
 

Search for kilogram-scale dark matter with precision displacement sensors

Akio Kawasaki*

W.W. Hansen Experimental Physics Laboratory and Department of Physics,
Stanford University, Stanford, California 94305, USA

(Received 26 August 2018; revised manuscript received 4 December 2018; published 7 January 2019)

The search for dark matter has been performed mainly for weakly interacting massive particles and
massive compact halo objects, and the intermediate mass region has not been investigated experimentally.
A method to search dark matter with precision displacement sensors is suggested for this mass range. The
search is performed by detecting a characteristic motion of a test mass when it is attracted by a dark matter
particle through gravity. Two different types of displacement sensors are examined: optically levitated
microspheres and laser interferometers for gravitational wave detection. The state-of-the-art detectors’
sensitivity is several orders of magnitude lower to put constraints on dark matter particles. Among the two
types of detectors, gravitational wave detectors have higher sensitivities, and a sensitivity 10 times more
than the next generation detector can potentially address the existence of dark matter particles of a few
kilograms.

DOI: 10.1103/PhysRevD.99.023005

I. INTRODUCTION

There have been multiple independent astronomical
observations that established the existence of dark matter
(DM) [1–3], and different candidates of DM have been
searched intensively: massive halo objects (MACHOs) [4]
and weakly interacting massive particles (WIMPs) [5–9], as
well as even lighter particles such as axions and axion-
like particles (ALPs) [10,11]. So far, there has been no
convincing discovery of the constituent of DM, and experi-
ments and observations mainly set more and more stringent
constraints on parameter spaces, as the sensitivity of
detectors increases.
Search methods are different according to the mass and

the characteristics of DM candidates. MACHOs, which
have a mass range around the solar mass (∼1030 kg), are
searched by astronomical observations using gravita-
tional lensing [4]. The detection of WIMPs with the mass
around 1–100 GeV=c2 (10−27 − 10−25 kg) is performed by
detecting recoils of nuclei by the scattering with the DM
particle [5–9]. The mass of axions and ALPs is typically
assumed to be a few GeV or less, and these are typically
detected by conversion from photons at accelerator beam
dumps for relativelymassive cases. Lightmass ones (≲1 eV)
are typically searched through the conversion to photons by a
magnetic field [10–12]. The intermediate mass scale, which
is between 10−25 and 1030 kg, has not been intensively
searched. This mass range includes various interesting
particles and objects, such as the grand unification theory
scale (1.78 × 10−11 kg), Planck mass (2.2 × 10−8 kg), and

primordial black holes (1013–1033 kg) [13]. In this paper, a
newmethod to searchDMparticles of this intermediate range
is suggested. A precision displacement sensor works as a
detector to observe themotion of a testmass,which canmove
by an attraction by DM particles, and two different kinds of
displacement sensor are analyzed: optically levitated spheres
and gravitational wave detectors.

II. DISPLACEMENT OF A FREE TEST MASS
BY A DARK MATTER PARTICLE

To think of how a test mass behaves when a DM particle
interacts with it, we start from an analysis of a simple
system consisting of a test mass and a DM particle. The
DM particle, whose mass is m, is assumed to be a point
particle or a particle of a size significantly smaller than its
impact parameter b. The DM particle moves at a velocity of
v0 from an infinitely distant place towards the test mass at
rest, with an impact parameter b. The spherical test mass
has massM and radius r0, whose displacement is measured
by a displacement sensor. The test mass is trapped around
the origin by a harmonic trap of resonant frequency ω0 and
damping constant γ. For simplicity, r0 ¼ 0, ω0 ¼ 0, and
γ ¼ 0 are assumed initially, and the effects of a harmonic
trap and the finite size of the test mass are discussed later.
The DM particle and the test mass interact only through
the Newtonian gravity following FðtÞ ¼ GMmrðtÞ=r3ðtÞ,
where rðtÞ ¼ rDMðtÞ − rdetðtÞ, rDMðtÞ and rdetðtÞ are the
position of the DM particle and the test mass, respectively,
at time t, and G is the gravitational constant.
The motion of two bodies interacting by a central force

is well analyzed [14], and the analytical solution of the*akiok@stanford.edu
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displacement rðtÞ ¼ ðxðtÞ; yðtÞÞ at the center of mass frame
is parametrized by ξ in the following form:

x ¼ aðϵ − cosh ξÞ;
y ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − 1

p
sinh ξ;

t ¼
ffiffiffiffiffiffiffiffi
μa3

α

r

ðϵ sinh ξ − ξÞ; ð1Þ

where μ ¼ mM=ðmþMÞ is the reduced mass, α ¼ GMm,
a ¼ α=2E, ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EL2=μα2

p
is the eccentricity of the

trajectory, E ¼ μv20=2 is the total energy of the system, and
L ¼ μv0b is the total angular momentum of the system.
Note that the x and y axes of the coordinate system are
set in the plane of motion, and the directions of two axes
are defined so as for the initial relative velocity to be
v0 ¼ v0=ϵð1;

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − 1

p
Þ. To get the position of the test mass

in the laboratory frame rM ¼ ðxM; yMÞ, a Galilei trans-
formation of rM ¼ rCM − ðm=ðM þmÞÞr is applied, where
rCM is the position of the origin of the center of mass frame.
The position of the test mass in the laboratory frame is
therefore described as

xM ¼ m
mþM

a

�
eξ − ϵ −

ξ

ϵ

�
;

yM ¼ −
m

mþM

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − 1

p
a
ξ

ϵ
;

t ¼ a
v0

ðϵ sinh ξ − ξÞ: ð2Þ

This satisfies the initial velocity of DM particle as
v0 ¼ v0=ϵð1;

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − 1

p
Þ. The asymptotic behavior of vM ¼

∂rM=∂t at t → �∞ is

v−∞ ¼ ð0; 0Þ; ð3Þ

v∞ ¼
�

2m
M þm

v0
ϵ
; 0

�
; ð4Þ

which implies that the total momentum transfer Δp ¼
ðΔpx;ΔpyÞ from the DM particle to the test mass at the
end of the collision is only in the x direction, and
Δpx ¼ 2mMv0=ðmþMÞϵ. In the case of ϵ ≫ 1, this is
simplified to Δpx ¼ 2GMm=v0b, which is the same
quantity as the momentum transfer calculated by an
assumption that m ≫ M and therefore the DM particle
flies straight.
This motion can be detected in two different situa-

tions: (i) observing the relaxation of the test mass
displacement in the harmonic trap after it receives a
momentum kick of Δpx (damped oscillation measure-
ment) and (ii) performing real-time detection while the
test mass is being accelerated by the attraction from
the DM particle (transient measurement). A damped

oscillation measurement happens when a DM particle
passes by the test mass so quickly that the collision
process happens within the minimum time step Δtaq
of the displacement measurement of the test mass. This
condition is Δtaq > b=v0 within a factor of Oð1Þ. The
detection is performed through observing the damped
oscillation of the test mass in the harmonic trap with the
initial displacement of yM ¼ 0 and the velocity of
vMx0 ¼ Δpx=M. The criterion for this to be detected
is that the maximum amplitude of this oscillation A is
larger than a minimum displacement Amin that can be
detected on top of the noise of the detector:

A ¼ CvMx0

ω0

¼ 2Gm
bv0ω0

α ≥ Amin; ð5Þ

where C is a numerical factor that is a function of ω0 and γ.
This results in a condition for the collision parameter b
that the signal can be detected when b < bmax ¼
2GMC=Aminv0ω0. The total volume V that is scanned over
by an observation for time tob is V ¼ πb2maxv0tob. When
there are N signals of DM particles during the observation
period, the number density of the DM particle n is

n ¼ N
V

¼ N
4πtob

A2
minv0ω

2
0

G2m2C2
: ð6Þ

N ¼ 3.69 should be chosen to address the sensitivity with
95% confidence level when there is no signal.
In the transient measurement, the motion of the test

mass under the influence of a DM particle is monitored
continuously. In the general case, it is difficult to predict
analytically the motion of a test mass in a harmonic trap
attracted by a DM particle. Here, for simplicity, we
assume that the timescale of the oscillation and the
damping is significantly longer than that of the force
on the test mass by a DM particle, which is justified
when we consider gravitational wave detectors. This
simplifies the situation to the observation of Eq. (2).
As xM has a larger displacement than yM, xM is used for
this analysis. The sensitivity of the detector is typically
described by a power spectral density as a function of
the frequency of noises, and, if the signal is larger than
the noise at some frequency range, the signal can be
detected. To estimate the sensitivity, the position of the
test mass is Fourier transformed. This gives 1=f behavior,
where f is the frequency of the signal, and the largest b
that makes the signal of the test mass displacement cross
the noise spectral density of the detector gives bmax. With
the same argument as the damped oscillation measure-
ment, the sensitivity is described as

n ¼ N
πv0tobb2max

: ð7Þ
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III. APPLICATION TO ACTUAL SYSTEMS

The calculation so far has ignored certain aspects of
actual detectors, such as the finite size of the test mass
and the detector. To consider them, applications to two
kinds of detector are discussed: optically levitated micro-
spheres [15–26] and interferometers for gravitational wave
detection [27–29]. The calculation in the idealized system
is modified according to the properties of the detectors, and
the sensitivity to the DM particle density is numerically
derived.
For numerical calculations, the velocity of the DM

particle is assumed to be v0 ¼ 2.2 × 105 m=s [30], and
the density of DM ρDM ¼ 0.39 GeV c−2 cm−3 [31,32].
The number density n of DM particles of mass m is
therefore

n ¼ ρDM
m

¼ 0.695 × 10−21

m½kg� ½m−3�; ð8Þ

with an assumption that all DM is made of particles of
mass m.

A. Optically levitated microspheres

Optically levitated microspheres are used for force
sensors, and their method to measure the force is to convert
the displacement of a sphere into the force by using its mass
and resonant frequency of a harmonic trap. Thus, this
system works as a precision displacement sensor of micro-
spheres. The resonant frequency of the sphere ranges from
a few hundred hertz [16] to a few kilohertz [23], and, to trap
the sphere stably, displacement feedback with a bandwidth
of an order of magnitude larger than the resonant frequency
is applied. Here, for simplicity, C ¼ 1 is assumed, which
holds as far as the quality factorQ of the resonance is much
larger than 1. C decreases as Q decreases, but, even when
Q ¼ 1, C ≃ 0.4, which means even in the highly damped
situation the difference in C is at most a factor of a couple.
In fact, the system in Ref. [16] has Q ∼ 1 when the
feedback cooling to reduce the noise is implemented.
Also, it is possible to make a sequence such that for a
certain amount of time the feedback cooling is turned on
and off to alternate the highQ for the measurement and low
Q for cooling to do the measurement in a high Q
environment without too much noise. Thus, assuming
C ¼ 1 is plausible to have an estimate on sensitivity that
can range orders of magnitude. The data acquisition of the
position is performed at an order of 1–10 kHz. Suppose the
DM particle passes at most 0.1 m away from the test mass,
which is justified later. Because the timescale of the
interaction between the test mass and the DM particle is
significantly shorter than that of the feedback and the data
acquisition, all the motion due to the attraction by a DM
particle happens in a single bin of the data acquisition,
and thus the detection mode is the damped oscillation
measurement.

The detection sensitivity Amin is determined by the noise
level at the resonant frequency. This is 2 × 10−10 m=

ffiffiffiffiffiffi
Hz

p
for Ref. [16] at ω0 ¼ 250 Hz and 1 × 10−9 m=

ffiffiffiffiffiffi
Hz

p
for

Ref. [23] at ω0 ¼ 7300 Hz, both of which are with feed-
back cooling (i.e., highly damped). In the case of Ref. [23],
the largest ω0 among three orthogonal axes is used to be
conservative, whereas Ref. [16] has more or less the same
ω0 for all three axes. Also, there are two other factors
limiting the sensitivity. One is the size of the microsphere,
and the other is the size of the detector. When the collision
parameter b is smaller than the radius of the sphere r0, the
sphere cannot be regarded as a point mass any longer. This
reduces the effective size of the sphere for considering the
force by a DM particle to radius b when the DM particle is
closest to the sphere, resulting in a smaller amount of
motion due to the DM particle. To be conservative, this
effect is estimated to be the reduction of momentum
transfer by a factor of ðb=r0Þ3. Thus, for the sensitivity
curve, a factor of ðbmax=r0Þ6 is multiplied at the region
where bmax < r0. r0 is 2.4 μm for Ref. [16] and 150 nm
for Ref. [23].
When bmax is large, the DM particle can attract some-

thing other than the microsphere, which potentially gives a
fake signal. In the extreme case where bmax is significantly
larger than the size of the laboratory, a DM particle passing
far from the detector simply pulls the whole experimental
system, and it is difficult to estimate exactly how the
momentum kick onto the microsphere converts into an
actual signal. To avoid confusion due to the attraction on
the other components in the setup by the DM particle, it is
assumed that, when bmax is larger than the size of the
detector rD, the sensitivity region is determined by rD, not
bmax, which results in

n ¼ N
πv0tobr2D

ð9Þ

for bmax > rD. For the numerical calculation, rD ¼ 0.1 m is
assumed, as the size of vacuum chamber, inside of which
only the last aspheric lens to tightly focus the trapping laser
beam is located in an experiment in Ref. [16], is on the
order of 0.1 m.

B. Laser interferometers for gravitational
wave detection

Laser interferometers for gravitational wave detection
have had significant improvement in the past decades. They
have two arms each of which has an optical cavity to
enhance the effective path length. The mirrors for the
cavities serve as test masses. If a DM particle interacts with
only a single mirror or has a larger effect on one mirror than
the other, the displacement of the mirror is recorded as a
signal. Advanced LIGO [27] and Advanced VIRGO [28]
are currently in operation, and KAGRA [29] is under
construction. These detectors have similar sensitivities,
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and, in this analysis, Advanced LIGO is used as a
representative. The arm is 4 km long, and the most sensitive
frequency range is 10–1000 Hz, which means both the
transient measurement and the damped oscillation meas-
urement are possible.
For the damped oscillation measurement, the highest

resonant frequency is at 9 Hz [33], and the noise level at
this resonant frequency sets Amin as 5 × 10−17 m=

ffiffiffiffiffiffi
Hz

p
[27]. The fact that this resonance is one of the two
undamped resonant modes in the mirror suspension system
makes it suitable for the damped oscillation measurement.
It should be noted that a specific data processing or analysis
method might need to be developed for this DM search, and
there might be a decent amount of background that can be
difficult to distinguish a signal by DM particles from, as
this frequency is at the low end of the frequency that is paid
attention to by the gravitational wave observations. Based
on their mirror size, r0 ≃ 0.1 m. The detector size rD is set
as rD ¼ 2 km, which is half of the length of an interfer-
ometer arm. This is because, if the impact parameter bmax is
larger than this, the two circles of radius bmax centered
on two cavity mirrors start to overlap, which results
in a volume covered by two mirrors smaller than V ¼
2πb2maxv0t. Another justification is that, when the DM
particle passes a few kilometers away outside of the cavity,
the force on the two mirrors becomes close, and the amount
of signal is reduced. An additional factor to be considered
in the case of a gravitational wave detector is that it is
primarily for the detection of one-dimensional displace-
ment, and therefore the sensitivity of the detector to the DM
particle oscillates on a daily basis according to the relative
angle θ between v0 and the sensitive direction of the
detector. The reduction in the amount of motion of the test
mass is a factor of cos θ, and the time average of this is
1
2π

R
2π
0 j cos θjdθ ¼ 2=π. Also, the fact that there are totally

four mirrors in one interferometer needs to be taken into
account. Each mirror can be regarded as a free test mass,
and naively the enhancement by the four mirrors would be
4. However, two of the four mirrors are reasonably close to
the input optics, compared to the mirrors at the other end of
the 4-km-long arm. Therefore, this factor should be 3,
because two mirrors on the input side are so close to each
other that the circles of radius bmax centered at the mirrors
overlap with each other at large bmax. The argument that
each mirror is viewed as a test mass implies that the
sensitivity becomes higher proportionally to the total
number of interferometers, assuming that each interferom-
eter is farther apart than bmax.
The performance of the transient measurement is esti-

mated by comparing the f−1 curve and the sensitivity curve
[27]. The minimum signal curve that is tangent to the
sensitivity curve is 3 × 10−18=f, and therefore bmax is given
by b that induces this amount of signal. The transient
measurement also has the limitation due to the detector size
rD and the test mass size r0.

To see whether future experiments have any benefits for
the DM search, the Einstein Telescope (ET) [34] is also
analyzed, though it is only for the transient measurement.
As far as analyzing the effect on the single mirror,
important parameters are the same as the LIGO case.
The minimum f−1 curve tangent to the sensitivity curve
is assumed to be 1 × 10−19=f, based on the sensitivity
curve and an arm length of 10 km. Note that the sensitivity
curve is different between ET-B [35] and ET-C [36], and
ET-C has a better sensitivity in low-frequency region,
which can lower the minimum f−1 curve by a factor of
∼2. It is assumed that rD equals 5 km, because of the
10-km-long arm, and r0 ¼ 0.1 m is assumed, as the size or
the mirror is on the order of 10 cm.

C. Current and future sensitivities

The sensitivity to the number density of DM particles
with the 95% confidence level is summarized in Fig. 1. The
black line (UN Reno) is the potential limit that can be set
by currently available data in Ref. [23]. The fact that
their force measurement graph averages down over 105 s
proportionally to the inverse of the square root of the
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FIG. 1. Potential sensitivities of displacement sensors to dark
matter particles of different mass without any background signals
(95% confidence level): UN Reno is the potential limit the data
shown in Ref. [23] can put. SU refers to the setup described in
Ref. [16] with 107 s integration time by the current performance
(red solid line) and by the improved noise level down to the shot
noise limit (SN; red dotted line). The light blue solid line (LIGO,
T, 107 s) and light blue dotted line (LIGO, R, 107 s) show the
Advanced LIGO [27] transient measurement and the resonant
measurement with 107 s integration time by a single mirror,
respectively. Dark blue lines show the sensitivities for the
Einstein Telescope [34]. The dashed dotted line (ET, 107 s) is
for a single mirror, with 107 s integration time. The dashed line
(ET, L;S × 10, 107 s) and solid line (ET, L;S × 10, 108 s) are for
10 times higher sensitivity and detection radius than the current
design for 107 s with a single mirror and for 108 s with three
mirror sites, respectively.
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measurement time means that no extra feature in addition to
the noise was observed, leading to the conclusion that there
was no enormous signal. The actual limit has to be set by
carefully analyzing the data to see if there are any small
signals.
Stanford curves are the expected performance based on

Ref. [16] with the measurement time of 107 s. The solid
line is the sensitivity with the current performance of the
detector, and the dotted line assumes an improved position
sensitivity limited by the shot noise. When the measure-
ment time is the same as the UN Reno curve, the Stanford
setup has 4 orders of magnitude higher sensitivity than the
UN Reno setup as long as the sensitivity is not limited by
the detector size. This is simply because the Stanford setup
has better position sensitivity. This trend is the same when
microsphere setups and gravitational wave detectors are
compared. Advanced LIGO can put 9 orders of magnitude
better constraint than the shot-noise-limited performance of
the Stanford system, mainly because it has a smaller
amount of noise at the mechanical resonance compared
to the microsphere setups. Still, the sensitivity by the
damped oscillation detection is 5 orders of magnitude
above the number density of DM particles.
As for the transient measurement, the sensitivity for a

particle of the same mass is an order of magnitude higher
than the resonant measurement, because the noise level
relevant to the transient measurement is much better than
that at the mechanical resonance at 9 Hz. Note that the
transient measurement has to detect smaller motion than
the overall amplitude at the resonant measurement, which
prevents the sensitivity from being improved by the same
amount of the noise ratio between two measurements. The
sensitivity itself is still 5 orders of magnitude lower than the
number density of the DM particles at m ¼ 5 kg. This is
consistent with the analysis in Ref. [37]. In their analysis,
10 and 1000 kg DM particles have a cumulative rate of
∼10−5 yr−1 and ∼4 × 10−4 yr−1, respectively, at a signal-
to-noise ratio (SNR) of 1. Figure 1 suggests that 3.69 hits
are expected at a SNR of 1 over an observation of a third of
a year, if the DM particle density were 106 more than the
estimate from the standard DM density. This is converted to
0.85 × 10−5 yr−1 cumulative rate. In the case of 1000 kg, if
the sensitivity is not limited by the detector size rD in Fig. 1,
the attainable sensitivity is around 10−20 m−3, which is 4
orders of magnitude larger than the actual DM particle
density. With a similar calculation to the 10 kg case, this is
equivalent to a cumulative rate of 8.5 × 10−4 yr−1. Thus,
the analysis shown here matches that in Ref. [37] within a
factor of Oð1Þ.
The ET is analyzed only for the transient measurement

because of an unavailability of detailed information on the
mechanical resonance. Thanks to the lower noise and
longer arm, both the sensitivity at the same mass and
the detector size limited sensitivity are improved compared
to the LIGO case. However, it is still 3 orders of magnitude

away from the DM particle density even at the closest point
of 5 kg. When both the noise level is reduced by a factor of
10 and the detector size is increased by a factor of 10, the
sensitivity improves by a factor of 100. With all three
mirror sites taken into account and an observation per-
formed for three years, the sensitivity can reach the DM
particle density at m ¼ 5 kg.

D. Discriminating the signal from the background

The discussion so far is simply based on the sensitivity
limited by noises on the detector, but what limits the
sensitivity is not only noises but also backgrounds that
resemble signals. Because the detection of DM particles is
performed by measuring small forces, a range of sources
can induce background events. When a single test mass
is used for the observation, moving objects on Earth, such
as cars and airplanes, can induce background events.
Particularly for the resonant measurement, it is extremely
difficult to tell the signal from the background, as the
momentum kick is assumed to happen instantaneously, and
no information on the source of the momentum kick is
recorded, except for the amount of the momentum kick. To
sort such backgrounds out, taking a coincidence between
two or more test masses would help the discrimination of
the background; a DM particle has a velocity of v0 ¼
2.2 × 105 m=s that is significantly faster than a typical
object moving on Earth (e.g., an airplane flies at the speed
of less than the speed of sound, which is 340 m=s). In a
simple case of an object moving along the line of two test
masses, telling the DM particles from other backgrounds by
velocity is easy. Even when the object is moving
perpendicular to the line of two test masses, in which case
the hits to these two test masses happen simultaneously, a
third test mass at the position that makes an equilateral
triangle together with the two other test masses would serve
as a good source to tell the velocity of the object. As for
LIGO, two test masses can be a pair of mirrors that makes a
single arm, and the third test mass can be the mirror on the
far end of the other arm of the interferometer. For the
transient measurement, in principle, the time-dependent
force should provide information on how fast an object is
moving against the test mass even if there is a single test
mass, but still timing information with two or more test
masses should help to discriminate the signal from back-
ground, particularly when the signal is small.
Another source of background that cannot be avoided is

the seismic noise and other kind of vibrations of continuous
medium on Earth, such as air and water. There can be
multiple ways of telling these apart from signals from a DM
particle. One method is to have a seismometer or other kind
of vibration meter. This can veto the detector when the
vibration is beyond a threshold that is set independently.
This method works even with a single test mass. When there
is more than one test mass, discrimination by the velocity
in the same way as a moving object is also possible.
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The propagationof thesevibrations through these continuous
media typically ranges between 102 and 104 m=s, which is
orders of magnitude smaller than v0.
The coincidence of two independent backgrounds on

two different test masses that mimics a single event by a
DM particle still can happen, which is very difficult to tell
apart from the signal. One way to reduce this kind of
coincidence of backgrounds is to take a coincidence of as
many test mass as possible. This is practically very difficult
for gravitational wave detectors, as the existing detectors
are significantly farther apart than their arm lengths. As for
the optically levitated microspheres, locating several detec-
tors in a desired way is possible, and, in this case, extending
bmax is important. Currently, to be conservative, bmax is
assumed to be the distance between the sphere and the
closest optics component, but potentially this can be made
larger by fixing all optics components much tighter than
the sphere in the trap, i.e., making the resonant frequency
of optics components much higher than the trapping fre-
quency of the sphere.
The noise on the detection system of the position of the

test mass also should be considered. This would be mainly
electrical transient backgrounds on detectors. The simplest
way to reject this is to have an electrically independent
system for each test mass. There might be some global
glitches to all such independent systems, for example,
lightning and instantaneous power outage. These events
should be able to be detected by some other methods, and
the observation should be vetoed during these events.

IV. IMPLICATION TO ASTROPHYSICS
AND PARTICLE PHYSICS

The DM particles in the mass range of a few kilograms
have never been searched before. If these particles are point
particles, or particles that are smaller than its Schwarzschild
radius rs ¼ 2GM=c2, these are black holes. Such small
mass black holes are usually discussed in the context of the
primordial black hole [13], but primordial black holes of
kilogram-scale mass evaporate quicker than the lifetime of
the Universe, and therefore theoretically they have already
been excluded. In case such small mass black holes can be
generated at some time other than the birth of the Universe,
this will be the first search for such light mass black holes.
If the size of the DM particles is larger than rs, the DM
can be an unknown particle that interacts with other matter
only through gravity.
An interesting mass range relatively close to the sensi-

tivity plot is the Planck mass 2.18 × 10−8 kg. At this mass,
the sensitivity is 10 orders of magnitude above the number

density of DM particles. Comparing the “ET, 107 s” line
and the “ET L; S × 10, 107 s” line, reducing the noise level
by a factor of 10 moves the sensitivity curve towards an
order of magnitude smaller mass range. This implies that 5
orders of magnitude reduction of noise compared to the
“ET L; S × 10, 108 s” line is necessary to reach the Planck
mass, which is unrealistic with the currently available
technology.
The discussion so far puts an emphasis on setting a

constraint on the existence of DM particles when there is no
signal including background and did not mention how the
discovery of such a particle can happen. One method to
narrow down the mass range is to detect the same DM
particle by two test masses. In the general case, the impact
parameters b for the two test masses are different, and this
gives the information on two unknown parametersm and b.
Careful analysis of gravitational wave detectors would
easily give this information, as different cavity mirrors
serve as different test masses, and having two or more
optically trapped microspheres nearby would give similar
information. In this sense, optically levitated microspheres
have the advantage that it is easier to build multiple
detectors aligned in a desired way, both for narrowing
the mass range and for separating the signal from the
background.

V. SUMMARY

A method of using a precision displacement sensor of a
test mass for a DM particle search is discussed. Although
present and future technology by optically levitated micro-
spheres can put a marginal constraint to the number density
of DM particles of ton scale, future gravitational wave
detectors that have a 10 times lower noise level and 10
times more detector size than the ET can potentially have
high enough sensitivity to detect DM particles of ∼5 kg.
This would be a first experimental search for primordial
black holes, and an even further improvement in the noise
level by several orders of magnitude enables a search for
DM particles of Planck mass. The optically levitated
microspheres have lower sensitivities but have an advan-
tage of easily making an array of test masses for the
background discrimination.
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