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We present simple procedures to construct quasicircular initial data for numerical evolutions of binary
black hole spacetimes. Our method consists of using the post-Newtonian (PN) theory in three ways: first to
provide an initial guess for the initial momenta at 3.5PN order that implies low residual eccentricity, second
to measure the resulting eccentricity, and third to calculate corrections to the momenta or initial separation
that further reduce the eccentricity. Regarding the initial guess, we compare numerical evolutions in post-
Newtonian theory to the postcircular and post-postcircular analytical approximations to quasicircular data.
We discuss a robust fitting procedure to measure eccentricity from numerical simulations using the orbital
frequency Ω, and derive from the quasi-Keplerian parametrization at 1PN order the correction factors for
the tangential and radial momentum components required to reduce the measured eccentricity to zero. We
first test our procedure integrating PN equations of motion at 3.5PN where low eccentric initial data are
easily obtained, and then apply our method to sets of binary black hole numerical relativity simulations
with different mass ratios (q ¼ m2=m1 ¼ 1; 2;…; 8), spin configurations, and separations. Our set of
simulations contains nonspinning, spin-aligned, and precessing simulations. We observe that the iterative
procedure produces low eccentric simulations with eccentricities of the order Oð10−4Þ with only one
iteration. The simplicity of the procedure allows one to obtain low eccentric numerical relativity
simulations easily and save computational resources. Moreover, the analytical PN formulas derived in
this paper will be useful to generate eccentric hybrid waveforms.
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I. INTRODUCTION

The first detection of a gravitational wave signal [1] in
2015 by the LIGO detectors [2], as well as the subsequent
detections [3–7], has been found to be consistent with
models of the waveform emitted from the merger of
compact objects under the assumption of quasicircularity
of the binary’s orbit prior to the merger. These models have
been used to infer the parameters of the sources from the
measured data; see, e.g., the detailed discussion of param-
eter estimation results for the first detection [8]. Indeed,
efforts to model the gravitational wave signals from
compact binary coalescence have to a large degree
neglected eccentricity, as motivated by the efficient circu-
larization of binaries as a consequence of the emission of
gravitational waves [9,10].
Only a decade before the first detection of gravitational

waves, breakthroughs in numerical relativity (NR) [11–13]
have made it possible to compute the evolution of binary
black holes until the merger in general relativity (GR) and
to extract the gravitational waves emitted from such
systems. Numerical simulations of compact binaries are
now performed routinely [14–17], and models synthesized
from numerical parameter studies and perturbative results
are routinely used to analyze the data from the LIGO and
Virgo detectors [18–22].

Initial data for numerical relativity simulations of black
hole binaries are typically constructed in a five-step pro-
cedure, which can be roughly summarized as follows:
(1) One chooses the separation and the spin components.
(2) One chooses the momenta or velocities of the black

holes such as to result in a low eccentricity. This step
is usually guided by post-Newtonian (PN) approx-
imations [23].

(3) The constraint equations of general relativity are
solved numerically for the chosen parameters, often
using the approximation of conformal flatness.

(4) The data are evolved numerically until the eccen-
tricity can be estimated reliably from the correspond-
ing oscillations in the separation, or orbital and
gravitational wave frequency, as well as in other
quantities. Residual eccentricity can lead to param-
eter biases when using the resulting waveforms for
parameter estimation in gravitational wave analysis
and can complicate the construction of quasicircular
waveform models from the numerical data. In GR
there is, however, no unique definition of eccentric-
ity, and a specific quantity usually referred to as
“eccentricity estimator” needs to be chosen, which
reduces to the Newtonian concept of eccentricity in
the Newtonian limit. Determining eccentricity from
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the orbital frequency Ω, one would, for example,
typically choose the eccentricity estimator

eΩ ¼ ΩðtÞ − Ωðe ¼ 0Þ
2Ωðe ¼ 0Þ ; ð1:1Þ

which measures the time dependent oscillations in
the orbital frequency relative to the case with
vanishing eccentricity. The factor of 2 normalizes
the quantity eΩ to be consistent eccentricity in radial
oscillations (without the corresponding factor of 2).

(5) A correction to the initial parameters is applied, and
steps 2–5 (or 1–5) are applied until the eccentricity is
deemed low enough for applications, taking into
account the computational cost of short evolutions
required to measure the eccentricity and the human
effort to carry out or automatize the procedure.

In this paper we first discuss steps two, four, and five,
and then a version of changing the momenta in step two
where we also correct for the initial coordinate separation,
thus changing step one. In order to guess initial conditions,
to determine the eccentricity of a numerical simulation,
and to guess improved initial momenta, PN approximations
at different orders in the PN expansion parameter v=c are
used. A key problem in relating post-Newtonian quantities
to numerically constructed spacetimes are the different
coordinate systems that are employed. For our numerical
evolutions, we use the moving puncture approach
[12,17,24,25] with conformally flat Bowen-York initial
data [26]. The coordinates used to construct the initial data
for the numerical relativity simulations are close to the
Arnowitt-Deser-Misner transverse traceless (ADMTT)
coordinates [27] typically employed in the Hamiltonian
approach to the post-Newtonian expansion. However, the
standard puncture datawe employ are consistentwith the PN
description in the ADMTT gauge only up to order ðv=cÞ3;
see [28–30]. In [31] it is argued that as a consequence, only
low order PN expressions should be used in constructing
low-eccentricity initial data. However, since high-order PN
expressions are routinely used in modeling the gravitational
wave signal from compact binaries, and therefore are readily
available, in this work we take the point of view that it is
simplest to just use the highest PN order available to guess
the initial momenta in step two. In addition, we show that
while a low PN order expression of the radial initial
momentum is enough to build low eccentric initial data,
the tangential momentum benefits from the knowledge of
high PN orders, and the higher the PN order the closer to the
low eccentric value.
The simplest post-Newtonian description of quasicircu-

lar (QC) initial parameters is to set the radial momentum
to zero, which is inconsistent with an actual inspiral (at least
in the absence of precession). A straightforward way to
improve the post-Newtonian description is to numerically
solve the PN/effective-one-body (EOB) [32] dynamics

from a larger separation down to the desired starting
separation for a numerical relativity simulation, and to
use the momenta read from this numerical calculation as
input parameters to numerically solve the constraints [33].
This procedure benefits from the fact that radiation reaction
circularizes the orbit during the long inspiral, and for a
sufficiently long inspiral, the eccentricity present in the PN
data can be neglected. This will not lead to negligible
eccentricity of the NR evolution due to the finite order used
for the PN expansion and the difference in the PN and NR
coordinate systems as discussed above. A second method
[34] specifies the values of the initial momenta at a given
separation using analytical expressions at 3PN derived
from a Hamiltonian formalism, which approximately take
into account the radial momentum. In this work we follow
the second approach, since it simplifies the construction of
precessing initial data with chosen directions of the spins at
a given separation. When numerically integrating the PN
equations from a larger distance, constructing low eccen-
tricity momenta with fixed spin directions would require an
iteration of numerical integrations of the PN equations,
which complicates setting up a grid of NR simulations to
cover (portions of) the precessing parameter space.
In Sec. II we discuss and compare these different

approaches in more detail, as well as provide analytical
formulas for the momenta in terms of initial separation,
mass ratio, and spins, including spin precession, updating
the expressions presented in [34] to 3.5PN order. We also
implement the post-postcircular (PPC) approximation
[35,36] commonly used in the EOB theory and provide
a recipe to compute it. This approximation consists of
correcting analytically for the tangential momenta by
iterating over the postcircular (PC) approximation.
In Sec. III we develop the post-Newtonianmethods to deal

with steps four and five: we first discuss our procedure to
determine the eccentricity of numerical data using the
eccentricity estimator defined in Eq. (1.1). Then, from the
1PN quasi-Keplerian parametrization [37] we compute
explicit expressions for the correction factors for the tangen-
tial and radial momentum to achieve approximately vanish-
ing eccentricity. Because of the deviations between the
post-Newtonian equations and the full Einstein equations
in the chosen gauge, as well as the noise that is present in
numerical relativity simulations, this procedure may have to
be iterated, although in many cases we find that a single step
is sufficient for our purposes. Finally, we compute a similar
formula that instead corrects the radial momentum and
separation, thus directly compensating for the difference
between the PN and NR coordinate systems.
We test our procedures in Sec. IV, first applying them to

post-Newtonian data, and check that the PPC approxima-
tion is indeed an excellent approximation to carry out
full numerical solutions of the post-Newtonian inspiral.
One practical application of such low-eccentricity post-
Newtonian data is the construction of hybrid waveforms,
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where residual eccentricity in the post-Newtonian part
leads to undesired oscillations [38]. Finally, we apply
our procedures to several precessing and nonprecessing
numerical relativity simulations.
To date the most accurate procedures used to construct

low eccentricity inspirals in numerical relativity are two
iterative methods [39,40]. The method consists of running
first a simulation with QC parameters, modifying the
tangential and radial velocities of the simulation, and
rerunning the simulation with the updated values. The
iterative method in [39] is highly successful and can reduce
eccentricities to below 10−5 in two iterations. Nevertheless,
as discussed in [40] its application to moving puncture
simulations shows some difficulties. The iterative method
presented in [40] is designed for moving puncture simu-
lation, but it is computationally expensive, and we have
found it significantly more cumbersome than the method
presented here.
We summarize and discuss our results in Sec. V.
Throughout this text we are working in geometric units

G ¼ c ¼ 1. To simplify expressionswewill also set the total
mass of the system M ¼ 1, and we define the mass ratio
q ¼ m2=m1with the choicem2 > m1, so thatq > 1.We also
introduce the symmetric mass ratio η ¼ q=ð1þ qÞ2, and we
will denote the black hole’s dimensionless spin vectors by
χ⃗i ¼ S⃗i=m2

i , for i ¼ 1, 2.

II. POST-NEWTONIAN INITIAL DATA

We prepare initial data for our simulations within PN
theory in the ADMTT gauge. We describe the particles in
the center of mass (CM) frame, so that the motion of the
two point particles can be described by the motion of
one effective particle. We choose our z axis in the direction
of the initial orbital angular momentum, initially locate
the particles on the x axis with y ¼ z ¼ 0, and then locate
pϕ ¼ Lz with the standard definition of spherical polar
coordinates. We define the tangential momentum as

pt ¼
pϕ

r
: ð2:1Þ

Using the standard relation between Cartesian and polar
coordinates one can write ðpx; pyÞ in terms of ðpϕ; ptÞ as

px ¼
xpr − yptffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ pr cosϕ − pt sinϕ; ð2:2Þ

py ¼
xpt þ yprffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ¼ pr sinϕþ pt cosϕ: ð2:3Þ

To compute the initial parameters we use the ADMTT
Hamiltonian in the CM frame, which is currently com-
pletely known up to 3.5PN order,

H ¼ HNS þHSO þHSS þHSSS; ð2:4Þ

where HNS is the nonspinning part of the Hamiltonian,

HNS ¼ HNewt þH1PN þH2PN þH3PN: ð2:5Þ

The Hamiltonians in Eq. (2.5) can be found in [41]. The
spin-orbit Hamiltonian is

HSO ¼ HSO;1.5PN þHSO;2.5PN þHSO;3.5PN: ð2:6Þ

The expressions for HSO;1.5PN, HSO;2.5PN, and HSO;3.5PN can
be found in [41–43], respectively. The spin-spin interaction
Hamiltonian is

HSS ¼ HS2;2PN þHS1S2;2PN þHS2;3PN þHS1S2;3PN; ð2:7Þ

where explicit formulas for HS2;2PN and HS1S2;2PN can be
found in [41] while for HS2;3PN, HS1S2;3PN in [44,45],
respectively. Finally, HSSS is given in [46].

A. Postcircular approximation

Using the Hamiltonian of (2.4) one can compute the
circular conditions for the orbit of the binary in the absence
of radiation reaction:

pr ¼ 0;

�∂H
∂r

�
pr¼0

¼ 0: ð2:8Þ

Equation (2.8) gives a set of conditions to solve in PN order
by order for pϕðrÞ. Once we have computed pϕ, or
equivalently ptðrÞ, we can then compute

Ω ¼
�∂H
∂pϕ

�
pr¼0

ð2:9Þ

and obtain an expression for the orbital frequency as a
function of r. For completeness, we can also obtain an
expression for the ADM mass defined by

MADM ¼ M þH; ð2:10Þ

where M is the total mass and H is the 3.5PN Hamiltonian
in ADMTT gauge.
Taking into account Eqs. (2.4) and (2.8)–(2.10) we

obtain explicit expressions for the orbital frequency, tan-
gential momentum, and ADM mass as a function of the
orbital separation r. These expressions can be found in
Appendix A and are given by Eqs. (A1)–(A3). The
expression for the initial tangential momentum in terms
of the orbital separation, Eq. (A2), is obtained from the
conservative part of the dynamics. It remains to specify a
value for the radial component of the momentum vector,
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pr. The inclusion of the radiation reaction through the
gravitational wave flux of energy allows us to derive an
expression to compute pr, following the procedure
described in [41]. First, we consider the definition of the
ADM mass given in (2.10) for circular orbits,

MADM ¼ M þHcirc; ð2:11Þ
where Hcirc is the energy corresponding to circular orbits,
i.e., the Hamiltonian corresponding to Eq. (2.4) evaluated at
the values of pr ¼ 0 and pt derived in Appendix A. Taking
a time derivative of (2.11) we get

dMADM

dt
¼ dM

dt
þ dHcirc

dt
: ð2:12Þ

The loss of ADM mass corresponds to a flux of gravita-
tional wave energy leaving the binary, which has to be
equal to the energy of the orbital motion plus the change in
mass of the black holes. Consequently,

−
dEGW

dt
¼ dM

dt
þ dHcirc

dt
; ð2:13Þ

the derivative of the orbital energy can be rewritten as

dHcirc

dt
¼

�
dr
dt

��
dHcirc

dr

�
: ð2:14Þ

The expression for dM=dt was derived in [47] for the spin-
aligned or antialigned with respect to the orbital angular
momentum. We use that expression taking into account the
contribution related to the change in mass of the two black
holes because the leading order term of dM=dt is compa-
rable in magnitude to a relative 2.5PN spin effect in the flux.
The expression for the gravitational wave flux [23,48] in
terms of the basic dynamical variables in ADM coordinates
for quasicircular orbits can be found in Appendix A.
Then, we can use Hamilton’s equations to compute the

time derivative of the orbital separation as

dr
dt

¼ ∂H
∂pr

: ð2:15Þ

If we expand the right-hand side of Eq. (2.15) for pr
around 0, we can solve it for pr and obtain a first order
approximation to the radial momentum:

pr¼
�
−
dr
dt

þ 1

r7=2

�
−
ð6qþ13Þq2χ1xχ2y

4ðqþ1Þ4 −
ð6qþ1Þq2χ2xχ2y

4ðqþ1Þ4 þχ1y

�
−
qðqþ6Þχ1x
4ðqþ1Þ4 −

qð13qþ6Þχ2x
4ðqþ1Þ4

��

þ 1

r4

�
χ1z

�
3qð5qþ2Þχ1xχ2y

2ðqþ1Þ4 −
3q2ð2qþ5Þχ2xχ2y

2ðqþ1Þ4
�
þχ1yχ2z

�
3q2ð2qþ5Þχ2x

2ðqþ1Þ4 −
3qð5qþ2Þχ1x
2ðqþ1Þ4

���

×

�
−
ðqþ1Þ2

q
−
1ð−7q2−15q−7Þ

2qr
−
47q4þ229q3þ363q2þ229qþ47

8qðqþ1Þ2r2

−
1

r5=2

�ð4q2þ11qþ12Þχ1z
4qðqþ1Þ þð12q2þ11qþ4Þχ2z

4ðqþ1Þ
�

−
1

r7=2

�ð−53q5−357q4−1097q3−1486q2−842q−144Þχ1z
16qðqþ1Þ4 þð−144q5−842q4−1486q3−1097q2−357q−53Þχ2z

16ðqþ1Þ4
�

−
1

r3

�ðq2þ9qþ9Þχ21x
2qðqþ1Þ2 þð3q2þ5qþ3Þχ2xχ1x

ðqþ1Þ2 þð3q2þ8qþ3Þχ1yχ2y
2ðqþ1Þ2 −

9q2χ22y
4ðqþ1Þþ

ð3q2þ8qþ3Þχ1zχ2z
2ðqþ1Þ2 −

9q2χ22z
4ðqþ1Þ

þð9q3þ9q2þqÞχ22x
2ðqþ1Þ2 þ−363q6−2608q5−7324q4−10161q3−7324q2−2608q−363

48qðqþ1Þ4

−
9χ21y

4qðqþ1Þ−
9χ21z

4qðqþ1Þ−
π2

16

��
−1
: ð2:16Þ

The expression for dr=dt can be computed combining
Eqs. (2.13) and (2.14):

dr
dt

¼
�
dEGW

dt

��
dHcirc

dr

�
−1
: ð2:17Þ

The procedure to obtain a postcircular expression for the
radial momentum can be summarized in the following
algorithm:

(1) Compute the circular expression for ptðrÞ.
(2) Use the expression for ptðrÞ and pr ¼ 0 to com-

pute dHcirc=dr.
(3) Combine dHcirc=dr with the gravitational wave flux

for thequasicircular orbits,dEGW=dt, to obtaindr=dt.
(4) Use Hamilton’s equations to compute dr=dt ¼

∂H=∂pr. Taylor expand at first order in pr around
pr ¼ 0 of the right-hand side and isolate pr as a
function of dr=dt.
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(5) From step 4 compute an expression of pr using the
value of dr=dt calculated in step 3.

B. Post-postcircular approximation

The post-postcircular approximation, first presented in
[36], keeps the value of the tangential momentum pt from
the PC approximation, but applies a further correction to
the radial momentum pr, and has been extensively used to
construct initial data for EOB dynamics. We start with the
postcircular values for pt and pr derived in the previous
Sec. II A and define a bookkeeping parameter ϵ to arrange
the orders of approximation, writing the tangential and
radial momenta as

pt ¼ p0
t þ ϵ2p2

t þOðϵ4Þ; ð2:18Þ

pr ¼ ϵp1
r þOðϵ3Þ: ð2:19Þ

Here p0
t is the circular approximation, p1

r is the postcircular
approximation, and p2

t is the post-postcircular value that we
want to compute. The parameter ϵ is also related to the
order of the radiation reaction terms of the ϕ coordinate in
the PN equations of motion.
Hamilton’s equation for the radial momentum reads

dpr

dt
¼ −

∂H
∂r : ð2:20Þ

The left-hand side of Eq. (2.20) can be approximated using
the chain rule and the postcircular solution to

dpr

dt
¼ dpr

dr
dr
dt

≈
dp1

r

dr
dr
dt

¼ dp1
r

dr
∂H
∂pr

: ð2:21Þ

Then, combining Eqs. (2.20) and (2.21) we obtain

−
�∂H
∂r

�
pr¼p1

r

≈
�
dp1

r

dr

��∂H
∂pr

�
pr¼p1

r

: ð2:22Þ

Given the values of the radial momentum pr, the separation
r, the masses of the particles m1 and m2, and the
dimensionless spin vectors χ⃗, one can solve Eq. (2.22)
for pt using a numerical root finding method.

III. ECCENTRICITY REDUCTION ITERATION

In order to reduce the eccentricity further beyond the
postcircular or post-postcircular initial data, we will now
develop two methods that iteratively reduce the eccentric-
ity. The first method corrects the initial momenta by factors
(λt, λr) such that ðpt; prÞ → ðλtpt; λrprÞ, the second
method corrects the initial separation by δr such that
r → rþ δr, and the radial momentum pr as for the first
method. We will provide analytical expressions to compute
λt, λr, and δr in terms of the measured eccentricity and an

initial phase of the oscillations that characterize eccentric-
ity; thus both methods are very straightforward to apply.

A. Quasi-Keplerian 1PN equations of motion

At 1PN order, bound orbits in the center of mass frame
[37] are described by

ntðt − t0Þ ¼ u − et sin u;

ðϕ − ϕ0Þ ¼ ð1þ kÞAeϕðuÞ;

AeϕðuÞ ¼ 2 arctan
��

1þ eϕ
1 − eϕ

�
1=2

tan
�
u
2

��
;

r ¼ arð1 − er cos uÞ; ð3:1Þ

where et, er, and eϕ are the temporal, radial, and angular
eccentricities, nt is called the mean anomaly, u is the
true anomaly, and k is the fractional periastron advance
per orbit.
The frequency of the radial oscillations is directly related

to the mean anomaly by

nt ¼ Ωr ¼ 2π=Pr; ð3:2Þ

where Pr is the time between two consecutive periastron
passages. The average orbital frequency can be related to
the radial oscillations by the expression

Ωϕ ¼ ð1þ kÞΩr: ð3:3Þ

The orbital quantities can be written in terms of the
reduced energy, En ¼ E=μ, and angular momentum,
h ¼ J=μ, where E and J ¼ jJj are the respective dimen-
sionful quantities and μ ¼ m1m2=M is the reduced mass.
Moreover, defining γ ¼ c−2 at 1PN order the orbital
elements can be written as

e2t ¼1þ2En

�
γEn

�
17

2
−
7η

2

�
þ1

�
ðh2þγð2−2ηÞÞ; ð3:4Þ

e2ϕ ¼ 1þ 2En

�
γEn

�
η

2
−
15

2

�
þ 1

�
ðh2 − 6γÞ; ð3:5Þ

e2r ¼ 1þ2En

�
γEn

�
5η

2
−
15

2

�
þ1

�
ðh2þ γðη−6ÞÞ; ð3:6Þ

ar ¼ −
ð1 − 1

2
γEnðη − 7ÞÞ
2En

; ð3:7Þ

nt ¼ 2
ffiffiffi
2

p
ð−EnÞ3=2

�
1 − γ

En

4
ðη − 15Þ

�
: ð3:8Þ

The eccentricities et, er, and eϕ can be related to each
other in terms of the fractional periastron advance,
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eϕ ¼ et

�
1 −

1

3
ð1 − e2t Þðη − 4Þk

�
; ð3:9Þ

er ¼ et

�
1þ 1

6
ð1 − e2t Þð8 − 3ηÞk

�
; ð3:10Þ

where the fractional periastron advance k is defined as

k ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − 6γ

p − 1: ð3:11Þ

Combining Eqs. (3.8) and (3.11) we can get a relation
between the mean anomaly and the fractional periastron
advance,

k ¼ 3γ
n2=3t

1 − e2t
: ð3:12Þ

Note that this 1PN parametrization does not take into
account the spins of the particles, which only enter at higher
PN order.

B. Eccentricity measurement

The eccentricities et, er, eϕ introduced in (3.1) determine
the amplitude of oscillations in the orbital quantities relative
to the noneccentric values. At Newtonian order the three
eccentricities agree, but they differ in general, starting at
1PN. For general solutions, such as those obtained from
numerical relativity, it is useful to define eccentricity
estimators as time dependent functions that measure the
relative deviation from the noneccentric case, normalized to
agree with the eccentricities et, er, eϕ at Newtonian order.
For this work, for simplicity, we will only use the eccen-
tricity estimator for the orbital frequency,

eΩ ¼ ΩðtÞ − Ωðe ¼ 0Þ
2Ωðe ¼ 0Þ : ð3:13Þ

Here ΩðtÞ ¼ dϕ=dt can be obtained from the coordinate
motion of the orbiting objects, and Ωðe ¼ 0Þ refers to the
orbital frequency setting the eccentricities to zero. For
examples of using eccentricity estimators for other quan-
tities, related to the orbital dynamics or gravitational
wave signal, see [49], and for a discussion of eccentricity
estimators, in particular the differences between using the
strain or Newman-Penrose scalar Ψ4, see [40].
In this work, we choose an orbital quantity as our

eccentricity estimator for simplicity and to save computa-
tional resources for numerical relativity simulations: Using
wave quantities such as the strain or ψ4 requires longer
numerical evolutions to allow the waves to travel to the
extraction sphere. Also, obtaining a clean wave signal for
the first few orbits, where eccentricity reduction is typically
applied, may require significant computational effort to

carry out the simulations, or effort to postprocess and denoise
the signal [40]. However, the methods developed in this
paper can easily be reused together with other eccentricity
estimators. Among quantities related to the orbital dynamics,
the orbital frequency is convenient due to its weak gauge
dependence, e.g., compared to the separation.
In the context of numerical data, obtained from a

numerical relativity simulation or numerical evolution of
the PN EOM, Ωðe ¼ 0Þ could be represented by data from
a simulation corresponding to negligible eccentricity
(which is straightforward to achieve for PN solutions by
starting at a very large separation), or be determined by a fit
to the numerical data, Ω0

fitðtÞ, which does not contain
oscillating terms corresponding to eccentricity (which is
common practice in numerical relativity).
A simple way to fit the secular orbital frequency

evolution as a function of time, averaging out oscillations
due to eccentricity, coordinate gauge, or numerical artifacts,
over a small number of cycles is to use a low-order
polynomial of coordinate time; however, such fits typically
look pathological outside of the fitting interval and are
prone to pick up the oscillations due to eccentricity, gauge
effects, or spin evolution, when using too many terms in the
attempt of creating an accurate fit. A natural ansatz that
avoids these problems uses the orbital frequency evolution
of a noneccentric binary in the form of the TaylorT3
quasicircular PN approximant [50,51]. For the same rea-
sons a similar fitting strategy has been used in [52]. There,
however, only two PN-like terms are used, with all
coefficients determined by the fit. Here instead we use
all known PN terms up to third PN order, and our ansatz A0

for the quasicircular frequency evolution is

A0 ¼
aθ3

8
ð1þ b1θ2 þ b2θ3 þ b3θ4 þ b4θ5 þ b5θ6Þ;

ð3:14Þ

where the known coefficients bi as determined by PN
theory are listed in Appendix B, θ is defined as

θ ¼
�
η

5
jtmaxt0 − tj

�
−1=8

; ð3:15Þ

and we fit two parameters, a and t0. To accelerate the
convergence of the fit, tmax is chosen of the order of the
merger time of the numerical simulation, thus t0 is of order
unity. The parameter a would be unity in PN theory, and
fitting it leads to an unphysical low frequency behavior,
which would be inappropriate for waveform modeling
purposes. For our application, however, we are only inter-
ested in the timescale corresponding to a numerical simu-
lation, no inconsistency arises, andwe find that our choice of
fitting parameters leads to robust and accurate fits.
Once we have obtained a noneccentric fit to our

numerical data, we can measure eccentricity by fitting
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the data using an extended ansatz Ae, which adds a
sinusoidal function to the noneccentric ansatz A0,

Ae ¼ A0 þ eð1þ jk1jtÞ cos ½ð1þ tjk2jÞΩ1Ω0tþ t1�:
ð3:16Þ

Here Ω0 is the quasicircular value given by Eq. (A1),
and the coefficients to fit are a, t0, e, Ω1, k1, k2, and t1.
The coefficients k1 and k2 have been added to capture the
decreasing eccentricity during the inspiral. In this
work the fits have been performed using the function
NONLINEARMODELFIT from Mathematica with a global
minimization method to avoid problems related to fitting
the behavior corresponding to local minima of the data. We
have found the differential evolution method of the
NONLINEARMODELFIT function to result in particularly
robust fits.
Furthermore, we have tested this procedure to measure

the eccentricity of genuinely eccentric NR simulations, and
we found accurate measurements up to eccentricities
et ¼ 0.1. For higher eccentricities the measurements are
inaccurate due to the fact that the single harmonic function
of the ansatz of Eq. (3.16) is not able to reproduce the high
peak amplitudes in the orbital frequency. As a solution one
should replace the single harmonic function in Eq. (3.16)
by a sum of different harmonics in order to correctly
capture the amplitude of those peaks. However, for the
purposes of the present paper we found an ansatz with a
single harmonic function sufficiently accurate, and we
leave extensions of this measurement procedure to the
high eccentricity limit for future work.

C. Tangential momentum correction from
quasi-Keplerian parametrization

In order to reduce the eccentricity resulting from the
choice of initial momenta, we need to know how much the
momentum changes from its quasicircular value as a
function of eccentricity. We can split the momentum into
a tangential and radial part, and will first compute the

dependence of the tangential momentum component on the
orbital eccentricity eΩ at 1PN order.
We start by using Eq. (3.1) to compute eΩ as a function

of the eccentricities et and eϕ defined in Eqs. (3.4)
and (3.5),

eΩ ¼ fðet; eϕÞ: ð3:17Þ
From the equations of motion (3.1) it is straightforward to
write at 1PN the radial coordinate, r, and the orbital
frequency, Ω ¼ _ϕ, up to linear order in eccentricity as

r ¼ arð1 − er cos ½Ωrt�Þ; ð3:18Þ

Ω≡ _ϕ ¼ Ωϕð1þ ðeϕ þ etÞ cos ½Ωrt�Þ: ð3:19Þ
Combining Eqs. (3.19) and (3.13), we get the following
expression for the orbital frequency estimator:

eΩ ¼ eϕ þ et
2

: ð3:20Þ

We now proceed as follows:
(a) In Eq. (3.20) write the eccentricities eϕ, et in terms of

the energy and the angular momentum using the quasi-
Keplerian solution of the compact binaries in eccentric
orbits.

(b) Write the eccentricities, energy, and angular momen-
tum in terms of the pr and pt using the Hamiltonian
and the angular momentum expressions in ADM
coordinates.

(c) Multiply the momenta by the factors λt and λr.
(d) Substitute the values of pt and pr by the circular ones.
(e) Taylor expand Eq. (3.20) in powers of ðλt − 1Þ and

ðλr − 1Þ up to linear order in ðλt − 1Þ and ðλr − 1Þ.
(f) Solve for λt, setting λr ¼ 1.
Using the fact that the energy and the total angular

momentum can be written in terms of the momenta pt and
pr, and inserting those expressions into the definitions of
Eqs. (3.5) and (3.4) we get at 1PN order

et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4 þ rp2

t ½rðp2
r þ p2

t Þ − 2η2�
η4

s
þ γ

�
η4 þ rp2

t ðrðp2
r þ p2

t Þ − 2η2Þ
η4

�−1=2
×

�
−
ðη − 4Þr2p6

t

2η6

−
ðη − 4Þr2p4

rp2
t

2η6
þ p2

r

�
1 − η

η2
−
ðη − 4Þr2p4

t

η6
þ 5ðη − 4Þrp2

t

2η4

�
þ ð3η − 10Þrp4

t

η4
þ ð20 − 9ηÞp2

t

2η2
þ 2ðη − 1Þ

r

�
; ð3:21Þ

eϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4 þ rp2

t ½rðp2
r þ p2

t Þ − 2η2�
η4

s
þ γ

�
η4 þ rp2

t ½rðp2
r þ p2

t Þ − 2η2�
η4

�−1=2
×

�ðη − 4Þr2p6
t

2η6

þ ðη − 4Þr2p4
rp2

t

2η6
þ p2

r

�
−

3

η2
þ ðη − 4Þr2p4

t

η6
−
3ðη − 4Þrp2

t

2η4

�
−
ðη − 6Þrp4

t

η4
þ ðη − 20Þp2

t

2η2
þ 6

r

�
: ð3:22Þ
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Then, we make the substitutions

pt → λtpt; pr → λrpr: ð3:23Þ

If we replace Eqs. (3.21) and (3.22) into (3.20), Taylor
expand around λ0t ¼ 1, and use the circular value solutions
of pt and pr ¼ 0, we obtain at 1PN order

eΩ ¼ 2ðλt − 1Þ þ γðλt − 1Þ
�
2η

r
þ 4

r

�
: ð3:24Þ

We can invert Eq. (3.24) to obtain an expression for λt in
terms of the eccentricity estimator

λt ¼ 1þ eΩ
2
− γ

eΩ
2r

ðηþ 2Þ: ð3:25Þ

Equation (3.25) directly relates the eccentricity of the
simulation to the correction factor of pt, at 1PN order,
and linear in eccentricity, we can thus read off the momen-
tum correction factor λt directly from the value of the
measured eccentricity.
Although this equation has been derived in the low

eccentricity limit, it can be used to generate approximate
eccentric initial data for NR simulations. Given a configu-
ration described by the masses of the particles, the spins,
the initial linear momenta, and the orbital separation, one
can choose an initial eccentricity of the simulation and then
obtain how much one has to change the tangential
momentum to generate that eccentric simulation.
The computation of λt in (3.25) solves the one parameter

problem of correctingpt to reduce the eccentricity. However,
the reduction of the eccentricity is a two-dimensional
problem in the absence of precession. In the precessing
case, eccentricity reduction is in principle a three-
dimensional problem; however, it appears that no correction
to the small out-of-the-orbital-plane momentum is necessary
at the current level of accuracy, so we restrict ourselves to a
two-dimensional method. We have previously used a differ-
ent two-dimensional method that uses PN information (see
[40]); however, our new method is significantly simpler to
apply. There is a threshold of how much the eccentricity can
be reduced correcting only pt, which we find typically
around 10−3 for the cases we consider. Hence, one needs
to correct not only pt but also pr if one wants to efficiently
reduce the eccentricity, and we develop a two-parameter
method in the next section.

D. Correcting both tangential and radial momenta
from 1PN residuals

We will describe the relative oscillations in the orbital
frequency by the ansatz

RΩ ¼ Aþ B cos ðΩrtþΨÞ; ð3:26Þ

where Ωr is the frequency of the radial oscillations, and A,
B, and Ψ are coefficients to be determined.
We will now derive explicit formulas in terms of the

amplitude B and the phase Ψ of the ansatz (3.26) to rescale
both the tangential momentum by λt and the radial
momentum by a factor λr, in order to reduce the eccentricity
resulting from the choice of initial data. In order to do that
we compute the residual of the orbital frequency, i.e., the
difference between the configuration perturbing pr and pt
and the unperturbed configuration with zero eccentricity.
To our knowledge, the effects of perturbing such a residual
were first studied in [40].
We will assume that the total residual is a linear

combination of the residual, Rλtp0
t

Ω , computed perturbing

only p0
t ; the residual, R

λrp0
r

Ω , calculated just perturbing p0
r ;

and the residual, Rλtp0
t ;λrp

0
r

Ω , computed perturbing both
momenta. In the rest of the section we are going to
compute these three residuals and obtain from them
analytical expressions for the correction factors ðλt; λrÞ.
We start writing the residual corresponding to a pertur-

bation λt of the initial tangential momentum p0
t ,

Rλtp0
t

Ω ¼ Ωλtp0
t − Ωp0

t : ð3:27Þ

In Eq. (3.27), Ω≡ΩðtÞ refers to Eq. (3.19), the analytical
1PN solution at linear order in eccentricity. The magnitude
of the eccentricities we are working with, usually well
below 10−2, justifies taking just the linear order in eccen-
tricity in the equations of motion.
Note thatΩϕ in Eq. (3.19) also depends on pt. Therefore,

we begin computing the effect of perturbing pt in Ωϕ.
Combining Eqs. (3.12), (3.2), and (3.3) we obtain the
following expression:

Ωϕ ¼
�
1þ 3γ

n2=3t

1 − e2t

�
nt: ð3:28Þ

We can now use Eqs. (3.4) and (3.8) to write Ωϕ in terms of
the energy and the angular momentum, which at the same
time can be written in terms of the radial and tangential
momenta. Then, we perturb the tangential momentum a
factor λt, and we Taylor expand up to linear order in λt
around λ0t ¼ 1. As a result we obtain

Ωλt
ϕ ¼ γ

�ð−5η − 9Þλt
2r5=20

þ 6ηþ 6

2r5=20

�
−

3λt

r3=20

þ 4

r3=20

: ð3:29Þ

Defining Ω0 ¼ r−3=20 as the Newtonian-like orbital fre-
quency we can rewrite (3.29) as

Ωλt
ϕ ¼ γΩ0

�
3ðηþ1Þ

r0
−
ð5ηþ9Þλt

2r0

�
þΩ0ð4−3λtÞ: ð3:30Þ
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For the expression of the unperturbed Ωϕ we will use the
analytical circular solution, Eq. (A1), which coincides with
the unperturbed expression of the orbital frequency Ω,
assuming p0

t and p0
r are given by the circular values,

Ω0
ϕ ¼ Ωp0

t ¼ Ω0

�
1þ γðη − 3Þ

2r0

�
: ð3:31Þ

The perturbed configuration is calculated replacing (3.30)
in (3.19) to obtain

Ωλtp0
t ¼ Ω0½1þ ðλt − 1Þð4 cosðΩrtÞ − 3Þ� þ γΩ0

�ðη − 3Þ
2r0

þ ðλt − 1Þ
�ð6ηþ 2Þ cosðΩrtÞ

r0
−
5ηþ 9

2r0

��
þOððλt − 1Þ2Þ: ð3:32Þ

Replacing Eqs. (3.31) and (3.32) in Eq. (3.27), we finally
obtain

Rλtp0
t

Ω ¼ Ω0ðλt − 1Þð4 cosðΩrtÞ − 3Þ

þ γΩ0ðλt − 1Þð4ð3ηþ 1Þ cosðΩrtÞ − 5η − 9Þ
2r0

þOððλt − 1Þ2Þ: ð3:33Þ

We can follow the same procedure to obtain the residual
corresponding to just perturbing p0

r . We will expand now in
powers of ðλr − 1Þ, and we will maintain p0

r in the
expressions for a better comparison with the formulas of
[40]. In practical computations, p0

r will be replaced by its
postcircular value. Note that in the following derivation of
the residual, Ωϕ does not depend on pr. Another important
fact is that Eqs. (3.1) assume that the motion starts at the
periastron, ϕ0 ¼ 0, and this condition combined with the
negative value of p0

r that the postcircular approximation
yields causes a shift of the periastron by π=2. Consequently,
the radial perturbations will be dominated by a sine
mode [40].
As in Eq. (3.27) we can write the residual as

Rλrp0
r

Ω ¼ Ωλrp0
r

0 −Ωp0
t ;p

0
r

0 : ð3:34Þ

In Eq. (3.34),Ωp0
r

0 is given by the unperturbed configuration
assuming a nonzero value of p0

r .
The calculations to obtain Ωp0

t ;p
0
r

0 are the following:
(1) Write et and eϕ in Eq. (3.19) in terms of En and h.
(2) Write En and h in terms of p0

t and p0
r .

(3) Substitute the value of p0
t by Eq. (A2).

The result of applying steps (1)–(3) is

Ωp0
t ;p

0
r

0 ¼Ω0

�
1−

2r1=20 jp0
r j

η
sinðΩrtÞ

�
þ γ

2Ω0jp0
r j

ηr1=20

sinðΩrtÞ:

ð3:35Þ

The recipe to obtain the perturbed configuration is quite
similar with some additional steps:
(a) Write et and eϕ in Eq. (3.19) in terms of En and h.
(b) Write En and h in terms of p0

t and λrp0
r .

(c) Substitute the value of p0
t by Eq. (A2).

(d) Taylor expand up to linear order in ðλr − 1Þ.
As a result of performing steps (a)–(d) we obtain

Ωλrp0
r

0 ¼Ω0þ γ
2Ω0λr sinðΩrtÞjp0

r j
ηr1=20

−
2r1=20 Ω0λr sinðΩrtÞjp0

r j
η

þOððλr−1Þ2Þ: ð3:36Þ

Combining Eqs. (3.35) and (3.36) we now get

Rλrp0
r

Ω ¼ 2Ω0jp0
r j

η
ðr1=20 − γr−1=20 Þðλr − 1Þ sinðΩrtÞ

þOððλr − 1Þ2Þ: ð3:37Þ

The next step of the calculation is computing the
residual produced by the simultaneous perturbation of p0

t

and p0
r . The procedure to follow is quite similar to the

algorithms presented so far. The residual we want to
calculate is

Rλtp0
t ;λrp

0
r

Ω ¼ Ωλtp0
t ;λrp

0
r

0 −Ωp0
t ;p

0
r

0 ; ð3:38Þ

where Ωp0
t ;p

0
r

0 is given by Eq. (3.35). The procedure we
follow to compute the residual is summarized as
(A) Write et and eϕ in Eq. (3.19) in terms of En and h.
(B) Write En and h in terms of λtp0

t and λrp0
r .

(C) Substitute the value of p0
t by Eq. (A2) and maintain

the value of p0
r .

(D) Taylor expand up to linear order in ðλt − 1Þ
and ðλr − 1Þ.

After following steps (A)–(D) we obtain

Ωλtp0
t ;λrp

0
r

0 ¼ Ω0 þ
2

ffiffiffiffiffi
r0

p Ω0λrλtjp0
r j

η
sinðΩrtÞ

þ γ
2Ω0λrjp0

r j
ηr1=20

½ðηþ1Þλt − ðηþ 2Þ� sinðΩrtÞ

þOððλr − 1Þ2Þ þOððλt − 1Þ2Þ þOððλtλrÞ2Þ:
ð3:39Þ
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Inserting Eqs. (3.35) and (3.39) into (3.38) gives

Rλtp0
t ;λrp

0
r

Ω ¼ 2r1=20 Ω0

η
sinðΩrtÞjp0

r jðλrλt−1Þ

þ γ
2Ω0

ηr1=20

sinðΩrtÞjp0
r j½λrðηðλt−1Þþ λt−2Þþ1�:

ð3:40Þ
Finally, the total residual at 1PN can be understood as the
sum of (3.33), (3.37), and (3.40), and this is

R1PN
Ω ¼Rλtp0

t
Ω þRλrp0

r
Ω þRλtp0

t ;λrp
0
r

Ω

¼−3Ω0ðλt−1Þ− γð5ηþ9ÞΩ0ðλt−1Þ
2r0

þ sinðΩrtÞ2Ω0

× jp0
r j
� ffiffiffiffiffi

r0
p ðλr−1Þ

η
þ γ

�ðλrðηðλt−1Þþ λt−2Þþ1

η
ffiffiffiffiffi
r0

p

−
ðλr−1Þ
η

ffiffiffiffiffi
r0

p
�
þ ffiffiffiffiffi

r0
p ðλrλt−1Þ

η

�

þ cosðΩrtÞ
�
4Ω0ðλt−1Þ

þ γ

�
6ηΩ0ðλt−1Þ

r0
þ2Ω0ðλt−1Þ

r0

��
: ð3:41Þ

Once we have derived expression (3.14) for the residual,
wewant to compare it to (3.26) in order to obtain expressions
of λt and λr in terms of the amplitude and the phase of the
residual. We do not take into account the offset terms
because the 1PN order is not accurate enough to describe
the full PN dynamics and even less the dynamics of the full
Einstein equations dynamics of a NR simulation.
The total residual, Eq. (3.41), is a sum of sine and cosine

terms that wewant to express as a single cosine plus a phase
as in Eq. (3.26). The result of such a transformation gives
two expressions for the amplitude B and the phase C in
terms of λt and λr,

B ¼ ½a21 þ a22�1=2; ð3:42Þ

Ψ ¼ arctan ða1=a2Þ; ð3:43Þ

where a1 and a2 are given by

a1 ¼ 4Ω0ðλt − 1Þ þ 2γð3ηþ 1ÞΩ0ðλt − 1Þ
r0

; ð3:44Þ

a2 ¼
2

ffiffiffiffiffi
r0

p Ω0ðλr − 1Þjp0
r j

η

þ γ
2Ω0jp0

r j
r1=20 η

½λrðηðλt − 1Þ þ λt − 2Þ

þ 1 − ðλr − 1Þ� þ 2Ω0jp0
r jðλrλt − 1Þ
ηr−1=20

: ð3:45Þ

The solution of Eqs. (3.44) and (3.45) consistently at 1PN
order for λr and λt provides the formulas

λt ¼ 1þ
�

B
4Ω0

− γ
Bð3ηþ 1Þ
8r0Ω0

�
cosΨ; ð3:46Þ

λr ¼ 1þ Bη

2r1=20 Ω0jp0
r j

�
1þ γ

1

r0

�
sinΨ: ð3:47Þ

Equations (3.46) and (3.47) can be used to compute the
corrections of the momenta from a measured eccentricity
oscillation amplitude B and phase shift Ψ. The accuracy
of the procedure is limited by carrying out the compu-
tations at 1PN order, but more importantly by the noise
in numerical relativity data, due to both numerical and
gauge artifacts.

E. Separation correction from 1PN residual

We will now develop an alternative method of eccen-
tricity reduction, where we replace the correction of the
tangential momentum with a correction of the coordinate
separation where the NR momentum is identified with the
PN momentum. This is motivated by the fact that the PN
and NR coordinates for the initial data only agree to 2PN
order [28–30], and we will again calculate the required
correction to the initial orbital separation of the binary at
1PN order.
We compute the residual coming from the variation δr of

the initial separation given by

Rδrþr0
Ω ¼ Ωr0þδr

0 − Ωr0
0 : ð3:48Þ

In Eq. (3.48),Ωr0
0 is the unperturbed configuration, which is

computed assuming that p0
t and p0

r take the circular values.
We obtain

Ωr0
0 ¼ Ω0

�
1þ γ

ðη − 3Þ
2r0

�
; ð3:49Þ

where Ω0 ¼ r−3=20 is the Newtonian-like orbital frequency.
To compute the perturbed term, we need to calculate first
the effect of perturbing the initial separation in Ωϕ. The
calculation is similar to the one performed in Sec. III D. We
make the replacement

r0 → r0 þ δr ð3:50Þ

and expand in Taylor series around δr ¼ 0 up to linear
order in δr. As a result we obtain

Ωr0þδr
ϕ ¼ Ω0

�
1 −

3δr
2r0

− γ
ðη − 3Þð5δr − 2r0Þ

4r20

�
: ð3:51Þ
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Then, for the perturbed configuration we obtain

Ωδrþr0
0 ¼ Ω0

�
1þ δr

r0

�
2 cosðΩrtÞ −

3

2

�
þ γ

�
η − 3

2r0

þ δr
4r20

½12ðηþ 3Þ cosðΩrtÞ − 5ðη − 3Þ�
��

:

ð3:52Þ

Inserting Eqs. (3.49) and (3.52) into (3.48) we get

Rδrþr0
Ω ¼ δrΩ0

r0

�
−
3

2
þ2cosðtΩrÞ

þ γ

r0

�
−
5ðη−3Þ

4
þ3ðηþ3ÞcosðtΩrÞ

��
: ð3:53Þ

As in the previous Sec. III D, Eq. (3.53) can be written as
a generic cosine function with an offset, an amplitude, and a
phase of the form

R ¼ M þ N cos ðΩrtþ χÞ: ð3:54Þ

Again, the amplitude N and the phase χ can be expressed
by the equations

N ¼ ½b21 þ b22�1=2; χ ¼ arctan ðb1=b2Þ; ð3:55Þ
where b1 and b2 are given by

b1 ¼
Nr0
2Ω0

−
3Nγð3q2 þ 7qþ 3Þ

4ðqþ 1Þ2Ω0

; b2 ¼ 0: ð3:56Þ

Consistent with the fact that for the separation we have
performed a one-parameter analysis toward reducing the
eccentricity, we have obtained the result that the phase
does not provide information and the whole information
is encoded in the amplitude of the residual. Solving
Eqs. (3.55) and (3.56) consistently at 1PN order gives

δr ¼ Nr0
2Ω0

− γ
3Nð3q2 þ 7qþ 3Þ

4ðqþ 1Þ2Ω0

: ð3:57Þ

Equation (3.57) provides an expression to compute a
correction to the initial separation of the binary. Note that
the applications of the separation correction and the
tangential momentum correction are degenerate because
both describe the conservative dynamics of the binary. We
could now perform a full two-parameter analysis combin-
ing radial separation and radial momentum, in analogy to
Sec. III D, but instead we note that we can also extend
Eq. (3.57) to a two-dimensional iterative scheme by
combining the correction for the separation with the
correction for the radial momentum derived previously,
Eq. (3.47), and we will use this two-dimensional prescrip-
tion for successful eccentricity reduction in an example
case in Sec. IV B.

IV. ECCENTRICITY REDUCTION FOR
NUMERICAL DATA

In this section we apply the analytical formulas we
have previously derived (3.46), (3.47), and (3.57), relating
amplitude and phase of time dependent eccentricity estima-
tors to corrections of the momenta or radial separation,
to numerical data obtained from NR simulations, or, as a
test case, to numerical post-Newtonian data. We compute
the orbital frequency Ω from the position vector r⃗ in
the center of mass frame, with r ¼ jr⃗j, and its time
derivative v⃗ as

Ω ¼ jΩ⃗j ¼ jr⃗ × v⃗j
r2

: ð4:1Þ

In the PN simulations r⃗ and v⃗ are computed from the
motion of the point particles, whereas in the NR simu-
lations they are computed from the coordinate positions of
the punctures. Our NR setup is described in Appendix C.
For the NR simulations we use two codes, BAM [17,53] and
the EINSTEINTOOLKIT [54], which implement a discretized
version of the Baumgarte-Shapiro-Shibata-Nakamura
[55,56] formulation of the Einstein equations. Both codes
use the moving puncture approach [12,17,24,25] with the
“1þ log” slicing and the Γ-driver shift condition [57]. The
initial conditions for the evolving coordinate conditions (i.e.,
for the lapse and shift), in particular the choice of vanishing
shift, lead to gauge transients, whichmanifest themselves as
decaying oscillations in the orbital frequency and separa-
tion. As discussed in detail in [40] for one binary black hole
configuration, these gauge transients complicate reading off
the eccentricity, but can be suppressed by choosing a
sufficiently small value of theΓ-driver “damping” parameter
η (not to be confused with the symmetric mass ratio used in
Secs. II and III), such as η ¼ 0.25. The parameter η does in
fact have the dimension of inverse mass, and one might
expect that for largermass ratios, a smaller value of η ¼ 0.25
is required to avoid large gauge transients. However, for
larger mass ratios gauge transients turn out to be damped out
faster in general, possibly related to the faster timescale of
the smaller black hole, and in our study we find that the
choice η ¼ 0.25 indeedworkswell for all the simulationswe
have performed.
We will first apply eccentricity reduction to PN data as a

test case, and then apply our methods to different numerical
relativity data sets, with and without precession. As
expected, we will find that in PN the PPC prescription
for initial data leads to smaller eccentricities than the PC
prescription, with the lowest eccentricities obtained with a
PN integration starting at a sufficiently large separation
[33]. For NR simulations we will, however, find that PC
initial data typically lead to lower eccentricity than the PPC
approximation. We also find that for the cases we have
studied, a single iteration of our eccentricity reduction
procedure is sufficient to obtain an eccentricity below 10−3.
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A. PN example

The dynamics of PN particles can be described using
Hamilton’s equations of motion,

dX
dt

¼ ∂H
∂P ;

dP
dt

¼ −
∂H
∂Xþ F; ð4:2Þ

with X and P the position and the momentum vectors,
respectively, in the CM frame, H the Hamiltonian given
by Eq. (2.4), and F the radiation reaction force given
by Eq. (3.27) in [41]. The equation of motion for the ith
spin is

dSi

dt
¼ ∂H

∂Si
× Si: ð4:3Þ

The solution of such a system of equations describes the
motion of a binary point-particle system in the inspiral
regime. In this section we discuss our method to reduce
eccentricity in PN, where the low computational cost of
numerical solutions and the avoidance of the initial gauge
transients present in NR greatly simplify the analysis.
To illustrate the procedure with an example black hole

configuration, we choose mass ratio 4, which is signifi-
cantly different from unity, and large spins with dimension-
less Kerr parameters χ⃗1 ¼ ð0; 0; 0.8Þ and χ⃗2 ¼ ð0; 0;−0.8Þ
at an initial separation Di ¼ 12M, where M is the total
mass of the binary system. We integrate the PN equations
of motion until a minimal separationDf ¼ 6M. We run two
PN simulations, with initial momenta computed with the
PC and alternatively the PPC approximations.
For both simulations we measure the eccentricity using a

fit to the ansatz (3.16) and apply two iterations employing
the correction factors for the tangential and radial momenta
given by Eqs. (3.46) and (3.47). The corresponding eccen-
tricity time evolution of the eccentricity estimators for each
iteration are plotted in Fig. 1, which shows that the post-
postcircular approximation indeed produces a simulation
with a smaller eccentricity than the postcircular approxi-
mation, as one would expect. Moreover, in Fig. 1 we have
added the result of initializing the momenta at Di ¼ 12M
from another PN evolution starting at a larger initial
separation D0 ¼ 30M with PC initial momenta, which we
have integrated to a separation ofDi ¼ 12M. In this case the
eccentricity is much smaller, eΩ ¼ ð5� 2Þ × 10−5, due to
some initial eccentricity being radiated away during inspiral
before reaching Di ¼ 12M, and to the high accuracy of PC
momenta at D ¼ 30M.
The eccentricity measurement yields a time dependent

result corresponding to the choice of the ansatz (3.16). For
example, for iteration 0 in the postcircular approximation,
one obtains the following expressions for the eccentricity
and the amplitude:

εΩ ¼ 0.00197344 − 1.97129 × 10−7t; ð4:4Þ

A ¼ 0.00008561 − 8.55168 × 10−9t: ð4:5Þ

However, as in this case the time dependent terms are
typically very small and can be neglected, and we simply
use the eccentricity values at t ¼ 0.
The values of the eccentricity and the different correction

factors are shown in Table I. In addition, Table I contains
the values of eccentricity and the corresponding correction
factors when one corrects not only the momenta, but also
the radial momenta and the distance of the binary.
Consistent with Fig. 1 we see that PPC initial data produce
lower eccentricity than PC for the first iteration. The final
eccentricities after two iterations are, however, very similar,
although the ratio of efficiency gets worse in each iteration
due to the fact that a highly accurate measurement of the
amplitude and the phase of the residual is required. One
observes that the method can easily obtain eccentricities of
the order 2 × 10−4 for a case with a relatively high mass
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FIG. 1. Eccentricity reduction iterations for the configuration
q ¼ 4, χ1z ¼ 0.8, χ2z ¼ −0.8. The upper panel shows the time
evolution of eΩ specifying PC momenta at iteration 0 (red curve),
and the lower panel shows the same quantity specifying PPC
momenta at iteration 0. Afterwards, two more iterations are
performed (orange and black curves). The continuous curves
correspond to the data, and the dashed ones to the fits for each
iteration (blue, gray, magenta, and brown curves). Additionally
the result of integrating from a longer separation (li) is shown in
each panel.
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ratio and high spins, and that one can equally well choose to
correct the tangential and radial momenta or the orbital
separation and the radial momentum.
We have also tested our eccentricity reduction method in

the PN description of precessing binaries, with similar
results: even for high spins we can obtain eccentricities of
the order of 10−4 in one or two iterations. In the precessing
case the method of integrating from a longer separation still
yields lower eccentricities, but it does not provide control of
the initial spin components of the binary at separation Di
due to the fact that the spins also evolve in time during the
integration. Controlling the spins at Di would require one
to set up another iteration procedure to define the spins at
the larger “auxiliary separation” (D ¼ 30M in our exam-
ple) in terms of the desired spins at Di. Specifying the
initial data using the PC or PPC prescription can signifi-
cantly simplify setting up parameter studies where control
of the spin configurations is desired at Di. As we will see
below, this argument is even stronger in NR, where due to
the deviations between PN and full GR there is no
significant advantage in integrating from a large initial
separation as compared with PC or PPC data.

B. Numerical relativity examples

Applying our eccentricity reduction procedure to
numerical relativity simulations adds several complications
compared with the post-Newtonian example: Apart from
the increase in computational cost by 6–7 orders of
magnitude, the main technical problems are gauge tran-
sients resulting from the procedure of initializing the
coordinate conditions of the moving puncture evolutions
(in particular the initially vanishing velocity of the punc-
tures). We address this problem by using a small value of

the shift parameter η, of η ¼ 0.25, for the evolutions we
report on below, and by cutting away the first ∼200M of
time evolution. Black-hole binary puncture initial data also
exhibit a burst of junk radiation due to unphysical gravi-
tational wave content in the initial data. Here we do not take
into account the resulting small change to initial masses,
spins, and momenta, although this may be beneficial when
attempting to construct initial data with even lower eccen-
tricities. For the cases we have studied so far, our choice of
η ¼ 0.25, together with the robust setup of our fitting
method to determine eccentricity presented in Sec. IV,
provides sufficiently accurate estimates not only of the
eccentricity but also of the phase shift defined in Eq. (3.26),
which is required to determine the change in radial
momentum or separation to implement a two-parameter
eccentricity reduction algorithm.
We first discuss our procedure for the example of a

precessing binary with mass ratio q ¼ 2 and dimensionless
spin vectors χ⃗1 ¼ ð0; 0; 0Þ, χ⃗2 ¼ ð0.3535; 0.3535; 0.5Þ, and
initial orbital separation D ¼ 10.8M. First, we run a
simulation with PC initial data with BAM at low resolution
with N ¼ 64 points to measure the eccentricity, fitting the
oscillations ofΩ computed using Eq. (4.1). Then, we adjust
the values of the tangential and radial momenta according
to Eqs. (3.46) and (3.47) to reduce eccentricity, and we run
two low resolution simulations with the corrected
momenta, one with BAM and another with ET with the
same numerical resolution and gauge conditions. The
results for the time evolution of the eccentricity estimator
for the three simulations are shown in Fig. 2.
After one iteration the eccentricity has been notably

reduced with both codes. The values of eccentricity for
iteration 1 in both codes are quite similar. However, the ET

TABLE I. Eccentricity estimator and its corresponding statistical error for the configuration q ¼ 4, χ1z ¼ 0.8, χ2z ¼ −0.8.

Postcircular correcting for ðλt; λrÞ
Iteration ðεΩ � δεΩÞ × 10−3 10 × pt pr × 103 λt λr

0 1.973� 0.006 0.56477 0.238712 1.00085 1.19247
1 0.561� 0.015 0.56529 0.284657 0.99974 0.94794
2 0.221� 0.007 0.56516 0.271206

Post-postcircular correcting for ðλt; λrÞ
Iteration ðεΩ � δεΩÞ × 10−3 10 × pt pr × 103 λt λr

0 0.833� 0.005 0.56517 0.238712 1.00013 1.19737
1 0.567� 0.003 0.56525 0.285827 0.99974 0.96201
2 0.197� 0.005 0.56510 0.274971

Postcircular correcting for ðδr; λrÞ
Iteration ðεΩ � δεΩÞ × 10−3 D pr × 103 δr λr

0 1.973� 0.006 12.0 0.238712 0.01432 1.19247
1 0.718� 0.004 12.0143 0.284657 0.00445 0.999083
2 0.230� 0.003 12.0099 0.284396
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residual is cleaner than for the BAM evolution, which
contains more high frequency noise that we attribute to
different settings for numerical dissipation in this simu-
lation, and which complicates the measurement of the
phase and the amplitude of the residual and leads to
different results in iteration 1. The sign of the correction
to the tangential momentum is read from the value of the
residual at the initial time of the evolution, according to the
expression for the residual computed in Sec. III: For a
positive residual, as is the case in iteration 0, the momen-
tum has to be decreased, while for a negative residual the
momenta should be increased. The values of the eccen-
tricity as well as the correction factors used are shown in
Table II. After a single iteration the eccentricity is well
below 10−3, which we have considered sufficient to neglect
eccentricity in our waveform modeling applications, and
we have not carried out further iterations. For completeness
we also show in Fig. 3 the time evolution of the orbital
separation and the orbital frequency of that configuration.
One can observe from the plots that the oscillations
remaining after one iteration of the eccentricity reduction
procedure cannot be appreciated on that scale of the plot
any more.
In the second example we apply the correction of the

separation and radial momentum to a NR simulation,
combining the corrections in the radial momentum and
the initial orbital separation,

p1
r ¼ λrp0

r ; r10 ¼ r00 þ δr: ð4:6Þ

We choose the spin-aligned configuration ID13 of Table V,
i.e., q ¼ 1, χ1z ¼ −0.5, χ2z ¼ 0.5 with D ¼ 11M. The
results of applying the eccentricity reduction procedure are
shown in Table III. The eccentricity residual is plotted
in Fig. 4.
Looking at Fig. 4 one checks that the eccentricity

estimator is dominated by high frequency noise. That is
the reason why the quality of the fit is so bad and its
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FIG. 2. Time evolution of the eccentricity estimator for the
configuration q ¼ 2, χ⃗1 ¼ ð0; 0; 0Þ, χ⃗2 ¼ ð0.3535; 0.3535; 0.5Þ,
and D ¼ 10.8M. The thick curves correspond to the data and the
dashed ones to the fits. For the three simulations we have
discarded the initial t ¼ 200M of evolution time.

TABLE II. Eccentricity estimator and its corresponding stat-
istical error for the configuration q ¼ 2, χ⃗1 ¼ ð0; 0; 0Þ,
χ⃗2 ¼ ð0.3535; 0.3535; 0.5Þ, and D ¼ 10.8M.

Iteration Code ðεΩ � δεΩÞ × 10−3 λt λr

0 BAM 1.37� 0.02 0.9996 0.8456
1 BAM 0.48� 0.02
1 ET 0.51� 0.03
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FIG. 3. Time evolution of the orbital quantities for the con-
figuration q ¼ 2, χ⃗1 ¼ ð0; 0; 0Þ, χ⃗2 ¼ ð0.3535; 0.3535; 0.5Þ, and
initial separation D ¼ 10.8M. In the upper panel we plot the time
evolution of the orbital separation of the binary. In the lower panel
the orbital frequency of the binary is plotted for the different
iterations. The blue dashed curve corresponds to the iteration 0
run with the BAM code and PC initial data. The red curve
corresponds to the iteration 1 run the BAM code and the black
dashed one to the simulation performed with the ET code.

TABLE III. Eccentricity estimator and its corresponding stat-
istical error for the configuration ID2 of Table V.

Iteration Code N δr λr ðεΩ � δεΩÞ × 10−3

0 BAM 64 1.24� 0.03
1 BAM 64 −0.0023 0.8581 0.2� 0.2
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statistical error so large. One can also check comparing the
value of the eccentricity after one iteration for ID13 from
Table V where one corrects the momenta and the value
from Table III that both results are consistent and similar
providing eccentricity of the same magnitude.

C. Postcircular and post-postcircular in NR

In order to compare PC and PPC initial data, we have run
12 pairs of simulations, ranging from equal mass non-
spinning to mass ratio q ¼ 8 and precessing simulations,
using both PC and PPC initial data for each case. The
results are shown in Table IV. All the simulations in
Table IV have been computed using the BAM code, at
low resolution with N ¼ 64 points in the innermost box,
and setting the gauge parameter η ¼ 0.25 as before.
Figure 5 shows a graphical representation of Table IV.

Overall, the PC initial data seem to work better in NR than
PPC, except for configuration 9, where PPC initial data
lead to a lower eccentricity than PC data. This apparently
counterintuitive result is not particularly surprising: the
numerical relativity evolutions differ from PN not only
because of missing higher order PN terms but also because
the ADMTT [27] gauge underlying our post-Newtionan
results differs from the gauge used in our numerical
relativity code beyond 2PN order [28]. While in post-
Newtonian theory the PPC approximation is indeed supe-
rior, the deviation of PC data could either lead to momenta
that are closer to NR or indeed show larger eccentricities
than PPC.

D. Eccentricity reduction for postcircular initial data
for a range of numerical relativity simulations

In Table V we present results from a single step
eccentricity reduction for a variety of configurations, using
both the BAM and ET codes, and starting with PC initial
momenta, which as we have seen in Sec. IV C typically

yield smaller eccentricities than PPC momenta for numeri-
cal relativity gauge and initial separations we use. All the
simulations using PC initial data, labeled as iteration 0 of
the eccentricity reduction procedure, are carried out with

200 300 400 500 600 700 800

−0.0005

0.0000

0.0005

FIG. 4. Time evolution of the eccentricity estimator for the
configuration q ¼ 1, χ1z ¼ −0.5, χ2z ¼ 0.5. The black curve
corresponds to the data and the dashed pink line to the fit to
the data.
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FIG. 5. Measured eccentricity, with statistical error bars com-
puted from the nonlinear fits, for the 12 configurations reported in
Table IV, comparing PC initial data (rounded blue points) and
PPC data (yellow squares).

TABLE IV. Simulations performed to compare PC and PPC
initial data. In the first column an identifier is assigned to each
configuration which is run with the PC and PPC approximations.
In the following columns the mass ratio, the dimensionless
spin vectors of each black hole, are specified, with the vectors
α⃗¼ð0.3535;−0.3535;−0.5Þ and β⃗¼ð0.3535;−0.3535;0.5Þ. Also
shown are the initial orbital separation and the value of the
eccentricity estimator and its corresponding statistical error.

ID Approx. q χ⃗1 χ⃗2 D=M ðεΩ�δεΩÞ×103

1 PC 1 (0, 0, 0) (0, 0, 0) 11 1.42�0.02
1 PPC 1 (0, 0, 0) (0, 0, 0) 11 1.43�0.04
2 PC 1 ð0;0;−0.5Þ ð0;0;−0.5Þ 11 5.3�0.4
2 PPC 1 ð0;0;−0.5Þ ð0;0;−0.5Þ 11 9.8�0.5
3 PC 1 (0, 0, 0.5) ð0;0;−0.5Þ 11 1.5�0.05
3 PPC 1 (0, 0, 0.5) ð0;0;−0.5Þ 11 2.27�0.04
4 PC 2 ð0;0;−0.75Þ ð0;0;−0.75Þ 12.6 4.22�0.07
4 PPC 2 ð0;0;−0.75Þ ð0;0;−0.75Þ 12.6 4.61�0.16
5 PC 2 (0, 0, 0) α⃗ 10.8 2.68�0.17
5 PPC 2 (0, 0, 0) α⃗ 10.8 5.43�0.13
6 PC 2 (0, 0, 0) β⃗ 10.8 3.61�0.017
6 PPC 2 (0, 0, 0) β⃗ 10.8 4.003�0.018
7 PC 4 ð0;0;−0.8Þ (0, 0, 0.8) 11 4.05�0.07
7 PPC 4 ð0;0;−0.8Þ (0, 0, 0.8) 11 7.25�0.06
8 PC 4 ð0;0;−0.8Þ ð0;0;−0.8Þ 11 17.9�1.5
8 PPC 4 ð0;0;−0.8Þ ð0;0;−0.8Þ 11 17.5�1.5
9 PC 4 (0, 0, 0.8) ð0;0;−0.8Þ 11 17.4�0.6
9 PPC 4 (0, 0, 0.8) ð0;0;−0.8Þ 11 15.3�0.5
10 PC 4 (0, 0, 0.8) (0, 0, 0.8) 11 5.5�0.5
10 PPC 4 (0, 0, 0.8) (0, 0, 0.8) 11 9.9�0.6
11 PC 8 (0, 0, 0.5) ð0;0;−0.5Þ 11 4.64�0.14
11 PPC 8 (0, 0, 0.5) ð0;0;−0.5Þ 11 8.0�0.2
12 PC 8 ð0;0;−0.5Þ ð0;0;−0.5Þ 11 12.49�0.18
12 PPC 8 ð0;0;−0.5Þ ð0;0;−0.5Þ 11 22.9�0.4
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gauge parameter η ¼ 0.25 and low numerical resolution of
643 grid points for the innermost grid (containing the black
holes). While we have used the same setup for some of the
iteration 1 simulations, for others we use our typical setup
for productions runs: a higher resolution of 803 or 963

points, and a gauge parameter of η ¼ 1, which increases

initial gauge transients, but tends to reduce high frequency
noise. For all the cases shown, a single eccentricity
reduction step reduces the eccentricity to below 10−3.
However, we show that the η parameter can also be set to

1 in the first iteration, and one can also get an important
reduction of the eccentricity, as happens with the case
ID19. The residuals of such a configuration are shown in
Fig. 6. For that configuration one can also observe the poor
quality of the fit in iteration 1, which is consistent with the
high value of the error of the eccentricity in Table V.
The lower the value of the eccentricity, the more difficult

becomes the eccentricity measurement because some fea-
tures due to the lack of resolution of the code can appear,
such as high frequency noise coming from the finite
difference scheme. Furthermore, it becomes difficult to
disentangle gauge oscillations from eccentricity oscilla-
tions, as one can observe in Fig. 7 where the eccentricity
estimators of the configurations ID1, ID7, ID18, and ID23
from Table V are plotted.
Finally, the results of Table Vallow one to discuss which

PN order in the PN expressions for the initial momenta
ðpt; prÞ is closer to the corrected momenta that provide low
eccentric initial data. The results are displayed in Fig. 8. We
have computed the difference in absolute values between

FIG. 7. Time evolution of the eccentricity estimators. In the top left panel one has the configuration ID1, in the top right panel ID18, in
the bottom left plot ID7, and in the bottom right picture ID23 from Table V. The red curves correspond to the data of iteration 0 and the
black ones to the data of iteration 1. The dashed lines correspond to fits to the eccentricity estimators.
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BAM it1

0 200 400 600 800
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0.001

FIG. 6. Time evolution of the eccentricity estimator for the
configuration q ¼ 3 nonspinning. The red curve corresponds to
iteration 0 and the black one to iteration 1. The dashed lines are
fits to the data. Both simulations were run with η ¼ 1.
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the corrected tangential or radial momentum (pref
t , pref

r ) and
the PC and PPC values at a given PN order (pi

t, pi
r), with

i ¼ 0, 1, 1.5, 2, 2.5, 3, 3.5.
On the one hand, the upper and intermediate plots of

Fig. 8 show that in order to have low-eccentricity initial
data one requires the knowledge of high PN orders for the

tangential momentum. In addition, when comparing the top
and intermediate panels of Fig. 8 one can check that the
PPC approximation has larger values than the PC, and also
one observes that for the PC the difference between 3PN
and 3.5PN is very small.
On the other hand, the lower panel of Fig. 8 reveals that

the use of higher PN orders for the radial momentum does
not help significantly to reduce the eccentricity. In fact, the
lower PN orders seem to provide lower differences. This is
in agreement with some of the statements of [31] with
respect to the use of low PN order expressions in eccen-
tricity reduction procedures and explains the success of
their method. However, note that small changes in the
tangential momentum translate into large changes in the
eccentricity, while the eccentricity is less sensitive to
changes in the radial momentum [40]; this is due to the
fact that ∂et=∂λt ≫ ∂er=∂λr. In addition, the small differ-
ence between the different PN orders implies that the use of
different PN orders for the radial momentum provides very
similar results. Therefore, while the differences between the
values of pr at different PN do not have a large effect on the
eccentricity, the smaller differences for pt between the PN
orders are large enough to directly affect the eccentricity.

V. SUMMARY AND CONCLUSIONS

In this paper we have developed a suite of methods that
use post-Newtonian approximations to produce low eccen-
tricity initial data for binary black hole evolutions in
numerical relativity. The methods rely on working with
sufficiently large numerical separations to allow for several
orbits before merger, so that an accurate fit can be
performed to determine the eccentricity of the numerical
data and to avoid a breakdown of the post-Newtonian
approximations that we use. These requirements are con-
sistent with the usual requirements for waveform modeling,
where, e.g., waveforms need to be long enough to be able to
glue NR data to PN data and construct a PN-NR hybrid
waveform. Length requirements for numerical relativity
waveforms have been discussed, e.g., in [59–61].
We have first compared three alternatives to set initial

momenta from PN calculations: numerical integration from
a large distance, and the PPC and PC approximations. We
have found that, as expected, integration from a large
distance indeed leads to PN evolutions with negligible
eccentricity, and that PPC initial data yield smaller eccen-
tricity than PC initial data for PN evolutions. When using
the same prescriptions for the initial momenta in NR
evolutions, however, PC initial data typically lead to
smaller eccentricities. The fact that PC initial data result
in particularly low eccentricities of puncture initial data for
NR simulations has previously been noted in [34], and we
extend their explicit formulas for the momenta in the
postcircular approximation to 3.5PN order.
We have also discussed the post-postcircular approxi-

mation, which provides an analytical correction to the

FIG. 8. Absolute difference between the low eccentric tangen-
tial or radial momentum value, (pref

t , pref
r ), from Table V and the

momentum at a given PN order, (pi
t, pi

r), with i ¼ 0, 1, 1.5, 2, 2.5,
3, 3.5 for the configurations of Table V. In the upper panel the
absolute difference for the values of the PC tangential momentum
at different PN orders are shown, in the middle one the absolute
differences for the PPC tangential momentum, and in the lower
panel the absolute differences for the radial momentum. The IDs
in the three plots correspond to those of Table V.
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tangential momentum, maintaining the radial momentum
from the PC approximation. We have explicitly shown the
success of the PPC approximation in PN, and the ability to
generate low eccentric PN initial data without any further
iteration. However, we have also checked performing 24
simulations corresponding to 12 configurations that PPC
momenta do not provide lower eccentric initial data than
PC in NR. This is mainly due to the fact that PPC
corrections do not provide the appropriate correction in
NR, because the difference due to the fact that PN and NR
have different coordinate systems up to 2.5PN overshoots
the correction.
The key idea of our eccentricity reduction procedure

is to derive explicit formulas to the correction of either
the tangential and radial momentum, or alternatively the
separation and radial momentum, in terms of the measured
eccentricity and the initial phase of the oscillations related
to eccentricity. We have found that fitting the orbital
frequency evolution to the TaylorT3 approximant provides
a robust method to determine the eccentricity and initial
phase with sufficient accuracy to be able to reduce the
eccentricity below 10−3 in a single iteration. Reducing the
eccentricity below 10−4 for our moving puncture evolutions
will require one to reduce the numerical noise with
improved choices for numerical dissipation, on which
we will report elsewhere, and will also require a discussion
of spin oscillations in the context of spin precession. Such a
study has been performed in [52], where eccentricities
below 10−4 have been achieved for precessing simulations
in four iterations, while we can reach eccentricities of the
orderOð10−4Þ in one iteration. We also note that in [52] the
test cases start at separation d ¼ 16M, which would
improve the performance of the PC approximation and
of the PN expressions on which we base our eccentricity
reduction method; however, here we want to show that the
method works well for simulations of intermediate length,
of typically between 5 and 10 orbits, which can be
performed with moderate computational cost and are still
very beneficial for waveform modeling purposes.
When only moderately low eccentricities are desired, or

as the first step in an iterative procedure, it is possible to
only correct the tangential momentum, using Eq. (3.25). In
this case it is important to accurately determine the
eccentricity, but not the phase Ψ in Eq. (3.46). The two-
dimensional schemes, where the radial momentum is also
changed, rely on an accurate extrapolation of the residual
(3.26) to the initial time t ¼ 0 of the simulation. This is
made possible by fitting the frequency evolution to the
TaylorT3 approximant. This ansatz avoids artifacts outside
of the numerical fitting region, which are characteristic for
polynomial fits.
In this paper we use the orbital frequency, which is

coordinate dependent, to measure eccentricity. In order to
suppress initial gauge transients we use a small value of the
η parameter appearing in the Γ-driver shift condition,

η ¼ 0.25, as has been studied in some detail in [40].
Here we show that this method works well for a variety
of cases, including precessing ones. As an alternative to
measuring the eccentricity from the orbital frequency one
could use the wave frequency [40], employing methods to
denoise the wave frequency such as those employed in [40].
For our setup of numerical relativity simulations, abstaining
from an accurate determination of the gravitational wave
signal, however, saves computational cost for the low
resolution simulations used to compute the corrected
momenta or separation. The method should also apply to
numerical relativity codes based on different methods and
in particular coordinate gauges, e.g., the SPEC code [62].
We also hope that the simplicity of the procedure benefits
extension to binary systems containing matter, in particular
neutron stars or boson stars.
A coordinate dependence that is more problematic than

the one for the orbital frequency arises from mapping PN
momenta at some coordinate separation in the PN
ADMTT gauge to the same value of the coordinate
separation of the punctures in the coordinates correspond-
ing to Bowen-York initial data, which only agree with
ADMTT up to second PN order [28]. We have addressed
this problem by developing two versions of our iterative
scheme to correct the initial parameters of the simulation
to reduce the inherent eccentricity: In the “traditional”
version we correct our initial guesses for the tangential
and radial momenta ðpt; prÞ. In the alternative version we
correct for the initial separation and pr. The second
version, which appears logically more consistent, is
hoped to provide advantages when constructing hybrid
PN-NR dynamics and waveforms, e.g., for precessing
configurations, where not only the waveforms but also
the spin evolutions should be glued together. This will be
explored in future work.
The corrections pt → λtpt (3.46), pr → λrpr (3.47),

and r0 → r0 þ δr (3.57) can be applied iteratively; we
find, however, that when combining the procedure with
PC initial momenta for iteration 0, for the cases we have
studied, which include mass ratios as high as 8 and also
some precessing simulations, a single iteration was
sufficient to obtain eccentricities below 10−4. For those
cases where we applied a second iteration, eccentricities
dropped at least by an additional factor of 2. However,
there may be parts of the parameter space, especially
high mass ratios and high spins, where the initial PN
formulas will produce significantly larger eccentricities
of the order Oð10−2Þ requiring in those cases more than
iteration to reach a value of the eccentricity of the
order Oð10−4Þ.
Our implementation of the eccentricity reduction pro-

cedure with analytical formulas relating the eccentricity and
the correction of the momenta needed to eliminate it
provides real control in the eccentricity of a PN or NR
simulation. As shown in this article, this can be used to
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reduce the amount of eccentricity in the simulation, but it
can also be used to perform eccentric simulations. This can
be used to generate eccentric NR and PN simulations,
which can be glued into hybrid waveforms that are the
fundamental inputs for waveform modeling.
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APPENDIX A: PN INITIAL DATA FORMULAS

We present the formulas for the orbital frequency, the
tangential momentum, and the ADM mass as a function of
the separation at 3.5PN order,
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r7=2

�
5ð4qþ 1Þq3χ22xχ2z

2ðqþ 1Þ4 −
5ð4qþ 1Þq3χ22yχ2z

8ðqþ 1Þ4 −
5ð4qþ 1Þq3χ32z

8ðqþ 1Þ4

þ χ1x

�
15ð2qþ 1Þq2χ2xχ2z

4ðqþ 1Þ4 þ 15ðqþ 2Þqχ2xχ1z
4ðqþ 1Þ4

�
þ χ1y

�
15q2χ2yχ1z
4ðqþ 1Þ4 þ 15q2χ2yχ2z

4ðqþ 1Þ4
�

þ χ1z

�
15q2ð2qþ 3Þχ22x

4ðqþ 1Þ4 −
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15q2χ22z
4ðqþ 1Þ3 −

103q5 þ 145q4 − 27q3 þ 252q2 þ 670qþ 348

32ðqþ 1Þ6
�

−
ð348q5 þ 670q4 þ 252q3 − 27q2 þ 145qþ 103Þqχ2z

32ðqþ 1Þ6 þ χ21x

�
5ðqþ 4Þχ1z
2ðqþ 1Þ4 þ 15qð3qþ 2Þχ2z
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�
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�
−
5ðqþ 4Þχ1z
8ðqþ 1Þ4 −
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�
−
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4ðqþ 1Þ3 −

5ðqþ 4Þχ31z
8ðqþ 1Þ4

��
; ðA2Þ
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þ ð9q4 þ 16q3 þ 13q2 þ 16qþ 9Þq
16ðqþ 1Þ6 −

qχ21x
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qχ21y
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�
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−
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�
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128ðqþ 1Þ8 −
3497q6

384ðqþ 1Þ8 −
18707q5

384ðqþ 1Þ8 −
9787q4
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9q3χ1xχ2x
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−
18707q3

384ðqþ 1Þ8 þ
ð25q2 − 12q − 52Þqχ21x

16ðqþ 1Þ6 −
3ð4q2 þ 9qþ 4Þq2χ1yχ2y

4ðqþ 1Þ6

þ 3ð10q2 þ 21qþ 10Þq2χzχ2z
8ðqþ 1Þ6 þ ð3q2 þ 38qþ 50Þqχ2z

16ðqþ 1Þ6 −
3497q2

384ðqþ 1Þ8

−
ð52q2 þ 12q − 25Þq3χ22x

16ðqþ 1Þ6 þ ðq2 − 17q − 15Þq3χ22y
8ðqþ 1Þ6

þ ð−15q3 − 17q2 þ qÞχ2y
8ðqþ 1Þ6 þ ð50q2 þ 38qþ 3Þq3χ22z

16ðqþ 1Þ6

þ π2
�

81q6

128ðqþ 1Þ8 þ
81q5

32ðqþ 1Þ8 þ
243q4

64ðqþ 1Þ8 þ
81q3

32ðqþ 1Þ8 þ
81q2

128ðqþ 1Þ8
�
þ 179q
128ðqþ 1Þ8

�

þ 1

r9=2

�
3ð20qþ 7Þq4χ22xχ2z

8ðqþ 1Þ6 −
3ð12qþ 5Þq4χ22yχ2z

16ðqþ 1Þ6 −
3ð12qþ 5Þq4χ32z

16ðqþ 1Þ6

þ χ21x

�
3ð22qþ 15Þq2χ2z

8ðqþ 1Þ6 þ 3ð7qþ 20Þqχ1z
8ðqþ 1Þ6

�
þ χ21y

�
−
3ð28qþ 15Þq2χ2z

16ðqþ 1Þ6 −
3ð5qþ 12Þqχz
16ðqþ 1Þ6

�

−
3ð22qþ 23Þq2χ21zχ2z

16ðqþ 1Þ6 þ χ1x

�
3ð5qþ 3Þq3χ2xχ2z

2ðqþ 1Þ6 þ 3ð3qþ 5Þq2χ2xχ1z
2ðqþ 1Þ6

�

þ χ1y

�
3ð3 − 4qÞq3χ2yχ2z

8ðqþ 1Þ6 þ 3ð3q − 4Þq2χ2yχz
8ðqþ 1Þ6

�

þ χ1z

�
3ð15qþ 22Þq3χ22x

8ðqþ 1Þ6 −
3ð15qþ 28Þq3χ22y

16ðqþ 1Þ6 −
3ð23qþ 22Þq3χ22z

16ðqþ 1Þ6

−
ð128q5 þ 181q4 − 88q3 þ 81q2 þ 544qþ 312Þq

64ðqþ 1Þ8
�

−
ð312q5 þ 544q4 þ 81q3 − 88q2 þ 181qþ 128Þq2χ2z

64ðqþ 1Þ8 −
3ð5qþ 12Þqχ3z
16ðqþ 1Þ6

�
: ðA3Þ

In this article we have chosen to specify as initial condition the orbital separation r. Another possible choice is to specify
the initial orbital frequency where we want to start our simulation. Then, Eq. (A1) can be inverted to obtain the relation
rðΩÞ, and then write the separation, the tangential momentum, and the ADM mass in terms of the orbital frequency. The
resulting equations are
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6ðqþ 1Þ2

�
Ω1=3þ

�
−
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þ
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q2ð11q2þ 25qþ 17Þχ22y

6ðqþ 1Þ4 −
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�
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432ðqþ 1Þ6 þð9qþ 4Þχ31z
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þ
�ð4− 3qÞχ1z
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6ðqþ 1Þ4

�
χ21x þ

�ð9qþ 4Þχ1z
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�
χ21y þ

�
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ð14qþ 15Þχ2xχ2zq2
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−
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χ1x þ

�ð16qþ 21Þχ2yχ2zq2
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�
χ1z

�
Ω5=3; ðA4Þ
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�
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�
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3
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þ
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2ðqþ1Þ6 −
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36ðqþ1Þ6
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1296ðqþ1Þ8

�
Ω7=3þ

�
2ð2qþ3Þχ32zq4

3ðqþ1Þ6

þð4q−9Þχ22xχ2zq4
3ðqþ1Þ6 þ2ð2qþ3Þχ22yχ2zq4

3ðqþ1Þ6 þð32qþ37Þχ21zχ2zq2
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�ð7qþ3Þχ2zq2

3ðqþ1Þ6 þð4−9qÞχ1zq
3ðqþ1Þ6

�
χ21x

−
ð10656q5þ25560q4þ24235q3þ14853q2þ8550qþ2808Þχ2zq2

432ðqþ1Þ8 þ
�
2qð3qþ2Þχ1z
3ðqþ1Þ6 −

q2ð16qþ3Þχ2z
6ðqþ1Þ6

�
χ21y

þ
�
−
ð22qþ21Þχ2xχ2zq3

3ðqþ1Þ6 −
ð21qþ22Þχ2xχ1zq2

3ðqþ1Þ6
�
χ1xþ

�
4ð5qþ6Þχ2yχ2zq3

3ðqþ1Þ6 þ4ð6qþ5Þχ2yχ1zq2
3ðqþ1Þ6

�
χ1y

þ
�ð3qþ7Þχ22xq3

3ðqþ1Þ6 þð37qþ32Þχ22zq3
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−
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�
χ1z

�
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¼ 1−

qΩ−1

2ðqþ1Þ2þ
�
−
ð4qþ3Þq2χ2z
4ðqþ1Þ4 −

ð3qþ4Þqχ1z
4ðqþ1Þ4

�
Ω−5=2þð7q2þ13qþ7ÞqΩ−2

8ðqþ1Þ4

þ
�
−
ð32q3þ42q2þ14qþ1Þq2χ2z
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�
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−

q3χ22x
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−
q2χ1xχ2x
ðqþ1Þ4 þ

q2χyχ2y
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q2χzχ2z
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ð9q4þ16q3þ13q2þ16qþ9Þq
16ðqþ1Þ6 −

qχ21x
2ðqþ1Þ4þ

qχ21y
4ðqþ1Þ4þ

qχ21z
4ðqþ1Þ4

�
Ω−3

þ
�
9q3χ1xχ2x
8ðqþ1Þ6 þ

ð25q2−12q−52Þqχ21x
16ðqþ1Þ6 −

3ð4q2þ9qþ4Þq2χ1yχ2y
4ðqþ1Þ6 þ3ð10q2þ21qþ10Þq2χ1zχ2z

8ðqþ1Þ6

þð3q2þ38qþ50Þqχ21z
16ðqþ1Þ6 þ 81π2q2

128ðqþ1Þ4−
ð52q2þ12q−25Þq3χ22x
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þð50q2þ38qþ3Þq3χ22z
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�
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þ
�
3ð20qþ7Þq4χ22xχ2z
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16ðqþ1Þ6 þχ21x

�
3ð22qþ15Þq2χ2z
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þ χ21y
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−
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�
Ω−9=2: ðA6Þ

The expression used in this paper for the gravitational wave energy flux [23,48] is

dEGW
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¼ 32
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þ
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þ
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�
−
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�
Ω3 þ

�
π

�
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−
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−
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−
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6804
þ δ

�
34η

3
−
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−
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RAMOS-BUADES, HUSA, and PRATTEN PHYS. REV. D 99, 023003 (2019)

023003-24



where we have the following definitions:

λ⃗ ¼ L⃗

jL⃗j ; ðA8Þ

δ ¼ m2 −m1

m1 þm2

; ðA9Þ

χ1 ¼ S1z=m2
1; ðA10Þ

χ2 ¼ S2z=m2
2; ðA11Þ

χa ¼
χ1 − χ2

2
; ðA12Þ

χs ¼
χ1 þ χ2

2
; ðA13Þ

Sl ¼ m2
1χ1 þm2

2χ2; ðA14Þ

Σl ¼ m2χ2 −m1χ1; ðA15Þ

Sl ¼ ðS⃗1 þ S⃗2Þ · λ⃗; ðA16Þ

Σl ¼ ðm1 þm2Þ
�
S⃗2
m2

−
S⃗1
m1

�
· λ⃗: ðA17Þ

APPENDIX B: ANSATZ COEFFICIENTS

The coefficients of the ansatz of the nonspinning fit
described in Sec. III B are derived using the energy given
by Eq. (2.4) and the gravitational wave energy flux given
by Eq. (A7). The coefficients are

b1 ¼
11η

32
þ 743

2688
; ðB1Þ

b2 ¼
1

320
ð−113½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
− 1Þχ1z − ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
þ 1Þχ2z� − 96πÞ − 19

80
ηðχ1z þ χ2zÞ; ðB2Þ

b3 ¼
371η2

2048
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þ 1
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½1714608ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
− 1Þχ21z

− 1714608ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
þ 1Þχ22z þ 1855099�; ðB3Þ

b4 ¼ −
1

128
17η2ðχ1z þ χ2zÞ þ

ηð117π − 2ðð63 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p þ 1213Þχ1z þ ð1213 − 63
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p Þχ2zÞÞ
2304

þ −146597ðð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
− 1Þχ1z − ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p þ 1Þχ2zÞ − 46374π

129024
; ðB4Þ

b5 ¼
235925η3

1769472
þ η2

�
335129χ21z
2457600

−
488071s1zχ2z

1228800
þ 335129χ22z

2457600
−

30913

1835008

�

þ η

�ð23281001 − 6352738
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p Þχ21z
68812800

þ χ1z

�
1051π

3200
−
377345χ2z
1376256

�
þ ð6352738 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p þ 23281001Þχ22z

68812800

þ 1051πχ2z
3200

−
451π2

2048
þ 25302017977

4161798144

�
þ 6127πð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

− 1Þχ1z
12800

−
16928263ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p þ 1Þχ22z

137625600

þ 16928263ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
− 1Þχ21z

137625600
−
6127πð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p þ 1Þχ2z
12800

þ 53π2

200
−
720817631400877

288412611379200
þ 107

280
½γ þ logð2θÞ�: ðB5Þ

APPENDIX C: NUMERICAL RELATIVITY SETUP

1. BAM

Here we describe the numerical setup for NR simulations
produced using the BAM code. The numerical setup is similar
to that in [40] butwe present thedetails here for completeness.
The BAM code starts with black-hole binary puncture initial
data [63,64] and evolves them using the χ variant of the

moving puncture [12,13] version of the Baumgarte-Shapiro-
Shibata-Nakamura [55,56] formulation of the Einstein equa-
tions. The black-hole punctures are initially placed on the y
axis at positions y1 ¼ −qD=ð1þ qÞ and y2 ¼ D=ð1þ qÞ,
whereD is the coordinate distance between the two punctures
and the mass ratio is q ¼ m2=m1 > 1. The punctures are
provided initial momenta p ¼ ð∓ pt;�pr; 0Þ. The spin
parameter of a black hole is defined as χi ¼ Si=m2

i .
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The code uses sixth-order spatial finite-difference
derivatives, a fourth-order Runge-Kutta algorithm, and
Kreiss-Oliger (KO) dissipation terms that converge
at fifth order. Moreover, the code utilizes 16 mesh-
refinement buffer points, and the base configuration
consists of n1 nested mesh-refinement boxes with N3

points surrounding each black hole and n2 nested boxes
with ð2NÞ3 points surrounding the entire system. On the
levels where the extraction of gravitational radiation is
performed, ð4NÞ3 points are used in order to extract more
accurately the gravitational waves emitted by the binary.
These waves are computed from the Newman-Penrose
scalar Ψ4 [17]. In addition, in order to reduce gauge
oscillations in the orbital quantities we set the value of
the parameter η appearing in the Γ-driver shift condition
to 0.25 for simulations used to reduce the eccentricity,
and we use η ¼ 1 for higher resolution production
simulations that will be used in future waveform model-
ing and LIGO data analysis.

2. EINSTEIN TOOLKIT

The EINSTEIN TOOLKIT (ET) is an open source code suite
for relativistic astrophysics simulations built around the
Cactus framework, where individual modules are denoted
thorns. The numerical setup of the simulations is similar to
that used in [65], but we present the details here for
completeness.
The simulations use standard Bowen-York initial data

[63,64] computed using the TWOPUNCTURES thorn [66].
Time evolution is performed using theW variant [67] of the
Baumgarte-Shapiro-Shibata-Nakamura formulation [55,56]
of the Einstein equations by MCLACHLAN [68], in which the
black holes are evolved using the standard moving puncture
gauge conditions [12,13]. The lapse is evolved according to

the “1þ log” condition [69] and the shift evolved using the
hyperbolic Γ̃-driver equation [57].
The simulations were performed using eighth order

accurate finite differencing along with the appropriate
KO dissipation terms. Adaptive mesh refinement is pro-
vided by CARPET, with the near zone being computed
with high resolution Cartesian grids that track the
motion of the black holes and the wave extraction zone
being computed on spherical grids using the LLAMA

multipatch infrastructure [65]. By using grids adapted to
the spherical topology of the wave extraction zone,
we are able to efficiently compute high-accuracywaveforms
at large extraction radii relative to standard Cartesian
grids. The apparent horizons are computed using
AHFINDERDIRECT [70], and a calculation of the spins is
performed in the dynamical horizon formalism using the
QUASILOCALMEASURES thorn [71]. In contrast to BAM, the
two punctures are initially placed on the x axis at positions
x1 ¼ D=ð1þ qÞ and x2 ¼ −qD=ð1þ qÞ, in whichD is the
coordinate distance separation and we assume m1 > m2.
Initial momenta are chosen such that p ¼ ð∓ pr;�pt; 0Þ.
As with BAM, the parameter η that appears in the
Γ-driver shift condition, which is denoted BetaDriver in
the MCLACHLAN code, is set to 0.25 for low-resolution
simulations and set to 1 for the higher resolution produc-
tion runs.
The gravitational waves are computed using

WEYLSCAL4 and the Gravitational Wave (GW) strain h
calculated from Ψ4 using fixed-frequency integration [72].
The thorns MCLACHLAN and WEYLSCAL4 are generated
using the KRANC [73] automated-code-generation package.
The ET simulations are managed using SIMULATION

FACTORY [74] and the analysis and postprocessing of ET

waveforms were performed using the open source
Mathematica package SIMULATION TOOLS [75].
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