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We explore the effects of strangeness and Δ resonance in baryonic matter and compact stars within the
relativistic-mean-field models. The parameter set PKDD is adopted for N-N interaction, parameters fixed
based on finite hypernuclei and neutron stars are taken for the hyperon-meson couplings, and the universal
baryon-meson coupling scheme is adopted for theΔ-meson couplings. In light of the recent observations of
GW170817 with the dimensionless combined tidal deformability 197 ≤ Λ̄ ≤ 720, we find it is essential to
include the Δ resonances in compact stars, and small Δ-ρ coupling gρΔ is favored if the mass 2.27þ0.17

−0.15 M⊙

of PSR J2215þ 5135 is confirmed.
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I. INTRODUCTION

The recent observation of gravitational waves from the
binary neutron star merger event GW170817 suggests
that the merging objects are compact [1,2]. Assuming low
spin priors, the dimensionless combined tidal deform-
ability Λ̄ is considered to be less than 720 at 90% con-
fidence level [3], while a lower limit with Λ̄ ≥ 197 is
obtained based on electromagnetic observations of the
transient counterpart AT2017gfo [4]. Even though the
observations of neutron stars’ radii are controversial and
depend on specific assumptions, the recent measurements
seem to be converging and lie at the lower end of the
10–14 km range [2,5–10]. The combined constraints on
the tidal deformability and radii of neutron stars indicate a
soft equation of state (EOS), where many covariant
density functionals are in jeopardy [11,12]. A possible
solution to this problem is to introduce new degrees of
freedom, e.g., Δ resonances, hyperons, and deconfined
quarks [13]. As one increases the density of nuclear
matter, the inevitable emergence of Δ isobars, hyperons,
and quarks can soften the EOS significantly and reduce
the radius and tidal deformability of the corresponding
compact stars, which can be consistent with these recent
observations.
However, a soft EOS will result in compact stars with too

small masses that cannot reach two solar mass as observed
in pulsars PSR J1614 − 2230 (1.928� 0.017 M⊙) [14,15]
and PSR J0348þ 0432 (2.01� 0.04 M⊙) [16], i.e., the

Hyperon Puzzle [17] or Δ Puzzle [18]. Extensive efforts
were made to resolve the Hyperon Puzzle [19–37] and Δ
Puzzle [38–41]. Nevertheless, with the constrained observ-
able tidal deformability of GW170817 [1,3,4], those
solutions may be challenged, especially for the latest
observation of a more massive PSR J2215þ 5135

(2.27þ0.17
−0.15 M⊙) [42].

To satisfy these stringent observational constraints,
we consider the possible existence of both Δ isobars
and hyperons in neutron stars. Since relativistic-mean-
field (RMF) models [43–50] have been successfully
adopted to describe finite (hyper)nuclei [51–61] and
baryonic matter [62–69], in this work the EOS of
baryonic matter are obtained based on the RMF model.
More specifically, we adopt the covariant density func-
tional PKDD [70], while the hyperon-meson couplings
are fixed based on our previous investigations on hyper-
nuclei and neutron stars [37,61,71]. For the Δ-meson
couplings, as in Ref. [18], we adopt the universal
baryon-meson coupling scheme, while a vanishing
Δ-ρ coupling is considered as well. It is found that
the observational tidal deformability and mass of PSR
J2215+5135 can be reproduced only by including Δ
isobars in neutron stars.
The paper is organized as follows. In Sec. II, we present

the formalism of the RMF model for baryonic matter, the
choices of baryon-meson couplings, the conditions for
obtaining the EOS of neutron star matter, and the formalism
to determine the structures of compact stars. Results and
discussions are given in Sec. III. We provide a summary
in Sec. IV.*cjxia@itp.ac.cn
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II. THEORETICAL FRAMEWORK

The Lagrangian density of RMF models is given as

L ¼
X
b

ψ̄b½iγμ∂μ −mb − gσbσ − gωbγμωμ

− gρbγμτb · ρμ − γμAμqb�ψb þ
1

2
∂μσ∂μσ

−
1

2
m2

σσ
2 −

1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ

−
1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ −
1

4
AμνAμν

þ
X
l¼e;μ

ψ̄ l½iγμ∂μ −ml þ eγμAμ�ψ l; ð1Þ

with the field tensors

ωμν ¼ ∂μων − ∂νωμ;

ρμν ¼ ∂μρν − ∂νρμ;

Aμν ¼ ∂μAν − ∂νAμ: ð2Þ

The included baryons here are nucleons, hyperons (Λ0,
Σþ;0;−, and Ξ0;−), and Δ resonance. To describe the baryon-
baryon interactions, the isoscalar-scalar channel (σ),
isoscalar-vector channel (ω) and isovector-vector channel
(ρ) are considered.
Based on the Typel-Wolter ansatz [57], the density

dependence of coupling constants gξb ðξ ¼ σ;ωÞ are
obtained with

gξbðnÞ ¼ gξbðn0Þaξ
1þ bξðn=n0 þ dξÞ2
1þ cξðn=n0 þ eξÞ2

; ð3Þ

where n is the density of nuclear matter with n0 being the
saturation density. Note that a different formula is adopted
for the ρ meson, i.e.,

gρbðnÞ ¼ gρbðn0Þ exp ½−aρðn=n0 − 1Þ�: ð4Þ

For a system with time-reversal symmetry, the spacelike
components of the vector fields ωμ and ρμ vanish, leaving
only the time components ω0 and ρ0. Meanwhile, the
charge conservation guarantees that only the third compo-
nent in the isospin space of ρ0 survives. In the mean-field
and no-sea approximations, the single particle (s.p.) Dirac
equations for baryons and the Klein-Gordon equations for
mesons and photons can be obtained from the variational
procedure.
For the N-N interactions, we adopt the covariant density

functional PKDD [70], which gives the saturation density
n0¼0.149552 fm−3, saturation energy E0¼−16.267MeV,
incompressibility K¼262.181MeV, and symmetry energy
Esym ¼ 36.790 MeV.

Beside nucleons, we also consider the effects of strange-
ness and Δ resonance, i.e., Λ, Ξ, Σ, and Δ baryons. For the
Λ-ω coupling, according to our previous investigations
[37], the mass of PSR J0348þ 0432 can only be attained
with large values of gωΛ at fixed Λ potential well depth
(VΛ ¼ −29.786 MeV) in symmetric nuclear matter
(np ¼ nn ¼ n0=2). Thus, in this work we suppose
gωΛ ¼ gωN , which gives gσΛ ¼ 0.878gσN . Similarly, we
fix the Ξ-meson and Σ-meson couplings with
gωΞ ¼ gωΣ ¼ gωN , gσΞ ¼ 0.844gσN , and gσΣ ¼ 0.878gσN ,
which corresponds to the potential well depths VΞ ¼
−16.276 MeV and VΣ ¼ −29.957 MeV [71]. Note that
there is some ambiguity on the potential well depth VΣ,
where the ðπ−; KþÞ reactions on medium-to-heavy nuclei
indicate a repulsive potential [72–75] while the observation
of a 4

ΣHe bound state in the ðK−; π−Þ reaction favors an
attractive potential [76]. For the hyperon-ρ couplings, we
take gρΛ ¼ 0 and gρΞ ¼ gρΣ ¼ gρN according to their
isospin characters [61,71]. In principle, in consideration
of the hyperon-hyperon interactions such as the weakly
attractiveΛ-Λ interaction, the exchange of σ� and ϕmesons
between hyperons should also be taken into account.
However, according to the recipe of various baryon-meson
couplings inspired by the symmetries of the baryon octet
[19,21,77,78], taking gωΛ ¼ gωΞ ¼ gωΣ ¼ gωN and gϕN ¼
0 indicates vanishing hyperon-ϕ couplings. In such cases,
the contributions from σ� and ϕ mesons are neglected in
our Lagrange density (1).
For the Δ-ω and Δ-σ couplings, they are often chosen to

be close to the N-ω and N-σ couplings, i.e., gωΔ ≈ gωN and
gσΔ ≈ gσN [18,38,40,79,80], which can be attributed to the
similar potential depths of Δ’s and nucleons in a nuclear
medium according to the data analyses of photoabsorption,
electron-nucleus, and pion-nucleus scattering [18]. Slight
deviations from those values were also explored in
Ref. [81]. However, little is known for the Δ-ρ coupling,
while the linear dependence of the onset density ncritΔ− with
gρΔ was reported in Refs. [39,40]. Therefore, in this work
we adopt the universal baryon-meson coupling scheme
with gωΔ ¼ gωN , gσΔ ¼ gσN , and gρΔ ¼ gρN . To see the
possibility of smaller gρΔ, we also study the cases with
gρΔ ¼ 0. Since the Δ baryons have a Breit-Wigner mass
distribution around the centroid mass 1232 MeV with a
width of about 120 MeV, the variation of mΔ has sizable
effects on baryonic matter and structures of compact stars
[39]. In this work, we adopt various Δ masses with
mΔ ¼ 1112, 1232, and 1352 MeV.
In Table I, we list properties and coupling constants for

baryons other than nucleons in Eq. (1). Meanwhile, it is
worth mentioning that the covariant density functional
PKDD adopted here is phenomenological, where the
nucleon-meson coupling constants are fixed according to
the masses of spherical nuclei, the incompressibility,
saturation density, and symmetry energy of nuclear matter
[70]. In light of the recent developments of microscopic
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many-body calculations in describing finite nuclei and
nuclear matter starting from realistic nucleon-nucleon
interactions [82–88], a more refined adjustment of param-
eters incorporating those results are necessary. A possible
way to reach this in the RMF model is to introduce density-
dependent coupling constants derived from self-energies of
Dirac-Brueckner calculations of nuclear matter [57,89],
which are found decreasing with density and can be
reproduced with Eqs. (3) and (4).
Based on the Lagrangian density in Eq. (1), the meson

fields are obtained by solving

m2
σσ ¼ −

X
b

gσbnsb;

m2
ωω0 ¼

X
b

gωbnb;

m2
ρρ0;3 ¼

X
b

gρbτb;3nb; ð5Þ

with the number density nb ¼ hψ̄bγ
0ψbi and scalar density

nsb ¼ hψ̄bψbi of baryon type b, which are given in Eqs. (8)
and (9). Here we take σ, ω0, and ρ0;3 as their mean values.
At zero temperature, with the no-sea approximation, the

energy density can be determined by

E ¼
X
i¼b;l

εiðνi; m�
i Þ þ

X
ξ¼σ;ω;ρ

1

2
m2

ξξ
2; ð6Þ

in which the kinetic energy density of fermion i is

εiðνi; miÞ ¼
Z

νi

0

fip2

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
dp

¼ fim4
i

16π2

�
xið2x2i þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ

�
: ð7Þ

Here we have defined xi ≡ νi=mi with νi being the Fermi
momentum and fi ¼ 2Ji þ 1 the degeneracy factor of

particle type i. Note that in Eq. (6), the baryon effective
mass is defined as m�

b ≡mb þ gσbσ, while the mass of
leptons remains constants with m�

l ≡ml. The source
currents of fermion i are given by

ni ¼ hψ̄ iγ
0ψ ii ¼

fiν3i
6π2

; ð8Þ

nsi ¼hψ̄ iψ ii ¼
fim3

i

4π2

�
xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ 1

q
− arcshðxiÞ

�
: ð9Þ

The chemical potentials for baryons μb and leptons μl are

μb ¼ gωbω0 þ gρbτb;3ρ0;3 þ ΣR
b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2b þm�

b
2

q
; ð10Þ

μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2l þm2

l

q
; ð11Þ

with the “rearrangement” term

ΣR
b ¼

X
b

�
dgσb
dn

σnsbþ
dgωb
dn

ω0nbþ
dgρb
dn

ρ0;3τb;3nb

�
: ð12Þ

Then the pressure is expressed by

P ¼
X
i

μini − E: ð13Þ

For neutron star matter, it should fulfill the charge
neutrality condition

X
i

qini ¼ 0; ð14Þ

with qi being the charge of particle type i. To reach the
lowest energy, particles will undergo weak reactions until
the β-equilibrium condition is satisfied, i.e.,

μb ¼ μn − qbμe; μμ ¼ μe: ð15Þ

The EOS of neutron star matter can be obtained from
Eqs. (6) and (13), which is the input of the Tolman-
Oppenheimer-Volkov (TOV) equation

dP
dr

¼ −
GME
r2

ð1þ P=EÞð1þ 4πr3P=MÞ
1 − 2GM=r

: ð16Þ

By solving the TOVequation with the subsidiary condition

dMðrÞ
dr

¼ 4πEr2; ð17Þ

we get the relation of massM and radius R of a neutron star.
Here, the gravity constant G ¼ 6.707 × 10−45 MeV−2. The
tidal deformability of a compact star is extracted from

TABLE I. Strangeness number S, mass M, third component of
isospin τ3, total angular momentum and parity JP, charge q, and
coupling constants αξ ¼ gξb=gξN (ξ ¼ σ, ω, and ρ) for Λ0, Ξ0;−,
and Σþ;0;− hyperons and Δ baryons.

S M (MeV) τ3 Jp q (e) ασ αω αρ

Λ0 −1 1115.6 0 ð1=2Þþ 0 0.878 1 0
Ξ0 −2 1314.9 þ1 ð1=2Þþ 0 0.844 1 1
Ξ− −2 1321.3 −1 ð1=2Þþ −1 0.844 1 1
Σþ −1 1189.4 þ1 ð1=2Þþ þ1 0.878 1 1
Σ0 −1 1192.5 0 ð1=2Þþ 0 0.878 1 1
Σ− −1 1197.4 −1 ð1=2Þþ −1 0.878 1 1
Δþþ 0 1232� 120 þ3 ð3=2Þþ þ2 1 1 0,1
Δþ 0 1232� 120 þ1 ð3=2Þþ þ1 1 1 0,1
Δ0 0 1232� 120 0 ð3=2Þþ 0 1 1 0,1
Δ− 0 1232� 120 −3 ð3=2Þþ −1 1 1 0,1
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Λ ¼ 2k2
3

�
R
GM

�
5

; ð18Þ

where k2 is the second Love number and can be fixed
simultaneously with the structures of compact stars
[90–92].

III. RESULTS AND DISCUSSIONS

At a given total baryon number density n, the properties
of neutron star matter can be obtained by fulfilling the
conditions of baryon number conservation with n ¼ P

bnb,
charge neutrality in Eq. (14), and chemical equilibrium in
Eq. (15) simultaneously. Similar to Ref. [18], by varying
the parameter aρ in Eq. (4), we examine the dependence
of onset densities of Δ s and hyperons ncritb on the
symmetry energy slope L, which is fixed by fulfilling
μbjνb¼0 ¼ μn − qbμe. A linear dependence of L (in MeV)
on aρ is obtained, i.e., L ¼ 110.3 − 109.5aρ. The variation
of ncritΛ0 , ncritΣ− , and ncritΔ− are presented in Fig. 1, while the onset
densities for other Δ s and hyperons are much larger. For
β-stable nuclear matter, the values of μe and ρ0;3 are
increasing with L. Consequently, the obtained ncritΛ0 and
ncritΣ− are decreasing with L while ncritΔ− is increasing, which is
consistent with the trends in ([18], Fig. 1). If we take
gρΔ ¼ 0, the obtained ncritΔ− for mΔ ¼ 1232 MeV and
1352 MeV are decreasing with L since the contribution
of ρ0;3 becomes irrelevant. Meanwhile, for the cases with
mΔ ¼ 1112 MeV, ncritΔ− is even smaller than the saturation
density. Since μe is decreasing with L at subsaturation
densities, the corresponding ncritΔ− (black solid curve)

increases with L. Finally, it is worth mentioning that the
variation of ncritΔ− with respect to L is insignificant compar-
ing with mΔ due to its relatively larger uncertainty.
The particle number density for each species is deter-

mined by Eq. (8), where the corresponding values are
presented as functions of the total baryon number density n
in Figs. 2 and 3. By including Λ0 in nuclear matter, as
indicated by the dashed curves in Fig. 2, the densities of
protons and neutrons are slightly reduced on the emergence
of Λ0. If we also include other hyperons such as Ξ0;− and
Σþ;0;− (dash-dotted curves), since similar potential well
depths are adopted for Λ’s and Σ’s, the Σ− first appears at
n ¼ 0.27 fm−3 due to the negative charge it carries. In such
cases, the number densities of leptons decrease while those
of protons increase. Meanwhile, the onset density of Λ0 is
increased from n ¼ 0.39 fm−3 to 0.46 fm−3 due to the
inclusion of the negatively charged Σ−. Since Ξ0;− possess
the largest masses, their onset densities are much larger
with ncritΞ− ¼ 1.2 fm−3 and ncritΞ0 > ncritΞ− , which exceed the
density limit of Fig. 2.
The effects of Δ resonances are also studied and the

results are shown in Fig. 3. To consider the Breit-Wigner
mass distribution of the Δ baryons and the possible in-
medium mass shift [39], three masses mΔ ¼ 1112, 1232,
and 1352 MeVare adopted in our calculation. Note that the
nucleon effective mass m�

N ≡mN þ gσNσ may become
negative at higher densities. This is out of the scope of
our current study and we do not consider such cases.
Thus, when we adopt mΔ ¼ 1112 MeV, 1232 MeV and
gρΔ ¼ gρN , in Fig. 3 we do not present the results with
m�

N < 0 at the higher densities. For all Δ baryons, the
negatively charged Δ− appears first as we increase the
density. The onset density of Δ− is found to increase both

FIG. 1. The onset densities of hyperons and Δ’s in β-stable
nuclear matter as functions of the symmetry energy slope L.
The black (mΔ ¼ 1112 MeV), red (mΔ ¼ 1232 MeV), and blue
(mΔ ¼ 1352 MeV) curves correspond to the onset densities of
Δ−, where the solid ones and dashed ones are obtained with
gρΔ ¼ 0 and gρN , respectively.

FIG. 2. Particle number densities for baryons and leptons in
neutron star matter as functions of the total baryon number
density n without Δ resonances.
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withmΔ and gρΔ, which is consistent with previous findings
[39,40]. For massive Δ’s (mΔ ¼ 1352 MeV), the effects
ofΔ resonance are insignificant and onlyΔ− appears. In the
comparison with hyperons, the massive Δ− appears at
larger densities than Σ−, where the densities of hyperons
are similar as the cases in Fig. 2. If we adopt smaller values
of mΔ and gρΔ, the effects of Δ resonances become
important, whereΔ−,Δ0, Δþ, andΔþþ appear sequentially
as the density increases. Consequently, hyperons are
hindered and appear only at larger densities. In the extreme
case of mΔ ¼ 1112 MeV and gρΔ ¼ 0, the only hyperon
left is Λ0, which appears at a much larger density
ncritΛ0 ¼ 0.74 fm−3. Note that a first-order phase transition
from nuclear matter to Δ matter takes place in the density
range n ¼ 0.083–0.17 fm−3, where we have shown the
corresponding densities in the lower left panel of Fig. 3.
Based on the number density of each species, the energy

density E and pressure P of neutron star matter can be
obtained from Eqs. (6) and (13). In Fig. 4 we present the
energy per baryon of neutron star matter as a function of the

baryon number density. As expected, the EOS becomes soft
once we include new degrees of freedom. For hyperonic
matter (dash-dotted curve), if we consider Δ resonances
and adopt the largest mass, i.e., mΔ ¼ 1352 MeV, the EOS
is modified slightly at high density regions since only Δ−

appears at insignificant densities nΔ− . Moreover, adopting
smaller values of mΔ and gρΔ would result in softer EOS,
where in the extreme case ofmΔ¼1112MeV and gρΔ ¼ 0,
a softest EOS is obtained for neutron star matter.
Based on the EOS displayed in Fig. 4, the structure

of a neutron star can be determined by solving the TOV
equation in Eq. (16). For neutron star matter at subsatu-
ration densities (n ≤ 0.08 fm−3), we adopt the EOS pre-
sented in Refs. [93–95], where the properties of crystalized
matter that form the neutron star crust can be well
described. In Fig. 5 we show the masses of compact stars
as functions of radius (left panel) and central baryon
number density (right panel), where the possible existence
of hyperons andΔ resonances are considered. The obtained
results are compared with the observational masses of PSR

FIG. 3. Same as Fig. 2 but including Δ resonances with mΔ ¼ 1112, 1232, and 1352 MeV.
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J0348þ 0432 (2.01� 0.04 M⊙) [16] and PSR J2215þ
5135 (2.27þ0.17

−0.15 M⊙) [42]. As we include more degrees of
freedom, the maximum mass and radii of compact stars
become smaller. For compact stars including Δ resonances,
if we adopt mΔ ¼ 1112 MeV and gρΔ ¼ gρN , the maxi-
mum mass does not reach the lower limit of PSR
J2215þ 5135. This can be fixed by using smaller values
of ρ − Δ couplings, e.g., gρΔ ¼ 0. Because of the occur-
rence of a first-order phase transition at small densities
(n ¼ 0.083–0.17 fm−3), the smallest radius with R ¼
11.3 km for the 1.4 M⊙ compact star is obtained, which

is consistent with the recent measurements of neutron star
radii [2,5–9].
Another important constraint is the tidal deformability of

the compact stars, which can be obtained based on Eq. (18).
In Fig. 6 we present the tidal deformabilities of compact
stars corresponding to those in Fig. 5. The observation of
binary neutron star merger event GW170817 has set the
dimensionless combined tidal deformability 197 ≤ Λ̄ ≤
720 [3,4], which is a mass-weighted linear combination
of tidal deformabilities [96]

Λ̄ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð19Þ

Since Λ̄ is insensitive to the mass ratio m2=m1 [97],
combined with the best measured chirp mass M¼
ðm1m2Þ3=5ðm1þm2Þ−1=5¼1.186�0.001M⊙ [3], in Fig. 6
we show the corresponding constraint on the tidal deform-
ability Λ ¼ Λ1 ¼ Λ2 at m1 ¼ m2 ¼ 1.362 M⊙. It is found
that the observational tidal deformability has put a strong
constraint on the compositions of compact stars, so that the
Δ resonances have to be included. Meanwhile, as discussed
before, a small enough Δ-ρ coupling gρΔ should also
be adopted for compact stars to reach the mass of PSR
J2215þ 5135.

IV. CONCLUSION

We explore the possible existence of hyperons and Δ
resonances in compact stars. The properties of baryonic
matter is obtained based on the RMF models. For the N-N
interactions, we adopt the covariant density functional

FIG. 4. The energy per baryon of neutron star matter as
functions of the baryon number density n. The solid and open
symbols are results obtained with gρΔ ¼ gρN and 0, respectively.
The same convention is adopted for the following figures.

FIG. 5. The obtained mass-radius relations of compact stars
including the possible existence of hyperons and Δ resonances.
The masses of pulsars PSR J0348þ 0432 (2.01� 0.04 M⊙) [16]
and PSR J2215þ 5135 (2.27þ0.17

−0.15 M⊙) [42] are indicated with
horizonal bands.

FIG. 6. The tidal deformabilities of compact stars as functions
of their masses. The recent constraint obtained with the binary
neutron star merger event GW170817 is indicated with the black
solid box [1,3,4].
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PKDD [70], while the hyperon-meson couplings are fixed
based on our previous investigations on hypernuclei and
neutron stars [37,71]. For the Δ-meson couplings, we
adopt the universal baryon-meson coupling scheme.
Meanwhile, to consider the possibility of smaller gρΔ
and mass variations, we also study the cases with gρΔ ¼ 0

and various Δ masses with mΔ¼1112, 1232, and
1352 MeV. The EOS of neutron star matter become
softer once we include new degrees of freedom. By
solving the TOV equation with these EOS, we obtained
the masses, radii, and tidal deformabilities of the
corresponding compact stars. Comparing with the
dimensionless combined tidal deformability 197 ≤ Λ̄ ≤
720 constrained according to the recent observations of
GW170817 [3,4], we find it is essential to include the Δ
resonances in compact stars, and the Δ-ρ coupling gρΔ

should be small enough if the mass of PSR J2215þ 5135
(2.27þ0.17

−0.15 M⊙) [42] is confirmed.
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