes the number density of
particles of the sort a on the sphere of radius r�; indeed,
if we calculate the square of the four-vector (35) at r ¼ r�,
we obtain the following value of this scalar gikN i

aðr�Þ
N k

aðr�Þ ¼ N 2
aðr�Þ.

5. Equilibrium distribution function for a
degenerated electron gas

When T0 ¼ 0, the Fermi-Dirac distribution function of
electrons is known to convert into the Heaviside function

fðeqÞ ¼ 2h−3H
h
EFðrÞ − c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec2 þ p2

q i
; ð37Þ

where the threshold Fermi energy is the following function
of the radial variable:

EFðrÞ≡ 1ffiffiffiffiffiffiffiffiffiffi
NðrÞp �

M̃eðr�Þ − e
�
A0ðrÞ − A0ðr�Þ

þ νμ

Z
r

r�

dz
z2

ϕðzÞ
��

: ð38Þ

The four-vector N i
e is given now by the formula

N i
eðrÞ ¼ δi0

8π

3
ffiffiffiffiffiffiffiffiffiffi
NðrÞp

h3
P3

FðrÞ; ð39Þ

where the Fermi momentum

PFðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
FðrÞ
c2

−m2
ec2

s
¼

�
3h3

8π
N eðrÞ

�1
3 ð40Þ

can be expressed either in terms of Fermi energy (38) or in
terms of the scalar of local electron number density N eðrÞ.
As for the constant M̃eðr�Þ, it can be presented as follows:

M̃eðr�Þ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffi
Nðr�Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec2 þ
�
3h3

8π
N eðr�Þ

�2
3

s
; ð41Þ

i.e., it is proportional to the value of the Fermi energy
at r ¼ r�.

B. Master equations of axion electrostatics

1. On the Lagrange formalism

The basic set of electrodynamic equations can be
obtained by the variation procedure with respect to the
potential Ai applied to the action functional

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ 1

4
FmnFmn þ

1

4
ϕF�

mnFmn

þ 1

2
Ψ2

0½−∇kϕ∇kϕþ V� þ LðmÞ

�
: ð42Þ

Here, R is the Ricci scalar. The parameter Ψ0 is connected
with the constant of the axion-photon coupling gAγγ ¼ 1

Ψ0

(gAγγ < 1.47 × 10−10 GeV−1; see, e.g., Ref. [46]); the
quantity V is the potential of the pseudoscalar (axion)
field. LðmÞ is the total Lagrangian of the matter and plasma
particles, and it can depend, in a general case, on the
pseudoscalar field ϕ and its gradient four-vector ∇pϕ, on
the electromagnetic potential Ak, and on the Maxwell
tensor Fpq. The variation procedure yields

∇k½Fik þ ϕF�ik� ¼ −
4π

c
Ii; ð43Þ

where the four-vector of the electric current Ii is defined as
follows:

Ii ≡ c
4π

�∂LðmÞ
∂Ai

− 2∇p

�∂LðmÞ
∂Fpi

��
: ð44Þ

In the framework of the kinetic approach, the structure
of the Lagrange function LðmÞ remains implicit, and the
electric current Ii is assumed to be modeled as the sum of
the first momenta of the plasma distribution functions:

Ii ¼
X
a

eacN i
a: ð45Þ

This four-vector has vanishing divergence, since for the
equilibrium plasma

∇iIi ¼
X
a

eac
Z

dPpi∇̂if
ðeqÞ
a

¼ −
X
a

eac
Z

dP
∂
∂pi ðF i

afaÞ ¼ 0: ð46Þ

Based on this assumption about the structure of the plasma
current, we obtain self-consistently the following nonlinear
equations of axion electrodynamics in the axionically
active plasma:

∇kFik ¼ −F�ik∇kϕ − 4π
X
a

ea

Z
dPfðeqÞa pi: ð47Þ

The first momenta of the distribution functions are calcu-
lated above; below we draw attention to the key equations
of plasma electrostatics for two special cases: the
Boltzmann plasma and degenerated electron gas.

POLARIZATION AND STRATIFICATION OF … PHYS. REV. D 99, 023006 (2019)

023006-7



2. Key electrostatic equation for the Boltzmann plasma

For the Boltzmann plasma with the distribution function
(30) and its first moment (35), the key equation of the axion
electrostatics takes the form

1

r2
d
dr

�
r2

d
dr

½A0ðrÞ − A0ðr�Þ� þ μϕ

�

¼ −
4πffiffiffiffiffiffiffiffiffiffi
NðrÞp X

a

eaN aðr�Þ
�
λaðr�Þ
λaðrÞ

��
K2½λaðrÞ�
K2½λaðr�Þ�

�

× exp

�
ea½A0ðr�Þ − A0ðrÞ�

kBT0

�
exp

�
−
eaνμ
kBT0

Z
r

r�

dzϕðzÞ
z2

�
:

ð48Þ

Clearly, it is convenient to make the following definition:

ΘðrÞ≡ A0ðrÞ − A0ðr�Þ; Θðr�Þ ¼ 0: ð49Þ

Also, we assume the electric field to have the Coulomb-
type asymptote; i.e.,

dA0ðrÞ
dr

ðr → ∞Þ ∝ 1

r2þε → 0; ð50Þ

where the effective parameter ε is non-negative, ε ≥ 0.

3. Key electrostatic equation for degenerated
electron gas

When we deal with the distribution function (37) and its
first moment (39), we obtain the following key electrostatic
equation:

1

r2
d
dr

�
r2
dΘ
dr

þ μϕ

�

¼ −
32eπ2

c3h3N2ðrÞ
��

c
ffiffiffiffiffiffiffiffiffiffiffiffi
Nðr�Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec2 þ P2
Fðr�Þ

q

− eΘðrÞ − eνμ
Z

r

r�

dz
z2

ϕðzÞ
�
2

−m2
ec4NðrÞ

�3
2

: ð51Þ

One specific detail appears in this equation in comparison
with the one obtained for the Boltzmann plasma: There
exists, generally speaking, at least one sphere of a finite
radius, say, rF, for which the right-hand side of Eq. (51)
vanishes,

e

�
ΘðrFÞ þ νμ

Z
rF

r�

dz
z2

ϕðzÞ
�
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffi
Nðr�Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec2 þP2
Fðr�Þ

q
�mec2

ffiffiffiffiffiffiffiffiffiffiffiffi
NðrFÞ

p
: ð52Þ

For r > rF, the right-hand side of this equation becomes
imaginary. In other words, we deal with a layer r� < r < rF
in which the degenerated electron gas is arranged. Clearly,

the distribution of this gas is inhomogeneous, the gas is
polarized, and one can say that the compensating electric
field is created with participation of the axionically active
plasma in the gravitational field. The analysis of the
obtained equations of plasma electrostatics is done in the
next sections.

C. Master equation for the pseudoscalar (axion) field

1. Consequences of the variation formalism

Variation of the action functional (42) with respect to ϕ
gives the key equation for the axion field in the following
form:

∇k∇kϕþ ϕ
∂V
∂ϕ2

¼ −
1

4Ψ2
0

F�
mnFmn þ J : ð53Þ

The pseudoscalar source-type function J can be formally
obtained as

J ¼ −
1

Ψ2
0

�∂LðmÞ
∂ϕ −∇p

�∂LðmÞ
∂∇pϕ

��
ð54Þ

and should be modeled as a pseudomoment of the dis-
tribution function of the zero order. The kinetic approach
for the relativistic plasma description is equipped by
intrinsic moments of an arbitrary order:

Ti1;…;is
a ¼

Z
dPfðeqÞa pi1 ;…; pis : ð55Þ

The moment of the second-order Tik
a stands for the

description of the stress-energy tensor of the plasma
particles of the sort a, the moment of the first order relates
to the particle number four-vectors, and the zero-order
moment is usually associated with the trace of the stress-
energy tensor. In this multimoment scheme, there is no
intrinsic pseudomoment. Based on this fact, we consider a
special ansatz for the structure of the term LðmÞ in Eq. (42);
namely, we assume that the pseudoscalar sourcelike term
J introduced by Eq. (54) is vanishing.

2. Key equation for the pseudoscalar (axion) field

With the ansatz for the term J , Eq. (53) can be rewritten
as follows:

d
dr

�
r2N

dϕ
dr

þ μ

Ψ2
0

A0

�
¼ 1

2
r2

∂V
∂ϕ : ð56Þ

As we mention in the Introduction, we deal below with
either the periodic axion potential VðPÞ ¼ V0½1 − cosð 2πϕΦðξÞÞ�
or with the Higgs potential VðHÞ ¼ 1

2
γ½ϕ2 −Φ2ðξÞ�2 for the

pseudoscalar field of general type. In both cases, the
potentials themselves and their derivatives vanish when
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ϕ ¼ ΦðξÞ, i.e., V jϕ¼Φ ¼ 0, ∂V
∂ϕjϕ¼Φ

¼ 0. In both cases, the

quantity ΦðξÞ is not constant; it depends on the metric
coefficient NðrÞ, i.e., Φ½NðrÞ�, via the modulus of the
Killing vector ξ. Equivalently, one can say that Φ depends
on the equilibrium temperature of the plasma. The values
ϕ ¼ �ΦðξÞ indicate the local minima of both potentials;
the positions and depths of these minima depend on the
distance to the center. The difference between the minima
in these two potentials is that the Higgs potential has only
two minima, while the periodic potential has an infinite
number of minima at ϕðkÞ ¼ �kΦðξÞ, where k is the integer.
One can see that the term ∂V

∂ϕ on the right-hand side of
Eq. (56) plays a similar role for the pseudoscalar (axion)
field as the collision integrals Iab play for the plasma [see
Eq. (5)]. In the kinetic approach, we consider the equilib-
rium plasma assuming that Iab ¼ 0, and the equilibrium
functions convert the left-hand sides of the kinetic equa-
tions (5) to zero. Similarly, when we solve Eq. (56), we put
ϕðrÞ ¼ þΦðrÞ, so the right-hand side of this equation
vanishes, and the function ΦðrÞ satisfies the equation

d
dr

�
r2N

dϕ
dr

þ μ

Ψ2
0

A0

�
¼ 0: ð57Þ

The obtained equation can be integrated immediately,
yielding

Nr2
dΦ
dr

þ μ

Ψ2
0

Θ ¼ K; K ¼
�
Nr2

dΦ
dr

�
jr¼r�

: ð58Þ

The constant of integration K is connected with the value
of the derivative of the axion field at the reference sphere
r ¼ r�.

D. Two special versions of the set of key equations
for the Boltzmann plasma

1. The case ν = 0: There is no axionic modification
of the Lorentz force

When the Lorentz force has the standard form, i.e.,
ν ¼ 0, the equation for the potential function Θ,

1

r2
d
dr

�
r2

dΘ
dr

�
−

μ2

r4NðrÞΨ2
0

Θ ¼ −
μ

r4NðrÞK

−
X
a

4πeaN aðr�Þffiffiffiffiffiffiffiffiffiffi
NðrÞp �

λaðr�ÞK2½λaðrÞ�
λaðrÞK2½λaðr�Þ�

�
exp

�
−

eaΘ
kBT0

�

ð59Þ

happens to be decoupled from the equation for the axionic
field. There are two sources on the right-hand side of
this equation: first, the source proportional to the axionic
“charge” K; second, the source provided by plasma. When
the electric potential ΘðrÞ is found, the distribution of the

pseudoscalar field can be described by the solution to the
equation

dΦ
dr

¼ 1

r2NðrÞ
�
K −

μ

Ψ2
0

ΘðrÞ
�
: ð60Þ

The solution to Eq. (60) can be written in quadratures

ΦðrÞ ¼ Φðr�Þ þ
K

ðrþ − r−Þ
ln

				 ðr − rþÞðr� − r−Þ
ðr − r−Þðr� − rþÞ

				
−

μ

Ψ2
0

Z
r

r�

dzΘðzÞ
ðz − rþÞðz − r−Þ

: ð61Þ

[See Eq. (3) for a definition of rþ and r−.] If the
electromagnetic field has the Coulombic asymptote, we
obtain

Φð∞Þ −Φðr�Þ ¼
K

ðrþ − r−Þ
ln

				 ðr� − r−Þ
ðr� − rþÞ

				: ð62Þ

This difference is positive when K > 0.

2. The case ν= 1: There is intrinsic symmetry in
the axionic modification of the Lorentz force

When the tensors Fik and ϕF�
ik enter the Lorentz force

symmetrically, i.e., ν ¼ 1, we can clearly introduce the
superpotential ΨðrÞ as follows:

ΨðrÞ≡ ΘðrÞ þ μ

Z
r

r�

dzΦðzÞ
z2

; ð63Þ

so that the corresponding master equation does not contain
the axion field explicitly

1

r2
d
dr

�
r2
dΨ
dr

�
¼ −

X
a

4πeaN aðr�Þλaðr�ÞK2½λaðrÞ�ffiffiffiffiffiffiffiffiffiffi
NðrÞp

λaðrÞK2½λaðr�Þ�

× exp

�
−
eaΨðrÞ
kBT0

�
: ð64Þ

The superpotential is assumed to satisfy two conditions:

Ψðr�Þ ¼ 0;

�
dΨ
dr

�
jr→∞

¼ lim
r→∞

�
μΦðrÞ
r2

�
¼ 0: ð65Þ

When the solution for ΨðrÞ is found, we can obtain the
pseudoscalar field from the equation

1

r2
d
dr

�
Nr2

dΦ
dr

�
−

μ2Φ
r4Ψ2

0

¼ −
μ

r2Ψ2
0

dΨ
dr

; ð66Þ

and then reconstruct ΘðrÞ using the relation (63).
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III. REFERENCE MODEL: THE BOLTZMANN
PLASMA RESPONSE IS ABSENT

Let us consider first the model in which the right-hand
side of Eq. (48) is equal to zero. As we show below, this
situation can occur, in principle, in at least three cases: first,
when one deals with the electron-positron plasma; second,
when the generalized Lorentz force contains Fmn and
ϕF�

mn in a symmetric form; third, when plasma effects
are negligible.

A. Key equation for the axion field and its
fundamental solutions

We deal now with the set of two coupled differential
equations of second order:

d
dr

�
r2
dΘ
dr

þ μΦ
�
¼ 0; ð67Þ

d
dr

�
r2N

dΦ
dr

þ μ

Ψ2
0

Θ
�
¼ 0; ð68Þ

and, clearly, the equation for the axion field can be
decoupled. Indeed, the electric potential can be expressed
in terms of the derivative of the axion field using Eq. (68):

ΘðrÞ ¼ Ψ2
0

μ

�
r2�Nðr�Þ

dΦ̃
dr jr¼r�

− r2NðrÞ dΦ̃
dr

�
: ð69Þ

This formula contains the quantity Φ̃ defined as

Φ̃ ¼ Φ −
M
μ

; M≡ lim
r→∞

�
μΦðrÞ þ r2

dΘ
dr

�
: ð70Þ

We assume that this quantity is finite. In these terms, the
key equation for the axion field takes the form

r2
d
dr

�
r2N

dΦ̃
dr

�
¼ μ2

Ψ2
0

Φ̃; ð71Þ

and its solution gives the profile of the axion field in the
outer zone of the magnetic monopole. The key equa-
tion (71) can be analyzed as follows. First of all, we
introduce the dimensionless radial variable x using the
relationships

x ¼ r
rþ

; rþ ¼ 1

2
rg

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4r2μ
r2g

s #
; ð72Þ

and add two convenient parameters

a≡ rg
rþ

− 1 ¼ r−
rþ

< 1; rA ≡ μ

Ψ0

: ð73Þ

There is, of course, the limiting (extremal) case where

2rμ ¼ rg → rþ ¼ r− ≡ rh ¼ rg; a ¼ 1; ð74Þ

but below we consider only the case a < 1. The parameter
rA describes a new distance, which characterizes the
interaction between the magnetic field of the monopole
and axionic field.
Since in our model r > rþ, we see that x > 1. In these

terms, Eq. (71) can be rewritten as

d2Φ̃
dx2

þ dΦ̃
dx

�
1

x − 1
þ 1

x − a

�
−
�
r2A
r2þ

�
Φ̃

x2ðx − 1Þðx − aÞ ¼ 0:

ð75Þ
As usual, the solution to Eq. (75)

Φ̃ðxÞ ¼ C1Yð1ÞðxÞ þ C2Yð2ÞðxÞ ð76Þ
is a linear combination of two fundamental solutions
Yð1ÞðxÞ and Yð2ÞðxÞ. The Wronsky determinant for these
fundamental solutions is of the form

W½Yð1Þ; Yð2Þ�≡WðxÞ ¼ Wðx�Þ
ðx� − 1Þðx� − aÞ
ðx − 1Þðx − aÞ ; ð77Þ

where

Wðx�Þ ¼ Yð1Þðx�ÞY 0
ð2Þðx�Þ − Y 0

ð1Þðx�ÞYð2Þðx�Þ: ð78Þ
For the determination of the integration constants, we can
use the formulas

C1 ¼
Φ̃ðx�ÞY 0

ð2Þðx�Þ − Φ̃0ðx�ÞYð2Þðx�Þ
Wðx�Þ

;

C2 ¼
Φ̃0ðx�ÞYð1Þðx�Þ − Φ̃ðx�ÞY 0

ð1Þðx�Þ
Wðx�Þ

: ð79Þ

Here and below, we use the convenient quantity x� ≡ r�
rþ
.

B. Remark concerning the Fuchs-type functions

Equation (75) can be obtained from the Fuchs-type
equation

Y 00ðxÞ þ Y 0ðxÞ
�
γ

x
þ δ

x − 1
þ ϵ1
x − a

þ ϵ2
x − b

�

þ Y
ðαβx2 þ p1xþ p2Þ

xðx − 1Þðx − aÞðx − bÞ ¼ 0 ð80Þ

(see, e.g., Refs. [45,47,48]) if choosing the parameters as
follows:

b ¼ α ¼ p1 ¼ 0; ϵ2 ¼ −γ; δ ¼ ϵ1 ¼ 1;

p2 ¼ −
r2A
r2þ

: ð81Þ

Using the Fuchsian relation (see, e.g., Refs. [47,48] for the
motivation of this requirement),

αþ β þ 1 ¼ γ þ δþ ϵ1 þ ϵ2; ð82Þ
we obtain additionally β ¼ 1; the parameter γ remains
hidden. The comparison of Eq. (75) with Eq. (80) shows
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that in the model under consideration the pseudoscalar field
Φ̃ is described by the Fuchs-type function with the
parameters (81). Also, this function can be indicated as
a generalized Heun’s function (see, e.g., Ref. [49] and

references therein); the corresponding equations are well
studied in the context of searching for generalized spherical
wave functions.
Typical sketches for the fundamental solutions Yð1ÞðxÞ

and Yð2ÞðxÞ are presented in Figs. 1 and 2.

IV. RELATIVISTIC BOLTZMANN
ELECTRON-ION PLASMA

In this section, we assume that plasma contains electri-
cally charged particles with different masses ma, and our
purpose is to describe the total plasma polarization pro-
duced both by coupling photons to axions and by coupling
of massive fermions to the gravity field.

A. Plasma with the standard Lorentz force ν= 0

In the regime when the electrostatic energy per particle
is much smaller than its average kinetic energy, i.e.,
j eaΘ
kBT0

j ≪ 1, one can represent the exponential term in
Eq. (59) by two first elements of decomposition, so the
master equation (59) can be transformed into

1

r2
d
dr

�
r2
dΘ
dr

�
−
�
1

R2�
þ μ2

r4NðrÞΨ2
0

�
Θ ¼ I� −

μK
r4NðrÞ :

ð83Þ

On the right-hand side of this equation, there are two
electric sources. The first one

I� ≡ −
X
a

4πeaN aðr�Þffiffiffiffiffiffiffiffiffiffi
NðrÞp �

λaðr�ÞK2½λaðrÞ�
λaðrÞK2½λaðr�Þ�

�
ð84Þ

is produced by the plasma polarization in the gravitational
field and is, in fact, the local density of the electric charge in
the axionically active polarized plasma. The second source
is proportional to the effective axionic charge K. Also, we
introduce the following auxiliary function:

1

R2�
≡X

a

4πe2aN aðr�Þ
kBT0

ffiffiffiffiffiffiffiffiffiffi
NðrÞp �

λaðr�ÞK2½λaðrÞ�
λaðrÞK2½λaðr�Þ�

�
; ð85Þ

where the functionR�ðrÞ describes the local (depending on
the position) screening radius.

B. Recovering the standard
Pannekoek-Rosseland effect

When the axion field is absent, and μ ¼ 0, there is only
one source I� on the right-hand side of Eq. (83). First of all,
we consider the nonrelativistic version of this source in
order to recover the known results. Nonrelativistic limit
means that λa ≫ 1, and we can use for calculations the
leading-order term in the asymptotic decomposition of the
McDonald function:

FIG. 1. Plot of the Fuchs-type function Yð1Þðx; a; p2Þ, the first
fundamental solution to Eq. (75), which corresponds to the
standard boundary conditions Yð1Þðx�Þ ¼ 1, Y 0

ð1Þðx�Þ ¼ 0. For

illustration, we depict three curves corresponding to three sets of
parameters ða; p2Þ (these quantities are indicated on the plot near
the corresponding curves). We put x� ¼ 2. The vertical line x ¼ 1
relates to the outer horizon; the value x ¼ x0 ¼ 1.5 relates to the
radius of the dyon. The function is monotonic for x > x� ¼ 2.
The profiles of the function Yð1Þðx; a; p2Þ have horizontal
asymptotes at x → ∞; these asymptotic values are indicated
on the plot by the corresponding horizontal lines.

FIG. 2. Plot of the Fuchs-type function Yð2Þðx; a; p2Þ, the
second fundamental solution to Eq. (75), which corresponds to
the standard boundary conditions Yð2Þðx�Þ ¼ 0, Y 0

ð1Þðx�Þ ¼ 1. For

illustration, we depict three curves corresponding to three sets of
parameters ða; p2Þ in the outer domain x ≥ x� ¼ 2 > x0. The
function is monotonic; the profiles of the function Yð2Þðx; a; p2Þ
have horizontal asymptotes at x → ∞ indicated by the corre-
sponding horizontal lines.
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K2ðλÞ →
ffiffiffiffiffi
π

2λ

r
e−λ

�
1þ 15

8λ
þ � � �

�
: ð86Þ

When we consider the plasma far from the horizon, i.e.,
when r > r� ≫ rþ, one can obtain the classical formula for
the local charge density in plasma:

I� ≃ −4π
X
a

eaN aðr�Þ exp
�
GMma

kBT0

�
1

r
−

1

r�

��
: ð87Þ

In this limit, the quantity 1
R2�

has the form

1

R2�
→

X
a

4πe2aN aðr�Þ
kBT0

≡ 1

λ2D
; ð88Þ

where λD is the classical Debye radius [39]. In particular,
when one deals with the layer near Earth’s surface,
r ¼ r� ¼ R0, and z is the altitude z ≃ r − R0 ≪ R0, one
can consider the model equation for the electric potential
written as follows:

d2Θ
dz2

−
Θ
λ2D

¼ −4π
X
a

eaN aðR0Þ exp
�
−
magz
kBT0

�
; ð89Þ

where g ¼ GM
R2
0

is the acceleration of free fall on Earth’s

surface, A0ðR0Þ ¼ 0. The local electroneutrality is violated,
and the electric potential ΘðzÞ, which satisfies the con-
ditions Θð0Þ ¼ 0, Θð∞Þ ¼ 0, is of the following form

ΘðzÞ ¼ 4π
X
a

eaN aðR0Þλ2D
ð1 − λ2Dα

2
aÞ

½e−αaz − e−
z
λD �; ð90Þ

where αa ≡ mag
kBT0

. Various physical consequences of this
formula are discussed in the literature (see, e.g., Refs. [1–8]).

C. High-temperature plasma

When we consider the plasma configurations in astro-
physical systems with strong gravitational and magnetic
fields, we deal, in fact, with particles whose kinetic energy
(on average) is of the order or exceeds the rest energy,
kBT0 > mac2. For numerical calculations, we use below
the whole relativistic representation of the electric source
(84); however, in order to have analytical progress in our

calculations, in this section we assume that λa ¼ mac2

kBT0
≪ 1.

Asymptotic behavior of the function K2ðλaÞ at λa → 0 is
characterized by the well-known principal limit (see, e.g.,
Ref. [39])

lim
λa→0

½λ2aK2ðλaÞ� ¼ 2: ð91Þ

For our purposes, we need at least two terms of the
asymptotic decomposition; the extended procedure of this

decomposition is the following. First, we consider the
definition of the McDonald function with integer index
ρ ¼ 2 as the limit [45]

K2ðzÞ≡ lim
ρ→2

�
π

2 sin πρ

X∞
k¼0

1

k!

�
z
2

�
2k

×

� ðz
2
Þ−ρ

Γðk − ρþ 1Þ −
ðz
2
Þρ

Γðkþ ρþ 1Þ
��

; ð92Þ

and transform this limit by l’Hôpital’s rule

K2ðzÞ ¼ lim
ρ→2

�
1

2 cos πρ

X∞
k¼0

1

k!

�
z
2

�
2k

×
��

z
2

�
−ρ ½ψðk − ρÞ − ln z

2
�

Γðk − ρþ 1Þ

−
�
z
2

�
ρ ½ψðkþ ρÞ þ ln z

2
�

Γðkþ ρþ 1Þ
��

: ð93Þ

Here, ψðsÞ is the logarithmic derivative of the Euler (Γ)
function [45]

ψðsÞ≡ Γ0ðsþ 1Þ
Γðsþ 1Þ : ð94Þ

Then, we use the properties of this function:

ψð−sÞ ¼ ψðs − 1Þ þ ΓðsÞΓð1 − sÞ cos πs;

ψð0Þ ¼ −γ; ψðn > 0Þ ¼ −γ þ 1þ � � � þ 1

n
; ð95Þ

where γ is the Euler-Mascheroni constant

γ ≡ lim
n→∞

�Xn
k¼1

1

k
− ln n

�
≃ 0.57722 ð96Þ

and find that two first terms in the decomposition with
respect to small argument z are

K2ðzÞ →
2

z2
−
1

2
þ � � � : ð97Þ

Next, the terms are of the order ∝ z2 ln z; asymptotically,
they tend to zero, so we restrict ourselves only by the
decomposition (97). Using this approximation in the
formula for the local charge density

I� ≡ −
N

3
2ðr�Þ

N2ðrÞ
X
a

4πeaN aðr�Þ
�
1þ 1

4
½λ2ðr�Þ − λ2ðrÞ�

�
;

ð98Þ

we see that the main term disappears because of the
electroneutrality condition

P
aeaN aðr�Þ ¼ 0. The term

of the next order gives
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I�ðrÞ ¼
�
NðrÞ − Nðr�Þ

N2ðrÞ
�
Q�;

Q� ≡
X
a

πeaN aðr�Þλ2aðr�ÞN1
2ðr�Þ: ð99Þ

The screening radius is predetermined by the formula

1

R2�ðrÞ
≃
X
a

4πe2aN aðr�ÞNðr�Þ
kBTðr�ÞN2ðrÞ ≡ 1

λ2DN
2ðrÞ : ð100Þ

The corresponding key equation for the electric potential is
of the form

1

r2
d
dr

�
r2
dΘ
dr

�
−
�

1

λ2DN
2ðrÞ þ

μ2

r4Ψ2
0NðrÞ

�
Θ

¼
�
NðrÞ − Nðr�Þ

N2ðrÞ
�
Q� −

μK
r4NðrÞ : ð101Þ

If this equation is solved and the profile ΘðrÞ is recon-
structed, one can find the pseudoscalar field distribution
using Eq. (61). Let us analyze the solutions in the so-called
far zone and near zone.

1. Far zone

In the far zone, where r2ffiffiffiffiffiffiffi
NðrÞ

p ≫ rAλD (or, in fact,

r ≫
ffiffiffiffiffiffiffiffiffiffi
rAλD

p
), the basic equation (101) takes the form

d2Θ
dx2

þ
�
2

x

�
dΘ
dx

−
�
r2þ
λ2D

�
Θ ¼ J ðxÞ;

J ðxÞ≡
�
NðxÞ − Nðx�Þ

N2ðxÞ
�
Q�r2þ: ð102Þ

In this case, the plasma charge density is the main producer
of the electric field, and the axionically induced electric
field associated with the magnetic charge can be considered
as vanishing. The solution to Eq. (102) can be presented in
the following form:

ΘðxÞ ¼ 1

x

�
C� sinh

�
rþ
λD

ðx − x�Þ
�

þ λD
rþ

Z
x

x�
zdzJ ðzÞ sinh

�
rþ
λD

ðx − zÞ
��

: ð103Þ

Clearly, this function satisfies the initial conditionΘðx�Þ ¼ 0
automatically. The constant of integration has to be chosen
as follows:

C� ¼ −
λD
rþ

Z
∞

x�
zdzJ ðzÞ exp

�
rþ
λD

ðx� − zÞ
�
; ð104Þ

if we assume that the potential ΘðxÞ is characterized by the
following asymptotical behavior,

lim
x→∞

ΘðxÞ ¼ const; lim
x→∞

Θ0ðxÞ ¼ 0: ð105Þ

Indeed, combining Eqs. (103) and (104), we can rewrite the
electric potential in the form

Θ ¼ −
λD
xrþ

�
sinh

�
rþ
λD

ðx − x�Þ
� Z

∞

x
zdzJ ðzÞe

rþ
λD
ðx�−zÞ

þe
rþ
λD
ðx�−xÞ

Z
x

x�
zdzJ ðzÞ sinh

�
rþ
λD

ðz − x�Þ
��

ð106Þ

and consider the limit x → ∞. Using l’Hôpital’s rule for the
first and second terms, we obtain

Θðx → ∞Þ → −
λ2D
r2þ

J ðx → ∞Þ: ð107Þ

In order to illustrate and motivate the choice of the constant
of integration C�, let us consider the very far zone, in which
N → 1, and the source J ðxÞ in Eq. (102) takes the form

J ðxÞ ≃Q�r2þrg
r�

�
x − x�
x

�
: ð108Þ

The integral with this function can be calculated analytically
yielding

ΘðxÞ ¼ 1

x
sinh

�
rþ
λD

ðx − x�Þ
��

C� þ λ3DrgQ�
r�rþ

�

þ
�
x�
x
− 1

�
λ2DrgQ�

r�
: ð109Þ

The growing branch of this solution can be eliminated if
and only if

C� ¼ −
λ3DrgQ�
r�rþ

: ð110Þ

Thus, the solution for the electromagnetic potential in the
very far zone is of the Coulombic type

ΘðxÞ ¼
�
x�
x
− 1

�
λ2DrgQ�

r�
; Θ0ðxÞ ¼ −

λ2DrgQ�
rþx2

:

ð111Þ

Integration in Eq. (61) yields now

ΦðxÞ¼Φðx�Þþ
K

rþð1−aÞ ln
				ðx−1Þðx�−aÞ
ðx−aÞðx�−1Þ

				
þ r2Aλ

2
DrgQ�

μrþr�að1−aÞ ln
��

x−a
x�−a

�
γ1
�
x−1

x�−1

�
γ2
�
x
x�

�
γ3
�
;

ð112Þ
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where the following auxiliary parameters are introduced:

γ1 ¼ x� − a > 0; γ2 ¼ −aðx� − 1Þ < 0;

γ3 ¼ −x�ð1 − aÞ < 0; γ1 þ γ2 þ γ3 ¼ 0: ð113Þ

The asymptotic value of the axionic field is the constant
equal to

Φð∞Þ ¼ Φðx�Þ þ
K

rþð1 − aÞ ln
				 ðx� − aÞ
ðx� − 1Þ

				
−

r2Aλ
2
DrgQ�

μrþr�að1 − aÞ ln ½ðx� − aÞγ1ðx� − 1Þγ2x�γ3 �:

ð114Þ

Figure 3 contains illustrations of the profile of the functionΦ
as a function of the variable x and of the guiding parameter a.

2. Near zone

In the near zone, where r2ffiffiffiffiffiffiffi
NðrÞ

p ≪ rAλD, the term with

axionic scale parameter rA is the leading-order term. In this
limit, we have to solve the equation

1

r2
d
dr

�
r2
dΘ̃
dr

�
−

r2AΘ̃
r4NðrÞ ¼

�
NðrÞ − Nðr�Þ

N2ðrÞ
�
Q�; ð115Þ

where the function we search for is

Θ̃≡ Θ −
μK
r2A

: ð116Þ

In terms of variable x, Eq. (115) can be written as

d2Θ̃
dx2

þ
�
2

x

�
dΘ̃
dx

−
r2AΘ̃

r2þx2ðx − 1Þðx − aÞ ¼ J̃ ðxÞ; ð117Þ

where the source term J̃ is of the form

J̃ ¼ Q�r2þ
x2fx2½1 − Nðr�Þ� − xðaþ 1Þ þ ag

ðx − 1Þ2ðx − aÞ2 : ð118Þ

The linear equation (117) is an inhomogeneous version of
the Fuchs-type equation (80) with

b ¼ α ¼ δ ¼ ϵ1 ¼ ϵ2 ¼ p1 ¼ 0; γ ¼ 2;

p2 ¼ −
r2A
r2þ

: ð119Þ

Using the Fuchsian condition (82), we obtain additionally
β ¼ 1. Formally speaking, when the fundamental solutions
Yð1ÞðxÞ and Yð2ÞðxÞ to the homogeneous equation (117) are
reconstructed, we obtain

Θ̃ ¼ C1Yð1Þ þ C2Yð2Þ þ Y�; ð120Þ

where Y� is the particular solution to Eq. (117):

Y�ðxÞ ¼ 1

x2�Wðx�Þ
Z

x

x�
z2dzJ̃ ðzÞ

× ½Yð1ÞðzÞYð2ÞðxÞ − Yð1ÞðxÞYð2ÞðzÞ�: ð121Þ

The Wronsky determinant WðxÞ is represented using the
Liouville theorem as follows:

WðxÞ ¼ x2�
x2

Wðx�Þ;
Wðx�Þ ¼ ½Yð1Þðx�ÞY 0

ð2Þðx�Þ − Y 0
ð1Þðx�ÞYð2Þðx�Þ�: ð122Þ

Typical sketches for numerical solutions to Eq. (117) are
presented in Fig. 4.

D. Plasma with generalized Lorentz force ν = 1

In the regime j eaΨ
kBT0

j ≪ 1, the key equation for the
superpotential Ψ (64) transforms into

1

r2
d
dr

�
r2
dΨ
dr

�
−

1

R2�
Ψ ¼ I�: ð123Þ

Clearly, only the plasma source I� and the plasma
screening radius R� predetermine the behavior of the
superpotential. The axionic parameters do not enter the
equation for the superpotential, in contrast to the case
ν ¼ 0, and in this sense, we deal with a kind of “pure
relativistic Pannekoek-Rosseland” model. The results for

FIG. 3. Plot of the function Φðx; aÞ given by Eq. (112). The
values of the guiding parameter a are indicated in parentheses
near the corresponding curve. All curves have the same initial
value Φðx�Þ ¼ 1; asymptotic values Φð∞Þ depend on the
parameter a and are marked by the corresponding horizontal
lines. The coefficients in front of the logarithmic functions in
Eq. (112) are chosen equal to 1.5 and 2, respectively, for the sake
of simplicity.
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nonrelativistic and ultrarelativistic plasmas can now be
extracted from the corresponding paragraphs of the
previous subsection. For instance, for the superpotential
Ψ, one can use solutions obtained for Θ (101) with μ ¼ 0
and then find the axion field with the source correspond-
ingly reconstructed.

V. RELATIVISTIC BOLTZMANN
ELECTRON-POSITRON

PLASMA

Let us consider the electron-positron plasma, for which
mp ¼ me ¼ m, ep ¼ −ee ¼ e, andN p ¼ N e ¼ N . When
the axion field is absent, the equation for the electric field
takes the form

1

r2
d
dr

�
r2
dΘ
dr

�
¼ 8πeN ðr�Þffiffiffiffiffiffiffiffiffiffi

NðrÞp �
λðr�ÞK2½λðrÞ�
λðrÞK2½λðr�Þ�

�
sinh

�
eΘ
kBT0

�
:

ð124Þ

Clearly, ΘðrÞ≡ 0 satisfies this equation, and the necessary
condition Θðr�Þ ¼ 0 does not contradict this solution. The
trivial solution ΘðrÞ≡ 0 is unique for this equation of the
second order in ordinary derivatives if one of the following
two requirements is satisfied. First, when Θ0ðr�Þ ¼ 0, we
deal with the unique solution of the Cauchy problem with
the electric potential and electric field vanishingon the sphere

of the radius r�. Second, when Θð∞Þ ¼ 0, Θ0ð∞Þ ¼ 0, we
deal with a special requirement based on the ansatz of the
Coulombic behavior of the electric field in the asymptotical
regime. From a physical point of view, the solutionΘðrÞ ¼ 0
is well motivated in this context, since there is no electric
source in this case. In other words, the gravitationally
induced Pannekoek-Rosseland effect is absent in the electri-
cally neutral electron-positron plasma without the axionic
environment of the magnetic monopole. Let us analyze now
the situation with the axionic field interacting with the
magnetic field of the monopole and with the plasma.

A. Electron-positron plasma with symmetric
generalized Lorentz force ν = 1

We introduce again the superpotential (63) and obtain
directly that it obeys the equation, which differs from
Eq. (124) only by the replacement Θ → Ψ:

1

r2
d
dr

�
r2
dΨ
dr

�
¼ 8πeN ðr�Þffiffiffiffiffiffiffiffiffiffi

NðrÞp �
λðr�ÞK2½λðrÞ�
λðrÞK2½λðr�Þ�

�
sinh

�
eΨ
kBT0

�
:

ð125Þ

Again, there is the trivial solution to this equation
ΨðrÞ≡ 0, and the condition Ψðr�Þ ¼ 0 is satisfied by
definition. This trivial solution can be realized if, e.g.,
Ψ0ðr�Þ ¼ 0, but this requirement, which connects the values
of electric and axionic fields on the sphere r ¼ r�, is
specific. In general, Ψ0ðr�Þ ≠ 0, and the solution is not
trivial. Both cases are interesting in our model; let us start
with the first one.

1. The model of self-compensation of the Lorentz force

When we consider Eq. (125) with conditions Ψðr�Þ ¼ 0
and Ψ0ðr�Þ ¼ 0, we obtain from the theorem of existence
and uniqueness that the solution is trivial, i.e., ΨðrÞ≡ 0. In
other words, the electric potential ΘðrÞ is not constant, the
radial electric field EðrÞ is not vanishing, but the profile of
EðrÞ is predetermined by the profile of the axion field.
Indeed, when ΨðrÞ≡ 0, the electric potential ΘðrÞ is

ΘðrÞ ¼ −μ
Z

r

r�

drΦðrÞ
r2

¼ −
Ψ2

0

μ

�
r2NðrÞ dΦ

dr
− r2�Nðr�Þ

dΦ
dr jr¼r�

�
; ð126Þ

and ΦðrÞ itself satisfies the equation

r2
d
dr

�
r2NðrÞ dΦ

dr

�
¼ μ2Φ

Ψ2
0

: ð127Þ

The solution to the last equation is already described
[compare with Eqs. (71)–(76)]. The radial electric field
is presented by the formula

FIG. 4. Plot of the function Θ̃, which illustrates the profile of
the reduced electric potential in the near zone. The curves are
distinguished by three parameters indicated in parentheses near
the corresponding curve; the first value relates to the parameter

a; the second value describes the guiding parameter r2A
r2þ
; the third

value relates to the parameter Q�. The general feature of these
curves is the presence of the maximum of the electric potential
at x ¼ xmax in the near zone; at x < xmax, the electric field
EðxÞ ¼ 1

rþ
dΘ̃
dx is positive, and at x > xmax, it is negative. Since the

electric field changes sign, we deal with the example of plasma
stratification.
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EðrÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Fr0Fr0

q
¼ Θ0ðrÞ ¼ −

μ

r2
ΦðrÞ: ð128Þ

Clearly, the electric field in plasma is nonvanishing; it is
produced by the interaction between the magnetic field
of the monopole and the axion field. Nevertheless, there is
no plasma polarization in this electric field. Why is this
possible? The explanation is, that in this case, the gener-
alized Lorentz force (7) vanishes, since the standard electric
field Fr

0 is compensated by the axionically induced electric
field ϕF�r

0.

2. On the properties of nontrivial solutions

Now we consider Eq. (125) with conditions Ψðr�Þ ¼ 0
and Ψ0ðr�Þ ≠ 0 and obtain nontrivial distribution of the
superpotential ΨðrÞ. The master equation for the super-
potential in leading-order high-temperature approximation
takes the form

1

r2
d
dr

�
r2
dΨ
dr

�
¼ Ψ

λ2DN
2ðrÞ ; ð129Þ

1

λ2D
¼ 8πe2N ðr�ÞN3

2ðr�Þ
kBT0

; ð130Þ

where λD is the screening parameter defined above. In
terms of dimensionless variable x, the master equation (129)
converts into

1

x2
d
dx

�
x2

dΨ
dx

�
¼ Ψ

�
r2þ
λ2D

��
x2

ðx − 1Þðx − aÞ
�
2

: ð131Þ

If we consider the case where the object boundary is far
from the horizons, i.e., x� ≫ 1 > a, the solution to this
equation with the condition Ψðx�Þ ¼ 0 can be modeled as
follows:

ΨðxÞ ¼ Ψ0ðx�Þ
�
x�
x

��
λD
rþ

�
sinh

�
rþ
λD

ðx − x�Þ
�
: ð132Þ

This solution takes infinite value at x → ∞. Numerical
analysis of Eq. (131) confirms this statement. In other
words, there are no physically motivated solutions with
finite asymptotes; thus, it is reasonable to consider only the
trivial solution ΨðxÞ≡ 0.

B. Electron-positron plasma with ν = 0

If the Lorentz force is not modified by the axion-plasma
coupling, i.e., ν ¼ 0, searching for the electric potential, we
deal with the following decoupled master equation:

1

r2
d
dr

�
r2

dΘ
dr

�
−

μ2Θ
r4NðrÞΨ2

0

−
8πeN ðr�Þffiffiffiffiffiffiffiffiffiffi

NðrÞp �
λðr�ÞK2½λðrÞ�
λðrÞK2½λðr�Þ�

�

× sinh
eΘ
kBT0

¼ −
μK

r4NðrÞ : ð133Þ

The pseudoscalar field itself can be found from the
equation

Nr2
dΦ
dr

¼ K −
μ

Ψ2
0

Θ ð134Þ

when the potential Θ is obtained. In the high-temperature
electron-positron plasma, i.e., when j eΘ

kBT0
j ≪ 1, we obtain

the reduced equation

1

r2
d
dr

�
r2

d
dr

Θ
�
−

Θ
ℜ2

¼ −
μK

r4NðrÞ ; ð135Þ

where we introduce the effective screening radius ℜ by the
definition

1

ℜ2
≡ μ2

r4NðrÞΨ2
0

þ 8πe2N ðr�Þ
kBT0

ffiffiffiffiffiffiffiffiffiffi
NðrÞp �

λðr�ÞK2½λðrÞ�
λðrÞK2½λðr�Þ�

�
: ð136Þ

In the ultrarelativistic limit, we deal, respectively, with the
formula

1

ℜ2
≡ μ2

r4NðrÞΨ2
0

þ 1

λ2DN
2ðrÞ : ð137Þ

On the right-hand side of Eq. (135), there is only one source
term; it relates to the electric field produced by the axion
field in the presence of magnetic charge of the monopole.
This source guarantees the plasma to be polarized, in
contrast to the case with ν ¼ 1, the plasma polarization
being essential in the far zone. In order to discuss new
features of the electric field profile, let us focus on the case
r > r� ≫ rþ. Now we deal with the key equation

1

x2
d
dx

�
x2

dΘ
dx

�
−
r2þ
λ2D

Θ ¼ −
μK

r2þx2ðx − 1Þðx − aÞ : ð138Þ

Using the formula (103), we obtain now

ΘðxÞ ¼ μKλD
xrþ

�
C�� sinh

�
rþ
λD

ðx − x�Þ
�

−
Z

x

x�

dz
zðz − 1Þðz − aÞ sinh

�
rþ
λD

ðx − zÞ
��

; ð139Þ

where the constant of integration is chosen as

C�� ¼
Z

∞

x�

dz
zðz − 1Þðz − aÞ exp

�
rþ
λD

ðx� − zÞ
�

ð140Þ
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providing the electric potential to tend to finite value at
infinity. The electric field is given by the formula

EðxÞ≡ 1

rþ
Θ0ðxÞ

¼ −
ΘðxÞ
xrþ

þ μK
xrþ

�
C�� cosh

�
rþ
λD

ðx − x�Þ
�

−
Z

x

x�

dz
zðz − 1Þðz − aÞ cosh

�
rþ
λD

ðx − zÞ
��

: ð141Þ

The value of this electric field at r ¼ r� is

Eðr�Þ ¼
μK
r�

Z
∞

x�

dz
zðz − 1Þðz − aÞ exp

�
rþ
λD

ðx� − zÞ
�
: ð142Þ

At infinity, using the asymptotic formula (107), we obtain

ΘðxÞ → μK
λ2D
r4þx4

; EðxÞ → −4μK
λ2D
r5þx5

: ð143Þ

Since Θðr�Þ ¼ 0 ¼ Θð∞Þ, there is an extremum in the
profile of the function ΘðrÞ. If to indicate the radius
corresponding to the extremum as r��, we see that the
radial electric field EðrÞ ¼ Θ0ðrÞ takes zero value at this
radius, i.e., Eðr��Þ ¼ 0. Depending on the sign of the
parameter μK, we obtain positive or negative value of the
electric field on the basic sphere r ¼ r�. There are two
possible variants of the behavior of the electric field profile.
First, when μK < 0, the value Eðr�Þ is negative; then the
function EðrÞ grows, reaches zero value at r ¼ r��, changes
the sign, reaches the maximum at r ¼ rmax, and then tends
asymptotically to zero. Second, when μK > 0, the value
Eðr�Þ is positive; then the function EðrÞ tends to zero,
changes sign, reaches the minimum at r ¼ rmin, and then
tends asymptotically to zero. In both cases, in the zone
r� < r < rextremum, the electric field changes sign, so this
domain in the electron-positron plasma is polarized and
demonstrates the effect of stratification.

VI. DEGENERATED ELECTRON PLASMA

Let us consider the model of degenerated electron gas
with T0 ¼ 0 and with standard Lorentz force (ν ¼ 0), and
let it be the nonrelativistic gas, i.e., PFðr�Þ ≪ mec. Now
we have to analyze the following reduced equation for the
electric potential:

1

r2
d
dr

�
r2
dΘ̃
dr

�
−

r2A
NðrÞr4 Θ̃¼−

32eπ2m3
ec3

h3N2ðrÞ ½NðrFÞ−NðrÞ�32;

ð144Þ

where, again, Θ̃ ¼ Θ − μK
r2A
. In terms of the variable x, this

equation has the same form as Eq. (117); however, the
source J̃ is now equal to

J̃ ¼−
32eπ2m3

ec3r2þx
h3ðx−1Þ2ðx−aÞ2fx

2½NðrFÞ−1�þxðaþ1Þ−ag3
2:

ð145Þ

The analysis of the solution is similar to the previous case:
Again, it is the solution of the inhomogeneous version of
the Fuchs-type equation (80). Only one detail has to be
taken into account, that now the reduced radial variable x
changes in the interval r�

rþ
< x < rF

rþ
, where the threshold

radius rF can be found from Eq. (52). In the zone x > rF
rþ
,

we have to solve the homogeneous equation with J̃ ¼ 0
and see that asymptotically the electric field is
Coulombic: Θ0 ∝ 1

r2.

VII. DISCUSSION

Spectral characteristics of astrophysical objects are
sensible to the presence or absence of electric fields in
their environs. Astrophysicists search for fine details of
the object spectra as fingerprints of electric fields.
Theoreticians elaborate simple, complex, and sophisticated
models for the interpretation of the peculiarities of these
spectra. We work as theoreticians with the model of axionic
magnetic monopole (dyon), which became a very interest-
ing theoretical laboratory after the work [26]. Indeed, this
model includes static spherically symmetric gravitational,
magnetic, pseudoscalar (axion) fields, as well as an axioni-
cally induced electric field, which interact with one another.
We add the relativistic plasma into this model and consider
in detail the plasma polarization, stratification, and the
compensating electric field generated in plasma in the
axionic and gravitational environment.
We consider the relativistic plasma as an example of an

axionically active system. What is the sense of the term
axionically active? We trace three schemes of reaction of
the plasma particles on the action of pseudoscalar (axion)
field associated with axionic dark matter. The first scheme
describes an indirect interaction of the macroscopic type:
The collective electromagnetic field in plasma is influenced
by the axion field; the interaction of this type is analyzed
in the framework of axion electrodynamics. The second
scheme describes the direct microscopic interaction of
plasma particles with axion field. This interaction is
modeled by the generalized Lorentz force (7), into which
the term ϕF�

ik is introduced in addition to the standard
Maxwell tensor Fik. The third scheme is connected with the
influence of the background strong gravitational field: We
study the axionic analog of the Pannekoek-Rosseland effect
of plasma polarization and stratification.
The difference between polarization and stratification in

plasma can be visualized using the profile of the compen-
sating electric field. We deal with the effect of polarization
when the profile of the electric potential A0ðrÞ is mono-
tonic, and the electric field EðrÞ ¼ A0

0ðrÞ does not change
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sign. The effect of plasma stratification corresponds to the
case where the electric potential has at least one extremum
so that the electric field takes zero values at some radii rs,
i.e., EðrsÞ ¼ 0, then changes sign (see Fig. 4). The exact
results obtained in this work show that both effects—
polarization and stratification—can be visualized in the
profiles near the magnetic monopole with the axionic
environment (the axionic dyon). How can one distinguish
the physical conditions, which guarantee the presence of
stratification when only the plasma polarization exists?
The answer is connected with the sophisticated interplay
between the guiding and structure parameters of the model.
In the model under discussion, there are three guiding

parameters and one structure parameter with the dimen-
sionality of length (in other words, there are four scale
parameters). The first guiding parameter K appears in
Eq. (58) as a constant of integration; in fact, it plays the
role of effective axionic charge (see, e.g., Refs. [35,36] for
details). The second guiding parameter rA ¼ μ

Ψ0
describes

the scale of an axionically induced conversion of the
magnetic field into the electric. The third one λD character-
izes the radius of screening in the Boltzmann plasma. An
analog of this parameter in the degenerated plasma with
zero temperature is the Fermi radius rF [see Eq. (52)], at
which the electron gas number density vanishes. The
structure parameter rþ [Eq. (3)] describes the radius of
an outer horizon of the dyon with the Reissner-Nordström
metric.
The guiding parameters predetermine the properties of

the solutions of the key set of two coupled master
equations, to which the total system of axionic, electro-
magnetic, and kinetic equations is effectively reduced. We
mean the equation of axion electrostatics [see Eq. (48) for
the Boltzmann plasma and Eq. (51) for the degenerated
electron gas] and the equation of the axion field (58). The
procedure of decoupling these two key master equations
presents us the necessity to analyze the Fuchs-type equa-
tions (80). Fortunately, equations of this type attracted the
attention of mathematicians from the 1920s; many proper-
ties of these solutions, which can be indicated as special
functions of mathematical physics, are well documented in
the literature. We quote the mathematical works in which
these functions are studied, and, in addition, we use
numerical calculations and typical plots for the illustration
of the main conclusions (see Figs. 1–4).
The model under consideration describes self-consis-

tently the interaction of the axion field with the electric field
and plasma. This means that the model describes both the
influence of the axion on the electromagnetic field of the
dyon and the backreaction of the dyon electric field on
the state of the axion field. The first typical illustration of
such a mutual influence is given by Eq. (60). The profile of
the axion field ΦðrÞ (61) is predetermined by the integral
containing the electric potential, the guiding parameter
being the ratio μ

Ψ2
0

. There are estimations of the quantity

1
Ψ0

¼ gAγγ < 1.47 × 10−10 GeV−1 connected with the con-
stant of the axion-photon coupling [46]; however, there is
no adequate estimation of the magnetic charge μ. As for the
second typical illustration describing the backreaction of
the plasma, one can see, e.g., from Eq. (112), that the
profile of the axion field is regulated by the plasma
parameter Q� (99) and by the screening Debye parameter
λD. Detailed estimations of these contributions are inter-
esting, but they are out of the scope of this paper.
What are the main conclusions?
(1) When we deal with relativistic Boltzmann electron-

ion plasma, the plasma polarization and electric
field near the axionic dyon can be formed as follows.
First, due to the Pannekoek-Rosseland effect in-
duced under the influence of the strong gravitational
field, the isothermal plasma becomes polarized,
and the compensating radial electric field appears.
This collective electric field in plasma is influenced
by the axion field on both the microscopic and
macroscopic levels (via the electrostatics equations
and via the generalized Lorentz force, respectively).
Second, the radial electric field generated by the
magnetic field of the monopole in the axionic
environment additionally polarizes or depolarizes
the plasma, depending on the sign of the effective
axion charge. If the Pannekoek-Rosseland electric
field and this axionically induced field act against
each other, it can lead to plasma stratification in the
near zone of the dyon. Third, the electric field is
screened by the polarized plasma, thus, providing
the last structure element in the charged particle
density near the dyon. Thus, the first conclusion is
that in the relativistic Boltzmann electron-ion
plasma, three principal plasma configurations and
three electric field profiles can be formed, which are
indicated as follows: first, the simple plasma polari-
zation where the axionically induced electric field is
directed along the Pannekoek-Rosseland field; sec-
ond, the plasma stratification where the Pannekoek-
Rosseland electric field is directed contrarily to the
axionically induced electric field; third, the profile
related to the compensation of twomentioned electric
fields.

(2) When we deal with relativistic Boltzmann electron-
positron plasma, the Pannekoek-Rosseland effect
is absent because of the equivalence of the masses
of the electrons and positrons. Thus, the scheme of
formation of the electric field is simpler than the
one described above. Nevertheless, the axionically
induced electric field again polarizes the plasma,
and plasma backreaction and screening form the
final sophisticated profile of the coupled electric
and axionic fields. The second conclusion is that
in the relativistic Boltzmann electron-positron
plasma, one can also find the plasma polarization,
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stratification, and the self-compensation of the
electric field.

(3) When we consider the relativistic degenerated elec-
tron gas with zero temperature, we deal with the
following scheme of formation of the electric field.
First, the gravitational field of the dyon influences
the Fermi momentum of electrons PFðrÞ, thus,
establishing the profile of the local number density
N eðrÞ. The inhomogeneity of this profile produces
the electric field (which is generated, in fact, due to
the gravity field influence). The axionically induced
electric field appears due to the transformation of the
magnetic field of the monopole; it can be directed
along the electric field in the electron plasma, or
contrarily to it, depending on the sign of the effective
axionic charge. In contrast to the cases with Boltz-
mann plasma distributed in the infinite range
r0 < r < ∞, the degenerated electron gas occupies

the finite zone r0 < r < rF, the boundary of which
is predetermined by the equation PFðrFÞ ¼ 0
[see Eq. (52)]. The third conclusion is that both
polarization and stratification can be found in the
degenerated electron gas in the vicinity of the
axionic dyon.

(4) In a special work, we hope to make estimations to
formulate some observational prognoses and apply
these theoretical predictions to the real astrophysical
sources with strong magnetic field.
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