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The relic cosmological abundance of stable or long-lived, charge neutral, colored particles gets reduced
by up to 4 orders of magnitude by annihilations that occur after QCD confinement. We compute the
abundance and the cosmological bounds on relic gluinos. The same postconfinement effect strongly
enhances coannihilations with a lighter dark matter particle, provided that their mass difference is below a
few giga-electron volts. Charged colored particles (such as stops) can instead form baryons, which can be
(quasi)stable in some models.
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I. INTRODUCTION

Extensions of the Standard Model (SM) sometimes
predict (quasi)stable colored particles. We show that, due
to nonperturbative QCD effects, their relic abundance is
significantly lower than previously expected, correspond-
ingly reducing the phenomenological constraints.
Weak-scale supersymmetry has been considered the most

motivated extension of the SM, as it allows one to control
quadratically divergent corrections to the Higgs mass keep-
ing them naturally small; improves the prediction for the
gauge couplings in SU(5) unification; and provides dark
matter (DM) candidates. The plausibility of the naturalness
goal is now endangered by the lack of any new physics in
LEP [1] and LHC data [2]. Furthermore, the Higgs mass is
larger than what was predicted by the minimal supersym-
metric Standard Model with weak-scale sparticles.
Split supersymmetry [3,4] (where the new supersym-

metric fermions are much lighter than the new super-
symmetric scalars) abandoned the naturalness goal,
retaining the two other good features, allowing one to fit
the Higgs mass [5,6], and relaxing the possible super-
symmetric flavor problem caused by weak-scale sfermions.
If sfermions are very heavy, the light gauginos can become
long-lived, giving peculiar signatures at colliders and
potential cosmological problems. These were explored in

[7], where the relic gluino abundance (before late gluino
decay in neutralino and colored SM particles) was com-
puted including perturbative gluino annihilations at T ∼M3

and arguing that one can neglect nonperturbative effects
arising after confinement at T ∼ ΛQCD. Such effects reduce
the relic gluino abundance by a few orders of magnitude
[8], thereby weakening cosmological bounds.
The relevance of confinement effects has been estimated

in [9] in the case of colored charged particles. Unlike in the
case of the neutral gluino, QCD bound states of charged
particles can be formed or broken by emitting or absorbing
photons. We will consider the case of (quasi)stable stop t̃.
In Sec. II we compute the thermal relic abundance of

(quasi)stable gluinos, and in Sec. III we reconsider the
cosmological bounds and discuss the associated phenom-
enology. Conclusions are given in Sec. IV.

II. RELIC GLUINOS

We consider a Majorana fermion in the adjoint of SU(3).
In supersymmetric models this is known as gluino and
denoted as g̃. The gluino can be stable if it is the lightest
supersymmetric particle. Otherwise it can decay via squark
exchange into a quark, an antiquark, and a neutralino or
chargino, or radiatively into a gluon and a neutralino, with
quarks and squarks in the loop. The resulting lifetime is
long if sfermions have a much heavier massmSUSY [10,11],

τg̃ ¼
4 s
N

�
mSUSY

109 GeV

�
4
�
TeV
Mg̃

�
5

; ð1Þ

where N is an order-one function [11]. A stable or long
lived gluino is probed and constrained by cosmology.
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A. Computing the relic gluino abundance

Figure 1 shows our result for the gluino relic abundance
before their possible slow decays. This is computed as
follows. The upper curves show the relic abundance after
a first decoupling at T ∼Mg̃=25, as computed in various
approximations:
(1) at tree level in the perturbative expansion;
(2) taking into account Sommerfeld corrections the

s-wave annihilation cross section is [Eq. (2.24) of
[12], where the Sommerfeld S factors are defined]

σannvrel ¼
27

32
σ0

�
1

6
S3 þ

1

3
S3=2 þ

1

2
S−1

�
þ 9

8
σ0S3=2;

σ0 ¼
πα23
M2

g̃
; ð2Þ

(3) taking into account also a related effect: formation of
bound states [13].

These effects reduce by about 1 order of magnitude the
gluino abundance, controlled by the Boltzmann equation

Hz
s

dYg̃

dz
¼ −hσannvreliðY2

g̃ − Yeq2
g̃ Þ; ð3Þ

where z ¼ Mg̃=T, Yg̃ ¼ ng̃=s, s is the entropy density at
temperature T, and HðTÞ is the Hubble constant.
If τg̃ < MPl=Λ2

QCD ∼ μs, gluinos decay before the
QCD phase transition leaving no cosmological effects.
Otherwise, gluinos recouple as the temperature approaches
the QCD scale, and their relic abundance is determined by a
redecoupling at temperatures mildly below the QCD phase

transition. At this point gluinos have formed g̃g and/or g̃qq̄0

hadrons which scatter with large cross sections σQCD ¼
c=Λ2

QCD where c ∼ 1, making about MPl=ΛQCD ∼ 1019

scatterings in a Hubble time. For comparison, the pro-
ton-proton elastic scattering cross section at low energy is
known to be σel ≈ 100 mb, corresponding to c ≈ 23.
Although gluinos are much rarer than gluons and quarks,

occasionally, two gluino hadrons meet forming a g̃ g̃ bound
state. Classically such a state has angular momentum l ≈
μvrelb where b ≈ 1=ΛQCD is the impact parameter; μ ≃
Mg̃=2 is the reduced mass; and vrel ∼ ðT=Mg̃Þ1=2 is the
relative velocity. Thereby l ∼ ðMg̃TÞ1=2=ΛQCD is large for
Mg̃ ≫ ΛQCD ≳ T. The quantum-mechanical total QCD
cross section for forming g̃ g̃ bound states is large because
many partial waves contribute. This can be parametrized
defining the maximal angular momentum as lmax ≡ffiffiffiffiffiffiffiffiffiffi
c=2π

p
Mg̃vrel=ΛQCD obtaining (see, e.g., [14])

σQCD ¼
Xlmax

l¼0

σl ≃
c

Λ2
QCD

; σl ¼ 4π
2lþ 1

M2
g̃v

2
rel

sin2δl; ð4Þ

where the phase shifts average to hsin2 δli ≃ 1=2. This
expectation is consistent with numerical results in toy
calculable models [15].
The cross section relevant for reducing the gluino

abundance is not σQCD, but the smaller cross section
σann for forming g̃ g̃ states that annihilate into SM particles
before being broken. Assuming that a g̃ g̃ with angular
momentum l and energy ∼T annihilates before being
broken with probability ℘lðTÞ, one has1

FIG. 1. Predicted gluino abundance. Relic stable gluinos
exceed the DM density if Mg̃ ≳ PeV. The bands show the
nonperturbative analytic result for σQCD ¼ 1=Λ2

QCD (blue dots)
and σQCD ¼ 4π=Λ2

QCD (red dots). The thin (thick) lines assume
that only singlet bound states (octet bound states, too) can form
with QCD size; similarly, the small (large) dots show our
numerical computation for some values of the gluino mass.
The relations among the gluino mass, the gluino lifetime, and the
scale of supersymmetry are displayed in Fig. 4.

1This intuitive picture can be formally justified writing a
network of Boltzmann equations, one for each bound state I with
different l and n. Such equations contain the formation rates γI ,
the thermally averaged breaking rates Γbreak

I , the annihilation rates
Γann
I , and the decay rates among the states ΓIJ . This is unpractical,

given that hundreds of states play a relevant role. To get some
understanding, we consider a toy system where only one state 1
can be produced, and only one state 3 can annihilate. State 1 can
decay to state 2, which can decay to state 3. Then, assuming that
the rates are faster than the Hubble rate, one can reduce the
network of Boltzmann equations [13] to the single Boltzmann
equation (3) for the total gluino density, controlled by an effective
annihilation rate equal to ℘γ1 where

℘ ¼ BR12BR23; BR12 ¼
Γ12

Γ12 þ Γbreak
1

;

BR23 ¼
Γ23

Γ23 þ Γbreak
2 þ BR12Γbreak

1

; ð5Þ

where the last term takes into account that 2 can upscatter to 1.
We see that ℘ does not depend on Γann

3 and has the expected
physical meaning. In view of QCD uncertainties we cannot
compute all order unity factors, such that it is appropriate to
employ the simpler intuitive picture.
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σann ¼
Xlmax

l¼0

σl℘l: ð6Þ

A large cross section needs large l, but ℘l can be small at
large l. We compute ℘l as the probability that the g̃ g̃
bound state radiates an energy big enough to become
unbreakable (bigger than ≈T) before the next collision,
after a time Δt ∼ 1=nπvπσQCD. In such a case it becomes
unbreakable and keeps radiating until g̃ g̃ annihilate.
The key quantity to be computed is thereby the

power radiated by the relevant bound states that have
n;l ≫ 1. In the Abelian case, this is well approximated
by its classical limit: Larmor radiation. Having assumed
neutral constituents, we can neglect photon radiation.
Similarly, gravitational radiation has cosmologically negli-
gible rates Γgrav ∼ E3

B=M
2
Pl. The dominant radiation mecha-

nism is gluon radiation, which differs fromAbelian radiation
because gluons are charged under QCD. This makes a
difference when (as in our case) particles are accelerated
because of the strong force itself. While a photon can be soft
and its emission leaves the bound state roughly unchanged,
an emitted gluon has its own QCD potential energy, and its
emission changes the QCD potential among gluinos by an
order one amount (in particular, a singlet bound state
becomes an octet). As the classical limit of gluon emission
is not known, we apply the quantum formulas.
We need to compute the power radiated by highly

excited bound states, with sizes of order 1=ΛQCD.
Smaller bound states can be approximated by the

Coulomb-like nonrelativistic limit of the QCD potential
and can have various color configurations, in particular
singlets and octets. At large distances, they appear as color
singlets because they are surrounded by a soft gluon cloud
at a distance of order 1=ΛQCD, which acts as a spectator
when computing their inner behavior. In the opposite
limit, states larger than 1=ΛQCD can only be color-singlet
hadrons. For our purpose what is needed are QCD-size
bound states which are the most challenging, as confine-
ment effects are starting to be relevant. We will estimate
their effect into two opposite limits:
(8) assuming that color octet bound states are relevant,

such that radiation is dominated by single-gluon
emission (pion emission after hadronization) into
singlet states. This is computed in Sec. II B.

(1) assuming that only color singlets exist, such that
radiation is dominated by color-singlet double-gluon
emission (pion emission after hadronization) among
singlets. This is computed in Sec. II C.

While the two cases are analytically very different (e.g.,
different powers of the strong coupling), QCD is relatively
strongly coupled so that the numerical final results in the
two limiting cases will be similar.
Before starting the computations, we summarize generic

results for QCD bound states.

1. The bound states

We compute the energy levels of the g̃ g̃ bound states
assuming the nonrelativistic QCD potential

VðrÞ ¼ λ

(
− α3ðμ̄Þ

r

h
1þ α3

4π

�
11
7
þ 14ðγE þ ln μ̄rÞ

�i
r ≪ 1=ΛQCD ½16�;

− α3lattice
r þ σr r ∼ 1=ΛQCD ½17�;

ð7Þ

where λ ¼ ðCR þ CR0 − CQÞ=2 for the potential among
representation R and R0 in theQ configuration withC1 ¼ 0,
C3 ¼ 4=3, C8 ¼ 3 being the Casimirs. So λ ¼ 3 (3=2)
for the potential among octets in the singlet (octet)
configuration. Lattice simulations indicate α3lattice ≈ 0.3
and σ ≈ ð0.4 GeVÞ2. The one-loop correction to the per-
turbative term means that the QCD potential is roughly
given by the tree level potential with the strong
coupling renormalized at the renormalization group

equation scale μ̄ ≈ 1=r. At finite temperature σðTÞ ≈
σð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2=T2

QCD

q
with TQCD ≈ 170 MeV [17].

The product of two color octets decomposes as

8 ⊗ 8 ¼ 1S ⊕ 8A ⊕ 8S ⊕ 10A ⊕ 10A ⊕ 27S; ð8Þ

such that there are three attractive channels and the gluino
bound states exist in the following configurations:

Color V i:e: λ Allowed l

1S −3α3=r 3 even if S¼ 0; odd if S¼ 1

8A − 3
2
α3=r 3=2 even if S¼ 1; odd if S¼ 0

8S − 3
2
α3=r 3=2 even if S¼ 0; odd if S¼ 1

:

ð9Þ

The energy eigenvalues in a potential V ¼ −αeff=rþ σeffr
are [18]

Enl ≈
μα2eff
2

�
−

1

n2t
þ 12tnεx

�

≃
	−μα2eff=2n2 Coulomb limit

3ðxσeffÞ2=3=2μ1=3 string limit
; ð10Þ

where μ≈Mg̃=2 is the reduced mass, l¼f0;1;…g is the
angular momentum, n≥1þl, x ¼ 1.79ðn − lÞ þ l − 0.42,
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ε ¼ σeff=4α3effμ
2 is a dimensionless number, and t is the

positive solution to t ¼ 1–4n3εxt3. In the limit where the
Coulomb force dominates one has t ≃ 1 and ε ≃ 0; bound
states have size n2a0 where a0 ¼ 1=μαeff is the Bohr radius.
The linear force dominateswhen n2a0≫

ffiffiffiffiffiffiffiffiffiffiffiffi
αeff=σ

p
∼1=ΛQCD.

Figure 2 shows the energy levels with nearly zero energy
for Mg̃ ¼ 3 TeV.

2. The breaking rate

The probabilities ℘l that a given state radiates enough
energy before being broken by a collision can be computed
in two different ways.
Based on classical intuition, one can simply compare

its energy loss rate with the breaking rate. While this
simplification holds in the Abelian case, we have to deal
with a non-Abelian dynamics, where gluon emission
changes singlet to octet states, and vice versa. This is
relevant, as singlet and octet decay rates are significantly
different (especially for some singlet states that only decay
through higher-order effects, as discussed below). It is not
clear what is the classical limit of this system in the limit of
large quantum numbers n;l.
We then perform a quantum computation, determining

the ℘l by simulating transitions among the many different
states. This is feasible up to massesMg̃ ∼ 10 TeV, because
it involves a growing number of states at larger Mg̃.
We then need the breaking rate of the individual bound

states. Thermal equilibrium between direct and inverse
processes (also known as the Milne relation) does not
allow one to infer the breaking rates from the total creation
rate, because the latter is cumulative over all bound states.
We assume that the breaking rate is given by the thermal
average of the pion scattering cross section, assumed to
be equal to 1=Λ2

QCD, and perform the thermal average
hσbreakvreli over the distribution of pions with energies large
enough to break the bound states. The number density of

pions with enough energy to break a bound state with
binding energy EB is

neqπ ðEπ > EBI
Þ ≈ 3ðTðEB þmπÞÞ3=2

2
ffiffiffi
2

p
π3=2

exp

�
−
EB þmπ

T

�
;

ð11Þ
such that hΓbreaki ≈ hσbreakvrelineqπ ðEπ > EBÞ.

B. Color octet states and single-gluon emission

We here assume that two colliding g̃ can form a g̃ g̃ system
with all 64 possible color configurations of Eq. (8), and with
relative weights determined by combinatorics rather than by
energetics. Then the effective annihilation cross section is
determined summing over attractive channels as

σann ∝
1

64
σ1ann þ

1

8
ðσ8Sann þ σ8AannÞ: ð12Þ

We fix the proportionality factor to ≈4 such that the total
cross section is σQCD ¼ c=Λ2

QCD, where c ∼ 1 parametrizes
our ignorance of the overall QCD cross section. The
annihilation cross section is dominated by σ8Aann because
the state 8A radiates much more than 1 or 8S. Indeed,
because of selection rules, single-gluon emission allows the
following decays with Δl ¼ �1:

1 → 8A; 8A → 1; 8S 8S → 8A: ð13Þ

Taking hadronization into account two pions are emitted,
such that the binding energy of the final state E0

B must be
larger than EB þ 2mπ; otherwise, the decay is kinematically
blocked. If the energy gap is somehow bigger than ΛQCD,
inclusive decay rates can be reliably computed treating the
gluon as a parton.
Since the 1 state is more attractive than 8S;A, the above

conditions are easily satisfied for the 8A → 1 decay, while
1 → 8A decays are kinematically blocked at larger l and
allowed at small enough l (elliptic enough classical orbit),
but suppressed with respect to the Abelian result.
In our numerical results we sum over all possible final

states using wave functions computed in Wentzel-Kramers-
Brillouin approximation using the Langer transformation.
We also provide a simple approximated analytic result
obtained assuming Coulombian wave functions (which
is valid for deep final states, but not for the QCD-size initial
states)2

Γnlð8A → 1SÞ≈
2

n2
α53μ; Wnlð8A → 1SÞ¼

8α73μ
2

n3l
: ð14Þ

FIG. 2. Quantum energy levels of a g̃ g̃ bound state which have
energy close to 0. Values of n are shown.

2In the same approximation, the smaller energy radiated into
8S is given by a Larmor-like formula, given that the initial and the
final states are equally attractive.
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The decay rate must be compared with the thermal
breaking rate, which is given by pion scatterings such as
ðg̃ g̃Þ þ π → ðg̃gÞ þ ðg̃gÞ þ π. Since we considered bound
states made of neutral gluinos, they are not broken by
photon scatterings to leading order. The result is very
simple: the 8A decay rate is so fast that its actual value
is irrelevant; all 8A allowed states have ℘l ¼ 1 at the
relevant temperatures T ≲ ΛQCD. On the other hand, 8S and
1 states contribute negligibly. Then, the annihilation rate
is controlled by a much simpler condition: 8A bound
states with binding energy EB ∼ T only exist up to some
maximal l ≤ lmax 8, which can be easily computed. For
Mg̃ ¼ 3 TeV Fig. 2 shows that lmax 8 ≈ 25. For generic
Mg̃ ≫ T, lmax 8 is well approximated by imposing the
vanishing of Enl in Eq. (10), finding

lmax 8 ¼ ð12ϵt2Þ−1=4 ≈
�
3M2

g̃α
3
3

16σ

�
1=4

ð15Þ

having approximated t ≈ 1 in the last expression. Using
Eq. (10), the deepest available singlet state has energy gap
ΔE ¼ 9

4

ffiffiffiffiffiffiffiffiffiffi
3α3σ

p
≈ 0.9 GeV (see also Fig. 2) and can only

decay via higher order processes.
The effective annihilation cross section is

σann ≈
σ8Aann
2

≈
1

2

Xlcr
l¼0

σl ≈
1

2

2π

M2
g̃v

2
rel

l2
cr;

lcr ¼ minðlmax;lmax 8Þ: ð16Þ
At low (high) temperatures one has lcr ≃ lmax ∝ vrel
(lcr ≃ lmax 8 ∝ v0rel) such that the thermal average for
l ≫ 1 is hσannvreli ≃ 2σQCD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=πMg̃

p
(hσannvreli≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3πα33=16Mg̃Tσ
q

). Taking the minimum of these two limits

(which are equal at T ¼ Tcr ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffi
3α33=σ

q
=8σQCD with

σQCD ¼ c=Λ2
QCD), we obtain an approximation valid at a

generic intermediate T:

hσannvreli ¼ σQCD

ffiffiffiffiffiffiffiffiffi
4T
πMg̃

s 8<
:

0 for T > TQCD;

Tcr=T for Tcr < T < TQCD;

1 for T < Tcr:

ð17Þ

The Boltzmann equation of Eq. (3) is approximatively
solved by

Yg̃ð∞Þ ≈
ffiffiffiffiffiffiffiffiffiffi
45

gSMπ

s
1

Mg̃MPl

�Z
∞

Mg̃=TQCD

dz
hσannvreli

z2

�
−1

≈
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Mg̃=gSM

p
4σQCDT

3=2
cr MPlð3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TQCD=Tcr

p
− 2Þ

; ð18Þ

where the dz integral is dominated by T ∼ TQCD: for Tcr ≪
TQCD the abundance simplifies to

Yg̃ð∞Þ ≈ 1

πMPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60Mg̃σ

gSMTQCDα
3
3

s

≈ 0.610−17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mg̃

3 TeV
170 MeV
TQCD

s
: ð19Þ

The final relic abundance does not have a strong depend-
ence on σQCD, as it is only relevant at relatively low
temperatures. The DM critical density is exceeded if
Mg̃ ≳ PeV. Figure 3(a) shows the full numerical result

FIG. 3. The effective annihilation cross section of gluino g̃ g̃ bound states, assuming that they form color-octet 8A states (left) or only
color-singlet states (right). The solid curves are the numerical computation, and the dashed lines are the maximal geometrical cross
sections given by the analytic approximation.
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for hσannvreli, which agrees with the analytic maximal value
(apart from some smoothing at T ∼ Tcr) up to about
50 MeV: thereby the numerical abundance is better
reproduced lowering TQCD to 50 MeV in Eq. (19). This
is done in the analytic estimate plotted in Fig. 1.

C. Color-singlet states and two-gluon emission

Single-gluon emission switches the color of the bound
state as 1 ↔ 8 and its angular momentum l by �1: as
a consequence kinematics blocks single-gluon decays of
various color-singlet bound states, roughly all the ones in

Fig. 2 that do not have nearby octet states. In particular,
decays of singlet states with maximal l are blocked, and
octet states with maximal l can (but need not) decay to
singlets with blocked decays.
We thereby take into account two-gluon emission, which

allows for 1 → 1 decays with Δl ¼ f0;�2g. The rates of
2g transitions are mildly suppressed by Oðα33Þ compared
with the 1g decay rates. If the energy differenceΔE is much
bigger than ΛQCD, gluon hadronization proceeds with unit
probability and the 2g decay widths can be computed using
second order nonrelativistic perturbation theory [19],

Γ2g
n;l→n0;l0 ≈

3α23
16π

Z
ΔE

0

dkk3ðΔE − kÞ3

×
X
m;m0





hψn;l;mjri
	

1

−En0;l0 þH8 − k
þ 1

−En0;l0 þH8 − ðΔE − kÞ
�
rijψn0;l0;m0 i





2; ð20Þ

where ri ¼ fx; y; zg is the relative distance between the
two g̃; k is the momentum of the hadron produced in the
hadronization of the two outgoing gluons,ΔE¼En0;l0−En;l
andH8 the free Hamiltonian of the virtual intermediate octet
state. The angular part of thematrix elements, already carried
out in Eq. (20), imposes the selection rule jl0 − lj ¼ 0, 2.
The two-gluon 1 ↔ 1 rates are given by an Abelian-like
expression, unlike theone-gluon1 ↔ 8 transitions. The rates
for 8 → 8 two-gluon transitions are given by a similar
expression, with H8 replaced by H1.
Hadronization is possible down to the kinematical limit

ΔE ≈ 2mπ . However, the energy difference between two
singlet states with maximal l, jΔlj ¼ 2, and nearby n is
∼σ3=4α−1=43 M−1=2

g̃ , which, in view of the Mg̃ suppression,
can be smaller than 2mπ . In such a case the decay can still
proceed through off-shell pions, which produce photons
and leptons. We estimate these suppressed decays follow-
ing Sec. 5. 6 of [20]. We neglect multigluon emission,
which allows bigger jumps in l.
The 2g rates are included in numerical computations

which assume that QCD-scale color octets exist. The result
was discussed in the previous subsection, as 2g decays give
a relatively minor correction.
We consider the opposite extreme possibility that octet

states with QCD size do not exist and that only color
singlets exist. We can again obtain an analytic lower bound
on the final g̃ abundance by assuming that all singlet levels
fall fast. Then the cross section σann ≈ σ1ann is only limited
by lmax 1 ¼

ffiffiffi
2

p
lmax 8 such that

hσannvreli ¼ σQCD

ffiffiffiffiffiffiffiffiffi
16T
πMg̃

s 8<
:

0 for T > TQCD;

Tcr=T for Tcr < T < TQCD;

1 for T < Tcr;

ð21Þ

where now Tcr ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffi
3α33=σ

q
=4σQCD. The resulting relic

gluino abundance is 2 times lower than in Eq. (18) and with
the new value of Tcr. Figure 3(b) shows that this limit only
holds at T ≲ 20 MeV, such that the analytic expression
reproduces the numerical value for Yg̃ by reducing TQCD

to ∼20 MeV.

III. PHENOMENOLOGY

A. Cosmological bounds and signatures

Bounds on quasistable relics depend on their lifetime τg̃;
on their mass Mg̃; on their relic abundance, which for
gluinos we computed in terms of Mg̃; and on their decay
modes. As mentioned above, we assume that gluinos decay
to neutralinos [assumed to be the lightest supersymmetric
particle (LSP)] plus either a gluon or a quark and an
antiquark. Here we assume that half of the gluino energy is
carried away by the LSP; if the LSP is not much lighter than
the gluino, even less energy goes into SM states and one
would obtain weaker bounds.
Our final result is plotted in Fig. 4, using the thick red

dashed line of Fig. 1: even using updated experimental
bounds (discussed below), our bounds on a (quasi)stable
gluino are significantly weaker than those derived in [7].
The reason is that our relic density takes into account
nonperturbative gluino annihilations and is much smaller
than the “perturbative” gluino relic density assumed in [7];
see Fig. 1. In particular, we find that a (quasi)stable gluino
just above the present collider bounds is still allowed
provided that its lifetime is smaller than about 1012 s or
larger than about 1022 s.
In the rest of this section we summarize the various

bounds on decaying relics plotted in Fig. 4, moving from
smaller to larger lifetimes.
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1. Big bang nucleosynthesis

A gluino that decays during big bang nucleosynthesis
(BBN) can disturb the successful BBN predictions of
light element abundances, which get affected in different
ways, depending on the gluino lifetime (for more details
see [21,22])3:

(i) For 0.1 s≲ τg̃ ≲ 102 s the nucleons and antinu-
cleons, as well as the mesons with relatively long
lifetimes of Oð10−8Þ s comparable to the typical
mean free time for strong interactions (i.e., charged
pions and kaons), which are produced by gluino
decays, lose energy by electromagnetic interactions
with the thermal bath before scattering with back-
ground nuclei. Thus they do not have enough energy
to destroy light nuclei. However, they increase the
interconversion rate of the protons and neutrons
present in the thermal bath, e.g., via the strong
interaction process π− þ p → π0 þ n. Since there
are more p than n in the thermal bath, this effect
increases the n=p ratio and as a consequence the
primordial 4He mass fraction Yp.

(ii) For τg̃ ≳ 102 s the gluino decay products do not
thermalize before interacting with nuclei, due to the
lower temperature of the plasma at these times.
The still energetic nucleons (the mesons decay
before they can interact) can thus hadrodissociate
4He, which in turn also increases the D abundance
(e.g., via pþ 4He → Dþ 3He).

(iii) For τg̃ ≳ 107 s photodissociation of 4He, which
induces increased 3He and D abundances, becomes
relevant. Photodissociation is not relevant at earlier
times because the γ spectrum is cut off at the
threshold energy Eγ

th ≈m2
e=ð22TÞ [25] for eþe− pair

production from energetic γ’s with thermal γ’s, so
that photons are not energetic enough to break up
nuclei.

The resulting constraints have been computed in [21] and
updated and improved in [22]. The constraints are given in
the ðτX; ξXÞ plane for different main decay modes of X,
where X is the unstable relic (the gluino in our case) and
ξX ¼ EvisYX is its destructive power. Since we assume that
half of gluinos’ energy is carried away by the LSP we have
Evis ≈Mg̃=2. The bounds for the various hadronic decay
modes are similar since in all cases they induce hadronic
showers, and our bounds are based on the plot for the
tt̄ mode.
The effects from photodissociation depend only on the

total injected energy, so that for τg̃ ≳ 107 s the bounds do
not explicitly depend on Mg̃ to a good approximation. At
earlier times, the effects depend on the number of hadrons
produced in the hadronization process, which scales with
a power of Mg̃. Thus we fit the bounds, given in [22] for
MX ¼ 1 TeV, 10 TeV, 102 TeV, 103 TeV, to a power-law
function of Mg̃.
The left-handed panel of Fig. 4 shows the resulting

bounds in green. In the right-hand panel we show the same
bounds with the gluino lifetime computed as a function of
the SUSY breaking scale mSUSY.

2. Distortion of the CMB blackbody spectrum

Gluinos with lifetimes between ∼107 s and ∼1013 s (the
latter corresponds to recombination) can lead to deviations

FIG. 4. Cosmological constraints on long-lived gluinos. Left: As a function of the gluino lifetime. Right: As a function of the sfermion
mass scale mSUSY, which in split supersymmetry determines the gluino lifetime.

3In addition, gluinos could also disturb the BBN predictions if
they participate themselves in the nuclear reactions occurring
during BBN [23,24]. This would be the case if the gluino R
hadrons bind into nuclei that are relevant during BBN. Since we
do not know whether this is the case, we ignore such effects here.
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of the cosmic microwave background (CMB) spectrum
from a blackbody form. When the Universe is 107 s old,
photon number changing processes such as double
Compton scattering are not efficient any more, so that
photons injected into the plasma can induce a chemical
potential μ ≃ 1.41 δϵ=ϵ [26] in the Bose-Einstein distribu-
tion of the CMB radiation, where [27]

δϵ

ϵ
≃ 4× 10−3

ffiffiffiffiffiffiffiffiffiffi
τg̃

106 s

r
Mg̃Yg̃Bγ

10−9 GeV
exp

�
−
�
6.1× 106 s

τg̃

�
5=4

�
:

ð22Þ

After ∼4 × 1011Ωbh2 s [27], elastic Compton scatterings
do not maintain thermal equilibrium anymore. An injection
of photons “Comptonizes” the spectrum; i.e., it leads to a
mixture of blackbody spectra of different temperatures.
This is described by the Compton y parameter, given by
y ¼ δϵ=4ϵ [26].
The 95% C.L. limits from the FIRAS instrument on the

COBE satellite are jμj < 9 × 10−5 and jyj < 1.5 × 10−5

[28,29]. The resulting constraints on the gluino lifetime are
shown in pink in Fig. 4. Here we assumed that ∼45%
(see, e.g., [30]) of the energy that is not carried away by the
LSP goes into photons. The resulting bounds are less
constraining than the BBN bounds. However, future
bounds from PIXIE [31] will be stronger by 2 to 3 orders
of magnitude, making the CMB sensitivity potentially
stronger than the BBN constraints.

3. CMB anisotropies

The electromagnetic energy ejected into the gas at or
after recombination by decaying relics modifies the fraction
of free electrons and heats the intergalactic medium. This
leads to modifications of the CMB angular power spec-
trum, measured by Planck. The maximally allowed density
of a long-lived relic as a function of its lifetime has been
computed assuming decay products with fixed energies in
the range from 10 keV up to 10 TeV [32], respectively,
1 TeV [33]. The eþ; e−; γ from hadronic decays do not have
fixed energies, and moreover we do not know the energy
spectrum of the decay products of relics with a mass
significantly larger than 10 TeV. For very large gluino
masses the bounds we show are therefore only indicative.
We consider the middle of the band in [33] and obtain
bounds by assuming that half of gluinos’ energy goes into
SM states and that 60% (see, e.g., [30]) of the latter goes
into eþ; e−; γ. In Fig. 4 we show the resulting constraints
for a gluino with a lifetime ≳1012 s in yellow.

4. The 21 cm line

If confirmed, the observation of an absorption feature in
the low energy tail of the CMB spectrum [34] allows us to
put an upper bound on the temperature of the intergalactic
medium (IGM) at redshift z ≈ 17. Decays of relic particles

during the dark ages are constrained, mainly because they
inject energy in the IGM heating it, erasing the absorption
feature. Bounds on decaying DM particles, with masses up
to 10 TeV, have been computed in [35–37]. We rescale
these bounds to a generic abundance, still assuming that
half of gluino energy goes into SM states and that 60% (see,
e.g., [30]) of the latter goes into eþ; e−; γ. The result is
shown in Fig. 4. Similar to the case of the CMB bounds in
the previous section, the 21 cm bounds for very large gluino
masses are only indicative and subject to significant
uncertainty.

5. Constraints from gamma-ray telescopes
and neutrino detectors

Decaying gluinos with larger lifetimes are constrained by
the measurement of cosmic ray spectra, in particular of
photons or neutrinos. We adopt the results of the authors
of [38] who computed limits on the lifetime of DM decaying
to bb̄, from data from the Fermi gamma ray telescope and
the neutrino detector IceCube, up to a DM mass of
1012 GeV.We rescale the bounds of [38] taking into account
that the density of our relics differs from the DM density. The
authors of Ref. [38] derive bounds assuming a relic that
decays to bb̄. We assume that 50% of the gluino’s energy
goes to the LSP and the rest goes into hadronic decay
channels, which lead to similar spectra as bb̄. Figure 4 shows
the resulting constraints on a long-lived gluino from Fermi
(in blue) and IceCube (in orange). The IceCube limits exceed
the bounds from Fermi data for Mg̃ ≳ 107 GeV.

6. Searches for supermassive nuclei

Coming finally to stable gluinos, lattice simulations
indicate that they would form neutral g̃g hadrons [39], as
well as a minor component of baryonic states such as g̃uud
(according to [40] the lightest gluino baryon could be g̃uds).
They behave as strongly interacting Dark Matter. This is
allowed by the bounds from direct detection experiments
performed in the upper atmosphere and by searches for
supermassive nuclei in the Earth and in meteorites if their
relic abundance is a few orders of magnitude smaller than the
cosmological DM abundance, although the precise bound is
subject to considerable uncertainties (see the discussion in
[8]). In Fig. 4 we indicate the tentative constraints that arise
from the search for supermassive nuclei in meteorites by
Rutherford backscattering of 238U, NSIMP=Nnjmeteorites ≲ 2 ×
10−12 [41], assuming a heavy nuclei capture cross section
of σcapture ¼ 10−2=Λ2

QCD. Presumably, there is still an open
window, from TeV masses above the LHC [9] up to about
10 TeV.

7. Higgs mass

In the right panel of Fig. 4 we considered split super-
symmetry, such that the gluino lifetime is computed as
a function of the sfermion mass mSUSY; see Eq. (1).
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This scale is further constrained within the split minimal
supersymmetric Standard Model by the observed Higgs
mass, which is reproduced within the green region (for
different values of tan β) in the ðM3; mSUSYÞ plane. We
computed Mh as in [6], assuming that gauginos and
Higgsinos are degenerate at the gluino mass M3 and that
all scalars are degenerate at mSUSY. Allowing the masses to
vary and taking into account uncertainties on Mt and α3
slightly expands the region. Within the Higgs-allowed
region the gluino decays promptly on cosmological time-
scales, evading all cosmological bounds.
No prediction for the Higgs mass arises in extensions of

the minimal supersymmetric Standard Model. However,
roughly the same region is obtained imposing the meta-
stability bound on Higgs vacuum decay, which implies that
the Higgs quartic λH cannot be too negative, λH ≳ −0.05.
A substantially larger mSUSY, such that the gluino is long
lived, is obtained assuming that Higgsinos are heavy
(possibly with masses of order mSUSY: in such a case
the renormalization group equation for the Higgs quartic
are those of the SM (with slightly different values of g2;3
due to the light gluino and wino), and the Higgs quartic can
remain positive up to mSUSY ∼MPl within the uncertainty
range for the top quark mass.

B. Collider signals

Next, we discuss some aspects of the phenomenology of
long-lived gluinos at hadron colliders, in particular LHC.
Long-lived gluinos can be pair produced and after hadro-
nization form long-lived hybrid states with SM quarks and
gluons, known as “R hadrons.” We conservatively assume
that the signal at the LHC is just energy deposit in the
calorimeter, rather than charged particles in the tracker. It is
difficult to trigger on these events and so an initial state jet
is required. The LHC places the limitMg̃ > 1.55 TeV on a
Majorana gluino [42].
The other possibility is the production of a g̃ g̃ bound

state. Assuming that states with l ¼ 0 dominate the rates,
they are color 8A with spin S ¼ 1 and color singlets or 8S
with S ¼ 0 [see Eq. (9)]. The production cross sections are
given by gluon and quark fusion, respectively,

σ0 ¼
X∞
n¼1

Lgg

2Mg̃sn3
ðΓ1

gg þ 8Γ8S
ggÞ

¼ ζð3ÞLgg

2Mg̃s
ðΓ1

gg þ 8Γ8S
ggÞ; ð23Þ

σ1 ¼ 2
X∞
n¼1

LuuΓ
8A
uu þ LddΓ

8A
dd

Mg̃sn3

¼ 2ζð3Þ
Mg̃s

ðLuuΓ
8A
uu þ LddΓ

8A
ddÞ; ð24Þ

where Lij is the luminosity of partons ij. The decay rates
are given by [8]

Γ1
gg

Mg̃
¼ 9α53λ

3
1

2F
;

Γ8S
gg

Mg̃
¼ 9α53λ

3
8

8F
;

Γ8A
qq

Mg̃
¼ 3α53λ

3
8

2F
; ð25Þ

with F ¼ 2 for the Majorana gluino and F ¼ 1 for a Dirac
particle, and with the channel strengths λ1 ¼ 3 and
λ8 ¼ 3=2.
Since the resonances annihilate to two gluons or two

quarks, we assume a 100% branching ratio to two jets
and apply the LHC dijet bounds [43] to the sum of the
cross sections. In Fig. 5 we compare the bounds on the
resonances to, slightly stronger, the R-hadron bound.
Concerning future colliders, the expected reach of a

100 TeV hadron collider with 1000 fb−1 is 7 (9) TeV for a
Majorana (Dirac) gluino, having used [44] to perform an
approximate rescaling. The R-hadron search would then
reach 10 TeV and 14.5 TeV, respectively. Thus a 100 TeV
collider would reach the benchmark mass of a thermally
produced Dirac gluino, which recently was found to be a
dark matter candidate [8].

C. Implications for dark matter coannihilations

The thermal relic abundance of a particle is affected by
coannihilations with particles of similar mass. One example
is coannihilations of neutralino DM with heavier colored
particles, e.g., gluinos. Coannihilations can be enhanced by
Sommerfeld corrections [12] and bound-state formation
[13,45]. We point out that a much bigger effect is produced
by nonperturbative QCD effects after the QCD phase
transition, if the mass splitting ΔM between the coanni-
hilating species is comparable to or smaller than ΛQCD.
Such a near degeneracy is unnatural. This is shown in
Fig. 7(a) in the neutralino/gluino coannihilation case,
assuming that squarks mediate fast neutralino/gluino rates.

FIG. 5. The black curve is the dijet upper bound on the cross
section for production of spin-1 and spin-0 bound states from
LHC data at 13 TeV; the red (green) curve is the theoretical
prediction assuming a Majorana (Dirac) gluino. From this we
derive the experimental bounds (vertical lines). The thin vertical
line shows the bound from R-hadron searches.
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We see that the neutralino mass that reproduces the
observed DM density gets much higher at ΔM ≲ GeV.
In the limit ΔM ≪ GeV the relic abundance is dominantly
set by the new QCD annihilations. As a result, the
neutralino mass can reach up to a PeV, heavier than the
maximal relic DM mass allowed if DM annihilations are
dominated by partial waves with low l [14].

D. Quasistable squark

In the previous sections we considered a Majorana
gluino. A real scalar in the octet of SUð3Þc would behave
similarly to the Majorana gluino. On the other hand, a
(quasi)stable particle in the fundamental 3 of color SUð3Þc
can behave in a qualitatively different way. Since the 3 is
a complex representation, the particle must be a complex
scalar or a Dirac fermion, which can carry a conserved
charge.
For definiteness, we consider the possibility of a (quasi)

stable squark, and more specifically a stop t̃, as renormal-
ization group equation effects tend to make t̃ lighter than
other squarks. A stable stop arises if t̃ is the lightest SUSY
particle (LSP) and R parity is conserved. A quasistable stop
arises if R parity is almost conserved, or if the stop decays
slowly into the LSP: this can happen, e.g., when the LSP is a
gravitino. Collider bounds on stops [46] tend to ignore the
possibility that the lighter stop t̃ is the (quasi)stable LSP,
because it is perceived to be already excluded by cosmology.
In cosmology, perturbative QCD t̃t̃� → gg annihilations

dominate over t̃ t̃ → tt annihilations and leave a roughly
equal amount of relic t̃ and t̃�. Perturbative QCD annihi-
lations are enhanced by Sommerfeld and bound-state
effects, computed in [13]. The relic t̃ abundance after
perturbative annihilations is plotted in Fig. 6 and approxi-
mated by

nt̃
s
≈

Mt̃

MPlα
2
3

: ð26Þ

For Mt̃ < PeV this is smaller than the baryon asymmetry
nb=s ∼ 10−10 that we neglect given that its effect is model
dependent. Indeed, we do not know how the baryon
asymmetry is generated: it might be generated at the weak
scale such that it would not affect heavier stops. Even if a
baryon asymmetry is present at stop decoupling, t̃ t̄ ↔ t̃�t
scatterings could easily concentrate the baryon asymmetry
to lighter baryons fast enough that the asymmetry is
irrelevant for stops. If instead the baryon asymmetry
enhances the relic stop abundance, bounds would become
stronger.
After the QCD phase transition, stops form hadrons. In

view of the large QCD cross sections, the stop hadrons with
dominant abundance are deeply bounded states that contain
stops only. They are t̃t̃� and the charged baryons t̃ t̃ t̃. Both
fall to the ground state and decay through annihilations of
the constituents. In particular, a bound state containing two
or more stops decays, in its ground state, with a lifetime
Γt̃ t̄ ∼ α33M

3
t̃ σ t̃ t̄vrel where the cross section for t̃ t̃ → tt can

be roughly estimated as σ t̃ t̄vrel ∼
P

i¼f1;2;3gα2i =M
2
i , ignor-

ing possible extra velocity suppressions. Then, Γt̃ t̄ is
cosmologically fast unless gauginos (with masses Mi)
are heavier than ∼1010 GeV.
We expect a roughly equal number of t̃t̃� annihilations

for each produced t̃ t̃ t̃ given that QCDgroup algebra implies
that both t̃t̃� and t̃ t̃ feel an attractive Coulombian QCD
force, such that they can form deep, unbreakable,
Coulombian bound states. Assuming that a t̃ binds with
probability ℘ to a t̃ and with probability 1 − ℘ to a t̃� and
thereby that a deep t̃ t̃ binds with probability 1 − ℘ to t̃ and
with probability ℘ to a t̃�, the average number of t̃t̃� per
produced baryon is

hNt̃t̃� i
hNt̃ t̃ t̃ þ Nt̃� t̃� t̃� i

¼ 1=℘þ 1=ð1 − ℘Þ − 1

rþ 1=r − 1
: ð27Þ

This equals 3 assuming no baryon asymmetry r≡ Nt̃=N�̃
t

and ℘ ¼ 1=2, namely neglecting that t̃t̃� is more attractive
than t̃ t̃. Extra hadrons and mesons that contain quarks have
a much smaller abundance that is not relevant here. If the
charge 2 states t̃ t̃ t̃ decay fast on cosmological scales, final
abundances and bounds are similar to the gluino case. If
(quasi)stable, they are instead subject to strong cosmologi-
cal constraints. In particular, during BBN t̃�t̃� t̃� can bind to
4He reducing its charge and thereby the Coulomb suppres-
sion of nuclear reactions, opening up a new channel for 6Li
production,

ðt̃�t̃�t̃� 4HeÞ þD → 6Liþ t̃�t̃�t̃�; ð28Þ

which can strongly alter lithium abundances (see [47] for a
brief review). Charge −1 states with lifetime ≳105 are
subject to the BBN bound Y ≲ 2.5 × 10−17 [23]. A study of
analogous constraints on relics with charge−2 is beyond the
scope of this paper.

FIG. 6. Stop relic abundances. The t̃ t̃ t̃ baryons could be
relatively long lived and have an abundance not suppressed by
QCD confinement effects.
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Next, we study the scenario where a quasistable stop
coannihilates with a slightly lighter DM neutralino.
Postconfinement effects are relevant if ΔM ≲ GeV.
Roughly half of the stops form t̃t̃� mesons, and the others
form t̃ t̃ t̃ baryons. The impact on the DM abundance is very
different, depending on which process dominates t̃ t̃ t̃
decays. If it is dominated by stop annihilations into SM
particles, postconfinement effects strongly suppress the
DM abundance, similar to the gluino/neutralino coannihi-
lation scenario. A much smaller order one effect is obtained
if instead stops decay to DM neutralinos and SM particles
with rate Γt̃ ≳ Γt̃ t̃. The region where the DM abundance is
reproduced is estimated in Fig. 7(b) in the two extreme
possibilities, having assumed σQCD ¼ 1=Λ2

QCD.

IV. CONCLUSIONS

We have reconsidered the relic abundance of neutral
colored relics, finding that hadron collisions at temper-
atures below the QCD scale reduce it by a few orders of
magnitude. In particular, we considered a quasistable
gluino: Fig. 1 shows its relic abundance, and Fig. 4 the
cosmological constraints, taking into account the new effect
and new data.
Coannihilations between gluinos and neutralino DM are

similarly strongly affected by confinement, provided that
their mass difference is smaller than a few GeV, as shown in
Fig. 7(a).
In Sec. III D we considered charged colored relics,

considering, in particular, the case of a quasistable stop.
In this case, confinement gives a big contribution to
coannihilations with neutralinos only if t̃ t̃ t̃ baryons decay
into SM particles via t̃ t̃ → tt before that stop decays to
neutralinos.
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APPENDIX: NON-ABELIAN BOUND STATES

Production cross sections and decay widths of two-body
bound states due to perturbative non-Abelian gauge inter-
actions have been given in [13], for bound states with low
angular momentum l. Following the same notations, in
Sec. A 2 we generalize the decay widths to any l. Although
not needed in this work, in Sec. A 1 we also show the cross
sections for formation of bound states with generic l. We
consider emission of a single-vector Va in dipole approxi-
mation, such that the angular momenta of the initial and
final states differ by Δl ¼ �1. We denote with α the non-
Abelian gauge coupling, withMa the vector mass, and with
M the common mass of the two particles that form the
bound state.

1. Cross sections for bound state formation

Production of a bound state with angular momentum l
proceeds from initial states with angular momentum l� 1:
ðσnlbsfvrelÞa ¼ ðσnbsfvrelÞl−1→l

a þ ðσnbsfvrelÞlþ1→l
a . The cross

sections are

FIG. 7. Nonperturbative QCD annihilations that take place at T ≲ ΛQCD significantly increase the DM neutralino mass such that the
observed DM abundance is reproduced through coannihilations with gluinos (left) or stops (right), if their mass difference with
neutralinos is smaller than a few GeV. In the case of stops (right panel), the big effect is only estimated and present only if stop baryons
decay to SM particles before decaying to neutralinos; otherwise confinement only gives a Oð1Þ effect.
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ðσnbsfvrelÞlþ1→l
a ¼ 8ðlþ 1Þ

2lþ 3

αk
M2

�
1 −

k2

3ω2

�

×






Z

r2dr × R�
nl;j0i0

�
1

2
ðTa

i0iδjj0 − T̄a�
j0jδii0 Þ

�
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lþ 2

r

�
− i

αM
2

ðTb
i0iT̄

c
j0jf

abcÞe−Mar

�
Rp;lþ1;ij





2 ðA1Þ

or, equivalently, integrating by parts

ðσnbsfvrelÞlþ1→l
a ¼ 8ðlþ 1Þ

2lþ 3

αk
M2

�
1 −

k2

3ω2

�

×






Z

r2drRp;lþ1;ij

�
1

2
ðTa

i0iδjj0 − T̄a�
j0jδii0 Þ

�
∂r −

l
r

�
þ i

αM
2

ðTb
i0iT̄

c
j0jf

abcÞe−Mar

�
R�
nl;j0i0





2; ðA2Þ

where Rnl;ij is the bound state wave function in the two-particle space jii ⊗ jji and Rpl;ij is the wave function of the initial
free state with relative momentum p and angular momentum l. The other cross section is

ðσnbsfvrelÞl−1→l
a ¼ 8l

2l − 1

αk
M2

�
1 −

k2

3ω2

�

×






Z

r2drR�
nl;j0i0

�
1

2
ðTa

i0iδjj0 − T̄a�
j0jδii0 Þ

�
∂r −

l − 1

r

�
− i

αM
2

ðTb
i0iT̄

c
j0jf

abcÞe−Mar

�
Rp;l−1;ij





2: ðA3Þ

The formulas above simplify if the gauge group is unbroken, or at least if all vectors have a common mass. Then, a
decomposition into irreducible representations allows one to reduce the cross sections to Abelian-like expressions:

ðσnbsfνrelÞlþ1→l
a ¼ 8ðlþ 1Þ

2lþ 3

αk
M2

�
1 − k2

3ω2

�




Z

r2drR�
nl

�
CaMM0
J

�
∂r þ

lþ 2

r

�
þ CaMM0

T

αM
2

e−Mar

�
Rp;lþ1





2;
ðσnbsfνrelÞl−1→l

a ¼ 8l
2l − 1

αk
M2

�
1 − k2

3ω2

�




Z

r2drR�
nl

�
CaMM0
J

�
∂r þ

l − 1

r

�
þ CaMM0

T

αM
2

e−Mar

�
Rp;l−1





2; ðA4Þ

where the group-theory part has been factored out in the coefficients

CaMM0
J ≡ 1

2
CGM

ijCG
M0�
i0j0 ðTa

i0iδjj0 þ Ta�
j0jδii0 Þ ¼

1

2
Tr½CGM0fCGM; Tag�; ðA5aÞ

CaMM0
T ≡ iCGM

ijCG
M0�
i0j0 ðTb

i0iT
c
jj0f

abcÞ ¼ iTr½CGM0
TbCGMTc�fabc ðA5bÞ

that hold separately for each initial channel J and final channel J0, using the notations of [13].

2. Bound state decays

The decay widths of a bound state through single-vector emission are obtained from the previous expressions substituting
the free-particle final state wave function Rpl with the wave function of the desired final bound states. Assuming again
degenerate (or massless) vectors and a bound state in a representation R with dimension dR, we find

Γðn;l → n0;l − 1Þ ¼ 1

dR

8l
ð2lþ 1Þ

αk
M2

�
1 −

k2

3ω2

�

×
X
aMM0






Z

r2drR�
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�
CaMM0
J

�
∂r þ

lþ 1

r

�
þ CaMM0

T

αM
2

e−Mar

�
Rnl





2 ðA6Þ

and

GROSS, MITRIDATE, REDI, SMIRNOV, and STRUMIA PHYS. REV. D 99, 016024 (2019)

016024-12



Γðn;l → n00;lþ 1Þ ¼ 1

dR

8ðlþ 1Þ
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�

×
X
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�
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J

�
∂r −

l
r

�
þ CaMM0

T
αM
2

e−Mar

�
Rnl





2: ðA7Þ

[1] L. Giusti, A. Romanino, and A. Strumia, Natural ranges of
supersymmetric signals, Nucl. Phys. B550, 3 (1998).

[2] A. Strumia, The fine-tuning price of the early LHC, J. High
Energy Phys. 04 (2011) 073.

[3] N. Arkani-Hamed and S. Dimopoulos, Supersymmetric
unification without low energy supersymmetry and signa-
tures for fine-tuning at the LHC, J. High Energy Phys. 06
(2005) 073.

[4] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A.
Romanino, Aspects of split supersymmetry, Nucl. Phys.
B709, 3 (2004).

[5] G. F. Giudice and A. Strumia, Probing high-scale and split
supersymmetry with Higgs mass measurements, Nucl.
Phys. B858, 63 (2012).

[6] E. Bagnaschi, G. F. Giudice, P. Slavich, and A. Strumia,
Higgs mass and unnatural supersymmetry, J. High Energy
Phys. 09 (2014) 092.

[7] A. Arvanitaki, C. Davis, P. W. Graham, A. Pierce, and J. G.
Wacker, Limits on split supersymmetry from gluino cos-
mology, Phys. Rev. D 72, 075011 (2005).

[8] V. De Luca, A. Mitridate, M. Redi, J. Smirnov, and A.
Strumia, Colored Dark Matter, Phys. Rev. D 97, 115024
(2018).

[9] J. Kang, M. A. Luty, and S. Nasri, The Relic abundance of
long-lived heavy colored particles, J. High Energy Phys. 09
(2008) 086.

[10] M. Toharia and J. D. Wells, Gluino decays with heavier
scalar superpartners, J. High Energy Phys. 02 (2006) 015.

[11] P. Gambino, G. F. Giudice, and P. Slavich, Gluino decays in
split supersymmetry, Nucl. Phys. B726, 35 (2005).

[12] A. De Simone, G. F. Giudice, and A. Strumia, Benchmarks
for Dark Matter searches at the LHC, J. High Energy Phys.
06 (2014) 081.

[13] A. Mitridate, M. Redi, J. Smirnov, and A. Strumia,
Cosmological implications of Dark Matter bound states,
J. Cosmol. Astropart. Phys. 05 (2017) 006.

[14] K. Griest and M. Kamionkowski, Unitarity Limits on the
Mass and Radius of Dark Matter Particles, Phys. Rev. Lett.
64, 615 (1990).

[15] M. Geller, S. Iwamoto, G. Lee, Y. Shadmi, and O. Telem,
Dark quarkonium formation in the early universe, J. High
Energy Phys. 06 (2018) 135.

[16] W. Fischler, q-q̄ Potential in QCD, Nucl. Phys. B129, 157
(1977); Y. Schroder, The static potential in QCD to two
loops, Phys. Lett. B 447, 321 (1999).

[17] P. Bicudo, The QCD string tension curve, the ferromagnetic
magnetization, and the quark-antiquark confining potential
at finite temperature, Phys. Rev. D 82, 034507 (2010);

P. Petreczky, Lattice QCD at non-zero temperature, J. Phys.
G 39, 093002 (2012); S. Aoki et al., Review of lattice results
concerning low-energy particle physics, Eur. Phys. J. C 77,
112 (2017); G. S. Bali, Casimir scaling of SUð3Þ static
potentials, Phys. Rev. D 62, 114503 (2000).

[18] R. L. Hall, Simple eigenvalue formula for the Coulomb plus
linear potential, Phys. Rev. D 30, 433 (1984).

[19] G. Bhanot and M. E. Peskin, Short distance analysis for
heavy quark systems. 2. Applications, Nucl. Phys. B156,
391 (1979).

[20] A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, Dark
Matter as a weakly coupled dark baryon, J. High Energy
Phys. 10 (2017) 210.

[21] M. Kawasaki, K. Kohri, and T. Moroi, Big-Bang nucleo-
synthesis and hadronic decay of long-lived massive par-
ticles, Phys. Rev. D 71, 083502 (2005).

[22] M. Kawasaki, K. Kohri, T. Moroi, and Y. Takaesu,
Revisiting big-bang nucleosynthesis constraints on long-
lived decaying particles, Phys. Rev. D 97, 023502 (2018).

[23] M. Pospelov, Particle Physics Catalysis of Thermal Big
Bang Nucleosynthesis, Phys. Rev. Lett. 98, 231301
(2007).

[24] M. Kusakabe, T. Kajino, T. Yoshida, and G. J. Mathews,
Effect of long-lived strongly interacting relic particles
on big bang nucleosynthesis, Phys. Rev. D 80, 103501
(2009).

[25] M. Kawasaki and T. Moroi, Electromagnetic cascade in the
early universe and its application to the big bang nucleo-
synthesis, Astrophys. J. 452, 506 (1995).

[26] E. L. Wirght et al., Interpretation of the COBE FIRAS
spectrum, Astrophys. J. 420, 450 (1994).

[27] W. Hu and J. Silk, Thermalization Constraints and Spectral
Distortions for Massive Unstable Relic Particles, Phys. Rev.
Lett. 70, 2661 (1993).

[28] FIRAS Collaboration, Measurement of the cosmic micro-
wave background spectrum by the COBE FIRAS instru-
ment, Astrophys. J. 420, 439 (1993).

[29] D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A.
Shafer, and E. L. Wright, The cosmic microwave back-
ground spectrum from the full COBE FIRAS data set,
Astrophys. J. 473, 576 (1996).

[30] M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P.
Panci, M. Raidal, F. Sala, and A. Strumia, PPPC 4 DM ID:
A poor particle physicist cookbook for Dark Matter indirect
detection, J. Cosmol. Astropart. Phys. 03 (2011) 051;
Erratum, 10 (2012) E01.

[31] PIXIE Collaboration, The Primordial Inflation Explorer
(PIXIE): A nulling polarimeter for cosmic microwave

COSMOLOGICAL ABUNDANCE OF COLORED RELICS PHYS. REV. D 99, 016024 (2019)

016024-13

https://doi.org/10.1016/S0550-3213(99)00153-4
https://doi.org/10.1007/JHEP04(2011)073
https://doi.org/10.1007/JHEP04(2011)073
https://doi.org/10.1088/1126-6708/2005/06/073
https://doi.org/10.1088/1126-6708/2005/06/073
https://doi.org/10.1016/j.nuclphysb.2004.12.026
https://doi.org/10.1016/j.nuclphysb.2004.12.026
https://doi.org/10.1016/j.nuclphysb.2012.01.001
https://doi.org/10.1016/j.nuclphysb.2012.01.001
https://doi.org/10.1007/JHEP09(2014)092
https://doi.org/10.1007/JHEP09(2014)092
https://doi.org/10.1103/PhysRevD.72.075011
https://doi.org/10.1103/PhysRevD.97.115024
https://doi.org/10.1103/PhysRevD.97.115024
https://doi.org/10.1088/1126-6708/2008/09/086
https://doi.org/10.1088/1126-6708/2008/09/086
https://doi.org/10.1088/1126-6708/2006/02/015
https://doi.org/10.1016/j.nuclphysb.2005.08.011
https://doi.org/10.1007/JHEP06(2014)081
https://doi.org/10.1007/JHEP06(2014)081
https://doi.org/10.1088/1475-7516/2017/05/006
https://doi.org/10.1103/PhysRevLett.64.615
https://doi.org/10.1103/PhysRevLett.64.615
https://doi.org/10.1007/JHEP06(2018)135
https://doi.org/10.1007/JHEP06(2018)135
https://doi.org/10.1016/0550-3213(77)90026-8
https://doi.org/10.1016/0550-3213(77)90026-8
https://doi.org/10.1016/S0370-2693(99)00010-6
https://doi.org/10.1103/PhysRevD.82.034507
https://doi.org/10.1088/0954-3899/39/9/093002
https://doi.org/10.1088/0954-3899/39/9/093002
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1103/PhysRevD.62.114503
https://doi.org/10.1103/PhysRevD.30.433
https://doi.org/10.1016/0550-3213(79)90200-1
https://doi.org/10.1016/0550-3213(79)90200-1
https://doi.org/10.1007/JHEP10(2017)210
https://doi.org/10.1007/JHEP10(2017)210
https://doi.org/10.1103/PhysRevD.71.083502
https://doi.org/10.1103/PhysRevD.97.023502
https://doi.org/10.1103/PhysRevLett.98.231301
https://doi.org/10.1103/PhysRevLett.98.231301
https://doi.org/10.1103/PhysRevD.80.103501
https://doi.org/10.1103/PhysRevD.80.103501
https://doi.org/10.1086/176324
https://doi.org/10.1086/173576
https://doi.org/10.1103/PhysRevLett.70.2661
https://doi.org/10.1103/PhysRevLett.70.2661
https://doi.org/10.1086/173574
https://doi.org/10.1086/178173
https://doi.org/10.1088/1475-7516/2011/03/051


background observations, J. Cosmol. Astropart. Phys. 07
(2011) 025.

[32] T. R. Slatyer and C-L. Wu, General constraints on Dark
Matter decay from the cosmic microwave background,
Phys. Rev. D 95, 023010 (2017).

[33] V. Poulin, J. Lesgourgues, and P. D. Serpico, Cosmological
constraints on exotic injection of electromagnetic energy,
J. Cosmol. Astropart. Phys. 03 (2017) 043.

[34] J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J.
Mozdzen, and N. Mahesh, An absorption profile centred
at 78 megahertz in the sky-averaged spectrum, Nature
(London) 555, 67 (2018).

[35] H. Liu and T. R. Slatyer, Implications of a 21-cm signal for
Dark Matter annihilation and decay, Phys. Rev. D 98,
023501 (2018).

[36] S. Clark, B. Dutta, Y. Gao, Y.-Z. Ma, and L. E. Strigari,
21 cm limits on decaying Dark Matter and primordial black
holes, Phys. Rev. D 98, 043006 (2018).

[37] A. Mitridate and A. Podo, Bounds on Dark Matter decay
from 21 cm line, J. Cosmol. Astropart. Phys. 05 (2018) 069.

[38] T. Cohen, K. Murase, N. L. Rodd, B. R. Safdi, and Y.
Soreq, γ-Ray Constraints on Decaying Dark Matter and
Implications for IceCube, Phys. Rev. Lett. 119, 021102
(2017).

[39] M. Foster and C. Michael, Hadrons with a heavy color
adjoint particle, Phys. Rev. D 59, 094509 (1999).

[40] G. R. Farrar, R. Mackeprang, D. Milstead, and J. P. Roberts,
Limit on the mass of a long-lived or stable gluino, J. High
Energy Phys. 02 (2011) 018.

[41] S. Polikanov, C. S. Sastri, G. Herrmann, K. Lutzenkirchen,
M. Overbeck, N. Trautmann, A. Breskin, R. Chechik,
and Z. Frankel, Search for supermassive nuclei in nature,
Z. Phys. A 338, 357 (1991).

[42] ATLAS Collaboration, Reinterpretation of searches for
supersymmetry in models with variable R-parity-violating
coupling strength and long-lived R-hadrons, ATLAS-
CONF-2018-003, https://atlas.web.cern.ch/Atlas/GROUPS/
PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/.

[43] ATLAS Collaboration, Search for new phenomena in dijet
events using 37 fb−1 of pp collision data collected at

ffiffiffi
s

p ¼
13 TeV with the ATLAS detector, Phys. Rev. D 96, 052004
(2017).

[44] M. Papucci, K. Sakurai, A. Weiler, and L. Zeune, Fastlim:
A fast LHC limit calculator, Eur. Phys. J. C 74, 3163 (2014).

[45] J. Ellis, F. Luo, and K. A. Olive, Gluino coannihilation
revisited, J. High Energy Phys. 09 (2015) 127.

[46] A. Delgado, G. F. Giudice, G. Isidori, M. Pierini, and A.
Strumia, The light stop window, Eur. Phys. J. C 73, 2370
(2013).

[47] M. Pospelov and J. Pradler, Big bang nucleosynthesis as a
probe of new physics, Annu. Rev. Nucl. Part. Sci. 60, 539
(2010).

GROSS, MITRIDATE, REDI, SMIRNOV, and STRUMIA PHYS. REV. D 99, 016024 (2019)

016024-14

https://doi.org/10.1088/1475-7516/2011/07/025
https://doi.org/10.1088/1475-7516/2011/07/025
https://doi.org/10.1103/PhysRevD.95.023010
https://doi.org/10.1088/1475-7516/2017/03/043
https://doi.org/10.1038/nature25792
https://doi.org/10.1038/nature25792
https://doi.org/10.1103/PhysRevD.98.023501
https://doi.org/10.1103/PhysRevD.98.023501
https://doi.org/10.1103/PhysRevD.98.043006
https://doi.org/10.1088/1475-7516/2018/05/069
https://doi.org/10.1103/PhysRevLett.119.021102
https://doi.org/10.1103/PhysRevLett.119.021102
https://doi.org/10.1103/PhysRevD.59.094509
https://doi.org/10.1007/JHEP02(2011)018
https://doi.org/10.1007/JHEP02(2011)018
https://doi.org/10.1007/BF01288200
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-003/
https://doi.org/10.1103/PhysRevD.96.052004
https://doi.org/10.1103/PhysRevD.96.052004
https://doi.org/10.1140/epjc/s10052-014-3163-1
https://doi.org/10.1007/JHEP09(2015)127
https://doi.org/10.1140/epjc/s10052-013-2370-5
https://doi.org/10.1140/epjc/s10052-013-2370-5
https://doi.org/10.1146/annurev.nucl.012809.104521
https://doi.org/10.1146/annurev.nucl.012809.104521

