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We propose here a novel method which singles out the a priori unavoidable dependence on the
underlying cosmological model when extracting parameter constraints, providing robust limits which only
depend on the considered dataset. Interestingly, when dealing with several possible cosmologies and
interpreting the Bayesian preference in terms of the Gaussian statistical evidence, the preferred model is
much less favored than when only two cases are compared. As a working example, we apply our approach
to the cosmological neutrino mass bounds, which play a fundamental role not only in establishing the
contribution of relic neutrinos to the dark matter of the Universe but also in the planning of future
experimental searches of the neutrino character and of the neutrino mass ordering.
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I. INTRODUCTION

Bayesian parameter inference has been extremely suc-
cessful in cosmology and astroparticle physics in the past
two decades. This statistical technique is more powerful
and adequate than traditional tools when dealing with large
and complex datasets and with the impossibility to obtain
different realizations of the object to study, our Universe.
In addition, the Bayesian probability theory has also been
extensively exploited for model comparison purposes,
offering not only the possibility of predicting but also of
optimizing the most adequate theoretical frameworks to
fit the cosmological observations; see, e.g., [1]. However,
despite the major accomplishments achieved by Bayesian
parameter inference, both the role of parametrizations/
priors and the possibility of different fiducial cosmologies
(or models) may lead to divergent predictions. The former
have caused controversial arguments in the literature,
particularly when extracting cosmological bounds on
neutrino masses and their ordering [2–7].
In this paper, we shall focus on the potential that

Bayesian model comparison techniques offer for comput-
ing model-marginalized cosmological parameter limits,
avoiding the biases due to the fiducial cosmology. We
propose here a simple method to compute such solid and
robust model-marginalized constraints.
In order to demonstrate the validity and robustness of this

method, we shall illustrate a particular case and consider
the sum of the neutrino mass Σmν (see Refs. [8–10] for its
key signatures on cosmology). Focusing exclusively on
bounds from cosmic microwave background (CMB) mea-
surements, the final analyses from the Planck satellite set a

95% C.L. limit of Σmν < 0.24 eV [11] after considering
CMB temperature, polarization, and lensing at all scales.
Late-time observations of the large-scale structure in the
Universe by means of the baryon acoustic oscillation
(BAO) method sharpen the limit above, as they help
enormously in removing the degeneracies present in
CMB data at the background level. Once BAO information
is combined with Planck measurements, the limit is
tightened to Σmν < 0.12 eV at 95% C.L. [11], or even
down to Σmν < 0.11 eVwhen also considering supernovae
Ia luminosity distances. One obvious question is how
reliable and stable are the cosmological neutrino mass
limits quoted above?
Even if not relying on the combination of potentially

inconsistent datasets for which the neutrino mass bounds
become tighter [12], all of the aforementioned limits are
based on the most economical ΛCDM scenario, which also
leads to the tightest constraints on the neutrino mass.
Surely, the bounds on Σmν change when (a) new physics
is added in the neutrino sector (for instance, changing the
effective number of relativistic degrees of freedom, Neff
[14–22] or adding nonstandard interactions [23–36]),
(b) new physics appears in the early- or late-time accel-
erating periods in the Universe [22,37–56] and/or, in
general, (c) phenomenologically extended scenarios are
considered [57]. While one would naively expect that the
neutrino mass limits within these more general cosmologies
will always be relaxed, this has been shown not to be the
case for physical dark energy models [58,59], for which
the neutrino mass bounds get tighter than those obtained in
the ΛCDM framework. It is therefore clear that one can
artificially tune the cosmological neutrino mass limits in
an optimistic or in a pessimistic manner.
These a priori harmless uncertainties translate into very

serious dilemmas for neutrino particle physics searches.
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The near and far future neutrinoless double beta decay road
map provides a very important example. It seems therefore
mandatory to build a method to extract model-independent
cosmological neutrino mass bounds. It is among our major
goals to apply our novel model-marginalized method to Σmν

when studying a number of possible cosmological scenarios,
i.e., theminimalΛCDMuniversewithmassive neutrinos and
its extensions. Adopting Planck 2015 data [60], the tightest
bound we obtain within a ΛCDM universe is Σmν <
0.23 eV at 95% C.L., which relaxes to Σmν < 0.35 eV
when the uncertainty on the cosmologicalmodel is taken into
account using our model-marginalization method.
At the same time, we can use Bayesian tools in order to

compare the models we are studying and obtain which one
is preferred by the data. Noticeably, even if the best
scenario is strongly favored over its competitors when
comparing pairs of models with a Bayes factor analysis, its
global statistical evidence falls abruptly when all the
models are considered simultaneously, making this pre-
ferred model less likely. In the scenarios explored here, this
will imply that the weak-to-moderate Bayesian preference
for the minimal ΛCDMþ Σmν model, which arises when it
is compared with each of its extensions individually, will
not correspond to a global 1σ level strength when consid-
ering the entire ensemble of extended scenarios.

II. BAYESIAN STATISTICS

The Bayes theorem, which represents the foundation of
Bayesian statistics, reads

pðθjd;MiÞ ¼
πðθjMiÞLðθÞ

Zi
; ð1Þ

where πðθjMiÞ and pðθjd;MiÞ are the prior and posterior
probabilities for the parameters θ within a modelMi, LðθÞ
is the likelihood as a function of the parameters θ, given the
data d and the model Mi, and Zi ¼

R
dθπðθjMiÞLðθÞ is

the Bayesian evidence of Mi [1]. The Bayes theorem can
also be written in a slightly different form to obtain the
model posterior probability [61]:

pi ≡ pðMijdÞ ¼
πiZiP
jπjZj

; ð2Þ

where πi ≡ πðMiÞ refers to the model prior probability. In
the Bayesian model comparison framework, the so-called
Bayes factor provides a measure of whether the data have
increased or decreased the odds of model Mi relative to a
second model Mj:

Bij ¼ Zi=Zj: ð3Þ
The Bayes factor enters the definition of the posterior
probability ratio between two models, which indicates how
much one of the two is preferred over the other, after using
the information provided by the data:

pi

pj
¼ Bij

πi
πj

: ð4Þ

If the two models are equivalent according to our initial
knowledge, i.e., the model priors are the same, the final
preference driven by the data is determined by the Bayes
factor. In terms of posterior odds, the preference for the
favored model is Bij∶1, if Mi is preferred over Mj.
Adopting the commonly exploited Jeffreys scale [62],
the strength of the posterior odds can be ranked as incon-
clusive (j lnBijj < 1), weak (1 < j lnBijj < 2.5), moderate
(2.5 < j lnBijj < 5), or strong (j lnBijj > 5). Very impor-
tantly, this arises from the fact that when comparing two
mutually exclusive models, the mentioned ranks correspond
roughly to what is usually indicated as a≲1σ (inconclusive)
to≳3σ (strong) level when considering a Gaussian variable.
Using Eq. (2) and selecting one among the available

models labeled M0 without loss of generality, one can
write, provided all priors are identical for all models:

p0 ¼
Z0P
iZi

¼
�XN

i

Bi0

�−1

; ð5Þ

wherewe have used the definition of the Bayes factor. Notice
that the posterior probability of the selected model M0

depends on the Bayes factors with respect to all the possible
models. For each data combination, we will choose M0 to
be the preferred model. In practice, this is the one that has
more influence on the model-marginalized posterior. Since
the model M0 is the preferred one, we will always have
Bi0 ¼ Zi=Z0 < 1 (or lnBi0 < 0) for i ≠ 0.
Assuming that (i) more than two models are possible

and (ii) all the models have the same prior probabilities, then
Eq. (5) implies that the posterior probability of the preferred
model is smaller than what the single Bayes factors would
suggest in a one-to-one comparison. For example, if N ¼ 8
and all the Bayes factors are j lnBi0j ≃ 5 for i ≠ 0, thus,
indicating apparently strong results according to the usually
adopted Jeffreys scale, the posterior probability of M0 is
p0 ≃ 0.955, which would indicate a mild 2σ significance for
a Gaussian measure. In the same way, having N ¼ 7 and
j lnBi0j ≃ 2.5 for i ≠ 0, which usually indicates a weak
preference, would give p0 ≃ 0.67, which would correspond
to a less than 1σ preference for M0.
The tools of model comparison also allow us to compute

a model-marginalized posterior distribution for the param-
eter θ, taking into account the posterior probability of each
model Mi resulting from the data d [1]:

pðθjdÞ ¼
XN

i

pðθjd;MiÞpi; ð6Þ

where the posterior probabilities of θ within each model
Mi are weighted according to the model posterior prob-
abilities pi. These can be written using Eq. (2) to obtain the
fundamental formula

S. GARIAZZO and O. MENA PHYS. REV. D 99, 021301 (2019)

021301-2



pðθjdÞ ¼
XN

i

pðθjd;MiÞZi=
XN

j

Zj: ð7Þ

This is the expression that we will use to obtain model-
marginalized limits in the following, under the assumption
that all the models have the same priors.
Some final comments are due. To obtain the most robust

model-marginalized estimate, one should in principle con-
sider the largest number of possible models. In the cosmo-
logical context, these should include the ΛCDM and all its
possible extensions, plus scenarios with any possible modi-
fied gravity paradigm and their extensions: This is clearly
computationally impossible. From an Occam’s razor per-
spective, however, the models with an unnecessarily large
number of parameters will be generally penalized by the
Bayesian evidence calculation [63] so that their final weight
in Eq. (7) will be negligible, while most of the contribution
will begivenby themost economicalmodels that better fit the
data. While our method allows us to marginalize over the
freedom related to different models or additional parameters,
since it is based on the comparison of Bayesian evidences
obtained in the different models, it still has a residual
dependence on the shape and thewidth of the adopted priors.

III. COSMOLOGICAL DATA ANALYSES

The data we shall exploit to derive model-marginalized
constraints from cosmological observations include mea-
surements of the CMB angular power spectrum and of the
BAO signature in the matter power spectrum. Awaiting the
final release from the Planck Collaboration, we use here
their 2015 data release [64,65]. We consider two possibil-
ities: (a) both temperature and low-l polarization (CMB)
or (b) temperature and polarization at all multipoles
(CMBþ pol). In both cases, we also include the Planck
CMB lensing determination (lens) [66]. BAO geometrical
information from the SDSS BOSS DR11 [67], the 6DF
[68], and the SDSS DR7 MGS [69] surveys complements

the datasets used in our numerical analyses. We are aware
that this combination may not provide the strongest
cosmological constraints; however, it is not our main goal
here to outperform the current cosmological constraints but
to exemplify the novel model-marginalized approach here
proposed. After the Planck final public release, our method
will be applied to an extended set of cases with respect to
those considered here.
In our numerical calculations, we use the Boltzmann

solver CAMB [70] together with COSMOMC [71], with
POLYCHORD [61,72] (version 1.9) as the algorithm devoted
to extract the Bayesian evidence.
In our demonstrative analysis, we restrict our set of

models to the simplest ΛCDM model with freely varying
neutrino masses and some of its one-parameter extensions.
In particular, we consider the ΛCDMþ Σmν, ΛCDMþ
ΣmνþAlens, ΛCDMþ Σmν þ Neff , and ΛCDMþΣmνþw
models, as discussed more in detail in the next paragraphs.
In the numerical calculations, all the parameters that are
shared among the different models are sampled adopting
the same linear priors as in the default POLYCHORD

settings, except for the sum of the neutrino masses which
is varied in the range [0.06, 5] eV. For the additional
parameters, we adopt linear priors in the following ranges:
Alens varies in [0, 5], Neff in [1, 5], and w in ½−3; 0�.

IV. RESULTS: THE NEUTRINO MASS
AS A CASE STUDY

Table I summarizes the results from our novel method
applied to a particular physics case that is usually con-
strained by cosmological observations: the sum of the
neutrino masses Σmν. As aforementioned, a robust model-
marginalized limit on Σmν is absolutely required, as it is
crucial for a number of issues. In particular, it is a very
important input when deciding the experimental strategy
for neutrino character (Dirac vs Majorana) searches. We
show such a model-marginalized limit in the second-to-last

TABLE I. 95% C.L. upper limits on Σmν and Bayes factors in the different cosmological scenarios. Results are
obtained either adopting Planck 2015 CMB temperature, low-l polarization, and lensing data [64–66] plus BAO
measurements [67–69] (second and third columns) or the same data combination plus high-multipole CMB
polarization measurements from the Planck 2015 data release (fourth and fifth columns). The different rows depict
the bounds in different extensions of the ΛCDM model, while the last two rows illustrate, respectively, the model-
marginalized 95% C.L. limit obtained via Eq. (7) and the posterior probability of the example model M0 (the
preferred one that is always the ΛCDMþ Σmν scenario); see Eq. (5).

CMBþ lensþ BAO CMBþ polþ lensþ BAO

Model lnBi0 Σmν (eV) lnBi0 Σmν (eV)

Base ¼ ΛCDM þ Σmν 0.0 <0.28 0.0 <0.23
Baseþ Alens −2.6 <0.38 −2.4 <0.29
Baseþ Neff −1.5 <0.37 −2.3 <0.25
Baseþ w −1.4 <0.42 −0.1 <0.42

Marginalized � � � <0.33 � � � <0.35
p0 0.65 0.48
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row of Table I for the two data combinations considered
here.
In order to compute the model-marginalized result we

consider, together with the simplest ΛCDM model with
freely varying neutrino masses, some cosmological scenar-
ios which are usually explored in the literature; see, e.g.,
Planck Collaboration 2015 data analyses [65]. These
models contain extra parameters which are either partially
or significantly degenerate with the neutrino mass. For
instance, Σmν has a correlation, among others, with the
phenomenological parameter Alens, which rescales the
lensing amplitude in the CMB spectra. Since current
CMB constraints on the neutrino mass are mostly due to
the reduction in the lensing potential induced by a larger
neutrino mass, there is a degeneracy between Σmν and
Alens: A value Alens < 1ð> 1Þ would allow for a lower
(higher) value of Σmν. Notice from the results depicted in
Table I that the neutrino mass bounds, in the absence of
high-multipole polarization, are worsened when the Alens
parameter is allowed to vary. When going from a ΛCDM to
aΛCDMþ Alens scenario, the 95% C.L. limit changes from
Σmν < 0.28 eV to Σmν < 0.38 eV [73]. Another param-
eter potentially degenerate with Σmν is the number of
relativistic degrees of freedom Neff , albeit the latest Planck
analyses have shown that data are able to disentangle
between the different physical effects induced by Σmν and
Neff [11] on temperature and polarization anisotropies.
While the 95% C.L. limit without high-l polarization is
Σmν < 0.37 eV, information from high multipoles brings
the neutrino mass constraint extremely close to the bound
obtained within the ΛCDM model [74]. Finally, a freely
varying constant dark energy equation of state w can also
affect the bounds on Σmν. If w is allowed to vary, the matter
energy density can take very high values, compensating for
the suppression induced in large-scale structure due to an
increased value of Σmν, and, therefore, these two parameters
will be correlated in a significant way. As a result, the limit
is relaxed to Σmν < 0.42 eV at 95% C.L., both without and
with high-multipole polarization data; see Table I.
From all the limits above and using the Bayes factors also

listed inTable I, bymeans ofEq. (7) it is possible to obtain the
marginalized limits on Σmν shown in the second-to-last row
of Table I. Notice that the 95% C.L. upper limits obtained
within the most economical ΛCDM picture are significantly
relaxed (they are increased up to 50%) when considering
extended scenarios. For a visual comparison of the one-
dimensional posterior probabilities of Σmν in the various
models considered here and of the model-marginalized one,
we provide Figs. 1 and 2, where we also show the sampled
prior distribution [75]. Notice that the method following
Eq. (7) allows a proper weighing of the information from
each model, building a robust estimate for the neutrino mass
that can be used as an input in neutrino particle physics. The
possible applications of the method, however, are signifi-
cantly wider than what is explored here.

The last row of Table I shows the posterior probabilities
p0 for the example modelM0 computed from Eq. (5).M0

is chosen to be the preferred one by each of the two data
combinations, and it turns out to be the minimal ΛCDM
scenario with free neutrino masses in both cases. The
posterior probability, which depends on the Bayesian
evidence of various models, is shown in the second and
fourth columns for the two possible data combinations.
Here, one should clarify an important aspect of Bayesian
model comparison. While the Bayes factors with respect to
the extended models, if considered separately, indicate a
weak-to-moderate [76] Bayesian preference for the ΛCDM
model accordingly to the Jeffreys scale [62], and therefore
individually corresponding to a 1.1–2.7σ probability (in
Gaussian terms) in favor of the ΛCDM framework, it is
clear from Eq. (5) that such naive expectations are no

FIG. 1. One-dimensional posterior probabilities for Σmν for
different cosmological models arising from Planck 2015 CMB
temperature, low-l polarization, and lensing data [64–66] plus
BAO measurements [67–69]. We also depict the model-
marginalized bound obtained using Eq. (7) and the prior sampled
on Σmν; see text for details.

FIG. 2. As Fig. 1 but including also CMB high-multipole
polarization measurements from the Planck 2015 data release
[64,65].

S. GARIAZZO and O. MENA PHYS. REV. D 99, 021301 (2019)

021301-4



longer true when more than one model is accessible. The
values of the posterior probabilities for the example ΛCDM
model never reach the 1σ level strength in terms of a
Gaussian variable. Based on these results, therefore, it is
possible to say that the ΛCDM model, despite being more
likely than its extensions, is not strongly preferred by the
data. This is a crucial result of our analyses, with strong
implications in many other early Universe fundamental
physics searches, as, e.g., in the case of the inflationary
landscape, where many models arise and are usually ranked
by means of Bayesian comparison techniques; see, e.g.,
Ref. [77].

V. DISCUSSION

Bayesian model comparison provides a robust machi-
nery to compute model-marginalized limits. We have
proposed a method which allows us to minimize the
uncertainty related to multiple model choices on the
determination of parameter constraints. We have applied
our novel method to the neutrino mass case, exploiting
current publicly available cosmological data. We have
shown that the limits on the neutrino masses can signifi-
cantly change when one realizes that present measurements
are not able to unambiguously tell us the cosmological
model that nature has chosen. The statistical Gaussian

preference for the favored model, indeed, always becomes
inconclusive when there are a number of other possible
models, even if equally disfavored by observations. An
updated and extended analysis using the proposed method
will come after the release of Planck 2018 likelihoods.
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