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We study the chiral phase transition of quark matter under rotation in two-flavor Nambu–Jona-Lasinio
(NJL) model. It is found that, in the rotating frame, the angular velocity plays the similar role as the baryon
chemical potential and suppresses the chiral condensate, thus the chiral phase transition shows a critical end
point not only in the temperature-chemical potential T-μ plane, but also in the temperature-angular
momentum T-ω plane. One interesting observation is that in the T-μ plane, the presence of the angular
momentum only shifts down the critical temperature TE of the CEP and does not shift the critical chemical
potential μE, and in the T-ω plane, the increase of the chemical potential only shifts down the critical
temperature TE and does not change the critical angular momentum ωE. The phase structure in the T-μ
plane is sensitive to the coupling strength in the vector channel, while the phase structure in T-ω plane is
not. It is also observed that the rotating angular velocity suppresses the kurtosis of the baryon number
fluctuations, while it enhances the pressure density, energy density, the specific heat, and the sound
velocity.
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I. INTRODUCTION

The phase transitions and phase structure of quantum
chromodynamics (QCD) at finite temperature, density, and
other extreme conditions are the main topics of relativistic
heavy ion collisions. The properties of QCD matter and its
equation of state is also highly related to the evolution of
the early universe and mass-radius relation of the compact
stars. Recently, lots of interests are attracted to investigate
magnetized and fast rotating QCD matter because strong
magnetic field and large angular momentum can be created
through noncentral heavy ion collisions. In the past decade,
lots of studies focus on QCD matter under strong magnetic
fields and many interesting phenomena have been dis-
cussed, e.g., the chiral magnetic effect (CME) [1–3], the
magnetic catalysis [4–6] and inverse magnetic catalysis [7]

effect, and the vacuum superconductivity [8,9]. However,
studies on properties of fast rotating QCD matter are still
relatively few.
Rotating matter exists in many physical environments,

e.g., the rapidly spinning neutron stars in astrophysics, the
trapped nonrelativistic bosonic cold atoms in condensed
matter physics and noncentral heavy-ion collisions in high
energy nuclear physics. For the off-central heavy ion
collisions, the two colliding nuclei carry a total momentum
J ∝ b

ffiffiffiffiffiffiffiffi
sNN

p
. Here, b is the impact parameter and the beam

energy
ffiffiffiffiffiffiffiffi
sNN

p
is nucleon-nucleon center-of-mass energy.

After the collision, most of the angular momentum is
carried away by the spectators, and there still remains a
nonzero angular momentum in the range of 103ℏ–105ℏ
with local angular velocity in the range of 0.01–0.1 GeV in
the created hot QCD matter [10,11]. Some interesting
physical phenomena were found in rotating QCD matter
(i.e., chiral vortical effect [2,12,13] and chiral vortical wave
[14]). The chiral vortical effect and chiral vortical wave
play analogous roles to the chiral magnetic effect [2,3] and
the chiral magnetic wave [15,16], which were found in
magnetized matter (matter in strong magnetic fields).
There are already lots of studies on QCD phase structure

and properties of QCD matter under strong magnetic fields
(for review, see Ref. [17]). Compared with that, studies on
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the phase diagram of fast rotating QCD matter are quite
limited; e.g., see references in [18–22]. It was observed in
[19] that there is a generic suppression effect on both quark-
antiquark and diquark pairing states with zero angular
momentum, and there is another critical end point in the
temperature-rotation parameter space. In this work, we
investigate the QCD phase diagram of fast rotating quark
matter at finite temperature and density in the two-flavor
NJL model with vector interaction. In recent studies, it is
pointed out in [18,20–22] that the boundary effect is very
important in rotating system, since all the research are
considering the leading order of angular velocity in
Lagrangian expansion, strictly speaking, this is only true
when the angular velocity is much smaller than the inverse
of the system’s size and thus can ignore the finite volume
boundary effect. So in this paper, we just ignore the
boundary effect and give a qualitative result. We show a
three-dimensional phase structure in the T-μ-ω frame, and
carefully investigate the influence of the angular velocity ω
on the CEP in the T-μ plane. It is interesting to notice that
the presence of the angular momentum only shifts down the
critical temperature TE of the CEP and does not shift the
critical chemical potential μE. We also find that with fixed
chemical potential, the chiral phase transition at high
angular momentum is of first order, and there is another
CEP shows up in the temperature-angular momentum T-ω
plane. Similarly, we find that in the T-ω plane, the increase
of the chemical potential only shift down the critical
temperature TE and does not change the critical angular
momentum ωE. We also evaluate how the vector interaction
will affect the phase diagram. The numerical result shows
that the influence of vector interaction on the chiral phase
transition in the T-ω plane is much less sensitive comparing
with the chiral phase transition in the T-μ plane.
This paper is organized as following: in the next section,

we give a general expression of the two-flavor NJL model
including vector interaction in rotating frame, and then
derive thermodynamical potential and the gap equations for
the chiral condensate. In Sec. III, we show our numerical
results and analysis on the CEP and influence from the
vector interaction. An experimental relative quantity which
is the kurtosis of baryon number fluctuation has been
evaluated with different angular momentum. Several
thermodynamic quantities are also computed. Finally, the
discussion and conclusion is given in Sec. IV.

II. FORMALISM

The Lagrangian of the two-flavor NJL model with vector
interaction in the rotating frame is given by [23]

L ¼ ψ̄ ½iγμð∂μ þ ΓμÞ −m�ψ þ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�
− GV ½ðψ̄γμψÞ2 þ ðψ̄γμγ5ψÞ2�: ð1Þ

Here, we consider the system with a constant angular
velocity ω⃗ along z-axis and v⃗ ¼ ω⃗ × x⃗ is the local veclocity

of this rotating frame. m is the current quark mass, GS
and GV are the coupling constants in the scalar and vector
channels, respectively. The spinor connection is given
by Γμ ¼ 1

4
× 1

2
½γa; γb�Γabμ. Here, Γabμ ¼ ηacðecσGσ

μνebν−
ebν∂μecνÞ, Gσ

μν is the affine connection determined by gμν.
Following Ref. [19], we expand the Lagrangian up to the
leading order of ω and choose eaμ ¼ δaμ þ δaiδ

0
μvi and

eaμ ¼ δa
μ − δa

0δi
μvi. Following the derivation in [19,24],

the Lagrangian with vector interaction in the mean field
approximation is given by

L ¼ ψ̄ ½iγ̄μð∂μ þ γ0ωĴzÞ −M�ψ þ ðμ̃ − μÞψ†ψ

−
ðM −mÞ2

4GS
þ ðμ − μ̃Þ2

4GV
: ð2Þ

Where Jz is the third direction of total angular momentum,
the effective quark chemical potential is defined as
μ̃ ¼ μ − 2GVhψ†ψi, and the constituent quark mass in the
mean-field approximation is given by M ¼ m − 2GShψ̄ψi.
The general grand potential is given by

ΩðT; μ;M; μ̃;ωÞ ¼ ΩMðT; μ;M; μ̃;ωÞ

þ
Z

d3r

�ðM −mÞ2
4GS

−
ðμ − μ̃Þ2
4GV

�
: ð3Þ

Using the standard method from the textbook [25], we
could get

ΩMðT; μ;M; μ̃;ωÞ

¼
Z

d3r

�
−

T
32π2

X
N

X
n

Z
dk2t

×
Z

dkz½JnðktrÞ2 þ Jnþ1ðktrÞ2�Tr lnD
�

¼
Z

d3r

�
−
TNcNf

16π2
X
N

X
n

×
Z

dk2t

Z
dkz½JnðktrÞ2 þ Jnþ1ðktrÞ2�

× ln

�
β2
��

ωN þ iμ̃þ i

�
nþ 1

2

�
ω

�
2

þ E2
k

���
; ð4Þ

with

D ¼ −iβ
��

−iωN þ μ̃þ
�
nþ 1

2

�
ω

�
− γ0γ⃗ · k⃗ −Mγ0

�
:

ð5Þ

Here, kz the momentum in the z-direction and kt the trans-
verse momentum, Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2t þM2

p
:β ¼ 1=T and the

Matsubara frequency ωN ¼ ð2N þ 1ÞπT, r is the location
from the center of rotation, JnðxÞ is the first kind nth Bessel
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functions with n ¼ 0;�1;… the z-angular-momentum
quantum number.
Using the following relations,

2
X
N

ln

�
β2
��

ωN þ iμ̃þ i

�
nþ1

2

�
ω

�
2

þE2
k

��

¼
X
N

�
ln

�
β2
�
ω2
Nþ

�
Ek− μ̃−

�
nþ1

2

�
ω

�
2
��

þ ln

�
β2
�
ω2
N þ

�
Ekþ μ̃þ

�
nþ1

2

�
ωÞ2

���

¼ βEkþ lnð1þe−βðEk−ðnþ1
2
Þω−μ̃ÞÞþ lnð1þe−βðEkþðnþ1

2
Þωþμ̃ÞÞ

¼−βEkþ lnð1þeβðEk−ðnþ1
2
Þω−μ̃ÞÞþ lnð1þeβðEkþðnþ1

2
Þωþμ̃ÞÞ;

ð6Þ

we get

ΩMðT;μ;M;μ̃;ωÞ

¼
Z

d3r

�
−
NcNf

16π2
T
X
n

Z
dk2t

Z
dkz½JnðktrÞ2þJnþ1ðktrÞ2�

× ½lnð1þeðEk−ðnþ1
2
Þω−μ̃Þ=TÞþ lnð1þe−ðEk−ðnþ1

2
Þω−μ̃Þ=TÞ

þ lnð1þe−ðEkþðnþ1
2
Þωþμ̃Þ=TÞþ lnð1þeðEkþðnþ1

2
Þωþμ̃Þ=TÞ�

�
:

ð7Þ

Notice here a factor of 2 is taking account of particles and
antiparticles. Then the general grand potential function
becomes

ΩðT; μ;M; μ̃;ωÞ

¼
Z

d3r

�ðM −mÞ2
4GS

−
ðμ − μ̃Þ2
4GV

−
NcNf

16π2
T
X
n

Z
dk2t

×
Z

dkz½JnðktrÞ2 þ Jnþ1ðktrÞ2�½lnð1þ eðEk−ðnþ1
2
Þω−μ̃Þ=TÞ

þ lnð1þ e−ðEk−ðnþ1
2
Þω−μ̃Þ=TÞ þ lnð1þ e−ðEkþðnþ1

2
Þωþμ̃Þ=TÞ

þ lnð1þ eðEkþðnþ1
2
Þωþμ̃Þ=TÞ�

�
: ð8Þ

In order to find the stationary points of Ω with respect to M
and μ̃, we need to solve the following gap equations,

∂Ω
∂M ¼ 0;

∂Ω
∂μ̃ ¼ 0; ð9Þ

with the following constraint,

∂2Ω
∂M2

> 0: ð10Þ

The gap equations take the following forms:

0 ¼
Z

d3r

�
M −m
2GS

−
NcNf

8π2
X
n

Z

× dk2t

Z
dkz½JnðktrÞ2 þ Jnþ1ðktrÞ2�

×
M sinhðEk

T Þ
Ek½coshðEk

T Þ þ coshðμ̃þðnþ1
2
Þω

T Þ�

�
; ð11aÞ

0 ¼
Z

d3r

�
μ − μ̃

2GV
−
NcNf

8π2
X
n

Z

× dk2t

Z
dkz½JnðktrÞ2 þ Jnþ1ðktrÞ2�

×
sinhðμ̃þðnþ1

2
Þω

T Þ
coshðEk

T Þ þ coshðμ̃þðnþ1
2
Þω

T Þ

�
; ð11bÞ

with constraint

d3r

�
1

2GS
−
NcNf

8π2
X
n

Z
dk2t

Z

×dkz
½JnðktrÞ2þJnþ1ðktrÞ2�

TE3
kðcoshðEk

T Þþ coshðμ̃þ2ðnþ1Þω
T ÞÞ2

×

�
M2Ek cosh

�
Ek

T

�
cosh

�
μ̃þðnþ1=2Þω

T

�

þk2T sinh

�
Ek

T

��
cosh

�
Ek

T

�
þ cosh

�
μ̃þðnþ1=2Þω

T

��

−M2Eksinh2
�
Ek

T

�
þM2Ekcosh2

�
Ek

T

���
> 0: ð11cÞ

III. NUMERICAL RESULTS

We consider the two-flavor case Nf ¼ 2 and take
Nc ¼ 3. For numerical calculations we choose one set of
parameters for the current quark mass m and the coupling
constant in the scalar channel GS

m ¼ 5.5 MeV; GS ¼ 5.04 × 10−6 MeV−2;

Λ ¼ 651 MeV ð12Þ

by fitting the pion mass and pion weak decay constant in
the vacuum as in Ref. [26]. In the vacuum, the coupling
constant GV in the vector channel should be determined
by the vector mesons as shown in Refs. [27]. However,
the coupling constants may change in the medium; for
example, it was shown in Ref. [28,29] that the coupling
constant in the vector as well as axial-vector channels will
change sign due to the instanton–anti-instanton pairing
effect at high temperature [28] when chiral symmetry
restores. In Ref. [30], the effect of negative GA above Tc
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has been analyzed. In this work, we treat the coupling
constant GV as a free parameter. In the original NJL model
with only scalar interaction, the predicted critical end
point (CEP) is located at a rather low temperature region.
It was shown in Ref. [31,32] that changing the value of the
coupling constant in the flavor singlet vector interaction
GV will shift the location of CEP, and with the increasing
of positive GV , the CEP will disappear in the T-μ plane.

It has been shown in Ref. [33], a negative vector coupling
constant will raise the location of CEP which may have a
better agreement with the experiment measurement
of the baryon number fluctuations [34]. Therefore, we
treat the coupling constant GV as a free parameter to
shift the location of the CEP, and we take GV ¼ 0,
GV ¼ 0.67GS, and GV ¼ −0.5GS in our calculations for
comparison. Also by following Ref. [19] we pick up a

FIG. 1. The phase diagram in the T-μ plane with different ω with the coupling constant in the vector channel takes the value of
GV ¼ 0, 0.67 GS and −0.5 GS from top left to bottom.

FIG. 2. The phase diagram in the T-ω plane with different chemical potentials μ. The vector couplings are GV ¼ 0, 0.67 GS
and −0.5 GS from top left to bottom.
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particular value of transverse radial coordinate r ¼
0.1 GeV−1 in our calculation, which is a typical radius
in heavy ion collisions.

A. Phase diagram in the T-μ and T-ω plane

By solving the gap equations and finding the minima of
the thermodynamical potential, we give the phase diagram
of T-μ and T-ω in Figs. 1 and 2, respectively. The dashed,
dotted and dash-dotted lines represent crossover, the solid
lines represent the phase transitions and the big dots are the
CEP points under each conditions.

Figure 1 shows the T-μ phase diagram with different
angular velocities ω ¼ 0; 0.01; 0.15; 0.18 GeV for GV ¼ 0,
0.67 GS and −0.5 GS, respectively. The corresponding
locations of the CEP are listed in Table I. For the case of
GV ¼ 0 and ω ¼ 0, the CEP is located at the tail of the phase
boundary at TE ¼ 0.032 GeV, μE ¼ 0.333 GeV. A positive
coupling constant in the vector channel shifts away the CEP
from the phase diagram, and a negative coupling constant in
the vector channel shifts the CEP to the left part of the phase
boundarywith a higher critical temperature and a lower critical
baryon chemical potential. It is noticed that with fixed
coupling constant in the vector channel, the increase of the
angular momentum does not change the phase boundary so
much in the small baryon density region but changes the phase
boundary in the large baryon density region. For repulsive
interaction in the vector channel GV ¼ −0.5 GS, the angular
velocity has larger effect on the phase boundary in the baryon
density region higher than the critical baryon density μ > μE.
Another interesting observation is that the angular velocity
only shifts down the critical temperature TE and does not
change the critical chemical potential as shown in Table I.
Figure 2 shows the T-ω phase diagram with different

chemical potentials μ ¼ 0; 0.05; 0.08; 0.1 GeV for GV ¼ 0,
0.67 GS, and −0.5 GS, respectively. The corresponding
locations of the CEP are listed in Table II. For the case of
GV ¼ 0 and μ ¼ 0, the CEP in the T-ω plane is located at
TE ¼ 0.035;ωE ¼ 0.663 GeV. Unlike the case in the T-μ
phase diagram, a vector interaction has little effect on
changing the phase boundary in theT-ω plane. The chemical
potential does not affect the phase boundary so much in the
case of GV ¼ 0.67GS; however, for the repulsive interaction

TABLE II. The locations of CEP in the T-ω plane with different
chemical potentials and vector interaction couplings.

fTE;ωEg GV ¼ 0 GV ¼ 0.67 GS GV ¼ −0.5 GS

μ ¼ 0 f0.035; 0.663g f0.031; 0.673g f0.037; 0.663g
μ ¼ 0.05 f0.024; 0.663g f0.020; 0.673g f0.018; 0.66g
μ ¼ 0.08 … f0.005; 0.673g …
μ ¼ 0.1 … … …

TABLE I. The locations of CEP in the T-μ plane with different
angular velocities and vector interaction couplings.

fTE; μEg GV ¼ 0 GV ¼ 0.67 GS GV ¼ −0.5 GS

ω ¼ 0 f0.032; 0.333g … f0.098; 0.241g
ω ¼ 0.1 f0.002; 0.333g … f0.093; 0.241g
ω ¼ 0.15 … … f0.087; 0.241g
ω ¼ 0.18 … … f0.082; 0.241g

FIG. 3. The phase diagram in the T-μ plane with different GV . The angular velocities are ω ¼ 0, 0.1, 0.15, 0.18 GeV from top left
to bottom right.
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in the vector channel, the chemical potential has an explicit
effect on the phase boundary in the T-ω plane. Similar to the
role of the angular velocity on the CEP in the T-μ plane, the
chemical potential only shifts down the critical temperature
TE and does not change the critical angular velocity, which
can be read from Table II explicitly.

B. The effect of vector interaction
on the phase structure

In order to see the effect of the vector interaction on the
phase structure, we show the phase diagram with different
vector interaction GV in the T-μ plane and T-ω plane in
Figs. 3 and 4, respectively.

Figure 3 shows the T-μ phase diagram with different
vector interactions GV ¼ 0, 0.67 and −0.5 GS, respectively.
It is found that when the coupling constant in the vector
channel is positive GV ¼ 0.67 GS, there is no CEP showing
up in the T-μ phase diagram for all the angular velocities
ω ¼ 0; 0.1; 0.15; 0.18 GeV. In the case of no vector inter-
actionGV ¼ 0, the CEP shows up in the T-μ plane for slowly
rotating quark matter system, when the system rotates faster,
the CEP disappears. If there exists a repulsive interaction in
the vector channel, i.e., GV ¼ −0.5 GS, the CEP shows up
in the T-μ phase diagram for all the angular velocities
ω ¼ 0; 0.1; 0.15; 0.18 GeV. The increase of the angular
velocity shifts theCEP to the right part of the phase boundary.
Figure 4 shows the T-ω phase diagram with different

vector interactions GV ¼ 0, 0.67 and−0.5 GS, respectively.
For small chemical potentials μ ¼ 0; 0.05 GeV, it is found

FIG. 4. The phase diagram in the T-ω plane with different GV . The chemical potentials are μ ¼ 0, 0.05, 0.08, 0.1 GeV from top left to
bottom.

FIG. 5. The three-dimensional phase structure for chiral tran-
sition on ðT; μ;ωÞ frame with GV ¼ −0.5 GS.

FIG. 6. The three-dimensional phase structure for chiral tran-
sition in the ðT; μ; eBÞ frame taken from [35].
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that the vector interaction almost has no effect on the phase
boundary as well as the CEP in the T-ω plane. When the
chemical potential increases to μ ¼ 0.08 and 0.1 GeV,
the CEP disappears from the T-ω plane, and the vector
interaction has larger effect on the phase diagram with the
increase of the chemical potential.

C. The three-dimensional phase diagram
in the T-μ-ω plane

We show the three-dimensional phase diagram in the
T-μ-ω plane in Fig. 5 with the coupling constant in the
vector channel GV ¼ −0.5 GS. Because the properties we

have observed that the angular velocity only shifts down the
critical temperature of CEP in the T-μ plane, and the
chemical potential only shifts down the critical temperature
of CEP in the T-ω plane, we can explicitly see that most
part on the phase diagram is crossover, and the first order
chiral phase transition only exists in two corners on the
surface, i.e., in the corner of small ω and large μ and the
corner of small μ and large ω, as shown by blue regions on
the graph. There are two obvious boundaries at ω ≈ 0.66
and μ ≈ 0.24 GeV.
By comparing with the three-dimensional phase struc-

ture for chiral phase transition in the ðT; μ; eBÞ frame as
shown in Fig. 6 taken from [35], we can see that the angular
momentum plays a quite different role as the magnetic
field. From previous studies we know the phase diagram in
a external magnetic field which is influenced by two main
mechanisms: the magnetic catalysis which enhances the
chiral symmetry breaking in the vacuum and the inverse
magnetic catalysis which helps chiral symmetry restoration
around the critical temperature. The solid line in Fig. 6 is
for the critical end point (CEP). taken into account the
inverse magnetic catalysis effect, the location of CEP
ðTE; μEÞ does not change so much at high magnetic fields,
which is different from the result in [36] with only magnetic
catalysis and the location of the CEP moves towards the
temperature-axis with increasing magnetic field. In the case
of angular momentum, it only helps the chiral symmetry

FIG. 8. The kurtosis of baryon number fluctuation κσ2 with
different angular velocity ω ¼ 0; 0.1; 0.15; 0.3 GeV.

FIG. 7. The kurtosis of baryon number fluctuation κσ2 with different angular velocity ω ¼ 0; 0.1; 0.15G; 0.18 GeV.
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restoration. In fact, in Eq. (8), the main contribution of the
thermodynamic potential is given by n ¼ 0 term. It is
observed that approximately the angular velocity only gives
an addition contribution to the dynamical chemical poten-
tial μ̃, which means that the angular velocity and chemical
potential are approximately equivalent.

D. The baryon number susceptibilities

The baryon number fluctuations are sensitive to the CEP,
which has been widely discussed in the literature; for a
review, see [34]. The cumulants of conserved quantities
up to fourth order of net-proton have been measured in the
first phase of beam energy scan program (BES-I) at RHIC
for Auþ Au collisions [34,37,38], and a nonmonotonic
energy-dependent behavior for the kurtosis of the net
proton number distributions κσ2 has been observed. As
we mentioned in the Introduction, the created matter at
relativistic heavy ion collisions is also fast rotating; there-
fore, it is very important to estimate how much the rotation
will affect the baryon number fluctuations.
In this part, we investigate the effect of the angular

velocity on the kurtosis of the baryon number fluctuation
κσ2, which is defined as

κσ2 ¼ χB4
χB2

; ð13Þ

with

χBn ¼ ∂nðP=T4Þ
∂ðμB=TÞn ; ð14Þ

where the pressure P = −Ω is just the minus of the grand
potential.
In Fig. 7, we show the three-dimensional plot for the

kurtosis of baryon number fluctuation κσ2 as a function of
the temperature and baryon chemical potential with differ-
ent angular velocities in the NJL model in the case of
GV ¼ 0. We can clearly see that the angular velocity shifts
the location of the CEP to the right part of the phase
diagram in the ðT; μÞ plane, and with the further increase
of the angular velocity, the CEP disappears. In order to
show how the angular velocity affects the baryon number
fluctuation, we show in Fig. 8 the value of κσ2 as a function
of normalized temperature T=T0 in different angular
velocity at zero chemical potential, with T0 the critical
temperature for chiral phase transition at μ ¼ 0. As we have
discussed in Ref. [33], in the case of comparing with lattice
result Ref. [39], the quark dynamics only contributes
around 20% to the κσ2 and the main contribution comes
from the gluodynamics; therefore, the value of κσ2 is only
0.15 at chiral phase transition T=T0 ¼ 1 in the NJL model.
We can see explicitly that the angular velocity decreases the
kurtosis of the baryon number fluctuation κσ2.

E. Other thermodynamic quantities

To complete our study on the effect of rotation on QCD
matter, in this part, we investigate the equation of state of
the rotating matter. The energy density ϵ is given by

ϵ ¼ −T2
∂ðΩ=TÞ

∂T
				
V
¼ −T

∂Ω
∂T

				
V
þ Ω; ð15Þ

FIG. 9. P, ϵ, CV and v2s with different angular velocity ω ¼ 0; 0.1; 0.15; 0.3 GeV at zero chemical potential.
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and the corresponding specific heat

CV ¼ ∂ϵ
∂T

				
V
¼ −T

∂2Ω
∂T2

				
V
: ð16Þ

The square of velocity of sound at constant entropy S is
given by

v2s ¼
∂P
∂ϵ

				
S
¼ ∂P

∂T
				
V
=
∂ϵ
∂T

				
V
¼ ∂Ω

∂T
				
V
=T

∂2Ω
∂T2

				
V
: ð17Þ

In Fig. 9, we show the dimensionless quantities of the
pressure, energy density, specific heat and the square of
sound velocity as a function of normalized temperature
T=T0 with different angular velocities at zero chemical
potential and zero vector interaction in the NJL model.
When the normalized temperature is small, it clearly shows
that the larger the angular velocity is, the larger these
quantities will be. At high temperatures, the angular
velocity plays almost no effect on the rotating matter,
and all these quantities reach to the free ideal gas limit.

IV. CONCLUSION AND OUTLOOK

In this work, we investigate the effect of the angular
velocity on the chiral phase transition of quark matter in the
two-flavor NJL model with vector interaction. It is found
that the angular momentum plays similar role as the baryon
chemical potential, which suppresses the chiral condensate
and helps the chiral phase transition. Therefore, the chiral
phase transition shows a critical end point not only in the
temperature-chemical potential T-μ plane, but also in the
temperature-angular momentum T-ω plane. One interesting
observation is that in the T-μ plane, the presence of the
angular momentum only shifts down the critical temper-
ature TE of the CEP and does not shift the critical chemical
potential μE, and in the T-ω plane, the increase of the
chemical potential only shift down the critical temperature
TE and does not change the critical angular momentum ωE.
From the three-dimensional phase structure in the ðT; μ;ωÞ
frame, we can explicitly see that most part on the phase
diagram is crossover, and the first order chiral phase
transition only exists in two corners on the surface, i.e.,

in the corner of small ω and large μ and the corner of small
μ and large ω. By comparing with the three-dimensional
phase structure for chiral phase transition in the ðT; μ; eBÞ
frame, we can see that the angular momentum plays a quite
different role comparing with the magnetic field, because
the magnetic field enhances the chiral symmetry breaking
in the vacuum which is called the magnetic catalysis effect,
and helps chiral symmetry restoration around the critical
temperature which is called the inverse magnetic catalysis
effect.
The effect of the vector interaction is also investigated,

and it is found that the phase structure in T-μ plane is
sensitive to the coupling strength in the vector channel,
while the phase structure in T-ω plane is not sensitive to the
vector interaction. The baryon number fluctuations is also
investigated and it is found that the angular velocity
suppresses the kurtosis of the baryon number fluctuation.
In fact, we could see that the critical angular velocity in the
T-ω plane is very high (∼0.7 GeV) comparing with the
angular velocity which could be created in the heavy ion
collision (∼0.1 GeV). So it is hard to find the critical end
point in the T-ω plane through heavy ion collision experi-
ments, but the influence of the angular velocity on the
phase boundary in the T-μ plane is still obvious, especially
in the high baryon density region. This also affects the
kurtosis of the baryon number fluctuation in the heavy ion
collision. It is also observed that the rotating angular
velocity enhances the pressure density, energy density,
the specific heat and the sound velocity.
The NJL model only captures quark dynamics; therefore,

in this work, we only consider the properties of quark
matter under rotation. In the future, it is worth studying the
properties of gluonic matter under fast rotation.
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