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We propose an extension of the minimal-substitution prescription for coupling the electromagnetic field to
hadronic systems with internal structure. The resulting rules of extended substitution necessarily distinguish
between couplings to scalar andDirac particles.Moreover, they allow for the incorporation of electromagnetic
form factors for virtual photons in an effective phenomenological framework. Applied to pions and nucleons,
assumed to be fully dressed to all orders, the resulting dressed currents are shown to be locally gauge invariant.
Moreover, half-on-shell expressions of ðhadron propagatorÞ × ðelectromagnetic currentÞ needed in all
descriptions of physical processes will lose all information about hadronic dressing for real photons. The
Ball-Chiu ansatz for the spin-1=2 current is seen to suffer from an incomplete coupling procedurewhere some
essential aspects of the Dirac particle are effectively treated as those of a scalar particle. Applied to real
Compton scattering onpions andnucleons,we find thatalldressing information cancels exactlywhen external
hadrons are on shell, leaving only gauge-invariant bare Born-type contributions with physical masses. Hence,
nontrivial descriptions necessarily require contact-type two-photon processes obtained by hadrons looping
around two photon insertion points.
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I. INTRODUCTION

The photon arguably provides the cleanest probe of
hadronic structure available in experiments. As reviewed
in Ref. [1], real and virtual photon probes have been and
are being used in many experimental facilities around the
world—JLab, MAMI, ELSA, SPring-8, GRAAL, and
others—to help unravel the internal dynamics of hadronic
systems.
On the theoretical side, however, the situation is much

less clean because of the effective nature of the hadronic
degrees of freedom (d.o.f.) that appear in experiments.
While the electromagnetic interaction is understood per-
fectly well at the elementary level, its application to
composite baryonic and mesonic systems of elementary
particles is not straightforward. Notwithstanding these
problems, elaborate and sophisticated expansion and
power-counting schemes have been devised to permit the
extraction of meaningful model-independent results from
the experimental data (see Ref. [2–4] and references
therein). However, given the nature of such schemes, while
they work well at low energies, their application becomes
increasingly difficult away from threshold. At intermediate
energies, in particular, where most baryonic states with
nontrivial structure are found, one oftentimes must resort to
effective Lagrangian formulations because they provide a

more direct access to the actual hadronic d.o.f.—mesons
and baryons—as they manifest themselves in experiments.
The present work addresses the question of how to

implement the electromagnetic interaction in an effective
Lagrangian formulation where the descriptive d.o.f. are
mesons and baryons, however, assuming that they are fully
dressed.
Minimal substitution is the standard way of coupling the

electromagnetic field Aμ to a charged particle with momen-
tum p. The corresponding replacement rule,

pμ → pμ −QAμ; ð1Þ

where Q is the particle’s charge operator, is based on the
usual covariant derivative of quantum field theory [5,6].
One of the especially attractive features of minimal sub-
stitution is that it will preserve local gauge invariance as a
matter of course if implemented consistently. However,
while well defined in limited circumstances, it cannot be
relied upon to produce correct or consistent results in all
situations [7]. In effective theories, in particular, that
subsume elementary QCD d.o.f. in terms of hadronic ones,
many, if not most, of the shortcomings of minimal sub-
stitution can be traced back to the incorrect or incomplete
implementation of magnetic and polarization properties
that arise from the interaction of the electromagnetic field
with the extended charge structure of the hadrons. The
coupling operators for such interactions are transverse
and therefore gauge invariance is not affected by such*helmut.haberzettl@gwu.edu
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incomplete implementations, but the correct description of
the physics at hand may suffer.
In the minimal-substitution framework, the currents Jμ

describing the first-order interaction of a system with an
external electromagnetic field are defined by implementing
the substitution (1) for the (connected) Green’s function of
the system, performing an expansion in Aμ, and taking the
functional derivative δ=δAμ for Aμ ¼ 0, and then truncating
all external single-particle propagators according to the
LSZ prescription [5,6,8], which isolates the current Jμ as
the coefficient operator of the first-order interaction term
JμAμ. It should be obvious that this procedure cannot
be expected to correctly produce anomalous magnetic
moments because those may be present even if the system
as a whole is uncharged. As a case in point, if one considers
the neutron, for example, as a single effective hadronic
system, the corresponding current vanishes and there is no
anomalous contribution at all. To produce anomalous
contributions and polarization effects, one needs to explic-
itly consider the substructure of the nucleon in terms of
meson-loop dressings and explicitly incorporate all pos-
sible interaction terms in a gauge-invariant manner [2]. This
can be largely understood as an implementation of minimal
substitution at a more microscopic level.
In general, however, minimal substitution seems to be

incapable of producing electromagnetic form factors for
virtual photons directly. As has been pointed out [9], the
dressing effects due to minimal substitution—even when
applied to fully dressed hadronic entities—will depend on
the squared hadronic four-momenta going into and coming
out of the electromagnetic vertex, but they cannot produce
the clean k2 dependence required to produce the electro-
magnetic form factors Fðk2Þ, where k is the photon four-
momentum. Hence, the k2 dependence of form factors—
usually simply stated as a requirement based on Lorentz
invariance—must result from other dynamical effects.
Rather than discussing the possible nature of such effects,
we point out that we cannot expect to be able to describe
form-factor effects in any standard application of minimal
substitution in an effective dynamical framework.
Given this situation, we propose here to turn the question

around and ask how one can extend minimal substitution to
incorporate known experimental information—masses,
charges, anomalous moments, and k2 dependence of form
factors—into a framework that assumes that all of the

hadronic dressing effects of system are known to all orders.
How such dressing effects are obtained is then a problem
secondary to constructing current operators that are con-
sistent with the assumed hadronic dressing.
We will show that this consistency requirement means

that the proposed extended substitution must distinguish in
essential aspects between how the field couples to scalar
(spin-0) particles and Dirac (spin-1=2) particles. We will
construct the fully dressed electromagnetic currents for
pions and for nucleons within the proposed framework
which will incorporate known experimental information
about these hadrons. For the nucleon current, this will
remedy a shortcoming of the spin-1=2 Ball-Chiu ansatz
[10]. Specifically, we will show that the Ball-Chiu current
results from treating some essential aspects of the nucleon
dressing as being that of a scalar particle, which clearly is
inconsistent.
We will also show that products of ðhadron propagatorÞ×

ðelectromagnetic currentÞ—both fully dressed—will lose
all information about their detailed dressing mechanisms
when taken half-on-shell on the current side, with the
physical hadron mass being the only remnant of the
dressing and additional off-shell information only entering
for virtual photons. For meson photoproduction processes
with real photon, in particular, this means that for the usual
s-, u-, and t-channel Born terms depicted in Fig. 1 only the
meson-production vertex carries any structure information.
Complete cancellations of off-shell effects also extend to
the respective real Compton scattering reactions for both
pions and nucleons, leaving only Born-type expressions.
It is argued that nontrivial Compton-scattering contribu-
tions require genuine two-photon processes where the
respective (off-shell) Compton tensor is dressed by hadron
loops.
The paper is organized as follows. In Sec. II, we will

present the basic rules for the proposed extension of
minimal substitution. We will do so using the device of the
gauge derivative of Ref. [11] which provides a convenient
shorthand notation for the implementation of minimal
substitution. (For completeness, some pertinent details of
the gauge-derivative procedure are recapitulated in the
Appendix.) In Secs. III and IV, respectively, we apply the
proposed extended substitution rules to the fully dressed
pion and nucleon propagators as examples for spin-0 and
spin-1=2 particles and construct their corresponding fully

FIG. 1. Basic topology of pion photoproduction off the nucleon, with associated four-momenta. Here, and in all other diagrams, time
runs from right to left. The first three diagrams depict s-, u-, and t-channel, respectively, according to the respective Mandelstam variable
of the intermediate off-shell hadron. The last diagram comprises all nonpolar contact-type mechanisms including final-state interactions
[11]. The half-on-shell contributions for the pion current in the t-channel and for the nucleon currents in the s- and u-channels are
discussed in Secs. III B and IV C, respectively.
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dressed current operators. For the nucleon case, we show
that the Ball-Chiu current ansatz [10] suffers from an
incomplete coupling procedure. We also derive the afore-
mentioned cancellation of dressing effects for half-on-
shell combinations of propagator and current for real
photons, which extends to the on-shell Compton tensors.
The final Sec. V provides a summary and discussion of the
present findings.

II. RULES OF EXTENDED SUBSTITUTION

Following Ref. [11], we will use the device of the gauge
derivative as a shorthand tool for describing how minimal
substitution affects the reaction dynamics of a particle with
momentum p and associated charge operator Q. As the
examples in Refs. [11,12] demonstrate, the gauge deriva-
tive may be used to consistently link all topological
elements of reaction mechanisms that contribute to the
interaction with the external electromagnetic field, in a
procedure sometimes referred to as “gauging of equations.”
However, for the present purpose, we only need to consider
the ‘last step’, when the gauge derivative is applied to the
functions—propagators, vertices—that describe elements
of the reaction at hand to provide the actual coupling
mechanisms Jμ to the external field Aμ.
With the rules given in Ref. [11], briefly summarized

here in the Appendix for completeness, for a spin-0 scalar
particle of momentum p and chargeQ, the current operator
results from

fp2gμ ¼ Qðp0 þ pÞμ; ð2Þ

where p0 ¼ pþ k for an (incoming) photon with four-
momentum k. The gauge-derivative braces f� � �gμ here
indicate coupling of the photon four-momentum kμ to the
functional dependence p2. The result (2) immediately
follows from Eq. (A7) in the Appendix and the fact that
the inverse propagator of a scalar particle is a function of p2

alone. For a spin-1=2 Dirac particle, we also find the usual
coupling mechanism

fpgμ ¼ Qγμ ð3Þ

because its inverse propagator is a function of p .
Considering now the gauge derivative of an invariant

scalar functions fðp2Þ of the particle’s squared four-
momentum, clearly, we have

ffðp2ÞgμS ¼ fp2gμ fðp
02Þ − fðp2Þ
p02 − p2

¼ Qðp0 þ pÞμ fðp
02Þ − fðp2Þ
p02 − p2

; ð4Þ

as expected, where the index S indicates that fðp2Þ results
from the dynamics of a scalar particle. The proof is easily

found by expanding fðp2Þ in powers of p2, applying the
product rule to every term in the expansion, and then
resumming. (This assumes that the expansion is well
defined at least at the formal level. In general, nonanalytic
functions may require special treatments.) The function
ratio on the right-hand side of Eq. (4) presents a well-
defined 0

0
situation at p02 ¼ p2 providing the derivative of f.

Because of this result, such finite-difference derivatives
(FDDs) will be ubiquitous in the present investigation.
For a Dirac particle, we may write p2 ¼ p2, which is

crucial to expressing the corresponding Feynman propa-
gator as

1

p −m
¼ p þm

p2 −m2
ð5Þ

to establish that, in addition to the Dirac equation, it also
solves the Klein-Gordon equation for the same mass m.
One finds this equivalence would be destroyed if one
applied the scalar gauge-derivative result (2) to the p2

dependence on the right-hand side of this equation. Instead,
as explained in the context of Eq. (A9) in the Appendix,
equivalence demands that with

fp2gμ ¼ p 0fpgμ þ fpgμp
¼ Qðp 0γμ þ γμpÞ; ð6Þ

which follows from the product rule (A4), one needs to
introduce the Dirac version

ffðp2ÞgμD ¼ fp2gμ fðp
02Þ − fðp2Þ
p02 − p2

ð7Þ

to replace Eq. (4) for Dirac particles. The relationship
between ffgμD and ffgμS is given by the Gordon identity,

p 0γμ þ γμp ¼ ðp0 þ pÞμ þ iσμνkν; ð8Þ

i.e., the two derivatives differ by a manifestly transverse
term. Their respective four-divergences,

kμffðp2ÞgμS ¼ kμffðp2ÞgμD ¼ Q½fðp02Þ − fðp2Þ�; ð9Þ

therefore, are unaffected which is crucial for maintaining
gauge invariance.

A. Extending minimal substitution

The basic coupling mechanisms for scalar and Dirac
particles described so far, if implemented consistently, are
sufficient to provide a current for any system that maintains
local gauge invariance as expressed in terms of Ward-
Takahashi identities (WTI) for three-point functions [13]
and generalized WTIs for N-point functions [11,12,14].
However, as discussed in the Introduction, they cannot
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account for any structure that results from electromagnetic
form factors. Such effects, therefore, must come from
manifestly transverse coupling mechanisms.
For definiteness, we will here consider the pion as an

example of a scalar particle, identified by index π, and the
nucleon as a spin-1=2 Dirac particle, with two charge states
N ¼ p, n, where

Qp ¼ e
1þ τ3

2
and Qn ¼ e

1 − τ3
2

ð10Þ

are the respective isospin operators for proton (p) and
neutron (n), respectively, with τ3 being the usual Pauli
matrix; e is the fundamental charge unit.
For the pion with four-momentum q, we amend the

elementary scalar coupling rule (2) and allow for

fq2gμ ¼ Qπðq0 þ qÞμ þ Tμ
πðq0; qÞ; with kμT

μ
π ≡ 0;

ð11Þ
where the transverse current is given by

Tμ
πðq0; qÞ ¼ Qπtμðq0; qÞfπðq0; qÞ; ð12Þ

where

tμðq0; qÞ ¼ ðq0 þ qÞμ − kμ
q02 − q2

k2
ð13Þ

is the only manifestly transverse operator one can construct
with two independent four-momenta q and q0 ¼ kþ q. The
scalar (and symmetric) form-factor function fπðq0; qÞ ¼
fπðq02; q2; k2Þ here must vanish at k2 ¼ 0 to make the
current nonsingular. More details about its relationship to
the physical (on-shell) pion form factor Fπðk2Þ will be
given in the subsequent Sec. III. Qπ here describes the
charges of the pions in units of e, with fπ being the same
for π�; π0 has no form factor because it is its own
antiparticle.
For the nucleon N with four-momentum p and mass m,

we amend the basic Dirac-particle rule (3) by

fpgμ ¼ Γμ
Nðp0; pÞ≡Qpγ

μ þ Tμ
Nðp0; pÞ; ð14Þ

where Tμ
N is a manifestly transverse current,

kμT
μ
N ≡ 0; for N ¼ p; n; ð15Þ

that can be expressed in terms of the two transverse
operators

σμT ¼ iσμνkν
2m

and γμT ¼ γμ − kμ
p 0 − p
k2

; ð16Þ

where the latter will require a coefficient function that
vanishes at k2 ¼ 0 to render the corresponding current well
defined. The transverse currents then may be written as

Tμ
Nðp0; pÞ ¼ QNðγμTfN1 þ σμTfN2 Þ; for N ¼ p; n; ð17Þ

where the four scalar (and symmetric) coefficient functions
fNi ¼ fNi ðp02; p2; k2Þ (N ¼ p, n; i ¼ 1, 2) are to be con-
strained by the Dirac and Pauli form factors of the proton
and neutron. More details will be discussed in the nucleon
section IV below.
Note here that the kμ contributions in (13) and (16) are

necessary for formal reasons to verify the respective
transversality conditions. For practical purposes, however,
we may drop such terms from any physically relevant
current since ϵμkμ ¼ 0 for covariant physical photon
polarization ϵμ, irrespective of whether the photon is real
or virtual. Moreover, in view of the numerator expressions
q02 − q2 and p 0 − p in the respective transverse couplings,
these terms do not contribute anyway for on-shell hadrons.
Nevertheless, one might be well advised to drop these terms
only at the very end, when physical matrix elements are to
be calculated because doing so at the very start may lead to
erroneous conclusions.
To see the effect of the extended substitution rules (11)

and (14) over the respective basic rules (2) and (3) in
the following considerations, one only needs to put the
respective current Tμ

π and Tμ
N to zero. Obviously, since the

extensions only add transverse currents, they have no effect
on gauge invariance at all.

III. PION: SPIN 0

The most general propagator for a fully dressed pion
with four-momentum q and mass μ can be written as

Δπðq2Þ ¼
1

ðq2 − μ2ÞΠðq2Þ ; ð18Þ

where the scalar dressing function Πðq2Þ is normalized as

Πðμ2Þ ¼ 1; ð19Þ
which provides the required unit residue for the propagator.
We may expand the dressing functions around the pole

by writing

Πðq2Þ ¼ 1þ q2 − μ2

μ2
Dπðq2Þ ð20Þ

where

Dπðq2Þ ¼ μ2
Πðq2Þ − 1

q2 − μ2
ð21Þ

is a well-defined nonsingular finite-difference derivative
(FDD) that is proportional to the derivative of the dressing
function in the limitq2 → μ2 at the pole. (The proportionality
factor μ2 is only introduced to make Dπ dimensionless.)
We thus have
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Δπðq2Þ ¼
1

q2 − μ2
−

Dπðq2Þ
Πðq2Þμ2 ; ð22Þ

where the only remnant of the dressing in the pole term is the
physical mass μ; all other dressing effects sit in the nonpolar
contact-type counterterm.

A. Pion current

Using the extended substitution (11), the pion current for
an incoming photon with momentum k ¼ q0 − q is
obtained from gauging the inverse propagator according to

Jμπðq0; qÞ ¼ fΔ−1
π ðq2ÞgμS

¼
�
q2Πðq2Þ þ Πðq2Þq2

2
− μ2Πðq2Þ

�
μ

S
; ð23Þ

where the scalar-particle gauge derivative is applied to the
symmetrized expressions as explained in Appendix. With
the scalar gauge-derivative rule (4), using the extended
substitution (11), we then obtain the fully dressed current as

Jμπðq0; qÞ ¼ ½Qπðq0 þ qÞμ þ Tμ
π�Δ

−1
π ðq02Þ − Δ−1

π ðq2Þ
q02 − q2

:

ð24Þ

For Tμ
π ≡ 0, this result was given in Ref. [9]. This current

trivially satisfies the appropriate WTI for the pion,

kμJ
μ
πðq0; qÞ ¼ Qπ½Δ−1

π ðq02Þ − Δ−1
π ðq2Þ�; ð25Þ

and thus is manifestly locally gauge invariant. We emphasize
that this finding does not result from a condition that needs to
be imposed on the current, but that it is a straightforward
consequence of the construction procedure in terms of the
gauge derivative (23). Note that the WTI does not involve
any form-factor information even if Tμ

π ≠ 0.
We emphasize that the current (24) is constructed here to

be consistent with the propagator (18) such that the WTI
follows as a matter of course. The procedure, however,
makes no assumption about the details of the dressing
function Πðq2Þ other than stipulating that it produces a unit
residue. Therefore, any (nonpathological) determination of
Πðq2Þ, whether sophisticated or not, that producesΠðμ2Þ ¼
1 will fit the present framework.
With nonzero transverse contributions Tμ

π , the current
(24) actually comprises the most general expression one
can write down for the scalar current if one allows for
arbitrary nonsingular symmetric expressions for the form
factor, fπðq0; qÞ ¼ fπðq02; q2; k2Þ ¼ fπðq2; q02; k2Þ. Since
any additional dressing effect must be transverse and off-
shell, they may always be assumed to be already subsumed
in these form factors as a matter of course. Including on-
and off-shell d.o.f. in these form factors, therefore, the

current (24) comprises all possibilities. For further dis-
cussion of off-shell freedom, see the summarizing Sec. V.
Half on shell, the current reduces to

Jμπðq0; qÞ ¼ ½Qπðq0 þ qÞμ þ Tμ
πðq0; qÞ�Πðq2offÞ; ð26Þ

where q2off is either q
02 or q2 depending on which leg is off

shell. The fully on-shell current thus reads

Jμπðq0; qÞ ¼ Qπðq0 þ qÞμ þ Tμ
πðq0; qÞ

¼ Qπðq0 þ qÞμ½1þ fπðμ2; μ2; k2Þ�; ð27Þ

where the underlining indicates on-shell momenta. Hence,
in view of the unit result for the physical form factor Fπðk2Þ
for real photons and to ensure that the current (24) is
nonsingular both on and off shell, we may write

fπðq02; q2; k2Þ ¼
k2

μ2
Hπðq02; q2; k2Þ; ð28Þ

where the nonsingular symmetric functionHπ is defined by
this equation, and determine the physical (on-shell) form
factor as

Fπðk2Þ ¼ 1þ k2

μ2
Hπðμ2; μ2; k2Þ: ð29Þ

Hence, the coupling operator of the pion current (24) may
be written as

Qπðq0 þqÞμþTμ
π ¼Qπðq0 þqÞμ

�
1þ k2

μ2
Hπðq02;q2;k2Þ

�

−Qπkμ
q02−q2

μ2
Hπðq02;q2;k2Þ: ð30Þ

B. Half-on-shell contribution

Let us consider the half-on-shell situation of the current
for the outgoing t-channel pion with the off-shell inter-
mediate propagator, as depicted in the photoproduction
diagrams of Fig. 1. Using the kinematics of the figure, with
the outgoing pion on shell at q2 ¼ μ2 and t ¼ ðq − kÞ2 for
the intermediate pion, we have

Jμπðq; q − kÞΔπðtÞ ¼ ½Qπð2q − kÞμ þ Tμ
π� 1

t − μ2
; ð31Þ

where the propagator dressing completely cancels. Using
(30) and the FDD

DHðt; k2Þ ¼ μ2
Hπðμ2; t; k2Þ −Hπðμ2; μ2; k2Þ

t − μ2
; ð32Þ

we obtain
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Jμπðq; q − kÞΔπðtÞ ¼ Qπ
ð2q − kÞμ
t − μ2

Fπðk2Þ

þQπ
ð2q − kÞμ

μ2
k2

μ2
DHðt; k2Þ

þQπ
kμ

μ2
Hπðμ2; t; k2Þ: ð33Þ

This result is exact for the dressed current (24). All
hadronic dressing effects fully cancel here and we are left
with the usual expression resulting from elementary
Feynman rules for the pole term. The contact term depend-
ing on the FDD DHðt; k2Þ contributes only for electro-
production. Again, the contact-type kμ term can be ignored
for physical matrix elements, however, it is necessary to
provide the correct four-divergence of this half-on-shell
expression,

kμJ
μ
πðq; q − kÞΔπðtÞ ¼ −Qπ; ð34Þ

where the minus sign signifies that the on-shell pion is
outgoing. This result is identical to

kμQπð2q − kÞμ 1

t − μ2
¼ −Qπ ð35Þ

for the “bare” situation where the only dressing effect is
the physical mass μ. Without the kμ term in (33), this
equivalence cannot be established.
We add here that in the four-point-function context of

the t-channel graph in Fig. 1, the cancellation of dressing
effects does not extend to the second vertex; in other words,
the purely hadronic πNN vertex here retains the dressing
that accounts for the intermediate pion being off-shell.

C. Real Compton scattering on the pion

A particularly straightforward application is given by
making the second vertex an electromagnetic one as well,
resulting in Compton scattering on a charged pion as
depicted in Fig. 2. For real Compton scattering the situation
is particularly simple because there is no electromagnetic
form factor dependence and the only structure is provided
by the propagator dressing function Πðq2Þ. With the half-
on-shell result (33) taken for k2 ¼ 0, dropping the irrelevant
kμ contribution, and with Eq. (26), we easily see that the
Compton tensors for the s- and u-channel diagrams of
Fig. 2, where s ¼ ðqþ kÞ2 and u ¼ ðq − k0Þ2 are the

Mandelstam variables for the respective intermediate off-
shell particle, read

Mνμ
s ðq0; qÞ ¼ e2ð2q0 þ k0Þν ΠðsÞ

s − μ2
ð2qþ kÞμ

¼ e2
ð2q0 þ k0Þνð2qþ kÞμ

s − μ2

þ e2ð2q0 þ k0ÞνDπðsÞ
μ2

ð2qþ kÞμ; ð36aÞ

Mνμ
u ðq0; qÞ ¼ e2ð2q0 − kÞμ ΠðuÞ

u − μ2
ð2q − k0Þν

¼ e2
ð2q0 − kÞμð2q − k0Þν

u − μ2

þ e2ð2q0 − kÞμ DπðuÞ
μ2

ð2q − k0Þν; ð36bÞ

where the respective second equalities provide the decom-
position into pure (undressed) pole contributions and
contact terms depending on the FDDs of the propagator
dressing function according to Eq. (21). The squared
charge operator Q2

π for π� is simply written here as e2.
The contact term in Fig. 2 can be obtained explicitly by

coupling a second photon into the current (24). Rather than
doing this fully off-shell, it is easier to employ the half-on-
shell expressions (26), and then symmetrize and apply the
gauge derivative to entities depending on the off-shell
momentum qoff . With an overall minus sign resulting from
the relationship of the gauge derivative to the functional
derivative, as seen from Eq. (A1), one finds

Mνμ
c ðq0; qÞ ¼ −

1

2
½fJμπðqoff ; qÞgν þ fJνπðqoff ; qgμ�

−
1

2
½fJμπðq0; qoffÞgν þ fJνπðq0; qoffgμ�

¼ −2e2gμν − e2ð2q0 þ k0ÞνDπðsÞ
μ2

ð2qþ kÞμ

− e2ð2q0 − kÞμ DπðuÞ
μ2

ð2q − k0Þν: ð37Þ

The last two terms here cancel the FDD contributions in the
s- and u-channel terms in (36). Hence, summing up all three
contributions, the entire Compton tensor for all diagrams in
Fig. 2 for real photons scattering off the pion is given as

Mνμ
π ðq0; qÞ ¼ e2

ð2q0 þ k0Þνð2qþ kÞμ
s − μ2

þ e2
ð2q0 − kÞμð2q − k0Þν

u − μ2
− 2e2gμν; ð38Þ

where the only remnant of the dressing structure is the
physical pion mass. All other effects completely cancel and
what remains is just what is usually referred to as the Born

FIG. 2. Diagrams for Compton scattering on a charged pion. In
Eqs. (36)–(38), the incoming and outgoing four-momenta are kμ

and k0ν, respectively.
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amplitude for real Compton scattering on the pion, with
undressed Feynman-type s- and u-channel pole terms and
the −2gμν coupling for the contact term. This on-shell tensor
is trivially gauge invariant because of four-momentum
conservation, q0 þ k0 − q − k ¼ 0.
The present finding of all dressing effects canceling here

seems to corroborate the conjecture of Kaloshin [15] that this
would be the case. This was disputed in Ref. [9]. Kaloshin’s
conjecture was based on the limited evidence of an s-wave
one-loop calculation with intermediate πσ states. The
derivation of Eq. (38) shows that this is indeed true at
any order, for any dressing mechanism of the pion. However,
the present construction of the Compton tensor is limited
to the part of Compton scattering that can be understood as
two sequential one-photon processes. Genuine two-photon
processes like, for example, the vector-meson dressing
mechanism depicted in Fig. 3 are not taken into account.
Contact-type two-photon currents of this kind, therefore, can
be expected to resolve the discrepancy between Refs. [15,9].
We emphasize that the complete cancellation of all

dressing effects found here is true only for real photons
and when the external pions are on shell. The latter
requirement is not true for the dressed Compton tensor
in Fig. 3, which therefore retains its off-shell structure.
We add that on-shell cancellations are not particular to
the pion; in Sec. IV D below, we will find a similar result
for real Compton scattering on the nucleon.

IV. NUCLEON: SPIN 1=2

Without lack of generality, the dressed spin-1=2 propa-
gator for the nucleon with physical mass m and four-
momentum p may be written as

SðpÞ ¼ 1

pAðp2Þ −mBðp2Þ : ð39Þ

The two independent scalar dressing functions A and B are
constrained by

Aðm2Þ ¼ Bðm2Þ; ð40Þ
which ensures the propagator has a pole at p → m, and

Aðm2Þ þ 2m2
d½Aðp2Þ − Bðp2Þ�

dp2

����
p2¼m2

¼ 1; ð41Þ

which provides a unit residue for this pole.

Even though we will not make use of it here, we note
that, without lack of generality, we may write

Aðp2Þ ¼ p2 þ ð2a − 1Þm2

2m2
FAðp2Þ; ð42aÞ

Bðp2Þ ¼ aðp2 þm2Þ
2m2

FBðp2Þ; ð42bÞ

where the abbreviation

a ¼ Aðm2Þ ¼ Bðm2Þ ð43Þ

was used. To provide the residue conditions (40) and (41),
at the pole both functions FA and FB must have unit values
and vanishing first derivatives. Also, they may have simple
poles in the spacelike region, at p2 ¼ −ð2a − 1Þm2 for FA

and at p2 ¼ −m2 for FB, and their combined effect must
not produce an additional pole for S. Determination of
additional properties requires a detailed microscopic der-
ivation of the dressed propagator outside of the scope of
the present work; for more details of the corresponding
nonlinear Dyson-Schwinger-type framework, see Ref. [11].

A. Isolating dressing contributions

The dressed propagator may also be written equivalently
as

SðpÞ ¼ ZðpÞ
p −m

ð44Þ

where the residual function,

ZðpÞ ¼ p −m
pAðp2Þ −mBðp2Þ ; ð45Þ

goes to unity at the pole. Writing Z ¼ 1þ ðZ − 1Þ, the term
Z − 1 will vanish at the pole and thus

SðpÞ ¼ 1

p −m
þ ZðpÞ − 1

p −m
ð46Þ

will give rise to contact-type nonpolar contributions
according to

ZðpÞ − 1

p −m
¼ pC1ðp2Þ þmC0ðp2Þ

2m2
; ð47Þ

with scalar, nonpolar functions C0 and C1.
These functions can be easily expressed in terms of the

dressing functions A and B, however, since there is no need
to do this here, we will forego a more detailed discussion of
their structure.
For later purposes, we will need finite-difference deriv-

atives of the dressing functions A and B defined as

FIG. 3. Example of genuine two-photon contributions to Comp-
ton scattering on the pion: Crossing-symmetric dressing of the
amplitude depicted in Fig. 2 by a vector-meson loop. The contact-
type square labeled ρ in the last diagram subsumes necessary
mechanisms that make the entire contribution transverse.
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DAðp2Þ ¼ 2m2
Aðp2Þ − a
p2 −m2

; ð48aÞ

DBðp2Þ ¼ 2m2
Bðp2Þ − a
p2 −m2

; ð48bÞ

with well-defined 0
0
expressions at the pole, and their

difference,

DABðp2Þ ¼ 2m2
Aðp2Þ − Bðp2Þ

p2 −m2

¼ DAðp2Þ −DBðp2Þ; ð49Þ

which is related to the residue condition (41) by

DABðm2Þ ¼ 1 − a: ð50Þ

B. Nucleon current

Symmetrizing the inverse propagator, the nucleon cur-
rent is obtained as

JμNðp0; pÞ ¼
�
pAðp2Þ þ Aðp2Þp

2
−mBðp2Þ

�
μ

D

¼ Γμ
N
Aðp02Þ þ Aðp2Þ

2

þ ðp02 þ p2ÞΓμ
N þ 2p 0Γμ

Np
4m2

DAðp02; p2Þ

−
p 0Γμ

N þ Γμ
Np

2m
DBðp02; p2Þ; ð51Þ

where the scalar dependence was evaluated according to the
Dirac-particle rule (7), employing the extended substitution
rule (14). The FDDs

Dfðp02; p2Þ ¼ 2m2
fðp02Þ − fðp2Þ

p02 − p2
; for f ¼ A; B; ð52Þ

here are obvious off-shell versions of Eqs. (48). Hence, the
on-shell form of the current is given by

JμNðp0; pÞ ¼ Qpγ
μ þ Tμ

Nðp0; pÞ; ð53Þ

where the underlining indicates on-shell momenta; the
corresponding incoming and outgoing spinors have been
suppressed for clarity. The form-factor functions contained
in Tμ

N according to (17) will be constrained by their relation
to Dirac and Pauli form factors, as given in Sec. IV B 2.
Pulling out off-shell factors ðp 0 −mÞ and ðp −mÞ on

the left and right, respectively, the whole current may be
written as

JμNðp0; pÞ ¼ Γμ
Nðp0; pÞRðp02; p2Þ

þ
�
p 0 −m
2m

Γμ
Nðp0; pÞ þ Γμ

Nðp0; pÞp −m
2m

�

× ½DAðp02; p2Þ −DBðp02; p2Þ�

þ 2
p 0 −m
2m

Γμ
Nðp0; pÞp −m

2m
DAðp02; p2Þ;

ð54Þ

where

Rðp02; p2Þ ¼ Âðp02; p2Þ þDAðp02; p2Þ −DBðp02; p2Þ;
ð55Þ

with

Âðp02; p2Þ ¼ ðp02 −m2ÞAðp02Þ − ðp2 −m2ÞAðp2Þ
p02 − p2

: ð56Þ

The latter is a well-defined FDD with half-on-shell limits

Âðp02; p2Þ ¼
�
Aðp02Þ for p2 ¼ m2;

Aðp2Þ for p02 ¼ m2:
ð57Þ

The entire function Rðp02; p2Þ, therefore, goes to unity on
shell because of the residue condition (41) producing the
on-shell result (53).
Equation (54) cleanly separates on-shell, half-off-shell,

and fully off-shell contributions here in a manner that is
useful for further applications. Even though it may not be
immediately obvious from its appearance, it does satisfy the
WTI [13] with the fully dressed propagator of Eq. (39),

kμJ
μ
Nðp0; pÞ ¼ QN ½S−1ðp0Þ − S−1ðpÞ�; ð58Þ

as mandated by local gauge invariance. Only the Qpγ
μ part

of the elementary current Γμ contributes to this result, of
course. Any information about electromagnetic structure is
transverse and does not enter the WTI.
The current as written here in (54) is similar in operator

structure to the most general ansatz discussed in Ref. [16].
Since it reproduces the WTI (58) for the fully dressed
propagator, its structure clearly exhausts the necessary
dependence on dressing functions A and B. The possibility
of additional terms—which would necessarily have to be
off shell and transverse—will be discussed in the summa-
rizing Sec. V.

1. Relationship to Ball-Chiu current

If we switch off the additional transverse piece Tμ
N for the

moment, producing JμN → Jμ0, the remaining current for the
proton may be written as
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Jμ0ðp0; pÞ ¼ JμBCðp0; pÞ

þQp
p 0iσμνkν þ iσμνkνp

4m2
DAðp02; p2Þ

−Qp
iσμνkν
2m

DBðp02; p2Þ; ð59Þ

where, suppressing arguments ofDA andDB for simplicity,

JμBCðp0; pÞ ¼ Qpγ
μ Aðp02Þ þ Aðp2Þ

2

þQp
ðp0 þ pÞμ

2m

�
p 0 þ p
2m

DA −DB

�

¼ Qpðp0 þ pÞμ S
−1ðp0Þ − S−1ðpÞ

p02 − p2

þQp

�
γμ −

ðp0 þ pÞμ
p02 − p2

k

�
Aðp02Þ þ Aðp2Þ

2
:

ð60Þ

This current was proposed by Ball and Chiu [10] as one
of the simplest nonsingular symmetric expressions whose
four-divergence provides the WTI for the fully dressed
propagator (39). The additional transverse term in the last
expression is needed to cancel the singularity of the first
term at p02 ¼ p2.
These relations shows most clearly that all three

currents—JμBC, J
μ
0, and JμN—satisfy the WTI (58) because

they differ from each other by manifestly transverse
contributions.
We see here that the Ball-Chiu current is obtained as

JμBCðp0; pÞ ¼ fS−1ðpÞgμS; ð61Þ
whereas

Jμ0ðp0; pÞ ¼ fS−1ðpÞgμD; ð62Þ
i.e., they differ by how the electromagnetic field is being
coupled to their scalar parts. If we consider their respective
on-shell forms, we find

JμBCðp0; pÞ ¼ Qpγ
μ þQp

iσμνkν
2m

ða − 1Þ ð63Þ

and

Jμ0ðp0; pÞ ¼ Qpγ
μ; ð64Þ

where the additional transverse σμνkν contributions in (59)
that originate from the proper Dirac treatment cancel the
(a − 1) term in (63). Clearly, Eq. (64) provides the correct
on-shell limit if one switches off all transverse pieces
in the substitution rule (14). (This result is also obtained
if a ¼ 1, of course, but this value is not required by the
residue conditions.)

2. Determining Dirac and Pauli form factors

Writing out the specific on-shell forms of JμN for proton
and neutron,

JμNðp0; pÞ ¼
�
eγμð1þ fp1 Þ þ eσμTf

p
2 ðprotonÞ;

eγμfn1 þ eσμTfn2 ðneutronÞ; ð65Þ

and comparing this with the usual expressions,

Jμpðp0; pÞ ¼ eγμFp
1 ðk2Þ þ eσμTκpF

p
2 ðk2Þ; ð66aÞ

Jμnðp0; pÞ ¼ eγμFn
1ðk2Þ þ eσμTκnFn

2ðk2Þ; ð66bÞ

where FN
1 ðk2Þ and FN

2 ðk2Þ are the Dirac and Pauli form
factors, with κp and κn being the anomalous magnetic
moments of proton and neutron, respectively, this produces
the identifications

fp1 ðm2; m2; k2Þ ¼ Fp
1 ðk2Þ − 1; ð67aÞ

fp2 ðm2; m2; k2Þ ¼ κpF
p
2 ðk2Þ; ð67bÞ

fn1ðm2; m2; k2Þ ¼ Fn
1ðk2Þ; ð67cÞ

fn2ðm2; m2; k2Þ ¼ κnFn
2ðk2Þ: ð67dÞ

In view of the normalizations

Fn
1ð0Þ ¼ 0; Fn

2ð0Þ ¼ 1; ð68aÞ

Fp
1 ð0Þ ¼ 1; Fp

2 ð0Þ ¼ 1; ð68bÞ

the two Dirac coefficient functions fN1 vanish at k2 ¼ 0,
cancelling the 1=k2 singularity in γμT; the two Pauli
coefficient functions fn2 produce the respective anomalous
magnetic moment at k2 ¼ 0.
With the on-shell identifications (67), the nucleon

current (51) thus reproduces the correct experimental
information by construction.
Allowing for off-shell nucleons, the form factors fNi

(i ¼ 1, 2) may be written without lack of generality as

fN1 ðp02; p2; k2Þ ¼ k2

m2
HN

1 ðp02; p2; k2Þ; ð69aÞ

fN2 ðp02; p2; k2Þ ¼ 1þ k2

m2
HN

2 ðp02; p2; k2Þ; ð69bÞ

for N ¼ p, n, with nonsingular symmetric scalar functions
HN

i , for i ¼ 1, 2. The current operator Γμ
N of Eq. (14) then

reads in full detail
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Γμ
Nðp0; pÞ ¼ γμ

�
Qp þQN

k2

m2
HN

1 ðp02; p2; k2Þ
�

þQNκN
iσμνkν
2m

�
1þ k2

m2
HN

2 ðp02; p2; k2Þ
�

þQNkμ
p 0 − p
m2

HN
1 ðp02; p2; k2Þ: ð70Þ

We emphasize here that electromagnetic structure informa-
tion enters this expression only in manifestly transverse
terms. We also note that this is not obvious if one drops the
kμ term prematurely.

C. Half-on-shell contribution

Let us consider the half-on-shell version of the current
(54) where the incoming nucleon is on shell. The kinemat-
ics then are the same as for the s-channel diagram in Fig. 1.
One finds

JμNðps; pÞ ¼
�
RðsÞ þ ps −m

2m
DABðsÞ

�
Γμ
Nðps; pÞ; ð71Þ

where ps ¼ pþ k and s ¼ p2
s and RðsÞ is shorthand for

Rðs;m2Þ. Multiplying this by the s-channel propagator
SðpsÞ for the fully dressed intermediate nucleon, one
obtains, after tedious, but straightforward, algebra,

SðpsÞJμNðps; pÞ ¼
1

ps −m
Γμ
Nðps; pÞ

¼ Qp

ps −m
γμ þ 1

ps −m
Tμ
Nðps; pÞ: ð72Þ

All dressing effects here cancel fully. This result is exact for
the current (54) constructed here. The only dressing effects
left here are electromagnetic in nature, in the two half-on-
shell form factors fNi ðs;m2; k2Þ (i ¼ 1, 2) within Tμ

N .
As was the case for the pion treatment in Sec. III,

structure information enters the half-on-shell element only
via manifestly transverse terms, and the four-divergence
here indeed produces

kμSðpsÞJμNðps; pÞ ¼ Qp; ð73Þ
as demanded by local gauge invariance.
The form factors that enter the transverse currents Γμ

N are
only needed here half on shell. Using the physical limits
(67), we may expand the s-dependent off-shell side of the
equation in terms of well-defined FDDs and write the half-
on-shell contribution as

SðpsÞJμNðps; pÞ ¼
QN

ps −m
Γμ
N;0ðkÞ þ

k2

m3
QNC

μ
Nðps; kÞ;

ð74Þ
where the polar term comprises the usual on-shell nucleon
current,

Γμ
N;0ðkÞ ¼ γμFN

1 ðk2Þ þ κN
iσμνkν
2m

FN
2 ðk2Þ; ð75Þ

and the contact term reads

Cμ
Nðps; kÞ ¼

ps þm
2m

�
γμDN

1 ðs; k2Þ þ
iσμνkν
2m

DN
2 ðs; k2Þ

�
;

ð76Þ

with FDDs

DN
i ðs; k2Þ ¼ 2m2

HN
i ðs; k2Þ −HN

i ðm2; k2Þ
s −m2

; ð77Þ

for i ¼ 1, 2, where the incoming on-shell variable (p2 ¼ m2)
is suppressed. The unphysical kμ term was dropped in
Eq. (74), i.e., this equation cannot be used to verify the
gauge-invariance condition (73).
Structurally, the half-on-shell result (74) is exactly the

same as Eq. (33) for the pion and—as for the pion—the
nucleon structure information only enters for virtual pho-
tons for the current determined here. Hence, any other
possible structure can only come from off-shell electro-
magnetic form factors HN

i ðs; k2Þ (for N ¼ p, n; i ¼ 1, 2)
that contribute only for electroproduction, when k2 ≠ 0.
It should be obvious that the analogous half-on-shell

cancellations can also easily be verified for the u-channel
process in Fig. 1. Hence, for all three Born-type contribu-
tions to the pion photoproduction process, only the respec-
tive hadronic πNN vertices carry structure information.
The detailed dynamics of the problem, therefore, is hidden
in the contact-type current of the last diagram in Fig. 1.

D. Real Compton scattering on the nucleon

Let us now consider real Compton scattering on the
proton using the current (54). We may then replaceQN by e
and put k2 ¼ k02 ¼ 0 everywhere. Moreover, taking kμ and
k0ν to be the four-momenta for outgoing and incoming
photons, respectively, we may use

Γμ
p ≡ Γμ

p;0ðkÞ and Γν
p ≡ Γν

p;0ðk0Þ ð78Þ

as shorthand notations for the corresponding incoming and
outgoing currents. Further, denoting the intermediate four-
momenta in the s- and u-channel diagrams of Fig. 4 by

ps ¼ pþ k ¼ p0 þ k0 and pu ¼ p0 − k ¼ p − k0;

ð79Þ

with Mandelstam variables s ¼ p2
s and u ¼ p2

u, and using
the half-on-shell results (71) and (74), the s- and u-channel
parts of the Compton tensor read
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Mνμ
s ðp0; pÞ ¼ Γν

p
RðsÞ

ps −m
Γμ
p þ Γν

p
DABðsÞ
2m

Γμ
p

¼ Γν
p

1

ps −m
Γμ
p

þ Γν
p

�
ps þm
2m2

DRðsÞ þ
DABðsÞ
2m

�
Γμ
p; ð80aÞ

Mνμ
u ðp0; pÞ ¼ Γμ

p
RðuÞ

pu −m
Γν
p þ Γμ

p
DABðuÞ
2m

Γν
p

¼ Γμ
p

1

pu −m
Γν
p

þ Γμ
p

�
pu þm
2m2

DRðuÞ þ
DABðuÞ
2m

�
Γν
p; ð80bÞ

where the FDD

DRðxÞ ¼ 2m2
RðxÞ − 1

x −m2
; for x ¼ s; u; ð81Þ

was introduced. The respective second equalities in (80)
separate pole terms from contact terms. The contact current
is obtained by the same construction used already for the
pion contact term (37). One obtains

Mνμ
c ¼ −

1

2
½fJμNðpoff ; pÞgν þ fJνNðpoff ; pÞgμ�

−
1

2
½fJμNðp0; poffÞgν þ fJνNðp0; poffÞgμ�

¼ −Γν
p

�
ps þm
2m2

DRðsÞ þ
DABðsÞ
2m

�
Γμ
p

− Γμ
p

�
pu þm
2m2

DRðuÞ þ
DABðuÞ
2m

�
Γν
p; ð82Þ

which exactly cancels the contact terms in the s- and u-
channel contributions. The Compton tensor for the dia-
grams in Fig. 4 then simply reads

Mνμ
N ¼ Mνμ

s þMνμ
u þMνμ

c

¼ Γν
p

1

ps −m
Γμ
p þ Γμ

p
1

pu −m
Γν
p; ð83Þ

leaving only undressed s- and u-channel terms which,
taken together, are trivially gauge invariant.
This bare expression provides the Powell cross section

[17], but it does not describe more complex experimental

data like electric and magnetic polarizibilities (see
Refs. [18–20] and references therein). However, as with
the real Compton scattering tensor for the pion discussed in
Sec. III C, the present construction corresponds to sequen-
tial single-photon processes. Genuine two-photon proc-
esses like those given by the examples of dressing
mechanisms depicted in Fig. 5, or processes (not shown)
with other intermediate resonant baryonic states (Δ etc.),
are not taken into account. It is well known that such
mechanisms will indeed describe polarizabilities. Note also
that the Compton tensors dressed by such loop mechanisms
are not the undressed ones. Their external hadron lines are
off-shell, thus making them fully dependent on the propa-
gator dressing functions Π, for the pion, and A and B, for
the nucleon.

V. SUMMARY AND DISCUSSION

We have presented here an extension of the usual
minimal substitution procedure that provides a straightfor-
ward inclusion of electromagnetic form factors into had-
ronic current operators. The important starting point here is
the—known, but oftentimes forgotten—fact that electro-
magnetic structure information always is limited to man-
ifestly transverse current contributions. This follows simply
from the fact that the only electromagnetic structure
information that enters the Ward-Takahashi identities for
electromagnetic currents are the respective charges—
electromagnetic form factors do not enter [cf. Eq. (A8)].
The resulting extended substitution ansätze proposed in

Sec. II, therefore, concern only manifestly transverse addi-
tions to the respective basic currents for spin-0 and spin-1=2
particles that result from Feynman rules. Phenomenological
additions of electromagnetic form factors are nothing new
and have been undertaken before. The novel aspect of the
present approach is the consequent application of this
extended electromagnetic substitution with dressed hadronic
propagators, providing currents that incorporate all dressing
effects in a consistent manner.
The gauge-derivative procedure of Ref. [11] used in

determining the consistent currents also means, as shown

FIG. 4. Diagrams contributing to Compton scattering on the
nucleon (ignoring t-channel exchange). In Eqs. (80)–(83), the
incoming and outgoing four-momenta are kμ and k0ν, respec-
tively.

FIG. 5. Examples of genuine two-photon processes contribut-
ing to Compton scattering on the nucleon. The first line of
diagrams provides the crossing-symmetric dressing of the am-
plitude depicted in Fig. 4 by a meson loop and the second line
corresponds to intermediate Compton scattering on the pion as
depicted in Fig. 2. The contact-type squares labeled π and N
subsume necessary mechanisms to make the contribution of each
respective line transverse.
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in Sec. II, that coupling the electromagnetic field to scalar
dressing contributions needs to be treated differently for
spin-0 and spin-1=2 particles, lest one ignores the fact
that spin-1=2 solutions also must solve the Klein-Gordon
equation. As a consequence, we showed in Sec. IV B 1 that
the Ball-Chiu current [10] lacks transverse contributions
that, when added, provide the correct on-shell limit.
Regarding the consequences of dressing, we emphasize

that, although we started out by assuming that particle
propagators are fully dressed, the current expressions
obtained by taking their gauge derivatives do not make
any assumptions about how the corresponding dressing
functions are obtained. The only features that matter are the
respective residue conditions. Therefore, any determination
of hadronic dressing effects that meets these conditions,
whether by simple single-loop models or sophisticated
self-energy expansions to all orders, can be accommodated,
thus making the cancelation effects between dressed
propagators and correspondingly determined currents
found here true for any of such dressings. The cancelations
are also independent of the detailed extended substitution
features. In other words, they are also true if one simply
applies minimal substitutions, without any extensions, to
the respective dressed propagators.
Note that the procedure for the current construction

used here, while always producing a fully locally gauge-
invariant current, in general does not preclude the pos-
sibility of additional transverse off-shell contributions,
where transversality and off-shellness are both essential
requirements. Such currents would spoil the perfect
cancelations, of course, but they cannot be excluded on
general grounds. However, as discussed in Refs. [18,21–
23], any reaction-dynamical description is subject to
representation-dependent ambiguities because one can
always trade off the off-shell dependence of pole terms
against associated contact-type contributions by using
appropriate finite-difference derivatives. The ubiquitous
use of FDDs in the present formulation is testament to
this ambiguity.
In any formulation of the reaction dynamics of a photo-

process, the question, therefore, is not whether a particular
off-shell or transverse current has been included for the
photoprocess at hand, but whether all effects—whether of
the polar-type or contact-type—have been included consis-
tently. In this respect, therefore, their is no need to consider
additional transverse contributions for the currents derived
here consistently with their fully dressed hadron propagators
because any additional contribution deemed necessary for
the description of the physics at hand can be expressed in
terms of contact terms. The hadron loops around the (off-
shell) Compton tensors in Figs. 3 and 5 provide examples of
this kind.
In view of the obvious representation dependence of off-

shell polar vs contact-term contributions discussed above,
perhaps the most surprising aspect of the present findings is

that—for real photons at least—the dressing cancellations
found here force a natural split into pure pole terms and
residual contact-type contributions in certain dynamical on-
shell situation, even if one starts out assuming fully dressed
hadrons. The key to this result is the consistency of the
currents derived in the present framework with whatever
dressing goes into the hadron propagators.
We add here that for processes like pion production off

the nucleon, as depicted in Fig. 1, the dressing cancellations
found here mean that for the usual s-, u-, and t-channel
terms, the only relevant dressing contributions are those
stemming from the hadronic πNN vertex. This may at least
partially explain the relative success of phenomenological
approaches to photo- and electroproduction of mesons that
model the hadronic vertex by a simple cutoff function and
completely ignore any other dressing effects. Furthermore,
as a consequence of the present findings, this means that,
other than adding baryonic resonance content, most of
the effort in describing the detailed dynamics of meson-
production reactions needs to go into the determination of
transverse contact-type currents that arise from final-state
interactions. This is indeed the approach advocated and
executed in Refs. [24–27], where it was based on gauge-
invariance considerations alone, without the benefit of the
present insights.
Finally, we have not yet considered electromagnetic

processes involving particles with higher spins beyond
1=2 along the lines presented here, but we expect this
should be possible as well.
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APPENDIX: GAUGE DERIVATIVE AND
MINIMAL SUBSTITUTION

To make the present paper self-contained, we recapitu-
late here some basic features of the gauge-derivative device
introducing in Ref. [11], where full details can be found.
The gauge derivative provides a convenient shorthand
procedure for implementing minimal substitution in set-
tings where the external electromagnetic field Aμ interacts
with larger systems of strongly interacting particles. The
properties of such systems are fully described by their
connected Green’s functions. As described in the
Introduction, the coupling of the electromagnetic field is
usually effected by an LSZ-type reduction of the gauged
Green’s function [5,6,8]. However, to maintain full local
gauge invariance, in principle, this should be done at every
level of all details that enter the microscopic description
of the reaction at hand. The gauge derivative is designed to

HELMUT HABERZETTL PHYS. REV. D 99, 016022 (2019)

016022-12



make bookkeeping easier, by—loosely speaking—allowing
attaching a photon to every particle with charge Q and
injecting the photon’s four-momentum such that it is avail-
able to every reactionmechanism “downstream” of the initial
photon interaction.
The basic definition of the gauge-derivative braces

f� � �gμ is given by the functional derivative of the mini-
mal-substitution rule (1) for a particle of four-momentum p
with charge operator Q,

fpνgμ ¼ −
δ

δAμ
ðpν −QAνÞ ¼ Qgμν: ðA1Þ

Since it is a derivative, the product rule applies providing

fp2gμ ¼ gλνfpλpνgμ ¼ gλν½fpλgμpν þ p0λfpνgμ�
¼ Qðp0 þ pÞμ; ðA2Þ

where the four-momentum downstream of where the gauge
derivative is applied is increased by the photon’s four-
momentum k ¼ p0 − p. Moreover, since the gauge deriva-
tive acts only on momenta, one has

fpgμ ¼ γνfpνgμ ¼ Qγμ: ðA3Þ

These two results provide the basic coupling mechanisms
for scalar and Dirac particles, respectively, given in Eqs. (2)
and (3) of Sec. II.
The product rule also applies to any functions fðpÞ and

gðpÞ of the four-momentum, i.e.,

ffðpÞgðpÞgμ ¼ ffðpÞgμgðpÞ þ fðp0ÞfgðpÞgμ; ðA4Þ

and if the functions commute, symmetrization is required to
prevent ambiguities,

ffðpÞgðpÞgμ →
�
fðpÞgðpÞ þ gðpÞfðpÞ

2

�
μ

¼ ffðpÞgμ gðp
0Þ þ gðpÞ
2

þ fgðpÞgμ fðp
0Þ þ fðpÞ
2

: ðA5Þ

Generally, unsymmetrized results differ by transverse terms
from symmetrized ones.
Applying the product rule to

ftðpÞt−1ðpÞgμ ¼ f1gμ ¼ 0; ðA6Þ

where tðpÞ is a generic propagator for a particle with four-
momentum p, one immediately finds that the electromag-
netic current for this particle is determined by the generic
expression

Jμ ¼ −t−1ðp0ÞftðpÞgμt−1ðpÞ ¼ ft−1ðpÞgμ; ðA7Þ

where the current definition follows from the LSZ pro-
cedure [8] since tðpÞ is the two-point Green’s function for
single-particle propagation. For scalar and Dirac particles,
this respectively provides Eqs. (A2) and (A3) as the basic
coupling mechanisms since their inverse undressed propa-
gators are given by ðp2 −m2Þ and ðp −mÞ, respectively.
The generic Ward-Takahashi identity [13] for the current
(A7) is given by

kμJμ ¼ Q½t−1ðp0Þ − t−1ðpÞ�; ðA8Þ

which in addition to the static charge Q only retains the
hadronic dressing information that resides in the propaga-
tor. No other electromagnetic information enters here. The
WTI (A8) is the necessary and sufficient condition for the
current Jμ to be locally gauge invariant. Global gauge
invariance—i.e., current conservation—follows trivially in
the on-shell limit.
Moreover, as explained in Sec. II in the context of

Eq. (5), it is crucially important that this equality extends
to the respective current expressions. This requires that the
corresponding gauge derivatives of both sides of Eq. (5)
must be identical, leading to the condition

�
1

p −m

�
μ

¼! 1
2

�
1

p2 −m2
ðp þmÞ þ ðp þmÞ 1

p2 −m2

�
μ

;

ðA9Þ

where the right-hand sidewas symmetrized. Straightforward
algebra shows then that with (A3) given, the coupling
associated with p2 on the right-hand side must be evaluated
according to the Dirac particle rule

fp2gμD ≡ fp2gμ ¼ Qðp 0γμ þ γμpÞ; ðA10Þ

as stated in Eq. (7).
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