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In the present investigation we revisit the widely-used locally-constant field approximation (LCFA) in
the context of the pair-production phenomenon in strong electromagnetic backgrounds. By means of
nonperturbative numerical calculations, we assess the validity of the LCFA considering several spatially
homogeneous field configurations and a number of space-time-dependent scenarios. By studying the
momentum spectra of particles produced, we identify the criteria for the applicability of the LCFA. It is
demonstrated that the Keldysh parameter itself does not allow one to judge if the LCFA should perform
accurately. In fact, the external field parameters must obey less trivial relations whose form depends on the
field configuration. We reveal several generic properties of these relations which can also be applied to a
broader class of other pair-production scenarios.
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I. INTRODUCTION

Quantum electrodynamics (QED) incorporating strong
external backgrounds predicts a number of remarkable
nonlinear phenomena such as light-by-light scattering,
vacuum birefringence, quantum radiation reaction, and
the vacuum production of electron-positron pairs (see,
e.g., Ref. [1] for review). The latter process [2–4] is the
focus of the present study. It is well known that sufficiently
strong external fields cannot be treated by perturbation
theory which makes the corresponding regime particularly
intriguing. The need for nonperturbative methods repre-
sents a serious challenge for theorists. Since the exact
calculations in the case of external fields varying both in
space and time seem extremely complicated, it is strongly
desirable to approximate a realistic field configuration by a
simpler background. The spatiotemporal dependence of the
external field can partially be taken into account if such a
simplification is made locally and the results are then
summed (averaged) over the space-time. This approach is
commonly referred to as the locally-constant field approxi-
mation (LCFA). Let E and ω be the characteristic external
field strength and its frequency. To be able to employ the

LCFA, one usually requires the pair-formation length lc ¼
mc2=ðjeEjÞ be much less than the laser radiation wave-
length λ. The condition lc ≪ λ is equivalent to ξ ≫ 1where
ξ is the adiabaticity parameter defined as ξ ¼ jeEj=ðmcωÞ
(it is the inverse of the Keldysh parameter [5]). Although
this corresponds to the nonperturbative (Schwinger)
regime, which is of major interest, it is still unclear to
which extent one can rely on the LCFA results and whether
ξ ≫ 1 can be considered as a sufficient requirement. On
the other hand, a very important role of the spatial
inhomogeneities was recently reported in a number of
studies regarding the pair-production phenomenon (see
Refs. [6–15]). In the present investigation, we examine
the validity of the LCFA in order to find out which values of
the external field parameters make the LCFA applicable to
the corresponding problems.
We also note that the LCFA is frequently invoked for

studying other strong-field-QED processes. In the past few
years the validity of the LCFAwas addressed in a number of
investigations. For instance, in Ref. [16] the LCFA was
elaborated in the context of the nonlinear Breit-Wheeler
process. In Refs. [17–19] it was demonstrated that the LCFA
may fail to properly predict the low-energy part of the photon
spectrum in studies of nonlinear Compton scattering. This
provides even further motivation for our present study.
We focus on the evaluation of the number density

of particles produced and consider several space-time-
dependent field configurations as well as several uniform
backgrounds depending solely on time. The results obtained
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within the LCFA are compared to the exact spectra, i.e.,
momentum distributions calculated by taking into account
the spatiotemporal dependence of the external field without
any approximations. The non-uniform scenarios are exam-
ined by means of the nonperturbative numerical technique
described in Ref. [6]. Benchmarking the LCFA results
against the corresponding precise values, we analyze the
validity of this approximation.
The paper is organized as follows. In Sec. II three different

time-dependent field configuration are considered. In Sec. III
we turn to the analysis of several spatially inhomogeneous
backgrounds. Finally, in Sec. IV we provide a discussion.
Relativistic units (ℏ ¼ 1, c ¼ 1) are used throughout
the paper.

II. SPATIALLY UNIFORM FIELDS

In this section we discuss how one can employ the LCFA
in the case of a purely time-dependent background. We
assume that the external electric field of linear polarization
vanishes outside the interval ½tin; tout�. The main idea is to
split this range into N subintervals and approximate the
field by a piecewise constant function: EðtÞ ¼ Ei for
t ∈ ½ti; tiþ1�. After that one can sum all of the individual
contributions arising from each subinterval. This approach
will be attested by comparing its predictions to the exact
values of the pair-production probabilities which can be
extracted from two special sets of the in and out one-
particle solutions of the Dirac equation. These solutions are
determined by their asymptotic behavior at t ¼ tin and
t ¼ tout, respectively. Propagating a given out solution
backwards in time and projecting it onto the in basis,
one evaluates the number density of particles correspond-
ing to this particular final state. This approach is described
numerous times in literature (see, e.g., Ref. [20]) and
implemented in our study.
Since the LCFA approximates the external field within

each subinterval by a constant profile, it is essential to
examine first a simple case of a rectangularlike back-
ground. To begin with, we perform the exact calculations
and identify the qualitative and quantitative patterns of the
momentum distributions of particles created.

A. Rectangular profile

The external field is assumed to have the form
ExðtÞ¼E0θðT=2− jtjÞ, Ey ¼ Ez ¼ 0 (tout ¼ −tin ¼ T=2),
where the parameters E0 > 0 and T are to be varied.
The spectrum of particles produced depends only on
longitudinal momentum projection pk ¼ px and transver-

sal projection p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

z

q
. A nonzero transversal

momentum effectively changes the electron mass, so that
the pair ðm;p⊥Þ is equivalent to ðπ⊥; 0Þ where
π⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥

p
. The spectrum also does not depend

on spin quantum number s. The number density of particles
created per unit volume will be denoted by np;s, i.e.,

np;s ¼
ð2πÞ3
V

dNp;s

d3p
: ð1Þ

It turns out that the pair-production probabilities can be
found exactly and expressed in terms of the Weber para-
bolic cylinder functions [21] (see also Refs. [22–24]). The
corresponding exact relations yield precisely the same
results as our numerical procedures.
In order to make the following discussion clearer, we

begin with an example of the pk distribution of electrons for
E0 ¼ 3Ec, p⊥ ¼ 0, and various values of T (see Fig. 1).
One observes a number of distinctive features. First, the
momentum distribution takes a rectangularlike shape for
sufficiently large T and its width approximately equals
jejE0T. Note that the results are expressed in terms of the
kinetic momentum. Since the electron produced is being
then accelerated by the external field opposite to the x axis,
the spectrum mostly lies in the negative-pk region. Second,
the momentum distribution gains a plateau region whose
height corresponds to the Schwinger value

nðSchwingerÞp;s ¼ e−πλpðE0Þ; where λpðEÞ ¼
π2⊥
jejE : ð2Þ

In this particular case, it amounts to 0.351. Third, the
large-T curves possess wiggles at the edges which
represent the effects of the finite duration of the external
electric pulse. These wiggles should be analyzed in more
detail as the particles are likely to be produced with low
kinetic energy and the main contribution from each
interval ½ti; tiþ1� will accordingly arise from the small-
pk parts of the spectra.
We now present a quantitative description of the

momentum distribution in the vicinity of pk ¼ 0. We
choose a sufficiently large value of T, so that the wiggles
are already frozen, and perform the calculations for smaller
values of E0 (see Fig. 2). One discovers that the spectrum
becomes essentially an even function of pk having a
maximum at pk ¼ 0 and negligible value of the
Schwinger plateau. The graphs demonstrate that for small
E0 the pair-production process is entirely governed by the
switching-on and -off effects. To further elaborate this

issue, we present the ratio κ ¼ np;s=n
ðSchwingerÞ
p;s at pk ¼ 0 as

a function of E0 (see Fig. 3). The pulse duration chosen is
always sufficiently large so that the ratio is converged. It is
seen that the finite-duration effects predominate over the
infinite-pulse results once E0 ≲ Ec. Some other aspects
concerning the switching-on and -off effects in the case of a
rectangularlike pulse can be found in Ref. [24].

B. LCFA for uniform fields

Let us now discuss how one can employ the LCFA (for
calculating the total amount of particles, this procedure is
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described, e.g., in Ref. [25]). For a general time-dependent
background, we divide the time interval ½tin; tout� into N
subintervals: tk ¼ tk−1 þ Δtk, k ¼ 1;…; N, t0 ¼ tin,
tN ¼ tout. In order to evaluate the mean number of particles
produced with (final) kinetic momentum p, we propagate it
backwards in time according to ðpkÞk ¼ pk − e½AðtkÞ−
AðtoutÞ�, ðpkÞ⊥ ¼ p⊥ and sum the individual contributions
npk;s. One should then decide how to evaluate npk;s. It is
now clear that the predominance of the finite-duration
effects revealed in Figs. 2 and 3 does not allow one to
use the exact value for a static electric background of
finite duration from Ref. [21]. Accordingly, setting npk;s ¼
e−πλpk ½EðtkÞ� for eEðtkÞΔtk ≤ ðpkÞk ≤ 0 in the limit
Δtk ¼ Δt → 0, one obtains the following expression for
the total value of the number density in the case of a
rectangular field profile:

FIG. 1. The momentum spectra of electrons created with p⊥ ¼ 0 in the case of a rectangularlike electric field with E0 ¼ 3Ec and
various values of the pulse duration T. The dashed curve represents the spectrum for the previous value of T.

FIG. 2. The momentum distributions in the case of a rectangularlike electric field with various values of E0 (p⊥ ¼ 0). The pulse
duration is sufficiently large, so this part of the spectrum no longer depends on T.

FIG. 3. The ratio κ ¼ np;s=n
ðSchwingerÞ
p;s at pk ¼ 0 as a function of

E0 for two different values of p⊥. The external field has a
rectangular profile.
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nðLCFAÞp;s ¼
�
e−πλp½Eðt�Þ� if pk ∈ ½eE0T; 0�;
0 otherwise;

ð3Þ

where t� is the time instant when the longitudinal kinetic
momentum vanishes: pkðt�Þ¼pk−e½Aðt�Þ−AðtoutÞ� ¼ 0.
It yields

t� ¼
T
2
−

pk
eE0

; Eðt�Þ ¼ E0: ð4Þ

Since t� ∈ ½−T=2; T=2�, the projection pk should obey
eE0T < pk < 0 as shown in Eq. (3). This approach
approximates the momentum spectrum by a rectangular
of height e−πλpðE0Þ and width jejE0T. Although it does not
reproduce the effects of the temporal finiteness of the
external pulse, one can expect the LCFA to perform well in
the case of more realistic configurations being switched on
and off smoothly. Next we will consider the Sauter
temporal dependence.

C. Sauter pulse

The external field has now the form

ExðtÞ ¼
E0

cosh2ðt=τÞ ; Ey ¼ Ez ¼ 0; ð5Þ

where τ governs the pulse duration while tin=out →∓ ∞.
The LCFA predicts the following value of the number
density:

nðLCFAÞp;s ¼
�
e−πλp½Eðt�Þ� if pk ∈ ½2eE0τ; 0�;
0 otherwise;

ð6Þ

where t� obeys

tanh
t�
τ
¼ 1 −

pk
eE0τ

: ð7Þ

Hence, within the region pk ∈ ð2eE0τ; 0Þ,

nðLCFAÞp;s ¼ exp

�
−

ππ2⊥eE0τ
2

pkðpk − 2eE0τÞ
�
: ð8Þ

This expression is to be compared with the exact result
[21,26]

nðexactÞp;s ¼ sinh½1
2
πτð2eE0τ þ ω− − ωþÞ� sinh½12 πτð2eE0τ þ ωþ − ω−Þ�

sinhðπωþτÞ sinhðπω−τÞ
; ð9Þ

where ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2⊥ þ ðPk ∓ eE0τÞ2

q
and Pk ¼ pk − eE0τ.

In Fig. 4 we present the momentum spectra computed by
means of Eqs. (8) and (9), respectively, for p⊥ ¼ 0,
E0 ¼ 0.5Ec, and two different values of τ. Our analysis
indicated that for sufficiently small τ, the LCFA can sub-
stantially underestimate the pair-production probabilities.

Let us consider the ratio ζ ¼ nðLCFAÞp;s =nðexactÞp;s at pk ¼ eE0τ
(Pk ¼ 0) and p⊥ ¼ 0 as a measure of this underestimation
(this value of the momentum projection corresponds to the
maximal number density). We also make a realistic
assumption mτ ≫ 1. It follows that for ξ≡ jejE0τ=m ≫ 1,

ζ ¼ exp

�
−
πmτ

4ξ3
½1þOð1=ξ2Þ�

�
: ð10Þ

Therefore, one should mind that

mτ

ξ3
≪ 1 ⇔ jeE0j3=2τ ≫ m2: ð11Þ

The condition derived is stronger than mere ξ ≫ 1, so the
criterion of the LCFA justification turns out to be quite
nontrivial. In Fig. 5 we display the ratio ζ as a function ofE0

and τ. The border between the regions with ζ ¼ 0 and ζ ¼ 1
clearly confirms the condition (11) (e.g., the line ζ ¼ 0.9
corresponds to jeE0j3=2τ ≈ 2.6m2).
In addition, we point out that in the range E0 ≪ Ec, one

can also employ the imaginary time method (ITM) [27–29].
Unlike the LCFA, which directly sums the particle yields
arising from each time interval, the ITM is based on the
calculation of the imaginary part of the classical action

FIG. 4. The momentum spectra of particles created by the
Sauter pulse (5) with E0 ¼ 0.5Ec (p⊥ ¼ 0). The dashed lines
represent the exact results while the solid lines correspond to
the LCFA estimates. The pulse duration is (a) τ ¼ 10m−1

and (b) τ ¼ 5m−1.
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along the tunneling trajectory. The ITM accurately repro-
duces the exact result (9) provided mτξ ≫ 1 [29]. This
means that in the case of small field amplitudes, the ITM
has a broader applicability than that of the LCFA [one
needs to satisfy jeE0j1=2τ ≫ 1 instead of (11)]. However, as
E0 approaches the Schwinger limit, the LCFA becomes
preferable to the ITM, which indicates that these techniques
are complementary.

D. Oscillating field

Finally, we consider a time-dependent laser pulse with a
subcycle structure:

AxðtÞ ¼
E0

ω
FðωtÞ sinωt; Ay ¼ Az ¼ 0; ð12Þ

where FðηÞ is an envelope function. In particular, we
choose a smooth profile which has an extended plateau:

FðηÞ ¼

8>><
>>:

sin2
h
1
2
ðπN − jηjÞ

i
if πðN − 1Þ ≤ jηj < πN;

1 if jηj < πðN − 1Þ;
0 otherwise;

ð13Þ

where N is the number of cycles, so the pulse duration
is T ¼ 2πN=ω.
Since the vector potential is no longer monotonic, there

are multiple turning points t� that contribute to nðLCFAÞp;s .
Moreover, each contribution relates to the same value of
jEðt�Þj once Fðt�Þ ¼ 1, so the naive summation of
expð−πλp½Eðt�Þ�Þ leads to number densities which exceed
unity for sufficiently large N. This fact obviously contra-
dicts the Pauli exclusion principle. In order to avoid this
obstacle, we suggest that the individual terms are summed
according to the rule

nðiþ1Þ
p;s ¼ nðiÞp;s þ ½1 − nðiÞp;s�e−πλp½Eðtðiþ1Þ

� Þ�; ð14Þ

where i ¼ 0; 1;…; K − 1, the positions of the turning

points obey tð1Þ� < tð2Þ� < … < tðKÞ� , and nð0Þp;s ¼ 0. The
prescription (14) is given by the classical probability

theory. The LCFA result nðLCFAÞp;s ¼ nðKÞp;s is now always
less than 1 and tends to 1 with increasing N.
This fact means that the LCFA does not describe the

Rabi oscillations (the number density at given p oscillates
as a function of the pulse duration), and we expect that the
larger N is, the less accurate predictions are made by the
LCFA. In Fig. 6 we depict two examples of the momentum
distributions using two different values of N. One observes
that the oscillating structure addressed in numerous studies
(see, e.g., Refs. [30–38]) is not reproduced by the LCFA as
Eq. (14) does not take into account the interference among
the different pair-production channels [39]. Moreover, the
LCFA performs much worse for larger N as the resonant
peaks rise in the spectrum. Our calculations demonstrate

FIG. 5. The ratio ζ ¼ nðLCFAÞp;s =nðexactÞp;s at pk ¼ eE0τ (Pk ¼ 0)
and p⊥ ¼ 0 as a function of E0 and τ in the case of the Sauter
field configuration (5).

FIG. 6. The momentum distribution of particles created by the external pulse (12) for N ¼ 1 (left) and N ¼ 3 (right) (E0 ¼ Ec,
ω ¼ 0.2m, p⊥ ¼ 0). The spectra are evaluated within the LCFA (dashed lines) and computed exactly (solid lines).
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that the LCFA can only provide a “mean” curve which can
be considered as an adequate prediction in the case of short
pulses. In addition, we note that the LCFA also fails to
reproduce the interference effects in the photon spectra in
the context of nonlinear Compton scattering [19,40].
Let Ωn be the Rabi frequency regarding the nth reso-

nance [the nth peak has a height of sin2ðΩnTÞ]. One has to
require ΩnT ≪ π=2 for all of the resonances in the
momentum spectrum. This condition does not allow the
resonances to form a pronounced peak structure. To
formulate this requirement in terms of the laser field
parameters ξ, ω, and N, we set p ¼ 0 and calculate the
Rabi frequencies for given ξ and various resonance
frequencies ωn. We introduce the characteristic number
of cycles Nn ¼ ωn=ð4ΩnÞ which yields the maximal
number density of particles (np¼0;s ≈ 1). In order to
evaluate ωn and Nn as a function of ξ, one can turn to a
quasiclassical treatment, as was done in Ref. [31] (see also
Refs. [11,37,41]). Let us introduce the approximate laser-
dressed energy of the particle at rest (p ¼ 0), i.e., the
effective mass:

q0 ¼
ω

2π

Z2π=ω

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2AðtÞ2

q
dt: ð15Þ

If one neglects the switching-on and -off parts of the laser
pulse, where FðωtÞ < 1, one can recast Eq. (15) into

q0 ≈
m
2π

Z2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2sin2x

p
dx ¼ m

2π
Eð2πj − ξ2Þ; ð16Þ

where ξ ¼ jejE0=ðmωÞ and EðzjkÞ is the incomplete
elliptic integral of the second kind. The resonance con-
dition now reads: 2q0 ¼ nωn. It turns out that for given ξ
the Rabi frequency of the nth resonance can be found via

Ωn ¼
jejE0

4πm

����
Z2π

0

cosx
1þξ2sin2x

exp

�
2im
ωn

Eðxj−ξ2Þ
�
dx

����: ð17Þ

The derivation of this equation is presented in Appendix. In
Fig. 7 we display the values of Nn for various n and ξ
plotting it versus m=ωn. Note that n should always be odd
due to the selection rule discussed, e.g., in Refs. [10,31,36–
38,42]. As was also shown in Ref. [31], the results can be
approximated according to

lnNn ¼ aðξÞ þ bðξÞ m
ωn

; ð18Þ

which holds true for all n. Replacing Nn and ωn with
continuous variables N0 and ω, respectively, one receives
the characteristic number of cycles N0 needed for the

resonances to occur in the spectrum as a function of the
field parameters ξ and ω. Let us then isolate ω as follows:

m
ω
¼ lnN0 − aðξÞ

bðξÞ : ð19Þ

In Fig. 8 we present the ratio m=ω as a function of ξ for
several different values of N0. One observes that the data
can be fitted as

m
ω
¼ AðN0Þ þ BðN0Þξ; ð20Þ

which in turn leads to

ω

m
AðN0Þ þ

E0

Ec
BðN0Þ ¼ 1: ð21Þ

This equation being considered at given N0 yields a line in
the E0—ω plane. The line intersects the axes at ω=m ¼
1=AðN0Þ and E0=Ec ¼ 1=BðN0Þ, respectively. It turns out
that the functions AðN0Þ and BðN0Þ depend linearly on
logN0:

FIG. 7. The number of cycles Nn as a function of ωn for various
ξ. The results for ξ ¼ 10 were multiplied by a factor of 4.

FIG. 8. The ratio m=ω evaluated according to Eq. (19) as a
function of ξ for various N0.
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AðN0Þ ≈ 0.123878 lnN0 − 0.015148; ð22Þ

BðN0Þ ≈ 0.579195 lnN0 þ 0.288868: ð23Þ

These findings were confirmed by our direct numerical
computations without using Eq. (17).
The results obtained should be interpreted as follows.

Supposing that the external laser pulse has the parameters
E0 and ω, one needs to find the value N0 ¼ N0ðE0;ωÞ
which satisfies the condition (21), i.e., the corresponding
line should pass through the point ðE0=Ec;ω=mÞ. To this
end, one can useEqs. (22) and (23). The resonant peaks in the
momentum spectrumget close to theirmaxima as the number
of cyclesN approachesN0ðE0;ωÞ. Accordingly, theLCFA is
expected to be adequate only if N ≪ N0ðE0;ωÞ. For
instance, for the field parameters employed in Fig. 6, one
finds that N0 ≈ 3.26, which explains the appearance of
pronounced resonant peaks already for N ¼ 3.
Finally, we underline that even if all of the resonances are

far from their maximal values, i.e., N ≪ N0ðE0;ωÞ, they
can still considerably exceed the LCFA predictions. This
means that the procedure described above provides only the
necessary conditions for the field parameters. After ful-
filling these requirements, one should directly compare the
pair-production probabilities evaluated within the LCFA to
the height of the possible resonant peaks in the spectrum,
i.e., to sin2ðΩnTÞ for the corresponding values of n. This
can also be done by means of Eq. (17), so the validity of the
LCFA can be examined without performing the exact
computations.

III. SPACE-TIME-DEPENDENT FIELDS

In this section we will consider the case of a spatially
inhomogeneous external field. We will first discuss how
one can implement the LCFA for computing the momen-
tum spectra of particles and then turn to benchmarking the
LCFA predictions against the exact results.

A. LCFA implementation

First, we note that the presence of the spatial dependence
substantially reduces the efficiency of the LCFA prescrip-
tions formulated in the previous section. Although the
particle momentum can be easily propagated in time in the
case of uniform external fields, this task becomes much
more complicated once some spatial inhomogeneities take
place. Furthermore, one now needs not only to solve the
equations of motion, but also to integrate over the possible
values of the final position of the particle. Besides, the Pauli
exclusion principle should also be taken into account,
which makes the evaluation of the momentum spectra
considerably difficult despite the approximate character of
the computations. An alternative approach suggests that
one calculates the pair-production probabilities replacing
the external field with a spatially uniform background

whose temporal dependence coincides with that of the
original field configuration at a given position in space and
sums then the results over the spatial region where the
external field is present.
We will show now that the differential probabilities

calculated according to this approach and integrated then
over momentum provide the conventional LCFA formula
for the total particle yield (see, e.g., Refs. [43,44]). We
assume for simplicity that the external field points along
the x direction and has the form Eðt; xÞ ¼ −∂tAðt; xÞ and
Eðt; xÞ ≥ 0 for all t and x. For a given value of x, one can
employ the LCFA approach discussed in Sec. II, i.e.,
approximate the particle number density as

nðLCFAÞp;s ðxÞ ¼ e−πλpfE½t�ðpkÞ;x�g; ð24Þ

where t�ðpkÞ is the solutionof the equationpk − e½Aðt�; xÞ −
Aðtout; xÞ� ¼ 0 and we assume that pk ∈ ½efAðtin; xÞ−
Aðtout; xÞg; 0�. Since the function Aðt; xÞ is a monotonic
function of t, there is a one-to-one correspondence between
t� and pk. Having evaluated the expression (24) for given x,
we integrate then over x:

dNðLCFAÞ
p;s

d3p
¼ S

ð2πÞ2
Zþ∞

−∞

dx
2π

e−πλpfE½t�ðpkÞ;x�g; ð25Þ

where S is the yz cross section of the system. To obtain the
total number of pairs produced, we first integrate over pk.
This integration can be performed in terms of t� having in
mind thatdpk ¼ jejEðt�; xÞdt�. Omitting the star, we receive

dNðLCFAÞ
p⊥;s
d2p⊥

¼ S
ð2πÞ2

Zþ∞

−∞

dx
2π

Ztout
tin

dtjejEðt; xÞe−πλp½Eðt;xÞ�: ð26Þ

Finally, we integrate over p⊥ using the explicit form of λp
[Eq. (2)] and take into account the spin factor 2:

NðLCFAÞ ¼ S
4π3

Zþ∞

−∞

dx
Ztout
tin

dte2E2ðt; xÞe−πm2=jeEðt;xÞj: ð27Þ

This result exactly coincides with the prediction of the LCFA
developed for calculating the total amount of pairs produced
[43,44] (see also Ref. [25]). However, we will focus on the
momentum distribution of particles which can be calculated
bymeans ofEq. (25).Note that due to themonotonicity of the
vector potential, one can calculate the number density for
given x with the aid of Eq. (24) instead of using the
prescription (14), which takes into account the Pauli exclu-
sion principle. It becomes now clear that in the case of an
arbitrary temporal dependence of the external field, none of
the expressions (25) and (27) incorporates Pauli blocking.
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Moreover, the integral overx in these formulas independently
sums the contributions corresponding to different values of x,
which could lead to additional overestimation of the pair-
production probabilities. A proper inclusion of the Pauli
principle can be performed only within the exact multidi-
mensional QED treatment.
In what follows, we will compare the LCFA predictions

with the exact spectra of particles. Since the uniform-field
problem was already discussed in Sec. II, we will focus on
the role of the spatial inhomogeneities using the exact
results for the purely time-dependent configurations instead
of the approximate integrand in Eq. (25). Supposing that
one can carry out the precise calculations for arbitrary
ExðtÞ, we will discuss how accurate the LCFA can perform
in the presence of a non-uniform field Exðt; xÞ. We will
examine several specific field configurations benchmarking
the LCFA results against the exact spectra which are
obtained with the aid of our nonperturbative numerical
approach described in Ref. [6] (it was also applied in
Refs. [9,10]).
We assume that the external field has the form

Exðt; xÞ ¼ E0GðtÞF ðxÞ; ð28Þ

where the temporal and spatial profiles will be speci-
fied below.

B. Uniform static field inside a capacitor of finite size

First, we consider the case of a rectangularlike temporal
and spatial profiles:

GðtÞ ¼ θðT=2 − jtjÞ; F ðxÞ ¼ θðL − jxjÞ: ð29Þ

For further convenience, we introduce the notations

Π ¼ jejE0

Zþ∞

−∞

GðtÞdt; L ¼ π

Π
δ: ð30Þ

Since the field configuration is now finite in the x direction,
the computations provide the following (finite) quantity:

nðSÞp;s ¼ ð2πÞ2
S

dNp;s

d3p
: ð31Þ

We normalize the results multiplying them by a factor of
2π=ð2LÞ. After this renormalization, the summation over
the x coordinate leads exactly to the infinite-capacitor
results discussed in the previous section which are to be
compared with the exact values. As an example, we present
the longitudinal momentum distributions for E0 ¼ Ec,
T ¼ 5m−1, and various δ (see Fig. 9). The transversal
momentum equals zero, i.e., π⊥ ¼ m. The graph reveals
indeed that the spectra found for the 2D field configuration
recover the 1D result as δ → ∞. However, for small δ the

effects of spatial finiteness become crucial, which means
that the LCFA is well justified only for sufficiently large δ.
In Fig. 9 one observes that in the case δ ¼ 2, the spectrum
support is strongly different from that obtained for large δ.
This can be understood if one notices that a classical
particle in such a field configuration can escape from the
region x ∈ ½−L; L� before the field gets switched off. The
left edge of the spectrum is formed by the particles
produced at the very onset of the pulse, i.e., at t ¼ tin. If
one requires the particle be still present inside the capacitor
by the time instant t ¼ tout, it yields the condition δ ≫ δ0,
where

δ0 ¼
Π
2π

Ztout
tin

jejE0½AðtinÞ −AðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2⊥ þ e2E2

0½AðtinÞ −AðtÞ�2
p dt ð32Þ

and AðtÞ ¼ R
tGðt0Þdt0. In the case of a rectangularlike

temporal profile, one obtains Π ¼ jejE0T and

δ0 ¼
π⊥T
π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2E2

0T
2=π2⊥

q
− 1

�
: ð33Þ

For the field parameters from Fig. 9 and π⊥ ¼ m, it yields
δ0 ≈ 6.52. Using Eq. (33), one can now approximately
identify the domain of the LCFA justification. The con-
dition (33) was derived within relativistic mechanics. The
nonrelativistic regime appears once

jejE0T
m

≪ 1; ð34Þ

which leads to

δ0 ≈
e2E2

0T
3

2ππ⊥
: ð35Þ

The expressions (32) and (33) can be applied only in the
case of slow spatial variations of the external potential and
sufficiently large momentum of particles at the left edge of

FIG. 9. The momentum distribution of electrons created by the
external field of the form (29) for E0 ¼ Ec, T ¼ 5 m−1, and
various values of δ (points). The solid line represents the LCFA
prediction.
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the spectrum. This requirement can be represented in the
following form:

Π3 ≫ jejE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Π2

p
: ð36Þ

In the nonrelativistic limit, it reads

e2E2
0T

3

m
≫ 1: ð37Þ

The derivation of the nonrelativistic form of the condition
(36) can be found, e.g., in Ref. [45], and its relativistic
generalization leading to Eq. (36) is quite straightforward.
We also note that in contrast to the results of Secs. II A

and II C, the LCFA now overestimates the total number of
particles. This can be explained using the fact that a locally
constant treatment differently affects the particle yield
depending on whether it is applied to the temporal
dependence or spatial inhomogeneities. In the former case,
the LCFA does not take into account “dynamical produc-
tion” of particles due to fast variations of the external field
(e.g., rapid switching on and off). However, in the latter
case, the LCFA treats the particle as if it were interacting
with a uniform and infinite background and thus prevents
the particle from escaping, which leads to the overestima-
tion in Fig. 9. Note that these two patterns are clearly seen
in our results since we treat here the temporal dependence
exactly and therefore disentangle the two effects.
In what follows, we will discuss a Sauter-like temporal

profile.

C. Smooth temporal profile

The external field configuration now has the form

GðtÞ ¼ cosh−2ðt=τÞ; F ðxÞ ¼ θðL − jxjÞ: ð38Þ

This leads to Π ¼ 2jejE0τ. Although in this case
tin=out →∓ ∞, the integral in Eq. (32) should not be
computed along the whole axis. Indeed, the field exerts
a non-negligible force on the particle only within the
interval jtj≲ τ. Accordingly, in Eq. (32) one should replace
tin=out with ∓ τ, respectively. In Fig. 10 we display the
dependence of δ0 on E0 and τ. Although the corresponding
integral can be calculated exactly, we present only the
asymptotic behavior due to the cumbersomeness of the full
expression. For ξ ≪ 1, one obtains

δ0 ≈
2e2E2

0τ
3

ππ⊥
tanh 1;

8e2E2
0τ

3

m
≫ 1: ð39Þ

The inequality shown in Eq. (39) is derived from Eq. (36).
For ξ ≫ 1, we receive

δ0 ≈
jejE0τ

2

π
; 4jejE0τ

2 ≫ 1: ð40Þ

For large π⊥=m one should replace ξ with jejE0τ=π⊥ in the
conditions ξ ≫ 1 and ξ ≪ 1. Note that the temporal-profile
width τ in the strong-coupling regime ξ ≫ 1 should obey
τ ≫ 1=ð4ξmÞ which is always satisfied by realistic pulse
durations. Moreover, if ξ≳ 1 but it does not fulfill ξ ≫ 1,
Eq. (36) requires jejE0 ≪ m2 which is also completely
realistic from the experimental viewpoint. It is a crucial
point since it indicates that the semiclassical analysis of
the particle trajectories is always justified once the non-
perturbative pair-production process is considered. The
expressions (39) and (40) demonstrate again that the field
parameters must obey nontrivial relations to make the
LCFA results valid.

D. Smooth temporal and spatial profiles

Finally, we consider a smooth spatial profile:

GðtÞ ¼ cosh−2ðt=τÞ; F ðxÞ ¼ cosh−2ðx=αÞ: ð41Þ

In the case of this configuration, the summation over the
spatial coordinate within the LCFA becomes more com-
plicated. One should now integrate the exact expression (9)
varying the parameter E0 according to E0ðxÞ ¼ E0F ðxÞ,
where −∞ < x < þ∞. A simple substitution of the inte-
gration variable x̃ ¼ x=α demonstrates that the result of
this integration being divided by α is independent of α.
Accordingly, we divide the number density by α=π, so that
one can compare the exact results with the LCFA spectrum.
We introduce the notation

α ¼ π

Π
δ; where Π ¼ 2jejE0τ; ð42Þ

and depict the spectra found within the LCFA and com-
puted exactly for E0 ¼ Ec, τ ¼ 2 m−1, and various values

FIG. 10. The dimensionless parameter δ0 for the field configu-
ration (38) as a function of E0 and τ.
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of δ (see Fig. 11). The qualitative behavior of the exact
spectra for different δ is similar to what was reported in
Ref. [46]: the spectra shift along the px axis, and the
particle yield vanishes as δ → 0. We observe that the LCFA
performs accurately only for sufficiently large δ. To
describe this behavior, one can perform again the analysis
of the classical trajectories of the relativistic particle in the
external field. Setting π⊥ ¼ m and solving the classical
equations of motion numerically for various E0, τ, and α,
we calculate the characteristic spatial width α0 correspond-
ing to the trajectories starting at x ¼ α (with zero velocity)
and ending at x ¼ −α as the temporal variable changes
from −τ to τ. In Fig. 12 this quantity is presented as a
function of E0 for several different values of τ. For the
values employed in Fig. 11, it gives α0 ≈ 1.12 m−1, i.e.,
δ0 ≈ 1.42. Fitting the data obtained, one can identify the
following scaling with respect to E0 and τ in the limit
ξ ≪ 1:

α0 ∼
jejE0τ

2

m
; δ0 ∼

e2E2
0τ

3

m
: ð43Þ

For ξ ≫ 1, one obtains

α0 ∼ τ; δ0 ∼ jejE0τ
2: ð44Þ

We observe now that the scaling of the parameter δ0
exhibits a universal behavior [compare Eqs. (43) and
(44) with Eqs. (39) and (40)]. It means that the shape of
the spatial profile of the external field does not play here a
major role.
Finally, we stress that the requirement that the classical

particle be confined in the vicinity of the field maximum (in
this case it means −α≲ x≲ α) is not equivalent to the
condition lc ¼ m=ðjejE0Þ ≪ α, where lc is the character-
istic pair-formation length. The latter does not take into
account the particle dynamics in the presence of the
external field. Nevertheless, replacing the electron mass
in the expression for lc with the relativistic energy of the
particle with momentum Π, one receives the condition (44)
in the limit ξ ≫ 1. On the other hand, the more extensive
analysis of the particle trajectories conducted in this section
represents a more general tool for justifying the LCFA.

IV. DISCUSSION

In the present study, we analyzed a number of simple
configurations of the external electric field in order to
benchmark the locally-constant field approximation against
the exact methods and deduce the requirements that should
be fulfilled if one aims at utilizing the LCFA in one’s
calculations. In particular, we focused on the momentum
distributions of particles produced. The first part of the
study was devoted to the case of a spatially-uniform electric
field. It was shown that the criteria of the LCFA appli-
cability turn out to be rather nontrivial even if very simple
temporal profiles of the external field are considered. For
instance, in the case of a Sauter pulse, the momentum
spectrum can be accurately described by the LCFA only
when jeE0j3=2τ ≫ m2. This condition is much stronger
than ξ ¼ jejE0τ=m ≫ 1, so the LCFA can be justified only
in the deeply nonperturbative regime. Next we turned to the
analysis of an oscillating field profile giving rise to multiple
turning points of the classical-particle motion. Since the
LCFA does not capture the oscillating structure of the
momentum spectra, it can be invoked only for studying
short laser pulses, i.e., pulses containing sufficiently small
number of cycles. In order to clarify this issue, we focused
on the resonant Rabi oscillation and evaluated the corre-
sponding Rabi frequency as a function of the pulse
amplitude and frequency. It was demonstrated that perform-
ing a quite simple analysis of the n-photon resonances, one
can find out whether the LCFA should yield reliable
predictions. In the second part of the present investigation,
we examined several non-uniform external backgrounds. It
was shown that the LCFA may indeed perform well as long
as the corresponding classical trajectories are localized
within the spatial region where the external field is close to

FIG. 11. The momentum distribution of electrons produced by
the external field with a smooth spatiotemporal profile (41) for
E0 ¼ Ec, τ ¼ 2 m−1, and various values of δ (points). The solid
line represents the spectrum obtained within the LCFA.

FIG. 12. The dependence of the parameter α0 on the peak field
strength E0 and the pulse duration τ.
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its maximum. This provides a generic approach which can
be used in the preliminary examination of the external field
configuration before the LCFA is employed. Besides, it was
found that the validity of the LCFA is not sensitive to the
details of the field spatial profile. What could be even more
important is the fact that the estimates extracted from the
properties of the classical trajectories should be accurate
once one is interested in the strong-coupling regime ξ≳ 1.
Although the present investigation involved the simplest

field configurations, the corresponding findings can already
provide valuable insights into the LCFA justification in the
case of more realistic scenarios. First, the results of Sec. II
indicate that the temporal dependence of the external
background can hardly be taken into account within the
LCFA as the real laser setups may well contain too many
carrier cycles while this approximation does not take into
account the multiphoton signatures in the momentum
spectra. However, the exact treatment of the temporal
dependence of the external field and further summation
over the spatial coordinates could still efficiently provide
quite accurate results. To judge whether this summation
leads to adequate predictions, one can examine the particle
dynamics similarly to what was discussed in Sec. III. The
aforementioned criterion formulated in terms of the
classical trajectories can be applied in the case of an
arbitrary field configuration, provided ξ≳ 1. In particular,
this treatment is expected to further illuminate how the
magnetic field component affects the validity of the LCFA.
Moreover, the justification of more sophisticated modifi-
cations of the LCFA approach (see, e.g., Ref. [12]) can also
be addressed by means of similar considerations. To
carefully explore these ideas, one has to conduct the
calculations for more complex external backgrounds,
which is an important task for future studies.
Finally, we point out that the LCFA can also be

employed for the approximate evaluation of the total
number of pairs produced. Since in this case one does
not need to follow the momentum of the particle once it is
created by the external field, it is easier to suggest the
corresponding approximation for this integral quantity [for
instance, see Eq. (27)]. Furthermore, this simplification
imposes weaker restrictions on the field parameters. For
instance, the evaluation of the total particle yield in the case
of a Sauter pulse can be accurately performed even if the
condition (11) is not satisfied [25]. Benchmarking this kind
of the LCFA approach is beyond the scope of the present
investigation.
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APPENDIX: RABI FREQUENCY

In the case of a monochromatic spatially-uniform exter-
nal field, the frequencies of the n-photon resonances for
p ¼ 0 can be found according to ωn ¼ 2q0=n, where the
quasienergy q0 is given by Eq. (15). The number density of
particles produced then oscillates as a function of the pulse
duration: np¼0;s ≈ sin2ðΩnTÞ. The closed-form expression
(17) for the corresponding Rabi frequency Ωn can be
derived by the quasiclassical consideration which is valid
for ω ≪ m and E0 ≪ Ec [31].
Let us introduce the following function:

dðtÞ≡ PðtÞe2iS0ðtÞe−2iq0t; ðA1Þ
where

PðtÞ ¼ −
ieEðtÞm
2ε2ðtÞ ; εðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2A2ðtÞ

q
; ðA2Þ

and the action S0 has the form

S0ðtÞ ¼
Zt

εðt0Þdt0: ðA3Þ

We set ω ¼ ωn. The function dðtÞ is periodic, and it turns
out that the nth Fourier coefficient provides the corre-
sponding Rabi frequency [31]:

dðtÞ ¼
X
k

cke−inωnt; Ωn ¼ jcnj: ðA4Þ

It follows that

cn ¼ −
imωn

4π

Z2π=ωn

0

eEðtÞ
ε2ðtÞ e

2iS0ðtÞdt: ðA5Þ

Using the explicit form of the vector potential (12) and
neglecting the switching-on and -off parts of FðωtÞ, one
obtains

S0ðtÞ ¼
m
ωn

Eðωntj − ξ2Þ þ freal constantg: ðA6Þ

With the aid of Eqs. (A5) and (A6), one receives Eq. (17)
for Ωn ¼ jcnj.
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